A FRAMEWORK OF SUBJECTIVE PERFORMANCE EVALUATION USING FUZZY TECHNIQUE

A Thesis Submitted to the Centre For Graduate Studies in Fulfillment of the requirement for the degree of Doctor of Philosophy
Universiti Malaysia Utara

By

Mahmod Othman

© Mahmod Othman, 2005. All rights reserved.
Pusat Pengajian Siswazah
(Centre for Graduate Studies)
Jabatan Hal Ehwal Akademik
(Department of Academic Affairs)
Universiti Utara Malaysia

PERAKUAN KERJA TESIS / DISERTASI
(Certification of thesis / dissertation)

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

MAHMOD OTHMAN

calon untuk ijazah
(candidate for the degree of)

DOKTOR FALSAFAH (Ph.D.)

telah mengemukakan tesis / disertasi yang bertajuk
(has presented his/her thesis / dissertation of the following title)

“A FRAMEWORK OF SUBJECTIVE PERFORMANCE EVALUATION USING FUZZY TECHNIQUE”

seperti yang tercatat di muka surat tajuk dan kulit tesis / disertasi
(as it appears on the title page and front cover of thesis / dissertation)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang ilmu dengan memuaskan, sebagaimana yang ditunjukkan oleh calon dalam ujian lisan yang diadakan pada : 18 JULAI 2005

that the project paper acceptable in the form and content and a satisfactory knowledge of the field is covered by the thesis, was demonstrated by the candidate through an oral examination held on : 18 JULY 2005

Pengerusi Viva
(Chairman for Viva)

: Prof. Madya Dr. Mohd. Zaini Abdul Karim

Tandatangan
(Signature)

Penilai Luar
(External Assessor)

: Prof. Madya Dr. Siti Mariyam Hj. Shamsuddin

Tandatangan
(Signature)

Penilai Dalaman
(Internal Assessor)

: Prof. Madya Dr. Norita Md Norwawi

Tandatangan
(Signature)

Penyelia Utama
(Principal Supervisor)

: Prof. Dr. Hajah Ku Ruhana Ku Mahamud

Tandatangan
(Signature)

Penyelia Kedua
(Second Supervisor)

: Dr. Azuraliza Abu Bakar

Tandatangan
(Signature)

Tarikh:
(Date)
PERMISSION TO USE

In presenting this thesis in fulfillment of the requirements for the degree of doctor of philosophy in the Centre of Graduate Studies, Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Director of the Centre of Graduate Studies. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Director
The Centre of Graduate Studies
UNIVERSITI UTARA MALAYSIA
06010 UUM Sintok
Kedah Darul Aman
ABSTRACT

This research proposes the framework of subjective performance evaluation using fuzzy technique for ranking the attributes of different types of datasets under a multi-criteria environment. Some previous studies on fuzzy techniques have been attempted in assessment and evaluation methods. The techniques such as fuzzy similarity function, fuzzy synthetic decision and satisfaction function have been adopted in these fuzzy evaluation methods. However, research that discover a scaling measurement which can express the subjectivity element and integrate the organisation's objectives and goals into the evaluation processes by utilising the fuzzy rule in the subjective evaluation method seem limited. Hence, this framework uses the application of fuzzy sets, and approximate reasoning to determine the performance evaluation of various characteristics in decision-making. The framework based upon fuzzy sets has initiated the idea of membership set score valued evaluation of each criterion alternative enables to include requirements which are incomplete and imprecise. The approximate reasoning of the method allows decision maker to make the best choice in accordance of human thinking and reasoning processes. The method introduces an approach of normalising data using similarity function which dampens the extreme value that exists in the data. The framework is suitable for dealing with evaluations in situations that involve subjectivity, vagueness and imprecise information, such as the grading system of evaluation which involves many hedges like “good”, “bad” and “satisfactory”.
The framework is based on fuzzy multi-criteria decision-making that consists of fuzzy rules. The rules developed by the previous methods are unsuitable to be used in the subjective evaluation framework because of differences in certain characteristics. Moreover most methods need extensive learning process in developing the rules. The use of fuzzy rules, which were extracted directly from input data in making evaluation, contributes a better decision in selecting the best choice and less dependent to the domain of expert.

The aim of utilising the multi-criteria combination rule is to capture the main criteria that exist in the alternatives. The fuzzy rules embedded in the framework of subjective evaluation method showed advantages in generalising the evaluation of the performance achievement, where the evaluation process can be conducted consistently in producing good evaluation results with the use of the membership set score.

Ten data sets from previous studies were used to validate the subjective evaluation framework. The properties of fuzzy rules generated in terms of total number of rules, size and length for the best ranking or classification were recorded. The accuracy of the rules generated from the proposed framework was further analysed through the maximum length, minimum length and the rule definition. The rules were used in the subjective evaluation algorithm to evaluate the alternative performance. The accuracy of ranking was compared to several subjective
evaluation methods such as fuzzy performance score evaluation and fuzzy multi-criteria evaluation.

The normalisation operation process which uses the fuzzy similarity reduces the irregular data and produces highly reliable data. The reliability of the data indicates the stability and consistency with which the proposed method generates fuzzy rules and evaluating performance quality or the alternatives. Hence, the suggested framework is able to produce good and precise ranking results in fuzzy environments.

The results from the numerical examples are comparable to other fuzzy evaluation methods, even with the use of small rule size.
ABSTRAK

vi
Kerangkakerja yang dicadangkan ini adalah berdasarkan kepada keputusan kriteria pelbagai kabur yang turut mempunyai petua kabur. Petua yang dibangunkan oleh kaedah lampau adalah tidak sesuai digunakan di dalam kerangka penilaian subjektif ini disebabkan oleh perbezaan di dalam beberapa kriteria. Tambahan pula kebanyakan kaedah itu memerlukan proses latihan yang berulang-ulang untuk membentuk petua. Penggunaan petua kabur yang dijana dari data input di dalam penilaian menyumbang kepada keputusan yang lebih baik dalam membuat pilihan dan mengurangkan kebergantungan terhadap pandangan pakar.

Tujuan petua kombinasi kriteria pelbagai adalah untuk mengenalpasti kriteria penting yang wujud di dalam alternatif. Petua kabur yang digunakan dalam kaedah penilaian subjektif telah menunjukkan keberkesanan di dalam mengitlak penilaian prestasi pencapaian iaitu proses penilaian boleh dijalankan secara konsisten dengan penggunaan darjah skor set keahlian.

Proses operasi pernormalan yang menggunakan fungsi kesamaan didapati dapat mengurangkan ketidaktentuan data dan boleh menghasilkan data yang lebih baik dengan tahap kebolehpercayaan yang tinggi. Kebolehpercayaan data menunjukkan kestabilan dan konsisten kerangkakerja dalam menjana petua dan menilai kualiti pencapaian atau alternatif. Oleh yang demikian kerangkakerja berupaya menghasilkan keputusan penilaian yang tepat, dan baik di dalam keadaan kabur.

Dapatan daripada contoh berangka menunjukkan keputusan perbandingan susunatur pencapaian yang setanding dengan kaedah penilaian kabur lain walaupun menggunakan petua yang bersaiz kecil.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Merciful and Most Compassionate. Praise to Allah s.w.t. for granted me strength, courage, patience and inspirations in completing this work.

My deepest appreciation and gratitude to my supervisors, Prof. Dr. Hajjah Ku Ruhana Ku Mahamud and Dr. Azuraliza Abu Bakar for their virtuous guidance, sharing their intellectual experiences, and giving their motivation and support that lead the way in so many aspects of the research work. Without their constant support and guidance, this thesis would never have been completed.

I am grateful to the Universiti Teknologi MARA for the scholarship, study leave and allowances that enabled me to pursue this doctoral programme.

I would like to thank En. Mohd Asri Mohd. Noor (UiTM, Arau) who patiently read this thesis.

Special appreciation to my mother, Amnah bt. Shaharuddin; my wife Norlidah Mohd Yasin; my daughters Intan Filzah Mahmud, Nurul Nadiah Mahmud, Siti Azhani Mahmud; my sons Fakhrul Ariffin Mahmud and Shahrul A’izzat Mahmud for their loves and prayers in making this dream came true. I LOVE YOU...

Mahmod Othman
AUGUST 2005
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMISSION TO USE</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURE</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

1.2 Objective of the Research

1.3 Significance of the Research

1.4 Scope, Assumption and Limitation of the Research

1.5 Research Methodology

1.6 Organisation of the Thesis

1.7 Summary

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

2.2 Subjective Evaluation

2.2.1 Non-Fuzzy Evaluation

2.2.2 Fuzzy Evaluation

2.2.2.1 Defense

2.2.2.2 Defense
CHAPTER 3

FRAMEWORK OF A NEW SUBJECTIVE EVALUATION METHOD

3.1 Introduction 60
3.2 Subjective Evaluation 61
3.3 Transformation Method 69
3.4 Numerical Example 74
 3.4.1 Frequency Data 74
 3.4.2 Trapezoidal Fuzzy Number 77
 3.4.3 Triangular Fuzzy Number 81
 3.4.4 Linguistic Data 83
3.5 Rule Generation 87
3.6 Summary 93
CHAPTER 4

THE PROPOSED SUBJECTIVE EVALUATION METHOD

4.1 Introduction 94
4.2 Subjective Evaluation Algorithm 95
4.3 Numerical Example 106
4.4 Summary 122

CHAPTER 5

EXPERIMENT AND OBSERVATION

5.1 Introduction 123
5.2 Experiment Design 124
5.3 The Case Studies 128
 5.3.1 Frequency Data 129
 5.3.2 Trapezoidal Fuzzy Number 132
 5.3.3 Triangular Fuzzy Number 135
 5.3.3.1 Passenger Services of Asia-Pacific International Airports 135
 5.3.3.2 Airline Safety Index 138
 5.3.3.3 Weapon System 142
 5.3.4 Linguistic Data 145
 5.3.4.1 Privatization of Taiwan Public Bus Operation 146
 5.3.4.2 Spent Fuel Storage Options 149
5.3.5 Measurement Data 152
5.3.5.1 IRIS Data
5.3.5.2 RICE Data

5.4 Discussion
5.5 Summary

CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Summary of the Chapter
6.2 Research Contribution
6.3 Future Work

REFERENCES

APPENDICES

A1 Membership Set Score for UTQ
A2 Membership Set Score for $RBPOA$
A3 Membership Set Score for $PSAPIA$
A4 Membership Set Score for $PTPOBO$
B1 Proof Concept of Linear Programming
C1 Fuzzy Rule Generation
C2 Fuzzy Set Membership
C3 Similarity Value
D1 Taiwan Credit Rating System for Commercial Loans
D2 Airline Safety Index
D3 Evaluating Weapon System
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td>Spent Fuel Storage Option</td>
<td>224</td>
</tr>
<tr>
<td>D5</td>
<td>IRIS Data</td>
<td>227</td>
</tr>
<tr>
<td>D6</td>
<td>Rice Taste Data</td>
<td>231</td>
</tr>
<tr>
<td>E1</td>
<td>Evaluation Results for FCR</td>
<td>234</td>
</tr>
<tr>
<td>E2</td>
<td>Evaluation Results for RBPDA</td>
<td>238</td>
</tr>
<tr>
<td>E3</td>
<td>Evaluation Results for PSAPIA</td>
<td>245</td>
</tr>
<tr>
<td>E4</td>
<td>Evaluation Results for ASI</td>
<td>254</td>
</tr>
<tr>
<td>E5</td>
<td>Evaluation Results for WS</td>
<td>261</td>
</tr>
<tr>
<td>E6</td>
<td>Evaluation Results for PTPBO</td>
<td>264</td>
</tr>
<tr>
<td>E7</td>
<td>Evaluation Results for SPO</td>
<td>272</td>
</tr>
<tr>
<td>E8</td>
<td>Evaluation Results for IRIS</td>
<td>287</td>
</tr>
<tr>
<td>E9</td>
<td>Evaluation Results for RT</td>
<td>298</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Teaching Quality Statistics</td>
<td>75</td>
</tr>
<tr>
<td>3.2</td>
<td>Factor Weightage</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Teaching Quality</td>
<td>76</td>
</tr>
<tr>
<td>3.4</td>
<td>Membership Set Score</td>
<td>77</td>
</tr>
<tr>
<td>3.5a</td>
<td>Evaluation of Alternatives by Experts for Criteria C_1</td>
<td>79</td>
</tr>
<tr>
<td>3.5b</td>
<td>Evaluation of Alternatives by Experts for Criteria C_2</td>
<td>79</td>
</tr>
<tr>
<td>3.5c</td>
<td>Evaluation of Alternatives by Experts for Criteria C_3</td>
<td>79</td>
</tr>
<tr>
<td>3.5d</td>
<td>Evaluation of Alternatives by Experts for Criteria C_4</td>
<td>79</td>
</tr>
<tr>
<td>3.5e</td>
<td>Evaluation of Alternatives by Experts for Criteria C_5</td>
<td>80</td>
</tr>
<tr>
<td>3.5f</td>
<td>Evaluation of Alternatives by Experts for Criteria C_6</td>
<td>80</td>
</tr>
<tr>
<td>3.5g</td>
<td>Evaluation of Alternatives by Experts for Criteria C_7</td>
<td>80</td>
</tr>
<tr>
<td>3.5h</td>
<td>Evaluation of Alternatives by Experts for Criteria C_8</td>
<td>80</td>
</tr>
<tr>
<td>3.6</td>
<td>Evaluation of Criteria by Experts</td>
<td>81</td>
</tr>
<tr>
<td>3.7</td>
<td>The Fuzzy Membership Set Score of Performance Score Criteria C_1</td>
<td>81</td>
</tr>
<tr>
<td>3.8</td>
<td>Service Attributes for Passenger Service of Asia-Pacific International Airports</td>
<td>82</td>
</tr>
</tbody>
</table>
3.9 Average Fuzzy Performance Ratings of 14 Airports
Assessed by Travel Experts 82
3.10 The Fuzzy Membership Set Score C_1 83
3.11 Privatisation Alternative of Bus Operation 84
3.12 The Alternative and Criteria 84
3.13 Level of Service 85
3.14 Operation Performance for Public Bus 85
3.15 Operation Performance for Private Bus 86
3.16 Weightage 86
3.17 Evaluation Set 86
3.18 Membership Set Score 87
4.1 Membership Set Score 107
4.2 Grade Mid-Point and Mid-Interval 108
4.3 Fuzzy Set Membership 109
4.4 Fuzzy Set Grade 109
4.5 Similarity Value 110
4.6 Maximum Similarity Value 113
4.7 Normalised Synthetic Score Value 114
4.8 Multi-criteria Rules Combination 115
4.9 Factor Rule Value 116
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10a</td>
<td>Appraisal Fuzzy Value for Decision Criteria C_1</td>
<td>117</td>
</tr>
<tr>
<td>4.10b</td>
<td>Appraisal Fuzzy Value for Decision Criteria C_2</td>
<td>117</td>
</tr>
<tr>
<td>4.10c</td>
<td>Appraisal Fuzzy Value for Decision Criteria C_3</td>
<td>117</td>
</tr>
<tr>
<td>4.10d</td>
<td>Appraisal Fuzzy Value for Decision Criteria C_4</td>
<td>117</td>
</tr>
<tr>
<td>4.10e</td>
<td>Appraisal Fuzzy Value for Decision Criteria C_5</td>
<td>118</td>
</tr>
<tr>
<td>4.10f</td>
<td>Appraisal Fuzzy Value for Decision Criteria C_6</td>
<td>118</td>
</tr>
<tr>
<td>4.10g</td>
<td>Appraisal Fuzzy Value for Decision Criteria C_7</td>
<td>118</td>
</tr>
<tr>
<td>4.11</td>
<td>Appraisal Product Value</td>
<td>119</td>
</tr>
<tr>
<td>4.12</td>
<td>Calculated range of α, $\Delta \alpha$, and $H_i(E_{\mu\alpha})$</td>
<td>119</td>
</tr>
<tr>
<td>4.13</td>
<td>Ranking The Teaching Quality</td>
<td>121</td>
</tr>
<tr>
<td>5.1a</td>
<td>Fuzzy Rules for FCR</td>
<td>130</td>
</tr>
<tr>
<td>5.1b</td>
<td>Results of FCR</td>
<td>131</td>
</tr>
<tr>
<td>5.2a</td>
<td>Fuzzy Rules for $RBPDA$</td>
<td>132</td>
</tr>
<tr>
<td>5.2b</td>
<td>Rules Description of $RBPDA$</td>
<td>133</td>
</tr>
<tr>
<td>5.2c</td>
<td>Result of $RBPDA$</td>
<td>134</td>
</tr>
<tr>
<td>5.3a</td>
<td>Fuzzy Rules for $PSAPIA$</td>
<td>136</td>
</tr>
<tr>
<td>5.3b</td>
<td>Results of $PSAPIA$</td>
<td>137</td>
</tr>
<tr>
<td>5.4a</td>
<td>Fuzzy Rules of ASI</td>
<td>139</td>
</tr>
<tr>
<td>5.4b</td>
<td>Comparison of Safety Index and Ranking of Four Airlines</td>
<td>140</td>
</tr>
<tr>
<td>5.5a</td>
<td>Fuzzy Rules of WS</td>
<td>144</td>
</tr>
<tr>
<td>5.5b</td>
<td>Results of WS</td>
<td>145</td>
</tr>
<tr>
<td>5.6a</td>
<td>Chang Fuzzy Rules</td>
<td>146</td>
</tr>
<tr>
<td>5.6b</td>
<td>Fuzzy Rules for $PTPBO$</td>
<td>147</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.6c</td>
<td>Rule Description of PTPBO</td>
<td>147</td>
</tr>
<tr>
<td>5.6d</td>
<td>Results of PTPBO</td>
<td>148</td>
</tr>
<tr>
<td>5.7a</td>
<td>Fuzzy Rules of SFO</td>
<td>150</td>
</tr>
<tr>
<td>5.7b</td>
<td>Results of SFO</td>
<td>151</td>
</tr>
<tr>
<td>5.8a</td>
<td>Fuzzy Rules of IRIS</td>
<td>153</td>
</tr>
<tr>
<td>5.8b</td>
<td>The Classification of IRIS Data</td>
<td>154</td>
</tr>
<tr>
<td>5.9a</td>
<td>Fuzzy Rules of RT</td>
<td>155</td>
</tr>
<tr>
<td>5.9b</td>
<td>The Classification of RT</td>
<td>156</td>
</tr>
<tr>
<td>5.10</td>
<td>Summary of Experimental Results</td>
<td>157</td>
</tr>
<tr>
<td>Figure</td>
<td>Figure Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>A New Subjective Evaluation Method</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>Normalisation Method</td>
<td>64</td>
</tr>
<tr>
<td>3.3</td>
<td>The Similarity Curve</td>
<td>66</td>
</tr>
<tr>
<td>3.4</td>
<td>Positive Skew</td>
<td>66</td>
</tr>
<tr>
<td>3.5</td>
<td>Negative Skew</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>The Proposed Rule Generation Method</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>Triangle Fuzzy Number</td>
<td>77</td>
</tr>
<tr>
<td>3.8</td>
<td>Trapezoidal Fuzzy Number</td>
<td>78</td>
</tr>
<tr>
<td>3.9</td>
<td>Rule Generation</td>
<td>88</td>
</tr>
<tr>
<td>3.10</td>
<td>Clustering the Grade and Performance Score Algorithm</td>
<td>89</td>
</tr>
<tr>
<td>4.1</td>
<td>The Similarity Curve for Factor F_1</td>
<td>111</td>
</tr>
<tr>
<td>5.1</td>
<td>Classification Boundary IF-THEN Rule</td>
<td>127</td>
</tr>
<tr>
<td>5.2a</td>
<td>Safety Index by Chang & Yeh</td>
<td>142</td>
</tr>
<tr>
<td>5.2b</td>
<td>Safety Index by Subjective Evaluation</td>
<td>142</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>UTQ</td>
<td>University Teaching Quality</td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td>Fuzzy Credit Rating</td>
<td></td>
</tr>
<tr>
<td>RBPDA</td>
<td>River Basin Planning Alternatives</td>
<td></td>
</tr>
<tr>
<td>PSAPIA</td>
<td>Passenger Services of Asia-Pacific International Airports</td>
<td></td>
</tr>
<tr>
<td>ASI</td>
<td>Airline Safety Index</td>
<td></td>
</tr>
<tr>
<td>WS</td>
<td>Weapon System</td>
<td></td>
</tr>
<tr>
<td>PTPBO</td>
<td>Privatisation of Taiwan Public Bus Operation</td>
<td></td>
</tr>
<tr>
<td>SFO</td>
<td>Spent Fuel Storage Options</td>
<td></td>
</tr>
<tr>
<td>IRIS</td>
<td>Iris Flower Species</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Rice Taste</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Conventional evaluation systems are representatives of structured systems that employ objective and subjective measures of evaluation. Objective measures are quantifiable measure of performance: for example, cars/hour, parts/hour, bottles/hour, etc., which are normally defined by procedures. Subjective evaluation measures are less quantifiable, for example; leadership, presentation, and problem-solving skills. In some organisations the criteria for the evaluation are less quantifiable and subjective, for example in the teaching service and research (Horowits & Zappe, 1995).

In practice, evaluation of performance usually uses subjective criteria. In doing so, they have to depend on their wisdom, experience, professional knowledge and information, which is difficult to define and/or describe exactly. Analysing with incomplete data, a lot of uncertainties will confuse decision-makers and complicate decision-making under unknown situations.
The contents of the thesis is for internal user only
REFERENCES

172

175

178

Reviewed Papers

