

**ENHANCEMENT OF ANT SYSTEM ALGORITHM
FOR COURSE TIMETABLING PROBLEM**

Thesis Submitted to

College of Arts and Sciences, Universiti Utara Malaysia

in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

By

DJASLI DJAMARUS

© Djasli Djamarus. 2009. All rights reserved

**ENHANCEMENT OF ANT SYSTEM ALGORITHM
FOR COURSE TIMETABLING PROBLEM**

DJASLI DJAMARUS

UNIVERSITI UTARA MALAYSIA

2009

DECLARATION

I declare that all the works described in this thesis was undertaken by myself (unless otherwise acknowledged in the text) and that none of the work has been previously submitted for any academic degree. All sources of quoted information have been acknowledged through references.

Djasli Djamarus

2009

PERMISSION TO USE

In presenting this thesis in fulfillment of the requirements for the Doctor of Philosophy degree from the Universiti Utara Malaysia, I agree that the Universiti Library may take it freely available for inspection. I further agree that the permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor or, in her absence, by the Academic Dean College of Arts and Sciences. It is understood that any copy or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or make other use of material in this thesis in whole or in part should be addressed to:

Dean (Academic) College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman

Malaysia

For my late parents

Djamarus Sutan Sinaro and Mariana

and my family

Iryani, Sigit Setiageni, Setra Ragasta and Oksiadri Albacy

ACKNOWLEDGMENTS

It is impossible for me to accomplish this thesis without the bless of Allah and contribution from so many gracious people who have given me all sorts of assistance. To these people, I am indeed grateful.

Firstly, I would like to record my gratitude to Prof. Dr. Ku Ruhana Ku Mahamud for her supervision, advice, and guidance since the beginning of my research. Working under her supervision will become one of my unforgettable experiences in my life. Her continuous encouragement and support in various ways was able to release me from my hopeless feeling that occasionally happened during my stressful day. For sure, I am indebted to her more than she knows.

Many thanks also go in particular to Dr. Faridahwati Mohd. Shamsudin who has offered me sound knowledge of research. Her useful advice has made me confident in writing my research proposal. I have also benefited from her colleagues, Hasni Che Ismail and Dr. Zolkafli Hussin, who have introduced me to social life around the UUM Campus.

I wish to also say my sincere gratitude to my colleagues Mohammed Z. D. Shbier who has allowed me to use his vehicle for my daily activities in the vicinity of the UUM Campus, as well as to Agung Sediyono and Syaifudin who have shared room, food, equipment and others with me in Maybank College. In addition, I am very grateful to Imamudin and Ricky who are always ready to assist me in technical difficulties, as well as to Bu Ida and Bu Mudji who keep reminding me of my duty to stay afloat in my studies.

Special thanks are also extended to the alumni of ITB 77 society as a group and to all my individual friends who have kept me cheerful along this journey. In particular I would like to thank Triharyo I. Soesilo, Achmad Setiadi, Ongku P. Hasibuan and Nurudin, who have managed to keep me in high spirit. Grateful appreciation is also offered to my long-standing friends Jusman S. Djamal, M. Donny Azdan, M. Ganis

Ramdhani, Sugeng Setiadi, and Iwan Hignasto who have given valuable advice and support to me in the course of completing my research.

I believe that words are not enough to express my appreciation to my lovely wife Iryani and my amusing sons Sigit Setiageni, Setra Ragasta and Oksiadri Abacy. What I know is that I am indebted to them for being patient, inspiring and supportive at any time.

Finally, I would like to say my sincere gratitude and thanks to all the people who have been very kind in offering their help and assistance in one way or another in the course of completing my research. To those who I couldn't name them specifically here because there are simply so many of them, I offer my apology. But I am deeply indebted to them for their kindness and generosity.

May Allah bless them all.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	x
ABSTRACT	xv
CHAPTER I: INTRODUCTION	1
1.1 Problem Statement	6
1.2 Research Objective	9
1.3 Significance of the Research	9
1.4 Scope, Assumptions and Limitations of the Research	10
1.5 Organization of Thesis	11
1.6 Summary	12
 CHAPTER II: LITERATURE REVIEW	 13
2.1 Scheduling Problem Overview	13
2.2 Course Scheduling Problem	17
2.3 Course Scheduling Algorithm	21
2.3.1 Simulated Annealing Algorithm	26
2.3.2 Taboo Search Algorithm	28
2.3.3 Genetic Algorithm	30
2.4 Ant System Algorithm	33
2.5 Hybrid Algorithm	37
2.6 Summary	37
 CHAPTER III: METHODOLOGY	 39
3.1 Research Methodology Justification	39
3.2 Methodology of the Research	40

3.2.1	Problem Analysis	41
3.2.2	Algorithm Design	42
3.2.3	Algorithm Implementation	43
3.2.4	Algorithm Testing and Result Analysis	43
3.2.5	Algorithm Improvement	44
3.3	Techniques and Strategies in the Algorithm	45
3.3.1	Approximate algorithm	45
3.3.2	Constructive Course Scheduling Approach	46
3.3.3	Pheromone Update Strategy	46
3.3.4	Best Fit Event Placement	47
3.4	Framework of the Proposed Algorithm	48
3.5	Summary	49
CHAPTER IV: NEW COMPONENTS FOR ANT BASE COURSE SCHEDULING ALGORITHM		51
4.1	Course Scheduling Process	51
4.2	Course Scheduling Computation Model	57
4.3	Heuristic Analysis	60
4.3.1	Determination of Source Vertex Out-degree and Destination Vertex In-degree	61
4.3.2	Determination of Destination Vertex Capacity	63
4.3.3	Determination of Potential Connection Between two Vertices	64
4.3.4	Determination of Connection Quality Between two Vertices	66
4.4	Computing Enhancement Techniques	67
4.4.1	Clustered Computation	67
4.4.2	Event Placement in Time Slots and Room	68
4.5	Summary	70
CHAPTER V: PROPOSED ANT BASE ALGORITHM FOR COURSE SCHEDULING PROBLEM		71
5.1	Framework of Design Process	71

5.2 Components of the Algorithm	72
5.2.1 Initialization Module	73
5.2.2 Pheromone Trail Construction	76
5.2.3 Timetable Element Selection	80
5.2.4 Timetable Element Validate and Trial Timetable Modification	80
5.2.5 Failure Anticipation	80
5.3 Improvement Techniques	84
5.4 Objective Function	87
5.5 Implementation of Algorithm	88
5.6 Algorithm Complexity	89
5.6.1 Initialization Computation Module	90
5.6.2 Pheromone Trail Initialization Module	90
5.6.3 Pheromone trail update module	90
5.6.4 Course Element Selection Module	91
5.6.5 Validation Module	91
5.6.6 Failure Anticipation Module	91
5.7 Summary	92
CHAPTER VI: RESULT AND ANALYSIS	94
6.1 Experimental Design	94
6.1.1 Data Classification	96
6.1.2 Data Preparation	97
6.2 Experiment Results	98
6.2.1 Negative Pheromone in Ant System Algorithm	99
6.2.2 Failure Anticipation	106
6.2.3 Embedded Techniques in Ant System Algorithm	109
6.2.4 Two-pass Ant System Algorithm	111
6.3 Analysis of the Two-pass Algorithm	115
6.4 The Proposed Algorithm	115
6.5 Contribution of Features in the Proposed Algorithm	123
6.6 Summary	127

CHAPTER VII: CONCLUSIONS	129
7.1 Research Contribution	130
7.2 Recommended Future Work	132
 BIBLIOGRAPHY	134
Appendix 1: Source Code of the Algorithm	143
Appendix 2: Results Comparison of the Algorithms	221
Appendix 3: Contribution of Negative Pheromone Update	233

LIST OF TABLES

	Page
Table 2.1 Application Domain of Scheduling Problem	16
Table 2.2 Personnel Scheduling Algorithms in Education Domain	24
Table 2.3 Classification of Scheduling Algorithms	25
Table 5.1 Value of Preference Time Slots Left as Function of Remaining Time Slots	86
Table 5.2 Value of Preference as Function of Remaining Time Slots	87
Table 6.1 Classification of Artificial Data Tests	96
Table 6.2 Classification of Real Data Tests	97
Table 6.3 Relative Contribution of Algorithm Components	126
Table 6.4 Best Result of the Algorithm using Artificial Data Tests	127
Table 6.5 Best Result of the Algorithm using Real Data Tests and its Modification	127

LIST OF FIGURES

	Page
Figure 2.1	34
Figure 3.1	41
Figure 4.1	57
Figure 4.2	59
Figure 4.3	60
Figure 4.4	62
Figure 4.5	64
Figure 4.6	65
Figure 4.7	68
Figure 4.8	69
Figure 4.9	69
Figure 5.1	73
Figure 5.2	79
Figure 5.3	82
Figure 5.4	82
Figure 5.5	83
Figure 5.6	84
Figure 5.7	89
Figure 6.1	99
Figure 6.2.a	100

Figure 6.2.b	Average Number of Sections Scheduled by Greedy, Genetic, Original and Negative Ant System Algorithm using Normal Data	101
Figure 6.3.a	Best Fitness Value of the Greedy, Genetic Original and Negative Ant System Algorithm using Full Data	102
Figure 6.3.b	Average Number of Sections Scheduled by Greedy, Genetic, Original and Negative Ant System Algorithm using Full Data	102
Figure 6.4.a	Best Fitness Value of the Greedy, Genetic Original and Negative Ant System Algorithm using Incremented Data	103
Figure 6.4.b	Average Number of Sections Scheduled by Greedy, Genetic, Original and Negative Ant System Algorithm using Incremented Data	103
Figure 6.5	A Case where an Interval has more in-degree than out-degree	104
Figure 6.6.a	Effect of Negative Pheromone measured in Fitness Value	105
Figure 6.6.b	Effect of Negative Pheromone measured in Average Number of Scheduled Sections	105
Figure 6.7	Typical effect of Negative Pheromone in Full Data	106
Figure 6.8.a	Performance of Anticipation Feature using Normal Data measured in Fitness Value	107
Figure 6.8.b	Performance of Anticipation Feature using Normal Data measured in Average Number of Scheduled Sections	108
Figure 6.9.a	Performance of Anticipation Feature using Full Data measured in Fitness Value	108
Figure 6.9.b	Performance of Anticipation Feature using Full Data. measured in Average Number of Scheduled Sections	109
Figure 6.10.a	Performance of Embedded Techniques in Original Ant System Algorithm measured in Fitness Value	110
Figure 6.10.b	Performance of Embedded Techniques in Original Ant System Algorithm measured in Average Number of Scheduled Sections	110

Figure 6.11.a	Performance of the Two-pass Algorithm compare to the Clustered-fit Ant System Algorithm measured in Fitness Value	112
Figure 6.11.b	Performance of the Two-pass Algorithm compare to the Clustered-fit Ant System Algorithm measured in Average Number of Scheduled Sections	112
Figure 6.12.a	Performance of Algorithms that do not apply Negative Pheromone and Anticipation using Normal Data Tests measured in Fitness Value	114
Figure 6.12.b	Performance of Algorithms that do not apply Negative Pheromone and Anticipation using Normal Data Tests measured in Average Number of Scheduled Sections	114
Figure 6.13.a	Performance of Algorithms that apply Negative Pheromone update compare to the Greedy and Original Algorithm using Normal Data Tests measured in Fitness Value	116
Figure 6.13.b	Performance of Algorithms that apply Negative Pheromone update compare to the Greedy and Original Algorithm using Normal Data Tests measured in Average Number of Scheduled Sections	116
Figure 6.14.a	Performance of Algorithms that apply Retracting (A) Anticipation compare to the Greedy and Original Algorithm using Normal Data Tests measured in Fitness Value	117
Figure 6.14.b	Performance of Algorithms that apply Retracting (A) Anticipation compare to the Greedy and Original Algorithm using Normal Data Tests measured in Average Number of Scheduled Sections	117
Figure 6.15.a	Performance of Algorithms that apply Retracting (A) Anticipation and Negative Pheromone compare to the Greedy and Original Algorithm using Normal Data Tests measured in Fitness Value	118

Figure 6.15.b	Performance of Algorithms that apply Retracting (A) Anticipation and Negative Pheromone compare to the Greedy and Original Algorithm using Normal Data Tests measured in Average Number of Scheduled Sections	118
Figure 6.16.a	Performance of Algorithms that apply Retracting (B) Anticipation compare to the Greedy and Original Algorithm using Normal Data Tests measured in Fitness Value	119
Figure 6.16.b	Performance of Algorithms that apply Retracting (B) Anticipation compare to the Greedy and Original Algorithm using Normal Data Tests measured in Average Number of Scheduled Sections	119
Figure 6.17.a	Performance of Algorithms that apply Retracting (B) Anticipation and Negative Pheromone compare to the Greedy and Original Algorithm using Normal Data Tests measured in Fitness Value	120
Figure 6.17.b	Performance of Algorithms that apply Retracting (B) Anticipation and Negative Pheromone compare to the Greedy and Original Algorithm using Normal Data Tests measured in Average Number of Scheduled Sections	120
Figure 6.18	Comparison of Pheromone Update Methods using All Data Tests	121
Figure 6.19	Experiment Result to compare Pheromone Update Methods involving Full02 Data Test	122
Figure 6.20	Comparison of Failure Anticipation Methods using All Data Tests	123
Figure 6.21	Contribution of Negative Pheromone Update in the Proposed Algorithm	124
Figure 6.22	Contribution of Failure Anticipation in the Proposed Algorithm	124

Figure 6.23	Contribution of Second Pass (Original Ant System) in the Proposed Algorithm	125
Figure 6.24	Contribution of First Pass (Clustered and Best Fit) in the Proposed Algorithm	125

ABSTRACT

As a member of the NP Problem, an exact algorithm to solve the course scheduling problem is not available to date. It is believed that this kind of problem can not be solved by any deterministic algorithm except with the one that performs checking for all possible solution exhaustively to find solutions that comply with all mandatory constraints. The running time of this algorithm is usually expressed as a mathematical function that grows very fast with the increment of the input data size. For this kind of problem, researchers believe that it will be better to find an approximate solution that can be delivered by a stochastic algorithm than waiting for an exact solution from the deterministic algorithm.

In order to develop a new algorithm for the course scheduling problem, this research follows the experimental research methodology that consist of problem analysis, designing algorithm, implementing algorithm as a computer program in order to examine the results, analyzing the results, and if necessary improving the algorithm by doing all those activities over and over again.

This research starts with developing an algorithm based on original concept of Ant System Algorithm. As the requirement of the Ant System Algorithm, the problem is modeled as a graph that can be used by the ant to deliver its pheromone. This graph consists of four types of vertices that construct the course schedule element. To direct the ant in the journey, heuristic factors are developed by analyzing the characteristic of the course scheduling problem model. The ant uses this heuristic factor to build its pheromone trail, where the number of pheromone laid on the edge indicates the preference level of the edge to be chosen.

A Two-pass Ant System Algorithm that able to come up with the course schedule without violating any hard constraints has been proposed to cater for the course scheduling problem. The proposed algorithm incorporates a new pheromone update

method that includes the negative value for the pheromone update, failure anticipation, cluster computation and best fit event placement features. These features were tested in conjunction with the proposed Ant System Algorithm either individually or in combination among the features.

Results of the experiments that were conducted using various data sets showed that the proposed algorithm produced better course schedule solution than the Greedy Algorithm, Genetic Algorithm, and other variants of Ant System Algorithm.

CHAPTER I

INTRODUCTION

One of the most important things in an organization is schedule of the organization activities. The schedule will govern the organization to achieve its objectives. This means that organizations have to arrange and coordinate their diverse activities in an organized and integrated manner so that its corporate objectives can be achieved effectively.

In an organization, the activity schedule consists of many events, each of which consumes some organization resources. Almost all integrated activities in an organization are conducted using a proper schedule. Some examples of the activities that required a well prepared schedule are job assignment for medical personnel such as medical doctors and nurses in a hospital, allocating duty of flight attendants and air force crews, and job assignment for teachers in high schools or lecturers in universities. All of these scheduling jobs assign some resources into each of schedule element so that it called as resource allocation job (Gudes, Kuflik, & Meisels, 1990).

In a small organization, constructing a schedule as a series of activities can be done perfectly using a pencil and paper only, but for a large organization with diverse activities that require proper arrangement and coordination, the scheduling task certainly becomes more difficult. The use of simple apparatus usually may no longer be efficient to produce a good schedule. Therefore, it needs to be speed up by using a computer program.

The difficulties of scheduling usually come from its constraint that must be satisfied. There are two types of constraint that must be obeyed by the scheduler. The first is called hard constraint that is mandatory to be followed otherwise the schedule is not workable. The existence of a unique resource, such as a person, in a certain time usually has to be considered as a hard constraint. The second is soft constraint that

The contents of
the thesis is for
internal user
only

BIBLIOGRAPHY

Abdullah, S., & Turabieh, H. (2008, 11 - 13 November, 2008). *Generating University Course Timetable Using Genetic Algorithms and Local Search*. Paper presented at the Third International Conference on Convergence and Hybrid Information Technology, Busan, Republic of Korea.

Abramson, D. (1991). Constructing school timetables using Simulated annealing: Sequential and parallel algorithms. *Management Science*, 37(1), 98 - 113.

Abramson, D., & Abela, J. (1992). *A Parallel Genetic Algorithm for solving the school timetabling problem*. Paper presented at the 15 Australian Computer Science Conference, Hobart, Australia.

Abramson, D., Krishnamoorthy, M., & Dang, H. (1999). Simulated Annealing Cooling Schedules for the School Timetabling Problem. *Asia-Pacific Journal of Operational Research*, 16, 1 - 22.

Ai-ling, C., Gen-ke, Y., & Zhi-ming, W. (2006). Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. *Journal of Zhejiang University SCIENCE A*, 7(4), 607 - 614.

Alkan, A., & Ozcan, E. (2003, 8 -12 December, 2003). *Memetic Algorithms for Timetabling*. Paper presented at the The 2003 Congress on Evolutionary Computation, Canberra, Australia.

Alvarez-Valdes, R., Martin, G., & Tamarit, J. (1996). Constructing good solutions for the Spanish school timetabling problem. *Journal of the Operational Research Society*, 47, 1203 - 1215.

Arntzen, H., & Lokketangen, A. (2003). *A tabu search heuristic for a university timetabling problem*. Paper presented at the Fifth Metaheuristics International Conference, Kyoto, Japan.

Bambrick, L. (1997). *Lecture timetabling using genetic algorithms*. The University of Queensland.

Bardadym, V. A. (1995). *Computer-Aided School and University Timetabling: The New Wave*. Paper presented at the First International Conference on the Practice and Theory of Automated Timetabling (ICPTAT '95).

Bauer, A., Bullnheimer, B., Hartl, R. F., & Strauss, C. (1999, July 6-9). *An ant colony optimization approach for the single machine total tardiness problem*. Paper presented at the 1999 Congress on Evolutionary Computation (CEC99), Washington D.C., USA.

Beham, A. (2007, March 26-30). *Parallel Tabu Search and the Multiobjective Vehicle Routing Problem with Time Windows*. Paper presented at the Parallel and Distributed Processing Symposium, 2007 (IPDPS 2007).

Bloomfield, S. D., & McSharry, M. M. (1979). Preferential Course Scheduling. *Interfaces*, 9(4), 24 - 31.

Blum, C., & Roli, S. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. *ACM Computing Surveys*, 35(3), 268 - 308.

Burke, E., Bykov, Y., Newall, J., & Petrovic, S. (2003). A time-predefined approach to course timetabling. *Yugoslav Journal of Operations Research*, 13(2), 139 -151.

Burke, E., Jackson, K., Kingston, J., & Weare, R. (1997). Automated University Timetabling: The State of the Art. *The Computer Journal*, 40(9).

Burke, E., & Petrovic, S. (2002). Recent research direction in automated timetabling. *European Journal of Operational Research – EJOR*, 140(2), 266 - 280.

Busam, V. A. (1967). An algorithm for class scheduling with section preference. *Communication of the ACM*, 10, 567 - 569.

Caldeira, J. P., Melicio, F., & Rosa, A. (2004). *Using a Hybrid Evolutionary-Taboo Algorithm to solve Job Shop Problem*. Paper presented at the ACM Symposium on Applied Computing.

Caldeira, J. P., & Rosa, A. C. (2003). School Timetabling using Genetic Search. Retrieved May, 16th, 2005, from <http://laseeb.isr.ist.utl.pt/publications/1983/1997-04-Patat-P.pdf>

Carter, M. W., & Laporte, G. (1997). *Recent developments in practical course timetabling*. Paper presented at the 2nd International Conference on Practice and Theory of Automated Timetabling (PATAT 1997), Toronto, Canada.

Chainate, W., Thapatsuwan, P., & Pongcharoen, P. (2008, 20 - 22 Dec. 2008). *Investigation on Cooling Schemes and Parameters of Simulated Annealing for Timetabling University Courses*. Paper presented at the 2008 International Conference on Advanced Computer Theory and Engineering, Phuket, Thailand.

Chatterjee, S., Carrera, C., & Lynch, L. A. (1996). Genetic algorithms and traveling salesman problems. *European Journal of Operational Research – EJOR*, 93(3), 490 - 510.

Cheng, T. C. E., Gupta, J. N. D., & Wang, G. (2000). A Review of Flowshop Scheduling Research with Setup Times. *Production and Operations Management*, 9(3), 262 - 282.

Chiarandini, M., Birattari, M., Socha, K., & Rossi-Doria, O. (2006). An effective hybrid algorithm for university course timetabling. *Journal of Scheduling*, 9(5), 403 - 432.

Colomi, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G., & Trubian, M. (1996). Heuristics from nature for hard combinatorial optimization problems. *International Transactions in Operational Research*, 3(1), 1 – 21.

Colomi, A., Dorigo, M., & Maniezzo, V. (1990). *A Genetic Algorithm To Solve The Timetable Problem* (No. 90-060). Milano, Italy: Politecnico di Milano, Italy.

Colomi, A., Dorigo, M., & Maniezzo, V. (1992). *Distributed optimization by ant colony*. Paper presented at the First European Conference on Artificial Life.

Colomi, A., Dorigo, M., Maniezzo, V., & Trubian, M. (1994). Ant System for Job-Shop Scheduling. *Belgian Journal of Operations Research, Statistics and Computer Science (JORBEL)*, 34(1), 39 - 53.

Combs, W., Hawkins, R., Pore, T., Schechet, A., Wahls, T., & Ziantz, L. (2005). The Course Scheduling Problem as a Source of Student Projects. *ACM SIGCS*, 81 – 85.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1994). *Introduction to algorithms*. USA: The MIT Press. USA: The MIT Press.

Csima, J., & Gotlieb, C. C. (1964). Test on computer method for constructing school timetables. *Communications of the ACM*, 7(3), 160 – 163.

Derigs, U., & Jenal, O. (2005). A GA-based decision support system for professional course scheduling at Ford Service Organisation. *OR Spectrum*, 27, 147 – 162.

Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed Stigmergetic Control for Communications Networks. *Journal of Artificial Intelligence Research*, 9, 317 - 365.

Digalakis, J., & Margaritis, K. (2001, July 16-20, 2001). *A parallel memetic algorithm for solving optimization problems*. Paper presented at the 4th Metaheuristics International Conference (MIC'2001), Porto, Portugal.

Dodig-Crnkovic, G. (2002). *Computer Science in a Theory of Science Discourse*. Malardalen University, Sweden, Vasteras.

Dorigo, M., Di Caro, G., & Gambardella, L. M. (1999). Ant Algorithms for Discrete Optimization. *Artificial Life*, 5(3), 137-172.

Dorigo, M., & Gambardella, L. M. (1997a). Ant colonies for the traveling salesman problem. *BioSystems*, 43, 73 – 81.

Dorigo, M., & Gambardella, L. M. (1997b). Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. *IEEE Transactions on Evolutionary Computation*, 1(1).

Dorigo, M., Maniezzo, V., & Colomi, A. (1996). The ant system: Optimization by a colony of cooperating agents. *IEEE Transaction on Systems, Man, and Cybernetics – Part B*, 26(1), 1 – 13.

Dorigo, M., & Stutzle, T. (2004). *Ant colony optimization*. USA: The MIT Press.

Dowsland, K. A., & Thompson, J. M. (2005). Ant colony optimization for the examination scheduling problem. *Journal of the Operational Research Society*, 56, 426 – 438.

Duong, T., & Lam, K. (2004, February 2004). *Combining constraint programming and simulated annealing on university exam timetabling*. Paper presented at the International Conference RIVF'04, Hanoi.

Ejaz, N., & Javed, M. Y. (2007, August 18 - 21, 2007). *A Hybrid Approach for Course Scheduling Inspired by Die-hard Co-operative Ant Behavior*. Paper presented at the IEEE International Conference on Automation and Logistics, Jinan, China.

Eley, M. (2006). *Ant algorithms for the exam timetabling problem*. Paper presented at the International Conference on Practice and Theory of Automated Timetabling (PATAT 2006), Brno.

Elmohamed, S., Coddington, P., & Fox, G. (1997). *A comparison of annealing techniques for academic course scheduling*. Paper presented at the 2nd International Conference on Practice and Theory of Automated Timetabling (PATAT 1997), Toronto, Canada.

Erben, W., & Keppler, J. (1995, August, 1995). *A Genetic Algorithm Solving a Weekly Course-Timetabling Problem*. Paper presented at the Practice and Theory of Automated Timetabling First International Conference, Edinburgh, UK.

Fernandes, C., Caldeira, J. P., Melicio, F., & Rosa, A. (1999). *High-school weekly timetabling by evolutionary algorithms*. Paper presented at the 1999 ACM Symposium on Applied Computing, Texas, USA.

Fleischer, M. (1995). *Simulated annealing: past, present, and future*. Paper presented at the 1995 Winter Simulation Conference.

Gagne, C., Price, W. L., & Gravel, M. (2002). Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times. *Journal of the Operational Research Society*, 53, 895 – 906.

Gambardella, L. M., & Dorigo, M. (2000). An ant colony system hybridized with a new local search for the sequential ordering problem. *INFORMS Journal on Computing ABI / INFORM Research*, 12(3), 237 - 255.

Gaspero, L. D., & Schaefer, A. (2000). *Tabu search techniques for examination timetabling*. Paper presented at the 3rd International Conference on Practice and Theory of Automated Timetabling (PATAT 2000), Konstanz, Germany.

Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem. *Management Science*, 40(10), 1276 - 1290.

Ghaemi, S., Vakili, M. T., & Aghagolzadeh, A. (2007, 12–15 February 2007). *Using A Genetic Algorithm Optimizer Tool to Solve University Timetable Scheduling Problem*. Paper presented at the 9th International Symposium on Signal Processing and Its Applications, Sharjah - United Arab Emirates.

Glover, F., & Laguna, M. (1997). *Tabu search*. USA: Kluwer Academic Publishers.

Gotlieb, C. C. (1963). *The construction of class-teacher time tables Information Processing*. Paper presented at the IFIP Congress 62, Munich.

Green, K. E. (n.d.). ‘Stop’ and ‘Go’ foraging signals in eusocial Insects. Retrieved January 12, 2006, from <http://www.shef.ac.uk/aps/mbiolsci/green-kathleen/Level4dissertation.pdf>

Gudes, E., Kuflik, T., & Meisels, A. (1990). *An expert systems based methodology for solving resource allocation problems*. Paper presented at the 3rd international conference on Industrial and engineering applications of artificial intelligence and expert, Charleston, South Carolina, USA.

Gunawan, A., Ng, K. M., & Poh, K. L. (2007). Solving the Teacher Assignment-Course Scheduling Problem by a Hybrid Algorithm. *International Journal of Computer, Information and Systems Science, and Engineering*, 1(2).

Hasan, S. M. K., Sarker, R., & Cornforth, D. (2007). *Hybrid Genetic Algorithm for Solving Job-Shop Scheduling Problem*. Paper presented at the 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007).

Hertz, A. (1992). Finding a Feasible Course Schedule Using Tabu Search. *Discrete Applied Mathematics*, 35, 255 - 270.

Hertz, A., Taillard, E., & de Werra, D. (1997). A tutorial on tabu search. In E. H. L. Aarts & J. K. Lenstra (Eds.), *Local Search in Combinatorial Optimization*. UK: John Wiley & Sons.

Huang, X. (2003). A Polynomial-Time Algorithm for Solving NP-Hard Problems in Practice. *ACM SIGACT News*, 34(1), 101 - 108.

Johnson, C. (1998). *What is Research in Computing Science?* Glasgow (UK): Department of Computer Science, Glasgow University.

Kanoh, H., Kondo, M., & Sugimoto, M. (2002). *Solving Timetabling Problems using Genetic Algorithms Based on Minimizing Conflict Heuristics*. Paper presented at the Evolutionary Methods for Design, Optimisation and Control, Barcelona.

Lakhani, A. V. (2006). *Detours in Foraging Strategies*. The University of Sheffield.

Lam, J., & Delosmett, J. (1988). *Performance of a New Annealing Schedule*. Paper presented at the 25th ACM/IEEE Design Automation Conference.

Lane, D. E., Cote, R., & Shaw, J. (1990). A system for scheduling student computer consultants. *ACM SIGUSS XVIII*, 205 - 219.

Lee, H. S. C. (2000). *Timetabling highly constrained system via genetic algorithms*. University of the Philippines, Diliman, Quezon City.

Legierski, W. (2002, November, 13 -15, 2005). *Constraint-based reasoning for timetabling*. Paper presented at the Artificial Intelligence Methods (AI-METH 2002).

Levitin, A. (2003). *Introduction to the design and analysis of algorithms*. USA: Addison - Wesley (Pearson International Edition).

Li, J., & Aickelin, U. (2003). *A Bayesian Optimization Algorithm for the Nurse Scheduling Problem*. Paper presented at the 2003 Congress on Evolutionary Computation, Canberra, Australia.

Mak, K. L., & Guo, Z. G. (2004). *A genetic algorithm for vehicle routing problems with stochastic demand and soft time windows*. Paper presented at the 2004 Systems and Information Engineering Design Symposium.

Marques, A., & Morgado, F. (2003). *Application of a genetic algorithm to a scheduling assignment problem*. Paper presented at the Soft Computing and Complex Systems, Coimbra, Portugal.

Marte, M. (2002). *Models and algorithms for school timetabling – A constraint-programming approach*. der Ludwig-Maximilians-Universitat, Munchen.

McHugh, J. A. (1990). *Algorithmic Graph Theory*. Upper Saddle River, NJ, USA: Prentice Hall.

Montgomery, E. J. (2005). *Solution Biases and Pheromone Representation Selection in Ant Colony Optimisation*. Bond University.

Moody, D., Bar-Noy, A., & Kendall, G. (2007). *Construction of Initial Neighborhoods for a Course Scheduling Problem Using Tiling*. Paper presented at the 2007 IEEE Symposium on Computational Intelligence in Scheduling (CI-Sched 2007).

Moret, B. M. E., & Shapiro, H. D. (2001). Algorithms and experiments: The New (and old) methodology. *Journal of Universal Computer Science*, 7(5), 434 – 446.

Neufeld, G. A., & Tartar, J. (1974). Graph coloring conditions for the existence of solutions to the timetable problem. *Communications of the ACM*, 17(8), 450 - 453.

Omar, M., Baharum, A., & Hasan, Y. A. (2006, June 13-15, 2006). *A job-shop scheduling problem (JSSP) using genetic algorithm (GA)*. Paper presented at the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications, Penang, Malaysia.

Osman, I. H. (1993). Metastrategy Simulated Annealing and Tabu Search Algorithms for the Vehicle Routing Problem. *Annals of Operations Research*, 41, 421 - 451.

Paechter, B. (2003). International Timetabling Competition: Metaheuristics Network.

Prestwich, S. (2000). *An informal tutorial on search techniques in constraint programming*. Paper presented at the Second International Workshop on Information Integration and Web-based Applications and Services, Yogyakarta, Indonesia.

Qu, R., & Burke, E. (2008). Hybridisations within a Graph Based Hyper-heuristic Framework for University Timetabling Problems. *Journal of Operational Research Society*.

Ramli, R. (2004). *An evolutionary algorithm for the nurse scheduling problem with circadian rhythms*. Universiti Sains Malaysia.

Rana-Stevens, S., Lubin, B., & Montana, D. (2000). *The air crew scheduling system: The design of a real-world, dynamic genetic scheduler*. Paper presented at the Second Genetic and Evolutionary Computation Conference, Las Vegas, USA.

Riaz, T., Wang, Y., & Li, K. (2004). *Multiple sequence alignment using tabu search*. Paper presented at the Asia-Pacific Bioinformatics Conference.

Robinson, E. J. H., Jackson, D. E., Holcombe, M., & Ratnieks, F. L. W. (2005). Insect Communication: 'No entry' signal in ant foraging. *Nature*, 438, 442.

Rossi-Doria, O., & Paechter, B. (2004). A memetic algorithm for University Course Timetabling. Retrieved March, 9, 2006, from http://iridia.ulb.ac.be/~meta/newsite/downloads/co2004_dam.pdf

Rudova, H., & Murray, K. (2002, August 21-23, 2002). *University Course Timetabling with Soft Constraints*. Paper presented at the 4th International Conference on Practice and Theory of Automated Timetabling (PATAT 2002), Gent, Belgium.

Santos, H. G., Ochi, L. S., & Souza, M. J. F. (2005). A Tabu Search Heuristic Diversification Strategies Class/Teacher Timetabling. *ACM Journal of Experimental Algorithms*, 10, 1 – 16.

Schaerf, A. (1996, August 1996). *Tabu Search Techniques for Large High-School Timetabling Problems*. Paper presented at the 13th National Conference on Artificial Intelligence and the 8th Innovative Applications of Artificial Intelligence Conference [AAA96], Portland, Oregon, USA.

Schaerf, A., & Gaspero, L. D. (2001, September 2001). *Local search techniques for educational timetabling problems*. Paper presented at the 6th International Symposium on Operations Research, Preddvor, Slovenia.

Socha, K., Knowles, J., & Sampels, M. (2002). *A max-min ant system for the university course timetabling problem*. Paper presented at the ANTS 2002 – Third International Workshop on Ant Algorithms.

Stewart, J., & Clark, R. L. (1968). *University of Maryland student scheduling algorithm*. Paper presented at the 1968 ACM National Conference.

Stutzle, T. (1998a). *An ant approach to the flow shop problem*. Paper presented at the 6th European Congress on Intelligent Techniques & Soft Computing (EUFIT'98), Aachen.

Stutzle, T. (1998b). *Parallelization strategies for ant colony optimization*. Paper presented at the Fifth International Conference on Parallel Problem Solving from Nature (PPSN-V).

Stutzle, T., & Hoos, H. (1997). *Improvement of the ant system: Introducing the max-min ant system*. Paper presented at the International Conference on Artificial Neural Network.

Stutzle, T., & Hoos, H. (1998). *Max-min ant system and local search for the traveling salesman problem*. Paper presented at the IEEE International Conference on Evolutionary Programming.

Terashima-Marin, H., Ross, P., & Valenzuela-Rendon, M. (1999). *Evolution of Constraint Satisfaction Strategies in Examination Timetabling*. Paper presented at the The Genetic and Evolutionary Computation Conference (GECC099).

Tripathy, A. (1984). School timetabling – A case in large binary integer linear programming. *Management Science*, 30(12), 1473 - 1489.

Tuga, M., Berretta, R., & Mendes, A. (2007, July 11-13, 2007). *A Hybrid Simulated Annealing with Kempe Chain Neighborhood for the University Timetabling Problem*. Paper presented at the 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007), Melbourne, Australia.

Van Wezel, W., Jorna, R. J., & Mietus, D. (1996). Scheduling in generic perspective. *International Journal of Expert Systems; research and applications*, 3(9), 357 - 381.

Wall, M. B. (1996). *A Genetic Algorithm for Resource-Constrained Scheduling*. Massachusetts Institute of Technology.

Willemen, R. (2002). *School timetable construction – Algorithms and complexity*. Eindhoven University of Technology.

Wren, A. (1995). *Scheduling, Timetabling and Rostering - A Special Relationship?* Paper presented at the First International Conference on the Practice and Theory of Automated Timetabling (ICPTAT '95).

Wren, A., & Wren, D. O. (1995). A genetic algorithm for public transport driver scheduling. *Computers Ops Res*, 22(1), 101 - 110.

Wyatt, T. D. (2003). *Pheromones and animal behaviour: communication by smell and taste*. UK: Cambridge University Press.

Zhang, J., Hu, X., Tan, X., Zhong, J. H., & Huang, Q. (2006). Implementation of an Ant Colony Optimization technique for job shop scheduling problem. *Transactions of the Institute of Measurement and Control*, 28(1), 93 - 108.