INTEGRATED RETINAL INFORMATION SYSTEM

FOR

ANALYZING KIDNEY CONDITION

HATTA PERDANA

UNIVERSITI UTARA MALAYSIA

2009
INTEGRATED RETINAL INFORMATION SYSTEM
FOR
ANALYZING KIDNEY CONDITION

A thesis submitted to the College of Arts and Sciences in partial fulfillment of the requirements for the degree of Master of Science (Information Technology)
Universiti Utara Malaysia

By
Hatta Perdana
PERMISSION TO USE

In presenting the thesis in partial fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor or, in their absence by the Dean of Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to University Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
ABSTRACT

Iridology is a science and practice that can express body state based on the analysis of iris structure. The changes or disturbances of disease on body network will be informed by neuron nerve fiber to brain. This energy wave information spread to eye by brain, recorded and fixed by pupil. Then, these recorded fixation become data trails which can be detected by disturbance/disease that is filed by body organ. The research about iridology to analyzing kidney condition has been conducted before using Learning Vector Quantization (LVQ) method. The accuracy is not 100%. In this research, the researcher implements Support Vector Machine (SVM) in classifying the kidney condition to replace LVQ using Matlab R2007b. The accuracy in classifying the kidney condition for right eyes is 100% and for the left eyes is 100% in training set data. If we compared to the accuracy of classification using LVQ, implementing SVM is much better because by implementing LVQ, the accuracy is only 96% for right eyes and only 92% for left eyes.
ACKNOWLEDGEMENTS

First of all I am thankful to Allah SWT for giving me the knowledge, courage, ability, and strength to complete this project.

I would like to thanks and gratitude to:

My father Drs. H. Masril Malik,MS, Apt and My Mother Dra. Hj. Erna Tara, Apt for their wonderful supports and efforts in educating me for carrying out this study to become reality.

My supervisor Dr. Kang Eng Thye for his supports in assisting me for carrying out this study. The idea and encouragement help me to get the direction of my work.

My thanks also to my best friend Ribas, Nopri, Popay, Omar, Edo, Lidya and especially for my Novita Evans for their supports and sharing ideas during this project.

My thanks also go to my lecturer in UUM, my classmate and everybody who involved in this project directly and indirectly for giving me ideas, knowledge and supports throughout my study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMISSION TO USE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION 1

1.1 Background of Study 1

1.2 Problem Statement 3

1.3 Research Objectives 4

1.4 Research Scope 4

1.5 Research Significance 5

1.6 Research Contribution 5

1.7 Chapter Discussion 5
CHAPTER 2: LITERATURE REVIEW

2.1 Iridology 6

2.2 Digital Images 8

2.2.1 Digital Image Processing 9
2.2.2 Image Segmentation 10
2.2.3 Pattern Recognition 11
2.2.4 Feature Extraction 11

2.3 Support Vector Machine 12

2.3.1 SVM on Linearly Separable Data 13
2.3.2 SVM on Non Linearly Separable Data 14
2.3.3 SVM Characteristics 17

2.4 Chapter Discussion 18

CHAPTER 3: METHODOLOGY

3.1 Study The Literature 19

3.2 Writing Proposal 19

3.3 Developing Prototype 19

3.4 Diagnosing Kidney Condition 21

3.5 Writing Thesis 29

3.6 Chapter Discussion 29
CHAPTER 4: RESULTS AND DISCUSSION

4.1 Specification

4.1.1. Hardware Specification

4.1.2. Software Specification and System Requirement

4.2 System Analysis

4.2.1. Canny Detection

4.2.2. Iris and Pupil Parameter Searching

4.2.3. Coordinate Center of Boundary

4.2.4. Kidney Area Segmentation

4.2.5. Extraction

4.2.1 The Effect of Wavelet Type Filter

4.4 The Analysis of Energy in Each Decomposition Sub-band

4.5 SVM Classification

4.5.1. Testing and Evaluation

4.5.2. Testing and Evaluation on Training Phase

4.5.3. Testing and Evaluation on Testing Phase

4.6 Chapter Discussion
CHAPTER 5: CONCLUSION 55

5.1 Overview 55

5.2 Limitations of Study 56

5.3 Recommendation for Future Work 56

REFERENCES 57
LIST OF TABLES

Table 3.1 Data Classification 26

Table 4.1 The Comparison Accuracy In Classifying Influenced by Filter 37

Table 4.2 The Comparison Accuracy In Classifying Influenced by Orde Symlet 37

Table 4.3 Parameter Testing C = 0, 100, 200 46

Table 4.4 Parameter Testing C = 300, 400 47

Table 4.5 The Accuracy of Parameter for Different C 48

Table 4.6 Parameter Testing P = 1, 2, 3, 4, 5 49

Table 4.7 The Accuracy of Parameter for Different P 49

Table 4.8 Testing Set for Right Eyes 52

Table 4.9 Testing Set for Left Eyes 54
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures 2.1</td>
<td>Iridology Chart</td>
<td>8</td>
</tr>
<tr>
<td>Figures 2.2</td>
<td>Image Recognition Process</td>
<td>10</td>
</tr>
<tr>
<td>Figures 2.3</td>
<td>Hyperplane in SVM</td>
<td>13</td>
</tr>
<tr>
<td>Figures 2.4</td>
<td>Transformation from Input Space to Feature Space</td>
<td>15</td>
</tr>
<tr>
<td>Figures 2.5</td>
<td>Transformation for Data That Cannot Be Separated Linearly</td>
<td>16</td>
</tr>
<tr>
<td>Figures 3.1</td>
<td>Phases in Developing the System</td>
<td>20</td>
</tr>
<tr>
<td>Figures 3.2</td>
<td>Example of Eye Image</td>
<td>21</td>
</tr>
<tr>
<td>Figures 3.3</td>
<td>Example of Grayscale Eye Image</td>
<td>22</td>
</tr>
<tr>
<td>Figures 3.4</td>
<td>Example of Correct Eye Image Segmentation</td>
<td>22</td>
</tr>
<tr>
<td>Figures 3.5</td>
<td>Example of Filtering Eye Image Using Symlet</td>
<td>23</td>
</tr>
<tr>
<td>Figures 3.6</td>
<td>Flowchart in Diagnosing Kidney Condition</td>
<td>28</td>
</tr>
<tr>
<td>Figures 4.1</td>
<td>Canny Detection Result with Different Threshold</td>
<td>32</td>
</tr>
<tr>
<td>Figures 4.2</td>
<td>Canny Detection Result with Different Deviation Standard</td>
<td>33</td>
</tr>
<tr>
<td>Figures 4.3</td>
<td>Eye Iris Position</td>
<td>35</td>
</tr>
</tbody>
</table>
Figures 4.4 Kidney Area 35
Figures 4.5 The Extraction of Canny Algorithm 37
Figures 4.6 Feature Extraction 39
Figures 4.7 Feature Extraction for Right Eye, Kidney Acute Condition 39
Figures 4.8 Feature Extraction for Left Eye, Kidney Acute Condition 40
Figures 4.9 Feature Extraction for Right Eye, Kidney Degenerative Condition 40
Figures 4.10 Feature Extraction for Left Eye, Kidney Degenerative Condition 41
Figures 4.11 Feature Extraction for Right Eye, Kidney Chronic Condition 41
Figures 4.12 Feature Extraction for Left Eye, Kidney Chronic Condition 42
Figures 4.13 Feature Extraction for Right Eye, Kidney Normal Condition 42
Figures 4.14 Feature Extraction for Left Eye, Kidney Normal Condition 43
<table>
<thead>
<tr>
<th>Condition</th>
<th>Fig. 4.15 Feature Extraction for Right Eye, Kidney Sub</th>
<th>Fig. 4.16 Feature Extraction for Left Eye, Kidney Sub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Condition</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Acute Condition</td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Data Mining is an exploration and analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns (Tan, Steinbach, and Kumar, 2004). Data mining involves an integration of techniques from multiple disciplines such as database and data warehouse technology, statistics, machine learning, high-performance computing, pattern recognition, neural networks, data visualization, information retrieval, image and signal processing, and spatial or temporal data analysis (Han and Kamber, 2006).

In a content-based image retrieval system, there are often two kinds of queries: image sample-based queries and image feature specification queries (Han and Kamber, 2006). Image-sample-based queries find all of the images that are similar to the given image sample. This search compares the feature vector (or signature) extracted from the sample with the feature vectors of images that have already been extracted and indexed in the image database. Based on this comparison, images that are close to the sample image are returned. Image feature specification queries specify or sketch image features like color, texture, or shape, which are translated into a feature vector to be matched with the
The contents of the thesis is for internal user only
REFERENCES

Tan, S., Kumar. (2004). *Introduction to Data Mining*.
