CONCEPTUAL DESIGN OF REALITY LEARNING MEDIA (RLM) MODEL BASED ON ENTERTAINING AND FUN CONSTRUCTS

A thesis submitted to the Graduate Studies Unit, Academic Affairs Department in full fulfillment of the requirement for the degree of

Doctor of Philosophy

Applied Sciences,
College of Arts and Sciences,
Universiti Utara Malaysia

By

Ariffin Abdul Mutalib
April 2009

© Ariffin Abdul Mutalib, 2009. All rights reserved
PERMISSION TO USE

In presenting this thesis in full fulfillment of the requirement for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or parts, for scholarly purposes may be granted by my supervisor or, in absence, by the Assistant-Vice Chancellor. It is understood that any copying of publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and Universiti Utara Malaysia for any scholarly use which may be made of any material from the thesis.

Request of permission to copy or to make other use of materials in this thesis, in whole or parts, should be addressed to:

Assistant-Vice Chancellor
College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
DECLARATION

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any other university or other institute of tertiary education. Information derived from the published and unpublished work of others have been acknowledged in the text and a list of references is given.

Ariffin Abdul Mualib
15 April 2009
ABSTRACT

Many eLearning materials (eLM) have been developed for use in education and training. However, studies report that the investments on the courseware projects do not show good returns. Furthermore, the use and perception of teachers and students on eLM, such as courseware on CDs, are very low. In fact, many schools have stopped using courseware in the classrooms.

Many factors were identified influencing the disadvantages of courseware implementation in eLearning; nevertheless the way learning content in the eLM is blended and presented to learners is seen as one of the reasons. Existing eLM are found to be not entertaining and not invoking fun, making learners feel bored. In Interaction Design, although many guidelines have stated entertaining and fun as two important design elements, many developers still produced contents that failed to include these elements. One possible reason for this is the nature of fun and entertaining that are difficult to be realized without technical skills and creativity. This leads to the following research questions: (1) How to ensure that learning content is perceived entertaining and invoking fun by the end users?, (2) Can entertaining and fun learning material be effective?, and (3) How to enable instructors especially the non-technically-skilled to produce eLM that are considered entertaining and invoking fun?

Answering these questions leads this study to propose a conceptual design model of eLM which is able to ensure content is entertaining and invoking fun as perceived by the end users. Inspired by the famous reality TV shows, the proposed model is called Reality Learning Media (RLM). Therefore, the aim of the study is to propose a conceptual design model of RLM. To accomplish that, four specific objectives are formulated: (1) To determine the components of RLM, (2) To propose the conceptual design model of RLM, (3) To validate the conceptual design model of RLM through prototyping, and (4) To investigate user experience of RLM in terms of entertaining, fun, and effectiveness.

Comparative analysis, peer and expert reviews, content analysis, prototyping, and experimental studies are used to accomplish the objectives and aim. General findings show that RLM is perceived entertaining; in fact it is more entertaining than video and courseware. In addition, hypotheses-specific testings using one sample t-Test, independent samples t-Test, and ANOVA reveal that regardless of gender, academic achievement levels, and other eLM experience (before learning with RLM), respondents perceived RLM as entertaining and fun. Not only that, RLM is proven to be effective in delivering learning contents.

The main contributions of this study are the concept of reality video that has been put forward, the development of the conceptual design model together with the prototypes of the RLM. Apart from these, the recording techniques for RLM and the validated instrument measuring entertaining and fun are also significant contributions to the body of knowledge.
ABSTRAK

Pelbagai bahan pembelajaran elektronik (eLM) telah dibangunkan untuk kegunaan latihan dan pendidikan. Namun, banyak kajian melaporkan bahawa pelaburan terhadap projek-projek pembangunan koswer tidak menunjukkan hasil yang baik. Tambahan pula, penggunaan dan persepsi guru dan pelajar terhadap eLM, seperti koswer, adalah sangat rendah. Malah, kebanyakan sekolah tidak lagi menggunakan koswer dalam pembelajaran.

Beberapa faktor dikenalpasti mempengaruhi kelemahan penggunaan koswer dalam eLearning; termasuk cara bahan pembelajaran diolah dan dipersembah kepada pelajar. ELM yang sedia ada didapati tidak menghiburkan (*entertaining*) dan tidak membuatkan pelajar seronok (*fun*) semalknya menyebabkan pelajar menjadi bosan. Dalam Rekabentuk Interaksi (ID), walaupun kebanyakan garis panduan meletakkan *entertaining* dan *fun* di kalangan elemen rekabentuk yang penting, pembangun aplikasi dilihat gagal memuatkan elemen-elemen tersebut. Satu kemungkinan adalah sifat *entertaining* dan *fun* yang sukar dibentuk tanpa kreativiti dan kemahiran teknikal. Keadaan ini membawa kepada perangkap: (1) bagaimana memastikan kandungan pembelajaran *entertaining* dan *fun* dari sudut persepsi pengguna? (2) Bagaimanakah kandungan pembelajaran yang *entertaining* dan *fun* menjadi efektif? (3) Bagaimanakah cara membolehkan pengajar terutama yang tidak mempunyai kemahiran teknikal menghasilkan eLM yang *entertaining* dan *fun*?

Bagi mencari jawapan, kajian ini mengusulkan satu model rekabentuk konsep bagi eLM yang membolehkan kandungan dilihat *entertaining* dan *fun* dari sudut persepsi pengguna. Mendapat inspirasi dari rancangan TV realiti, model yang dicadangkan diberi nama **Reality Learning Media** (RLM). Maka, matlamat kajian ini adalah untuk mengusulkan model rekabentuk konsep bagi RLM. Untuk mencapai matlamat ini, empat objektif dibentuk iaitu untuk: (1) mengenalpasti komponen RLM, (2) mencadangkan model rekabentuk konsep bagi RLM, (3) mengesahkan model yang dicadangkan melalui pembangunan prototipo, dan (4) mengukur persepsi pengguna terhadap pengalaman menggunakan RLM dari segi *entertaining*, *fun*, dan keberkesanan.

Analisis perbandingan, penilaian oleh pakar dan rakan (*peer*), analisis kandungan, pembangunan prototipo, dan kajian berskperimen digunakan bagi mencapai objektif. Dapatkan umum persepsi pelajar menunjukkan RLM adalah menghiburkan, malah lebih dari video dan koswer. Ujian hipotesis melalui t-*Test*, Independent Sample t-*Test*, dan ANOVA mendapati bagi sebarang jantina, tahap pencapaian akademik, pengalaman eLM selain RLM, RLM adalah *entertaining* dan *fun*. Lebih dari itu, RLM juga didapati menyampaikan kandungan pembelajaran dengan berkesan.

Sumbangan utama dari kajian ini termasuk konsep video realiti, pembangunan model rekabentuk konsep bagi RLM berserta prototipnya. Selain itu, teknik merekod bagi penghasilan RLM dan instrumen penilaian aspek *entertaining* dan *fun* yang telah diuji adalah sumbangan yang signifikan kepada bidang ilmu.
ACKNOWLEDGEMENT

On top of everything, The Almighty God knows better...

I feel so grateful for being able to have substance, time, health, strength, and patience to engage in this journey to acquire knowledge; which comes with blessing from the God...

Many thanks to my supervisor, Assoc. Prof. Dr. Norshuhada Shiratuddin, for guiding me to perform at my best in this study. Your swift feedbacks with full of inspirations have made me more motivated and enjoyed with this study from start to finish.

Deep in my heart I realize that my late father and late mother have taught me a lot, to be who I am today. Now, I really value their words...they were good teachers to me and my siblings. To my brothers and sisters: You all are my entertainment. Thank you for raising me with love, courage, and attention. You are my good teachers too.

Thank you, the Malaysian Ministry of Higher Education, and Universiti Utara Malaysia, for providing me with financial support and study leave.

I have many friends to thank to, but am not possible to list all. In short, thank you to those who always laugh with me, play squash, go fishing, go camping, and mount climbing with me; especially Abg. M., Remi, Dr. Osman, Farhan; Those activities really freshen my mind, and accelerated my speed in my study.

A special acknowledgement to my wife, Yuhainis Mohd Yusoff. I may have hidden my gratitude to you but deep in my heart, I appreciate you very much. You are stronger than I am, in many situations. We share difficult moments together, shoulder every pain that we have gone through... This gave me strength a lot, opened up my mind that I really have to work smart. I pray to the God that you have a special place in the hereafter...

To my children; Ahmad Daniel, Nur Qistina (Iman), Nur Batrisyia, and Nur Haifa Mardhiah; I miss you everyday. You entertain me every time I need. I really appreciate you all for being my very good children...

Universiti Utara Malaysia
15 April 2009

Ariffin Abdul Matalib
DEDIcATION

In the name of Allah, The Most Beneficent, Most Merciful

Al-Fatehah

To my late father, Abdul Mutalib Hj. Arshad
To my late mother, Zawiyah Abu Bakar
To my family and friends, who believe in me...

Universiti Utara Malaysia
15 April 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>i</td>
</tr>
<tr>
<td>Permission To Use</td>
<td>ii</td>
</tr>
<tr>
<td>Declaration</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Abstrak</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>vi</td>
</tr>
<tr>
<td>Dedication</td>
<td>vii</td>
</tr>
<tr>
<td>Table of contents</td>
<td>xii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION
1.2 MOTIVATION OF STUDY
1.3 PROBLEM STATEMENT
1.4 PROPOSED SOLUTION
1.5 OBJECTIVE
1.6 DEFINITION OF TERMINOLOGIES
 1.6.1 eLearning Material (eLM)
 1.6.2 Conceptual RLM Model
 1.6.3 Conceptual Design Model of RLM
 1.6.4 Content Analysis
 1.6.5 Comparative Analysis
 1.6.6 Expert
1.6 CONCEPTUAL FRAMEWORK
1.8 THEORETICAL FRAMEWORK
1.7 SCOPE
 1.7.1 eLearning System
 1.7.2 Respondents
1.8 CONTRIBUTION OF STUDY
 1.8.1 The Concept of RLM
 1.8.2 Conceptual Design Model of RLM
 1.8.3 Prototype of RLM
 1.8.4 Quick Video Recording Technique
 1.8.5 Experience Instrument That Measures Fun and Entertaining
 1.8.6 Test Results of The Prototypes
1.9 THESIS STRUCTURE

CHAPTER 2: REVIEWS ON RLM, CONCEPTS, AND THEORIES

2.1 INTRODUCTION
2.2 LEARNING
 2.2.1 Importance of Learning 25
 2.3 ELECTRONIC LEARNING
 2.3.1 Definition of eLearning 27
 2.3.2 Dissimilarities Among eLearning, Online Learning, and Computer-
 based Learning 28
 2.3.3 Components of eLearning 30
 2.3.4 Implications of eLearning To The Study 30
 2.4 ELECTRONIC LEARNING MATERIAL
 2.4.1 Electronic Book 31
 2.4.2 Interactive Multimedia 33
 2.4.3 Courseware 34
 2.4.4 Educational TV Programme 35
 2.4.5 Implications of eLM To The Study 38
 2.5 VIDEO-BASED LEARNING
 2.5.1 Past Studies on VBL 39
 2.5.2 Classifications of VBL 40
 2.5.3 The Learners and The Instructors 41
 2.5.4 Implications of VBL to The Study 43
 2.6 REALITY VIDEO
 2.6.1 Implications of Reality Video To The Study 44
 2.7 ACTIVE LEARNING
 2.7.1 Implications of Active Learning To The Study 47
 2.8 SELF-PACED AND SELF-DIRECTED LEARNING
 2.8.1 Formal And Informal Learning 47
 2.8.2 Implications of Self-paced And Self-directed Learning To The Study 49
 2.9 LEARNING THEORIES
 2.9.1 Anchored Instruction 50
 2.9.2 Aptitude Treatment Instruction 51
 2.9.3 Cognitive Flexibility 52
 2.9.4 Cognitive Load 53
 2.9.5 Constructivist 54
 2.9.6 Experiential 55
 2.9.7 Minimalism 56
 2.9.8 Multiple Intelligence 57
 2.9.9 Situated Learning 58
 2.9.10 Symbol System 59
 2.9.11 Implications of Learning Theories To The Study 60
 2.10 ENTERTAINING AND FUN
 2.10.1 Task-focused 61
 2.10.2 User-focused 62
 2.10.3 Experience-focused 63
 2.11 CONCLUSION 64

CHAPTER 3: RESEARCH METHODOLOGIES
3.1 INTRODUCTION
3.2 THE ELICITATIVE, INVESTIGATIVE, AND DEDUCTIVE APPROACH 74
 3.2.1 Communication With Experts 75
 3.2.2 Content Analysis 77
 A. Models gathering 78
 B. Comparative analysis of the models 78
 C. Development of conceptual design model of RLM 78
 D. Hypothesizing 80
3.3 THE ANALYTICAL, CONSTRUCTIVE, AND HYPOTHETICO APPROACH 81
 3.3.1 Prototyping 81
 A. Software lifecycle 82
 B. ELearning systems methodologies 84
 C. Video production methodologies 87
 i) Multiple sources system 89
 i) Quick video recording technique 90
 3.3.2 Investigating User Experience 94
 A. General issues of evaluation 95
 B. Evaluation techniques for RLM 97
 i) The instrument 98
 ii) Measurement dimensions 99
 iii) Effectiveness 100
 iv) Sampling 101
 C. Data collection 104
 D. Data Analysis 107
3.4 CONCLUSION 107

CHAPTER 4: RLM CONCEPTUAL DESIGN MODEL

4.1 INTRODUCTION 109
 4.1.1 ELM Selection 110
4.2 STRUCTURAL COMPONENTS 112
4.3 CONTENT COMPOSITION COMPONENTS 119
 4.3.1 CCC Elaboration 128
4.4 THE PROCESS OF MAKING RLM 132
4.5 THE PROPOSED RLM MODEL 137
 4.5.1 Conceptual Design Model of RLM 139
4.6 CONCLUSION 141

CHAPTER 5: PROTOTYPES DESIGN AND DEVELOPMENT

5.1 INTRODUCTION 143
5.2 THE PROTOTYPES 144
5.3 THE DEVELOPMENT OF RLM 146
 5.3.1 Pre-production Phase 146
 5.3.2 Production Phase 147
A. Applying QVRT
 i) Video recorder 148
 ii) Tripod 148
 iii) Microphones 149
 iv) Modes 150

5.3.3 Post-production Phase 151
5.3.4 The RLM 151
 A. The opening section 151
 B. The reality content section 153
 i) Pedagogical aspects 154
 ii) Human entity 163
 C. The closing section 164
5.4 COURSEWARE DESIGN AND DEVELOPMENT 165
5.5 CONCLUSION 171

CHAPTER 6: USER EXPERIENCE AND EFFECTIVENESS

6.1 INTRODUCTION 173
6.2 TESTING THE EFFECTIVENESS 174
 6.2.1 Results of Effectiveness Testing 175
6.3 PRE-USER EXPERIENCE TESTING 177
 6.3.1 Evaluation Instrument 178
 A. Elicitation works 179
 B. Q-MEF 184
 C. Q-MEF wellness and consistency 185
 i) Pilot subjects 186
 ii) Statistical procedures 186
 iii) Results of validity test 187
 iv) Results of Interitem consistency analysis 187
 6.3.2 Evaluation Subjects 187
 6.3.3 Factor Analysis 188
 A. Entertaining dimension 189
 B. Fun dimension 191
6.4 USER EXPERIENCE TESTING 192
 6.4.1 Demographic Background 192
 6.4.2 General Findings 194
 6.4.3 Hypotheses Testing 197
 A. Testing H1 197
 B. Testing H2 204
 C. Testing H3 206
 D. Testing H4 207
 E. Testing H5 208
6.5 CONCLUSION 210

CHAPTER 7: CONCLUSION
7.1 INTRODUCTION
7.2 OVERALL DISCUSSION AND HYPOTHESES TESTINGS
 7.2.1 Summary of Findings
 7.2.2 How To Make Use of RLM In HLI
7.3 CONTRIBUTIONS
7.4 LIMITATIONS AND RECOMMENDATIONS
 7.4.1 RLM
 7.4.2 Perceptions
 7.4.3 Research Participants and Culture
 7.4.4 Relations to Computer Games and Commercial Systems
7.5 CONCLUSION

REFERENCES

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX I
APPENDIX J
APPENDIX K
APPENDIX L
APPENDIX M
APPENDIX N
APPENDIX O
APPENDIX P
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1: List of asked questions.</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.2: Distribution of reality and non-reality TV</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.3: Architecture design for EchoSystem</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.4: Echo360 – default interface</td>
<td>12</td>
</tr>
<tr>
<td>Figure 1.5: Research conceptual framework</td>
<td>16</td>
</tr>
<tr>
<td>Figure 1.6: Theoretical framework</td>
<td>18</td>
</tr>
<tr>
<td>Figure 1.7: Processes involved in this study</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.8: Flow of contributions of the study with relationships</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.1: Lennox’s classification of eLearning components</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.2: eLearning components proposed by Colace et al.</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.3: Transcending Skinner and Taylor</td>
<td>54</td>
</tr>
<tr>
<td>Figure 2.4: Conceptual framework of components of a computer system</td>
<td>64</td>
</tr>
<tr>
<td>Figure 2.5: Synonyms for entertaining and fun</td>
<td>68</td>
</tr>
<tr>
<td>Figure 2.6: Criteria for entertaining</td>
<td>69</td>
</tr>
<tr>
<td>Figure 2.7: Criteria for fun</td>
<td>70</td>
</tr>
<tr>
<td>Figure 2.8: Summary of related literature</td>
<td>71</td>
</tr>
<tr>
<td>Figure 3.1: Basis of methodology</td>
<td>73</td>
</tr>
<tr>
<td>Figure 3.2: Relationships among approaches and activities</td>
<td>76</td>
</tr>
<tr>
<td>Figure 3.3: Star lifecycle</td>
<td>84</td>
</tr>
<tr>
<td>Figure 3.4: Division of areas in MSS (source: Clendenin (1998) p246)</td>
<td>89</td>
</tr>
<tr>
<td>Figure 3.5: The Quick Video Recording Technique (QVRT)</td>
<td>91</td>
</tr>
<tr>
<td>Figure 3.6: Different roles of actor; (i) actor as instructor, (ii) actor as learner</td>
<td>92</td>
</tr>
<tr>
<td>Figure 3.7: Approaches of evaluation</td>
<td>95</td>
</tr>
<tr>
<td>Figure 3.8: Classifications of educational software education categories</td>
<td>97</td>
</tr>
<tr>
<td>Figure 3.9: Design of the instrument</td>
<td>101</td>
</tr>
<tr>
<td>Figure 3.10: Flow of the experiment</td>
<td>106</td>
</tr>
<tr>
<td>Figure 4.1: User interface of the selected courseware</td>
<td>114</td>
</tr>
<tr>
<td>Figure 4.2: Categories of components</td>
<td>117</td>
</tr>
<tr>
<td>Figure 4.3: Conditions for classification</td>
<td>117</td>
</tr>
<tr>
<td>Figure 4.4: Model for structural components of RLM</td>
<td>118</td>
</tr>
<tr>
<td>Figure 4.5: Model for content composition components of RLM</td>
<td>129</td>
</tr>
<tr>
<td>Figure 4.6: Model for the process of producing RLM</td>
<td>136</td>
</tr>
<tr>
<td>Figure 4.7: Proposed RLM model</td>
<td>138</td>
</tr>
<tr>
<td>Figure 4.8: Conceptual design model of RLM in relation to RLM model</td>
<td>140</td>
</tr>
<tr>
<td>Figure 4.9: Proposed conceptual design model of RLM</td>
<td>141</td>
</tr>
<tr>
<td>Figure 5.1: Preparing and setting-up props</td>
<td>147</td>
</tr>
<tr>
<td>Figure 5.2: Video recorder</td>
<td>148</td>
</tr>
<tr>
<td>Figure 5.3: Digital tape</td>
<td>148</td>
</tr>
<tr>
<td>Figure 5.4: Samples of shots with use of tripod</td>
<td>149</td>
</tr>
<tr>
<td>Figure 5.5: Samples of shots without use of tripod</td>
<td>149</td>
</tr>
<tr>
<td>Figure 5.6: Zooming and focusing</td>
<td>150</td>
</tr>
<tr>
<td>Figure 5.7: The prototypes on CD</td>
<td>151</td>
</tr>
<tr>
<td>Figure 5.8: Title element</td>
<td>152</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>5.9</td>
<td>The actor addressing the verso element</td>
</tr>
<tr>
<td>5.10</td>
<td>Course 2 lists the developing team after the content</td>
</tr>
<tr>
<td>5.11</td>
<td>DVD-like audio/video control</td>
</tr>
<tr>
<td>5.12</td>
<td>Combination of text and graphic</td>
</tr>
<tr>
<td>5.13</td>
<td>Real objects</td>
</tr>
<tr>
<td>5.14</td>
<td>Actor lecturing to the audience</td>
</tr>
<tr>
<td>5.15</td>
<td>Instruction-based style</td>
</tr>
<tr>
<td>5.16</td>
<td>Demonstration style</td>
</tr>
<tr>
<td>5.17</td>
<td>Briefing and objective</td>
</tr>
<tr>
<td>5.18</td>
<td>Planned content</td>
</tr>
<tr>
<td>5.19</td>
<td>Mistakes in speech; causing laughter</td>
</tr>
<tr>
<td>5.20</td>
<td>Mistakes in action; causing repetition of step</td>
</tr>
<tr>
<td>5.21</td>
<td>Slide-based separator</td>
</tr>
<tr>
<td>5.22</td>
<td>Debriefing slots</td>
</tr>
<tr>
<td>5.23</td>
<td>Thanking remark</td>
</tr>
<tr>
<td>5.24</td>
<td>IntView v1 framework</td>
</tr>
<tr>
<td>5.25</td>
<td>Title page</td>
</tr>
<tr>
<td>5.26</td>
<td>Table of content</td>
</tr>
<tr>
<td>5.27</td>
<td>Typical layout</td>
</tr>
<tr>
<td>5.28</td>
<td>Page with picture and text</td>
</tr>
<tr>
<td>5.29</td>
<td>Video demonstrating the explanation</td>
</tr>
<tr>
<td>6.1</td>
<td>Two divisions of subjects</td>
</tr>
<tr>
<td>6.2</td>
<td>Summary of instrument development</td>
</tr>
<tr>
<td>6.3</td>
<td>Summary of elicitation works</td>
</tr>
<tr>
<td>6.4</td>
<td>Items in the Q-MEF Instrument</td>
</tr>
<tr>
<td>6.5</td>
<td>Results of KMO and Bartlett’s tests – entertaining</td>
</tr>
<tr>
<td>6.6</td>
<td>Results of rotated component matrix – entertaining</td>
</tr>
<tr>
<td>6.7</td>
<td>Component suggested after two items removed</td>
</tr>
<tr>
<td>6.8</td>
<td>Results of KMO and Bartlett’s tests – fun</td>
</tr>
<tr>
<td>6.9</td>
<td>Results of component matrix test – fun</td>
</tr>
<tr>
<td>6.10</td>
<td>Gender</td>
</tr>
<tr>
<td>6.11</td>
<td>Academic achievement</td>
</tr>
<tr>
<td>6.12</td>
<td>Fair distribution of academic achievement over gender</td>
</tr>
<tr>
<td>6.13</td>
<td>Graph and statistics showing subjects will use RLM again next time</td>
</tr>
<tr>
<td>6.14</td>
<td>Graph and statistics showing learners prefer to use RLM more than courseware and video</td>
</tr>
<tr>
<td>6.15</td>
<td>Graph and statistics showing RLM caters appropriate content satisfactorily</td>
</tr>
<tr>
<td>6.16</td>
<td>Graph showing RLM was entertaining</td>
</tr>
<tr>
<td>6.17</td>
<td>Mean and standard deviation for each item</td>
</tr>
<tr>
<td>6.18</td>
<td>Cumulative mean – mean obtained from all observed means</td>
</tr>
<tr>
<td>6.19</td>
<td>Graph showing RLM was fun</td>
</tr>
<tr>
<td>6.20</td>
<td>Means and standard deviation on fun</td>
</tr>
<tr>
<td>6.21</td>
<td>Means for entertaining aspect is significantly different between RLM and video</td>
</tr>
<tr>
<td>6.22</td>
<td>Graph showing RLM is more entertaining than video</td>
</tr>
</tbody>
</table>
Figure 6.23: Means for fun aspect is significantly different between RLM and video

Figure 6.24: Graph showing RLM makes more fun than video

Figure 6.25: Graph showing RLM is more entertaining than courseware

Figure 6.26: Means for entertaining aspect is significantly different between RLM and courseware

Figure 6.27: Means for fun aspect is significantly different between RLM and courseware

Figure 6.28: Graph showing RLM makes more fun than courseware

Figure 6.29: Descriptive statistics for RLM (entertaining) in different groups (i.e. subjects learning using video and courseware)

Figure 6.30: t-Test results for entertaining aspects of RLM between different groups

Figure 6.31: Descriptive statistics for RLM (fun) in different groups (i.e. subjects learning using video and courseware)

Figure 6.32: t-Test results for fun aspects of RLM between different groups

Figure 6.33: Descriptive statistics for mean-RLM-entertaining and subjects’ gender

Figure 6.34: ANOVA results for mean-RLM-entertaining and subjects’ gender

Figure 6.35: Descriptive statistics for mean-RLM-fun and subjects’ gender

Figure 6.36: ANOVA results for mean-RLM-fun and subjects’ gender

Figure 6.37: Descriptive statistics for mean-RLM-entertaining and subjects’ academic achievement

Figure 6.38: ANOVA results for mean-RLM-entertaining and subjects’ academic achievement

Figure 6.39: Descriptive statistics for mean-RLM-fun and subjects’ academic achievement

Figure 6.40: ANOVA results for mean-RLM-fun and subjects’ academic achievement

Figure 7.1: Non-technical-skill participants are able to create RLM
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1: Respondents' opinion on the existing eLMs</td>
<td>5</td>
</tr>
<tr>
<td>Table 1.2: Subjective feedback</td>
<td>7</td>
</tr>
<tr>
<td>Table 2.1: Relationships of learning methods and their rates of understanding</td>
<td>35</td>
</tr>
<tr>
<td>Table 2.2: Levels of interactivity</td>
<td>37</td>
</tr>
<tr>
<td>Table 2.3: Videotypes: different category of VBL</td>
<td>41</td>
</tr>
<tr>
<td>Table 2.4: Categories of RTS</td>
<td>45</td>
</tr>
<tr>
<td>Table 2.5: Attributes of formal and informal learning</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.1: Classification of lifecycle models</td>
<td>82</td>
</tr>
<tr>
<td>Table 3.2: Video production techniques</td>
<td>87</td>
</tr>
<tr>
<td>Table 3.3: Techniques of evaluation for each evaluation approach</td>
<td>95</td>
</tr>
<tr>
<td>Table 3.4: Characteristics of entertaining</td>
<td>99</td>
</tr>
<tr>
<td>Table 3.5: Summary of the procedure, apparatus, and techniques of the experiment.</td>
<td>105</td>
</tr>
<tr>
<td>Table 4.1: Justification for selecting eLM</td>
<td>111</td>
</tr>
<tr>
<td>Table 4.2 Structural components of courseware</td>
<td>115</td>
</tr>
<tr>
<td>Table 4.3 Structural components of video</td>
<td>116</td>
</tr>
<tr>
<td>Table 4.4 Structural components of ETP</td>
<td>116</td>
</tr>
<tr>
<td>Table 4.5: Summary of structural components of eLM</td>
<td>117</td>
</tr>
<tr>
<td>Table 4.6: Proposed structural components of RLM</td>
<td>118</td>
</tr>
<tr>
<td>Table 4.7: Content composition components for courseware</td>
<td>123</td>
</tr>
<tr>
<td>Table 4.8: Content composition components for video</td>
<td>123</td>
</tr>
<tr>
<td>Table 4.9: Content composition components for ETP</td>
<td>124</td>
</tr>
<tr>
<td>Table 4.10: Summary of content composition components of eLMs</td>
<td>125</td>
</tr>
<tr>
<td>Table 4.11: RLM content composition components based on the analyzed eLMs</td>
<td>125</td>
</tr>
<tr>
<td>Table 4.12: Proposed RLM content composition components</td>
<td>127</td>
</tr>
<tr>
<td>Table 4.13: Video aspects involved in making RLM</td>
<td>133</td>
</tr>
<tr>
<td>Table 5.1: Descriptions of the prototypes</td>
<td>145</td>
</tr>
<tr>
<td>Table 5.2: Contents for each title</td>
<td>146</td>
</tr>
<tr>
<td>Table 5.3: Summary of the activities involved and output obtained of each stage through the IntView v1 framework</td>
<td>167</td>
</tr>
<tr>
<td>Table 6.1: Scores in pre-test and post-test</td>
<td>175</td>
</tr>
<tr>
<td>Table 6.2: Means for pre-tests and post-tests</td>
<td>176</td>
</tr>
<tr>
<td>Table 6.3: Score difference (post-test minus pre-test)</td>
<td>177</td>
</tr>
<tr>
<td>Table 6.4: Detail of measurement items with authors and frequencies</td>
<td>180</td>
</tr>
<tr>
<td>Table 6.5: Criteria for entertaining and fun</td>
<td>182</td>
</tr>
<tr>
<td>Table 6.6: Groups for characteristics for entertaining</td>
<td>182</td>
</tr>
<tr>
<td>Table 6.7: Groups for characteristics for fun</td>
<td>182</td>
</tr>
<tr>
<td>Table 6.8: Summary of characteristics of entertaining and fun in studies listed in Table 6.5</td>
<td>183</td>
</tr>
<tr>
<td>Table 6.9: Reliability Statistics for entertaining</td>
<td>188</td>
</tr>
<tr>
<td>Table 6.10: Reliability Statistics for fun</td>
<td>188</td>
</tr>
<tr>
<td>Table 6.11: Results of MSA – entertaining</td>
<td>189</td>
</tr>
</tbody>
</table>
Table 6.12: Results of MSA – fun
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Complete Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHA</td>
<td>Analytical, Constructive, and Hypoithetico Approach</td>
</tr>
<tr>
<td>AICCC</td>
<td>Aviation Industry CBT Committee</td>
</tr>
<tr>
<td>ANOVA</td>
<td>One Way Analysis of Variance</td>
</tr>
<tr>
<td>API</td>
<td>Application Protocol Interface</td>
</tr>
<tr>
<td>ATI</td>
<td>Aptitude Treatment Instruction</td>
</tr>
<tr>
<td>BTP, KPM</td>
<td>Bahagian Teknologi Pendidikan, Kementerian Pelajaran Malaysia</td>
</tr>
<tr>
<td>CAI</td>
<td>Computer-Aided Instruction</td>
</tr>
<tr>
<td>CAL</td>
<td>Computer Assisted Learning</td>
</tr>
<tr>
<td>CBL</td>
<td>Computer-Based Learning</td>
</tr>
<tr>
<td>CBT</td>
<td>Computer-Based Training</td>
</tr>
<tr>
<td>CCC</td>
<td>Content Composition Components</td>
</tr>
<tr>
<td>CD</td>
<td>Compact Disc</td>
</tr>
<tr>
<td>CE</td>
<td>Courseware Engineering</td>
</tr>
<tr>
<td>CGPA</td>
<td>Cumulative Grade Point Average</td>
</tr>
<tr>
<td>CTGV</td>
<td>Cognition and Technology Group at Vanderbilt</td>
</tr>
<tr>
<td>DVD</td>
<td>Digital Video Disc</td>
</tr>
<tr>
<td>eBook</td>
<td>Electronic Book</td>
</tr>
<tr>
<td>EIDA</td>
<td>Elicitative, Investigative, and Deductive Approach</td>
</tr>
<tr>
<td>eLM</td>
<td>Electronic Learning Materials</td>
</tr>
<tr>
<td>EPEES</td>
<td>Ensure, Provide, Engage, Establish, Strengthen</td>
</tr>
<tr>
<td>ETP</td>
<td>Educational TV Programme</td>
</tr>
<tr>
<td>Fh IESE</td>
<td>Fraunhofer Institute of Experimental Software Engineering</td>
</tr>
<tr>
<td>HCI</td>
<td>Human-Computer Interaction</td>
</tr>
<tr>
<td>HLI</td>
<td>Higher Learning Institution</td>
</tr>
<tr>
<td>IADIS</td>
<td>International Association for Development of the Information Society</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>iD</td>
<td>Interaction Design</td>
</tr>
<tr>
<td>IMM</td>
<td>Interactive Multimedia</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>JAD</td>
<td>Joint Application Development</td>
</tr>
<tr>
<td>KMO</td>
<td>Kaiser-Meyer-Olkin</td>
</tr>
<tr>
<td>LCMS</td>
<td>Learning Content Management System</td>
</tr>
<tr>
<td>LMS</td>
<td>Learning Management System</td>
</tr>
<tr>
<td>LO</td>
<td>Learning Object</td>
</tr>
<tr>
<td>MSA</td>
<td>Measure of Sampling Adequacy</td>
</tr>
<tr>
<td>MSS</td>
<td>Multiple Sources System</td>
</tr>
<tr>
<td>OUM</td>
<td>Open University of Malaysia</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>Q-MEF</td>
<td>Questionnaire for Measuring Entertaining and Fun</td>
</tr>
<tr>
<td>QUIS</td>
<td>Questionnaire for User Interaction Satisfaction</td>
</tr>
<tr>
<td>QVRT</td>
<td>Quick Video Recording Technique</td>
</tr>
<tr>
<td>RAD</td>
<td>Rapid Application Development</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>RLM</td>
<td>Reality Learning Media</td>
</tr>
<tr>
<td>RSS</td>
<td>Really Simple Syndication</td>
</tr>
<tr>
<td>RTS</td>
<td>Reality TV Shows</td>
</tr>
<tr>
<td>SC</td>
<td>Structural Components</td>
</tr>
<tr>
<td>SCORM</td>
<td>Sharable Courseware Object Reference Model</td>
</tr>
<tr>
<td>SE</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>SUMI</td>
<td>Software Usability Measurement Inventory</td>
</tr>
<tr>
<td>SUS</td>
<td>System Usability Scale</td>
</tr>
<tr>
<td>TAM</td>
<td>Technology Acceptance Model</td>
</tr>
<tr>
<td>UNITAR</td>
<td>Universiti Tun Abdul Razak</td>
</tr>
<tr>
<td>VBL</td>
<td>Video-Based Learning</td>
</tr>
<tr>
<td>VC</td>
<td>Virtual Classroom</td>
</tr>
<tr>
<td>VCD</td>
<td>Video Compact Disc</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Learning is a common process for everybody. Naturally from birth, a person will start to learn, and the learning process will mature together with the cognitive and physical development. As the learning processes mature, the kind of learning methods including formal and informal change and blend, to equip the person with more and more new knowledge. Learning processes and techniques evolve to align with chronic factors. In this 21st century, learning is closely associated with technology.

Beginning with analog learning method, technology advancement has led to more sophisticated digital learning environments. Benefits of digital technologies can be seen in terms of content diversity; more media can be used more widely including text, graphics, animation, audio, video, and interactivity (Chapman & Chapman, 2000). This gives many impacts to the field of education where teaching and learning are involved. Accordingly, many academics have been carrying out research to investigate how learning and its facilitation can be more effective.

This scenario has given better opportunities for communities to learn. Gradually, not only learning in traditional environment where attending classes is essential, but also communities can learn online with the help of digital technologies. With this, learning
The contents of the thesis is for internal user only
REFERENCES

Barnum, C.M. (2002). Usability testing and research. Pearson Education, Inc. USA

Cohrane, T. (2005). Interactive QuickTime: Developing and evaluating multimedia learning objects to enhance both face-to-face and distance e-learning environments. Interdisciplinary Journal of Knowledge and Learning Objects, 1, 33-54

environments. In *Proceedings of the 14th International Conference on Software Engineering and Knowledge Engineering (SEKE).* Italy.

Marcus, A. (2007). Fun! Fun! Fun! In the user experience we just wanna have fun...Don’t we? *Interactions* July + August 2007.

242

