

UNIT PENGAJIAN SISWAZAH
(GRADUATE STUDIES UNIT)
JABATAN HAL EHWAL AKADEMIK
(ACADEMIC AFFAIRS DEPARTMENT)
UNIVERSITI UTARA MALAYSIA

PERAKUAN KERJA/DISERTASI
(Certification of Dissertation Work)

Kami, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

SALEH BIN HASHIM

calon untuk Ijazah
(candidate for the degree of) SARJANA SAINS (SAINS PEMUTUSAN)

telah mengemukakan tesis/disertasinya yang bertajuk
(has presented his/her project paper of the following title)

**SIMULATION STUDY OF IMPROVING SERVICE FOR PATIENT
TREATMENT AT HOSPITAL BESAR ALOR STAR (HBAS)**

seperti yang tercatat di muka surat tajuk dan kulit tesis/disertasi
(as it appears on the title page and front cover of project paper)

bahasa tesis/disertasi tersebut boleh diterima dari segi bentuk serta kandungan, dan liputan bidang ilmu yang memuaskan, sebagaimana yang ditunjukkan oleh calon dalam ujian lisan yang diadakan pada :

(that the thesis/dissertation is acceptable in form and content, and that a satisfactory knowledge of the field covered by the thesis was demonstrated by the candidate through an oral examination held on 9 DISEMBER 2003

Pengerusi Viva : Prof. Madya Dr. Ang
(Chairman for Viva) Chooi Leng

Tandatangan:
(Signature)

Penilai Luar : _____
(External Assessor)

Tandatangan:
(Signature) _____

Penilai Dalam : Prof. Madya Dr.
(Internal Assessor) Shaharuddin Tahir

Tandatangan:
(Signature)

Penyelia Utama : Prof. Madya Dr. Razman
(Principal Supervisor) Mat Tahar

Tandatangan:
(Signature)

Dekan Sek. Siswazah: Prof. Dr. Juhary Hj. Ali
(Dean Graduate School)

Tandatangan:
(Signature) _____

Tarikh : **9 DISEMBER 2003**
(Date)

**SIMULATION STUDY OF IMPROVING SERVICE FOR
PATIENT TREATMENT
AT HOSPITAL BESAR ALOR STAR (HBAS)**

A thesis submitted to the Graduate School in partial
fulfilment of the requirements for the degree
Master of Science (Decision Sciences)
Universiti Utara Malaysia

By
Saleh Bin Hashim

© Saleh Bin Hashim, 2003. All rights reserved.

PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a post graduate degree from Universiti Utara Malaysia, I agree that the university library may take it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Graduate Studies Unit

Academic Affairs Department

Universiti Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman

ACKNOWLEDGEMENTS

In the Name of Allah, Most Gracious, Most Merciful

Praise be to Allah, Lord of the Universe, I am able to complete this work. Peace and Prayer be upon His Final Prophet and Messenger, Muhammad S.A.W.

First and foremost, special thanks to my idealistic and tolerant supervisors, Prof Madya Dr Razman Mat Tahar and Dr. Engku Mohamad Nazri Engku Abu Bakar for their motivation, guidance, lessons taught, stimulating ideas and comments delivered while conducting this study. I am also grateful to Hospital Alor Setar for allowing me to do this research at the hospital.

Finally, with particular pleasure that I would like to thanks to my colleagues in MSc (Decision Science) programme: Kamal, Acoi, Maz, Reha, Ery, Zatty, Linda, Shery and Nerda for making my experience at UUM memorable and my dissertation done.

ABSTRACT

Medical service is very important for society. The demand for this service increases every year. The limitation of treatment rooms, the high doctor-patient ratio and other problems give challenges for the hospital management to make decisions. The main objective of this study is to analyze the increase of patients as compared to the available of resources. The method of this study is to analyze model that has been developed using a simulation software call ARENA. Inputs for this model were collected from the daily report book, through observation and from interviews with the management. These data was analyzed using the ARENA Input Analyzer. The model was verified and validated to determine the model give right characteristic to the real system. The models have also been experimented to find the best scenario for the management to make a decision. The result of this study is that the management should increase the number of doctors by sharing treatment rooms to receive more patients. This will decrease the waiting time of patients

Keywords: simulation, hospital, healthcare, medical, resources management

ABSTRAK

Perkhidmatan Kesihatan amat penting kepada masyarakat. Dari tahun ke tahun, permintaan terhadap perkhidmatan ini telah meningkat. Kekurangan bilik rawatan, bilangan doktor dan sumber-sumber lain memberi satu cabaran kepada pihak pengurusan untuk membuat keputusan yang tepat. Objektif kajian ini adalah untuk menganalisa peningkatan bilangan pesakit dengan bilangan doctor sedia ada. Kaedah kajian ini adalah membangunkan model dengan menggunakan perisian simulasi, ARENA. Input kepada model ini diambil dari buku laporan harian, pemerhatian dan pertanyaan kepada pihak pengurusan. Data- data ini kemudiannya dianalisis dengan menggunakan perisian ARENA Input Analyzer. Model ini diuji pengesahan dan penentusahan bagi menentukan model yang telah dibina itu memberikan sifat seperti sistem sebenar. Model ini juga dieksperimenkan bagi mencari senario terbaik kepada pengurusan. Keputusan kajian ini adalah pihak pengurusan seharusnya meningkatkan bilangan doktor dengan berkongsi bilik bagi mengatasi masalah peningkatan pesakit.

Kata Kunci: Simulasi, hospital, penjagaan kesihatan, perubatan, pengurusan sumber.

TABLE OF CONTENTS

	Page
PERMISSION TO USE	i
ACKNOLEDGEMENTS	ii
ABSTRACT	iii
ABSTRAK	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	xii
LIST OF TABLES	xiv

CHAPTER ONE: INTRODUCTION

1.1 Background	1
1.2 Problem Statement	2
1.3 Objective	4
1.4 Method Of Analysis	4
1.5 Significant Of Study	5
1.6 Thesis Outline	5

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction	6
2.2 An Overview Of Simulation	6
2.3 Development of a Simulation Model / Steps in the Simulation model	8
2.4 History of Simulation in Medical	10
2.5 Simulation in Medical and application	12
2.6 Medical Issues Addressed by Simulation	13
2.7 Acceptance Issues	13

CHAPTER THREE: PROCESS DESCRIPTION

3.1 Introduction	16
3.2 Clinic Schedule	16
3.3 Appointment System	17
3.4 Arrival	20
3.5 Registration and Waiting	20
3.6 Treatment Process	21
3.7 Discharge	21
3.8 Model Assumptions	22

CHAPTER FOUR: INPUT ANALYSIS

4.1 Introduction	24
4.2 Data Collection	24
4.3 Service Time Analysis	25
4.3.1 Specialist Doctors Process Time	27
4.3.2 Senior doctor's process time analysis	28
4.3.3 Junior doctor's process time analysis	31
4.4 Frequency Arrival Time Model	33
4.4.1 Arrival Analysis for Sunday	34
4.4.2 Arrival Analysis for morning session (Monday)	35
4.4.3 Arrival Analysis for morning session (Wednesday)	37

CHAPTER FIVE: MODEL BUILDING

5.1 Introduction	39
5.2 Selection Software	39
5.3 Visit Flow Development	40
5.4 Arrival Type Model	43
5.5 Registration Model	45
5.6 Process Submodel	46
5.7 Discharge Submodel	49
5.8 Integration this ARENA with Visual Basic	50

CHAPTER SIX: MODEL VERIFICATION AND VALIDATION

6.1 Introduction	53
6.2 Model Verification	53
6.2.1 Model verification via Inspection of Test Runs	54
6.2.1.1 Single Entity Flow	54
6.2.2 Model verification via Performance Analysis	56
6.2.2.1 Model Verification in a Single Workstation	56
6.2.2.2 Little Formula	61
6.3 Model Validation	63
6.3.1 Number of Patient	64
6.3.2 Resource Process Time	66
6.4 Output Analysis	68
6.4.1 Resource Utilization	68
6.4.2 Patient Waiting Time	70

CHAPTER SEVEN: MODEL EXPERIMENTATION

7.1 Introduction	72
7.2 Addressing Limitation	73
7.2.1 Resources Limitation	73
7.2.2 Scheduling and utilization Limitation	73
7.3 First Scenario	74

7.4 Second Scenario	78
7.5 Third Scenario	80
7.6 Seeking Optimisation With OptQuest	83

CHAPTER EIGHT: CONCLUSION AND RECOMMENDATION

8.1 Introduction	88
8.2 Conclusion	89
8.3 Recommendation	90

REFERENCES

91

7.2(c) Arena Simulation Result – Scenario 2 – Wednesday

7.3(a) Arena Simulation Result – Scenario 3 – Sunday

7.3(b) Arena Simulation Result – Scenario 3 – Monday

7.3(c) Arena Simulation Result – Scenario 3 – Wednesday

LIST OF FIGURES

Figure	Page
1.1 Schematic Patient Process at MOPD	3
3.1 The Flow Chart Typical Patient's Process	19
4.1 Specialist Doctor Process Time Analyses for Sunday	28
4.2 Specialist Doctor Process Time Analyses for Monday	28
4.3 Specialist Doctor Process Time Analyses for Wednesday	29
4.4 Senior Doctor Process Time Analyses for Sunday	29
4.5 Senior Doctor Process Time Analyses for Monday	30
4.6 Senior Doctor Process Time Analyses for Wednesday	30
4.7 Junior Doctor Process Time Analyses for Sunday	31
4.8 Junior Doctor Process Time Analyses for Monday	31
4.9 Junior Doctor Process Time Analyses for Wednesday	32
5.1 Arrival Submodel	43
5.2 Create module use to assign scheduling	44
5.3 Assign for New Patient (Patient Type 3) priority type 3	44
5.4 Registration Submodel	45
5.5 Register Process Module	45

5.6	Model for Process Submodel	47
5.7	Hold 1 show the logic model will use to control patient waiting area	47
5.8	logic control for new patient treatment	48
5.9	logic control for follow up patient	48
5.10	Specialist Doctor Process Module	49
5.11	Discharge submodel	50
5.12	Read/Write data to excel file	50
5.13	Input for Number of Arrival in Every Block	51
5.14	Input for Doctor's Scheduling and Process Time	52
7.2	Objective and Constraints Input in OptQuest	84
7.2	Control Item for Doctor Scheduling in OptQuest	84

LIST OF TABLES

Table	Page
3.1 MOPD Clinic Schedule	17
3.2 Appointment Schedule	18
3.3 Number of Doctor available in Clinic for Same Time	23
4.1 β_1 for Sunday Clinic Day	26
4.2 β_1 for Monday Clinic Day	27
4.3 β_1 for Wednesday Clinic Day	27
4.4 Number of Arrival Analysis for MOPD	33
4.5 Frequency Arrival Analysis for Patient Type A	34
4.6 Frequency Arrival Analysis for Patient Type B	34
4.7 Frequency Arrival Analysis for Patient Type C	35
4.8 Frequency Arrival Analysis for Patient Type A	35
4.9 Frequency Arrival Analysis for Patient Type B	36
4.10 Frequency Arrival Analysis for Patient Type C	36
4.11 Frequency Arrival Analysis for Patient Type A	37
4.12 Frequency Arrival Analysis for Patient Type B	37
4.13 Frequency Arrival Analysis for Patient Type C	38

5.1	Table 5.1: Visit Flow Development in MOPD	41
6.1	Table 6.1: Calculation for patient type B (arrival at 8.00 am)	55
6.2	Table 6.2: Calculation for patient type B (arrival in 9.00 am)	56
6.3	Table 6.3: Summary of Calculation $\hat{\alpha}_1$, $\hat{\alpha}_2$ and $\hat{\alpha}_3$	58
6.4	The Comparison Between $\hat{\alpha}_1$, $\hat{\alpha}_3$ and $\hat{\alpha}_2$ For Other Resources for Sunday Clinic day.	59
6.5	The Comparison Between $\hat{\alpha}_1$, $\hat{\alpha}_3$ and $\hat{\alpha}_2$ For Other Resources for Monday Clinic day.	60
6.6	The Comparison Between $\hat{\alpha}_1$, $\hat{\alpha}_3$ and $\hat{\alpha}_2$ For Other Resources for Wednesday Clinic day.	60
6.7	Summary for this calculation	63
6.8	Simulation Output for Number of Patient Arrive In System	65
6.9	Comparison Process Time Analysis Between Actual and Simulation Output	67
6.10	Doctors Utilization for Sunday Clinic Day	68
6.11	Doctors Utilization for Monday Clinic Day	69
6.12	Doctors Utilization for Wednesday Clinic Day	69
6.13	Average Patients Waiting Time For Sunday Clinic Day	70
6.14	Average Patients Waiting Time For Monday Clinic Day	70
6.15	Average Patients Waiting Time For Sunday Clinic Day	71
7.1	Doctor Utilization	74
7.2	Scenario 1 Scheduling system	76
7.3	Comparison Waiting Time between Current and Scenario 1	77

Scheduling

7.4	Comparison Doctors' Utilization Rate for Scenario 1 and Actual System	77
7.5	Comparison Number of Arrival between Actual and Scenario 2	79
7.6	Utilization and Scheduling for Doctors after Running Scenario 2	79
7.7	Comparison Waiting Time (minutes) between Actual and Scenario 2	80
7.8	Doctors Utilization after Running Scenario 3	81
7.9	Comparison Waiting Time for Sunday Clinic Day	82
7.10	Comparison Waiting Time for Monday Clinic Day	82
7.11	Comparison Waiting Time for Wednesday Clinic Day	82
7.12	Best Scheduling System Suggested By OptQuest for Sunday Clinic Day.	85
7.13	Best Scheduling System Suggested By OptQuest for Monday Clinic Day.	86
7.14	Best Scheduling System Suggested By OptQuest for Wednesday Clinic Day.	88

Chapter 1

Introduction

1.1 Background

A hospital is continually on the quest for ways to improve its efficiency. Much of the challenge faced in healthcare management today is how to improve the efficiency of its operations i.e. determining the best way to organize the resources required for the delivery of care. The task becomes harder due to the dynamic nature and randomness of the hospital operations. Patients, doctors, nurses, equipment and supplies are interacting in ways that are complex and difficult to analyze. Determining how to allocate and schedule these resources is usually performed with the aid of a simple and static formula or using common sense.

The simulation study has been conducted at the Department of Medicine (MOPD) Hospital Alor Star (HAS) with the aim to improve the operational performance of the hospital. The MOPD started its operation since 1907. The medical wards have a total of 178 beds and provide health care services to the population in Kota Setar, which comprises of approximately 400 000 residents. It also serves as a referral hospital for

The contents of
the thesis is for
internal user
only

REFERENCES

Banks, J., J. S. Carson, and B. L. Nelson. 1996. Discreteevent system simulation. Second Edition, New Jersey: *Prentice-Hall, Inc.*

Barnes, C. D. and J. L. Quiason. 1997. Success stories in simulation in health care. In *Proceedings of the 1997 Winter Simulation Conference*, ed. S. Andradóttir, K. J. Healy, D. H. Whithers, and B. L. Nelson, 1280– 1285. New York: *Association for Computing Machinery*.

Barnes, C. D., Benson, C., Quiason, J. L. and McGuiness, D. (1997). Success Stories In Simulation In Health Care. *Proceedings of the 1997 Winter Simulation*.

Bowers, J. and Mould, G. (2001). The deferrable elective patient a means of reducing waiting lists in orthopedics. *Journal of Management in Medicine*

Carrillo, M. and Ogazon, T. (2001). A Discrete-Event Simulation Application For Clinics Serving The Poor. *Proceedings of the 2001 Winter Simulation*.

Centeno, M. A. and Carrillo, M. (2001). Challenges Of Introducing Simulation as a Decision Making Tool. *Proceedings of the 2001 Winter Simulation*.

Centeno, M. A., Albacete, C., Terzano, D. O., Carrillo, M. and Ogazon, T. (2001). A Simulation Study of The Radiology Department At JMH. *Proceedings of the 2001 Winter Simulation*.

Clague, J. E, Reed, P. G., Barlow, J., Rada, R., Clarke M. and Edwards, R. H. T. (1997). Improving outpatient clinic efficiency using computer simulation. *International Journal of Health Care Quality Assurance 1997*

Fetter, R. B. and J. D. Thompson. 1965. The simulation of hospital systems. *Operations Research September – October*. pp 689-711.

Garcia, M., M. A. Centeno, C. Rivera, and N. DeCarlo. 1995. Reducing time in an emergency room via a fasttrack. In *Proceedings of the 1995 Winter Simulation Conference*, ed.

Huarng, F. and Lee, M. H. (1996). Using simulation in out-patient queues: a case study. *International Journal Of Health Care Quality Assurance* 1996

Irei, M., Sakurai, M., Kubota, H., Minamie, Y., Ashida, N. and Hasegawa, T. (2001) Investigation And Evaluation Of The Change In The Outpatients Flow Before And After The Move Of The Hospital. *Amsterdam: IOS Press*

Isken, M. W., Ward, T. J. and McKee T. C. (1999). Simulating Outpatient Obstetrical Clinics. *Proceedings of the 1999 Winter Simulation.*

Jenkins, R., Deshpande, Y. and Davison, G. (1998). Verification And Validation And Complex Environments: A Study In Service Sector. *Proceedings of the 1998 Winter Simulation.*

Jun, J. B., S. H. Jacobsonand, and J. R. Swisher. 1999. Application of discrete-event simulation in health care and clinics: A survey. *Journal of the Operational Research Society* 50 (2) pp 109-123.

Leemis, L. (1998). Input Modelling . *Proceedings of the 1998 Winter Simulation.*

Lowery, J. C. (1998). Getting Started In Simulation In Healthcare. *Proceedings of the 1998 Winter Simulation.*

Robinson G.H, P. Wing, L. E. Davis. 1968. Computer simulation of hospital patient scheduling systems. *Health Services Research* 3:130-141.

Seila, A. F. (2001). Medical Educationas A Model For Simulation Education. *Proceedings of the 2001 Winter Simulation.*

Sepúlveda, J. A., Thompson, W. J., Baesler, F. F., Alvarez, M. I. and Cahoon, L. E. (1999) The Use Of Simulation For Process Improvement In A Cancer Treatment Center. *Proceedings of the 1999 Winter Simulation.*

Shannon, R. E. (1998). Introduction to the Art and Science of Simulation. *Proceedings of the 1998 Winter Simulation.*

Sims, M. J. (1997). An Introduction to Planning and Scheduling With Simulation. *Proceedings of the 1997 Winter Simulation.*

Standridge, C. R., (1999). A Tutorial On Simulation In Health Care: Applications And Issues *Proceedings of the 1999 Winter Simulation.*

Taylor, S. and Kuljis, J (1998). Simulation in Health Care Management: Modelling an Outpatient Clinic. *Operational Research Society in OR.*