THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TECHNIQUES TO THE PREDICTION OF RINGGIT EXCHANGE RATES

A thesis submitted to the Faculty of Information Technology in partial Fulfilment of the requirements for the degree Master of Science (Intelligent Knowledge Based System), Universiti Utara Malaysia

by

Fizlin binti Zakaria

© Fizlin binti Zakaria, 2004. All rights reserved
Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

FIZLIN BINTI ZAKARIA
(candidate for the degree of) MSc. (IKBS)

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO THE
PREDICTION OF RINGGIT EXCHANGE RATES

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmu dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the file is covered by the project paper).

Nama Penyelia Utama
(Name of Main Supervisor): EN. MOHD SHAMRIE SAININ

Tandatangan
(Signature) : ___________________________ Tarikh (Date): 28/03/04

Nama Penyelia Kedua
(Name of Second Supervisor): EN. MOHD TARMIDI MAHLI

Tandatangan
(Signature) : ___________________________ Tarikh (Date): 28/03/04
PERMISSION TO USE

In presenting this project in partial fulfilment of the requirements for a post graduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this theses or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project.

Request for permission to copy or to make other use of materials in this project, in whole or in part, should be addressed to:

Dean of Faculty of Information Technology
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
ABSTRACT (ENGLISH)

This research examines and analyzes the use of neural networks as a forecasting tool. Specifically, a neural network's ability to predict future trends of foreign exchange rates is tested. Accuracy is compared against a traditional forecasting method, multiple linear regression analysis. Time series data and technical indicators are fed to neural nets to capture the underlying 'rules' of the movement in currency exchange rates. Three neural network models; Multi-layer Perceptron, Radial Basis Function and Recurrent neural networks forecast the exchange rates between Ringgit Malaysia and four other major currencies, Japanese Yen, Yuan, British Pound and Deutch Mark are desorbed. The four currencies were chosen because all the main volumes of operations on Forex are made with these currencies. Obtained results show that neural networks are able to give forecast with coefficient of multiple determinations. It was concluded that neural networks do have the capability to forecast financial markets and, if properly trained, the individual investor could benefit from the use of this forecasting tool.
ABSTRACT (BAHASA MELAYU)

ACKNOWLEDGEMENT

Heartfelt thanks are due first to my main supervisor, En. Mohd Shamrie Sainin for patiently navigating and generously sharing his rich source of knowledge with me. He is indeed a teacher of “open hand, open mind, and open heart”.

Equally thankful to my second supervisor, En. Mohd Tarmidi Mahli for zealously giving a hand to his utmost.

I am most indebted to my parents for all the love and support in giving me the best gift; “Education”- a lifelong priceless present that can never be destroyed by calamities. Last but not least, let me express my deep appreciation to all who lend a hand in materializing this project.

Fizlin Zakaria
Faculty of Information Technology
2004
TABLE OF CONTENTS

Permission to use ... i
Abstract .. ii
Abstract (Bahasa Melayu) .. iii
Acknowledgement ... iv
Table of Contents ... v
List of Figures ... viii
List of Tables ... x
List of Appendices ... xi

CHAPTER 1: INTRODUCTION

1.1 Context of the study .. 1
 1.1.1 The Importance of Forecasting .. 2
 1.1.2 Financial and Strategic Importance of Forecasting 2
 1.1.3 The Commonality of Forecasting 4
1.2 Problem Statement ... 4
1.3 Objective of the Study ... 4
1.4 Scope of Project ... 4
1.5 Significance of the Study ... 4
1.6 Thesis Overview ... 5

CHAPTER 2: LITERATURE REVIEW

2.1 Ringgit Exchange Rates Forecasting 6
2.2 Artificial Neural Networks Forecasting Model 7
2.3 Time series Forecasting ... 11
CHAPTER 3: ARTIFICIAL NEURAL NETWORKS AND FOREIGN EXCHANGE RATE FORECASTING

3.1 Artificial Neural Networks ... 14
 3.1.1 Architecture of ANNs ... 18
 3.1.2 ANNs Techniques ... 19
 3.1.3 Applications of ANNs ... 21
3.2 Forecasting .. 23
 3.2.1 What is a forecast? ... 23
 3.2.2 What should be forecast? .. 23
 3.2.3 Common Time Series Pattern .. 24
 3.2.4 Forecast Accuracy and Model Complexity 24
3.3 Foreign Exchange Rate ... 25

CHAPTER 4: METHODOLOGY

4.1 Investigates, elicitate and Deductive approach 27
 4.1.1 Literature Review and Information Use .. 27
4.2 Analytical, constructive and Hypothetical approach 28
 4.2.1 Data Preprocessing ... 28
 4.2.2 Model Selected ... 28
 4.2.3 Implementation and Testing .. 29
 4.2.4 Results and Analysis ... 29

CHAPTER 5: IMPLEMENTATION AND TESTING

5.1 Data Preprocessing .. 31
5.2 Training MLP using Neural Connection 2.0 33
 5.2.1 To train the Multi-layer Perceptron .. 35
5.3 Training RBF using Neural Connection 2.0 38
 5.3.1 To train the Radial Basis Function .. 39
5.4 Training Recurrent Networks using NeuroSolutions 4.21 42
5.4.1 Training the network ... 43
5.5 Testing the networks performance .. 49
 5.5.1 Multi-linear regression .. 49

CHAPTER 6: RESULT AND ANALYSIS

6.1 Results for Multi-layer Perceptron ... 54
6.2 Results for Radial Basis Function ... 56
6.3 Results for Recurrent Networks ... 59

CHAPTER 7: CONCLUSION AND RECOMMENDATIONS

Conclusion and Recommendation ... 61

REFERENCES

References .. 64

APPENDICES

Appendix A: Summary of modelling issues of ANN forecasting 68
Appendix B: The relative performance of ANNs with the traditional statistical method 69
Appendix C: The experimental results for multi-layer perceptron 70
Appendix D: The experimental results for radial-basis function 71
LIST OF FIGURES

Figure 2.1 Comparison between the true and the predicted value 12
Figure 3.1 Three Interconnected Artificial Neurons 16
Figure 3.2 Architecture of Artificial Neural Networks 18
Figure 3.3 The architecture of feed forward neural networks 19
Figure 3.4 The architecture of Back propagation networks 20
Figure 3.5 Schematic illustration of the Elman-Jordan network architecture 21
Figure 4.1 Research methodology 30
Figure 5.1 The equation of Min Max technique 31
Figure 5.2 Date conversion algorithm 32
Figure 5.3 The equation of date normalization 32
Figure 5.4 Sample data set before normalization and after normalization of date 32
Figure 5.5 Sample data set before normalization and after normalization of rates 33
Figure 5.6 MLP architecture using Neural Connection 2.0 33
Figure 5.7 Training dialog box for MLP network 35
Figure 5.8 Hidden layer box 35
Figure 5.9 MLP training stages dialog box 36
Figure 5.10 To choose the activation function 37
Figure 5.11 To change the convergence criteria 38
Figure 5.12 Model summary of CHF 38
Figure 5.13 The center distribution dialog box 40
Figure 5.14 The RBF layer dialog box 41
Figure 5.15 Nonlinear function parameter box 41
Figure 5.16 The summary results for CHF using RBF 42
Figure 5.17 NeuralBuilder supported models 43
Figure 5.18 NeuralBuilder Training Data Panel 43
Figure 5.19 NeuralBuilder cross validation and test data panel 44
Figure 5.20 NeuralBuilder MultiLayer perceptron model 44
Figure 5.21 NeuralBuilder Hidden layer #1 panel 45
Figure 5.22 NeuralBuilder Output layer panel
Figure 5.23 NeuralBuilder Supervised learning panel
Figure 5.24 NeuralBuilder probe configuration panel
Figure 5.25 Actual vs predicted value for testing data set of CHF
Figure 5.26 Accrual vs predicted value for actual data set of CHF
Figure 6.1 The actual vs predicted value for CHF
Figure 6.2 The actual vs predicted value for DEM
Figure 6.3 The actual vs predicted value for GBP
Figure 6.4 The actual vs predicted value for JPY100
Figure 6.5 The actual vs predicted value for CHF
Figure 6.6 The actual vs predicted value for DEM
Figure 6.7 The actual vs predicted value for GBP
Figure 6.8 The actual vs predicted value for JPY100
Figure 6.9 The actual vs predicted value for DEM
<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>Comparison between different TST approaches</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Types of ANNs and typical applications</td>
<td>22</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Variables Entered/Removed</td>
<td>50</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Model summary</td>
<td>50</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Anova</td>
<td>51</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Coefficients</td>
<td>51</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Test statistics</td>
<td>52</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>The architecture summary for MLP</td>
<td>54</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>The architecture summary for RBF</td>
<td>56</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>The active performance for CHF</td>
<td>59</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>The active performance for DEM</td>
<td>59</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>The active performance for GBP</td>
<td>60</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>The active performance for JPY100</td>
<td>60</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Summary of modelling issues of ANN forecasting</td>
<td>68</td>
</tr>
<tr>
<td>B</td>
<td>The relative performance of ANNs with the traditional statistical method</td>
<td>69</td>
</tr>
<tr>
<td>C</td>
<td>The experimental results for multi-layer perceptron</td>
<td>70</td>
</tr>
<tr>
<td>D</td>
<td>The experimental results for radial-basis function</td>
<td>71</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 The Context of study

Foreign exchange rate is one of the important economic indexes in the international monetary markets. Since 1973, with the abandonment of the fixed foreign exchange rates and the implementation of the floating rate exchange rate system by industrialized countries, researchers have been striving for an explanation of the movement of exchange rate. Foreign exchange rates are affected by many highly correlated factors. These factors could be economic, political, and even psychological factors. The interaction of these factors is in a very complex fashion. Therefore to forecast the changes of foreign exchange rates is generally very difficult. Technical and fundamental analyses are the major forecasting methods which are popular in the financial area.

In addition, due to the classical time series forecasting method such as Box-Jenkins (Box and Jenkins, 1994) and the neural networks method is now widely used for financial forecasting (Kuan and Liu, 1994; Yao et al., 1996; Giles et al., 1997). Examples using neural networks in foreign exchange include Feed forward backpropagation networks are the most commonly used in variety of applications.

Theoretically, a neural network model that fits any kind of functions and data could be built (Yao et al., 1996). The main consideration when building a suitable neural network for forecasting exchange rate is to make trade-off convergence and
The contents of the thesis is for internal user only
REFERENCES

