PREDICTING PRODUCTION OF CRUDE PALM OIL BASED ON

WEATHER ATTRIBUTES

ONG EI LIN

UNIVERSITI UTARA MALAYSIA

2009

;

PREDICTING PRODUCTION OF CRUDE PALM OIL BASED ON

WEATHER ATTRIBUTES

A project submitted to the Faculty of Information Technology in partial fulfillment of the requirement for the degree Master of Science (Information Technology) Universiti Utara Malaysia

By

ONG EI LIN

© Ong Ei Lin, 2009.

All Rights Reserved.

PERMISSION TO USE

In presenting this project in partial fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor, in her absence, by the Dean of the Faculty of Information Technology. It is understood that any copying or publication or use of this project or parts thereof for financial gain should not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project.

Request for permission to copy or to make use of material in this project, in whole or in part should be addressed to:

Dean of the Faculty of Information Technology Universiti Utara Malaysia 06010 UUM Sintok Kedah Darul Aman

ABSTRACT

In hydrological cycle, water is the important source for rainfall forecasting. Hence, rainfall forecasting becomes a critical issue in equatorial country like Malaysia. Rainfall can affect environment and plantation activities and agriculture in Malaysia. In Malaysia, Meteorological Department collects weather information for each state in Malaysia. Rainfall prediction is important because it can produces the useful information to the palm oil production and recommending appropriate prevention climate change such as floods warning advise as well as managing water resource operations. For instances, Malaysian Palm Oil Board (MPOB) has given a lot of information about the palm oil production and its effect due to the climate changes. In this study, the analysis on weather data from the year 1996-2005 for five states such as Kedah, Kelantan, Malacca, Penang and Perak was carried out. In the initial study, regression analysis has been conducted to determine the relationship of the weather attributes and palm oil variable such as Fresh Fruit Bunches, Oil Extraction Rate and Crude Palm Oil production. However, the results were not so encouraging, therefore CBR approach has been attempted to solve the current problem then reuse the information and knowledge based that have been stored in the cases. The similarity measurement can be determined effectively between cases. Therefore, similarity measurement between cases in the rainfall and palm oil case base is the important element in CBR. The performance of each similarity measure is evaluated based on attribute's weight, and classification accuracy, In general, the similarity values achieved at most is 99.33%.

ABSTRAK

Dalam kitaran hidrologi, air merupakan sumber utama bagi taburan hujan. Oleh demikian, ramalan taburan hujan merupakan suatu isu yang penting kepada negara-negara khatulistiwa seperti Malaysia. Taburan hujan banyak mempegaruhi aktiviti sector perladanan and pertanian di Malaysia. Jabatan kaji cuaca telah menyediakan maklumat tentang taburan hujan bagi setiap negeri Malaysia. Maklumat yang didapati daripada ramalan taburan hujan boleh meningkatkan pertumbuhan kelapa sawit, memberi amaran bencana alam seperti banjir dan mengurus saluran air dengan sempurna. Disamping itu, Malaysian Palm Oil Board (MPOB) juga banyak memberi maklumat untuk meningkat pertumbuhan dan productiviti kelapa sawit, disamping itu menunjukkan memusnahkan pertumbuhan kepala sawit kesan dari bencana alam. Data taburan hujan daripada tahun 1996 hingga 2005 dianalisis berdasarkan lima negeri yang terlibat iaitu Kedah. Kelantan, Melaka, Pulau Pinang and Perak. Regression analysis perlu dilaksanakan terlebih dahulu untuk menentukan perhubungan antara parameter taburan hujan dengan parameter kepala sawit yang terdiri daripada fresh fruit bunches dan oil extraction rate. Walaubagaimanapun, hasil yang di dapati tidak memuaskan. oleh itu, pendekatan case based reasoning (CBR) digunakan. CBR merupakan satu pendekatan yang berupaya menyelesaikan masalah semasa, menggunaan maklumat dan pengetahuan sedia ada dalam kes tersebut. Dalam teknik CBR, similariti di antara kes bagi taburan hujan dan kelapa sawit boleh ditentukan melalui pengukuran similariti dan ia merupakan elemen utama dalam kajian CBR. Kebolehupayaan setiap pengukuran similariti dinilai berdasarkan pemberatan parameter dan ketepatan pengkelasan, kesimpulannya, nilai similariti yang tertinggi dalam kajian ini ialah 99.33%.

ACKNOWLEGMENT

Firstly, I would like to express my deep gratitude to both of my supervisors, Associate Professor Fadzilah Siraj and Puan Nur Azzah Binti Abu Bakar, who guide me patiently in this endeavour, beside their wonderful support and assisting me to complete this project.

Secondary, I would like to extend my thanks and gratitude to Malaysian Meteorological Services Centre and Malaysian Palm Oil Board, have give their cooperation during this research, where they have fully support in all the needed information for this project.

Finally, I owe the warmest gratitude to my beloved family members and friends, who have give the great supporting me throughout this project.

Last and not least, a special appreciate to all those, encouraged and helped me to complete this project. Thanks to all.

TABLE OF CONTENTS

PERMISSION TO USE	i
ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	Х
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	XX
CHAPTER 1: INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	4
1.3 Objectives	4
1.4 Scope	5
1.5 Research Questions / Hypotheses	5
1.6 Significance	6
1.7 Summary	6
CHAPTER 2: LITERATURE REVIEW	7
2.1 Weather Forecasting Model	7
2.1.1 Weather forecasting by statistical model	9
2.2 Palm Oil Sustainable Plantation	10
2.3 Artificial Intelligent Approach	12
2.4 Summary	16
CHAPTER 3: METHODOLOGY	17
3.1. General Methodology	17
3.1.1 Data Acquisition	18
3.1.2 Data Description	18

3.1.2.1 Rainfall data description	18
3.1.2.2 Palm oil data description	19
3.1.3 Data Distribution	21
3.1.3.1 Kedah	21
3.1.3.2 Kelantan	23
3.1.3.3 Malacca	24
3.1.3.4 Penang	25
3.1.3.5 Perak	27
3.1.4 The System Development Research Process methodology	28
3.1.4.1 Conceptual Framework	29
3.1.4.2 Development of the system architecture	29
3.1.4.3 Analysis and design	30
3.1.4.3.1 Retrieval Phase	30
3.1.4.3.2 Reuse Phase	31
3.1.4.3.3 Revise Phase	31
3.1.4.3.4 Retain Phase	31
3.1.4.4 Building the prototype	31
3.1.4.4.1 Module 1: Retrieval Phase.	32
3.1.4.4.2 Module 2: Reuse Phase	32
3.1.4.4.3 Module 3: Revision Phase	33
3.1.4.4.4 Prototype development	34
3.1.4.5 Evaluation	35
3.1.5 Multiple Linear Regression (MLR)	36
3.2 Summary	36
CHAPTER 4: DISCUSSION AND RESULT	37
4.1 Case Based Reasoning (CBR) system	37
4.1.1 Rainfall for Kedah state datasets	38
4.1.1.1 Weight experiment for Class 0	38
4.1.1.2 Weight experiment for Class 1	40
4.1.1.3 Weight experiment for Class 2	41

4.1.1.4 Weight experiment for Class 3	43
4.1.1.5 Summary of Suitable weight for Kedah State	44
4.1.2 Rainfall for Kelantan state datasets	45
4.1.2.1 Weight experiment for Class 0	46
4.1.2.2 Weight experiment for Class 1	48
4.1.2.3 Weight experiment for Class 2	49
4.1.2.4 Weight experiment for Class 3	51
4.1.2.5 Summary of Suitable weight for Kelantan State	52
4.1.3 Rainfall for Malacca state datasets	53
4.1.3.1 Weight experiment for Class 0	53
4.1.3.2 Weight experiment for Class 1	55
4.1.3.3 Weight experiment for Class 2	57
4.1.3.4 Weight experiment for Class 3	58
4.1.3.5 Summary of Suitable weight for Malacca State	60
4.1.4 Rainfall for Penang state datasets	61
4.1.4.1 Weight experiment for Class 0	62
4.1.4.2 Weight experiment for Class 1	63
4.1.4.3 Weight experiment for Class 2	65
4.1.4.4 Weight experiment for Class 3	66
4.1.4.5 Summary of Suitable weight for Penang State	68
4.1.5 Rainfall for Perak state datasets	69
4.1.5.1 Weight experiment for Class 0	69
4.1.5.2 Weight experiment for Class 1	71
4.1.5.3 Weight experiment for Class 2	72
4.1.5.4 Weight experiment for Class 3	74
4.1.5.5 Summary of Suitable weight for Perak State	75
4.1.6 Fresh Fruit Bunches (FFB) for Kedah state datasets	76
4.1.6.1 Weight experiment for Class 0	76
4.1.6.2 Weight experiment for Class 1	78
4.1.6.3 Weight experiment for Class 2	79
4.1.6.4 Summary of Suitable weight for Kedah State	81

4.1.7 Fresh Fruit Bunches (FFB) for Kelantan state datasets	82
4.1.7.1 Weight experiment for Class 0	82
4.1.7.2 Weight experiment for Class 1	84
4.1.7.3 Weight experiment for Class 2	85
4.1.7.4 Summary of Suitable weight for Kelantan State	87
4.1.8 Fresh Fruit Bunches (FFB) for Malacca state datasets	88
4.1.8.1 Weight experiment for Class 0	88
4.1.8.2 Weight experiment for Class 1	90
4.1.8.3 Weight experiment for Class 2	90
4.1.8.4 Summary of Suitable weight for Malacca State	91
4.1.9 Fresh Fruit Bunches (FFB) for Penang state datasets	92
4.1.9.1 Weight experiment for Class 0	92
4.1.9.2 Weight experiment for Class 1	94
4.1.9.3 Weight experiment for Class 2	94
4.1.9.4 Summary of Suitable weight for Penang State	95
4.1.10 Fresh Fruit Bunches (FFB) for Perak state datasets	96
4.1.10.1 Weight experiment for Class 0	96
4.1.10.2 Weight experiment for Class 1	98
4.1.10.3 Weight experiment for Class 2	98
4.1.10.4 Summary of Suitable weight for Perak State	99
4.1.11 Oil Extraction Rate (OER) for Kedah state datasets	99
4.1.11.1 Weight experiment for Class 0	100
4.1.11.2 Weight experiment for Class 1	101
4.1.11.3 Weight experiment for Class 2	103
4.1.11.4 Summary of Suitable weight for Kedah State	104
4.1.12 Oil Extraction Rate (OER) for Kelantan state datasets	105
4.1.12.1 Weight experiment for Class 0	105
4.1.12.2 Weight experiment for Class 1	107
4.1.12.3 Weight experiment for Class 2	108
4.1.12.4 Summary of Suitable weight for Kelantan State	108
4.1.13 Oil Extraction Rate (OER) for Malacca state datasets	110

4.1.13.1 Weight experiment for Class 0	110
4.1.13.2 Weight experiment for Class 1	112
4.1.13.3 Weight experiment for Class 2	113
4.1.13.4 Summary of Suitable weight for Malacca State	113
4.1.14 Extraction Rate (OER) for Penang state datasets	114
4.1.14.1 Weight experiment for Class 0	114
4.1.14.2 Weight experiment for Class 1	116
4.1.14.3 Weight experiment for Class 2	117
4.1.14.4 Summary of Suitable weight for Penang State	117
4.1.15 Oil Extraction Rate (OER) for Perak state datasets	118
4.1.15.1 Weight experiment for Class 0	118
4.1.15.2 Weight experiment for Class 1	120
4.1.15.3 Weight experiment for Class 2	120
4.1.15.4 Summary of Suitable weight for Perak State	121
4.2 Multiple Linear Regression	123
4.2.1 Fresh Fruit Bunches for Kedah State	123
4.2.2 Fresh Fruit Bunches for Kelantan State	125
4.2.3 Fresh Fruit Bunches for Malacca State	127
4.2.4 Fresh Fruit Bunches for Penang State	130
4.2.5 Fresh Fruit Bunches for Perak State	132
4.2.6 Oil Extraction Rate for Kedah State	134
4.2.7 Oil Extraction Rate for Kelantan State	136
4.2.8 Oil Extraction Rate for Malacca State	138
4.2.9 Oil Extraction Rate for Penang State	140
4.2.10 Oil Extraction Rate for Perak State	142
4.3 Summary	144
CHAPTER 5: CONCLUSION	145
5.1 Conclusion	145
5.2 Future Work	146

ix

REFERENCES	147
APPENDIX: System User Manual	152

LIST OF TABLES

Table 3.1: Sample of rainfall datasets	18
Table 3.2: Description of attribute	19
Table 3.3: Rainfall classification.	19
Table 3.4 Sample of Fresh Fruit Bunches	19
Table 3.5 Sample of Oil Extraction Rate	20
Table 3.6: Description of each Attribute	20
Table 3.7: FFB and OER classification	21
Table 4.1: Sample of Kedah State Cases Base	38
Table 4.2: Three cases for Class 0	38
Table 4.3: Experiment results on weight's results for Class 0	40
Table 4.4: Three cases for Class 1	40
Table 4.5: Experiment results on weight's results for Class 1	41
Table 4.6: Three cases for Class 2	41
Table 4.7: Experiment results on weight's results for Class 2	43
Table 4.8: Three cases for Class 3	43
Table 4.9: Experiment results on various weights' results for Class 3 datasets	44
Table 4.10: Kedah state Accuracy	45
Table 4.11: Experiment results on weight range 0.1 to 0.2	45
Table 4.12: Sample of Kelantan State Cases Base	46
Table 4.13: Three cases for Class 0	46
Table 4.14: Experiment results on weight's results for Class 0	48
Table 4.15: Three cases for Class 1	48
Table 4.16: Experiment results on weight's results for Class 1	49
Table 4.17: Three cases for Class 2	49

Table 4.18: Experiment results on weight's results for Class 2	51
Table 4.19: Three cases for Class 3	51
Table 4.20: Experiment results on various weights' results for Class 3 datasets	52
Table 4.21: Kelantan state Accuracy	53
Table 4.22: Sample of Malacca State Cases Base	53
Table 4.23: Three cases for Class 0	54
Table 4.24: Experiment results on weight's results for Class 0	55
Table 4.25: Three cases for Class 1	55
Table 4.26: Experiment results on weight's results for Class 1	57
Table 4.27: Three cases for Class 2	57
Table 4.28: Experiment results on weight's results for Class 2	58
Table 4.29: Three cases for Class 3	58
Table 4.30: Experiment results on various weights' results for Class 3 datasets	60
Table 4.31: Malacca state Accuracy	60
Table 4.32: Experiment results on weight between 0.8 to 1.0	60
Table 4.33: Sample of Penang State Cases Base	61
Table 4.34: Three cases for Class 0	62
Table 4.35: Experiment results on weight's results for Class 0	63
Table 4.36: Three cases for Class 1	63
Table 4.37: Experiment results on weight's results for Class 1	65
Table 4.38: Three cases for Class 2	65
Table 4.39: Experiment results on weight's results for Class 2	66
Table 4.40: Three cases for Class 3	66
Table 4.41: Experiment results on various weights' results for Class 3 datasets	68
Table 4.42: Penang state Accuracy	68
Table 4.43: Sample of Perak State Cases Base	69
Table 4.44: Three cases for Class 0	69
Table 4.45: Experiment results on weight's results for Class 0	71
Table 4.46: Three cases for Class 1	71
Table 4.47: Experiment results on weight's results for Class 1	72
Table 4.48: Three cases for Class 2	72

Table 4.49: Experiment results on weight's results for Class 2	74
Table 4.50: Three cases for Class 3	74
Table 4.51: Experiment results on various weights' results for Class 3 datasets	75
Table 4.52: Perak state Accuracy	75
Table 4.53: Sample of FFB Cases Base for Kedah State.	76
Table 4.54: Three cases for Class 0	76
Table 4.55: Experiment results on weight's results for Class 0	78
Table 4.56: Three cases for Class 1	78
Table 4.57: Experiment results on weight's results for Class 1	79
Table 4.58: Three cases for Class 2	79
Table 4.59: Experiment results on weight's results for Class 2	81
Table 4.60: Kedah state Accuracy	81
Table 4.61: Experiment results on weight range 0.7 to 0.8	81
Table 4.62: Sample of FFB Cases Base for Kelantan State.	82
Table 4.63: Three cases for Class 0	83
Table 4.64: Experiment results on weight's results for Class 0	84
Table 4.65: Three cases for Class 1	84
Table 4.66: Experiment results on weight's results for Class 1	85
Table 4.67: Three cases for Class 2	85
Table 4.68: Experiment results on weight's results for Class 2	87
Table 4.69: Kelantan state Accuracy	87
Table 4.70: Experiment results on weight range 0.3 to 0.4	87
Table 4.71: Sample of FFB Cases Base for Malacca State.	88
Table 4.72: Three cases for Class 0	89
Table 4.73: Experiment results on weight's results for Class 0	90
Table 4.74: Three cases for Class 1	90
Table 4.75: Experiment results on weight's results for Class 1	90
Table 4.76: Three cases for Class 2	91
Table 4.77: Experiment results on weight's results for Class 2	91
Table 4.78: Malacca state Accuracy	91
Table 4.79: Sample of FFB Cases Base for Penang State.	92

Table 4.80: Three cases for Class 0	92
Table 4.81: Experiment results on weight's results for Class 0	94
Table 4.82: Three cases for Class 1	94
Table 4.83: Experiment results on weight's results for Class 1	94
Table 4.84: Three cases for Class 2	94
Table 4.85: Experiment results on weight's results for Class 2	95
Table 4.86: Penang state Accuracy	95
Table 4.87: Sample of FFB Cases Base for Perak State.	96
Table 4.88: Three cases for Class 0	96
Table 4.89: Experiment results on weight's results for Class 0	97
Table 4.90: Three cases for Class 1	98
Table 4.91: Experiment results on weight's results for Class 1	98
Table 4.92: Three cases for Class 2	98
Table 4.93: Experiment results on weight's results for Class 2	99
Table 4.94: Perak state Accuracy	99
Table 4.95: Sample of OER Cases Base for Kedah State.	100
Table 4.96: Three cases for Class 0	100
Table 4.97: Experiment results on weight's results for Class 0	101
Table 4.98: Three cases for Class 1	101
Table 4.99: Experiment results on weight's results for Class 1	103
Table 4.100: Three cases for Class 2	103
Table 4.101: Experiment results on weight's results for Class 2	104
Table 4.102: Kedah state Accuracy	105
Table 4.103: Sample of OER Cases Base for Kelantan State.	105
Table 4.104: Three cases for Class 0	106
Table 4.105: Experiment results on weight's results for Class 0	107
Table 4.106: Three cases for Class 1	107
Table 4.107: Experiment results on weight's results for Class 1	108
Table 4.108: Three cases for Class 2	108
Table 4.109: Experiment results on weight's results for Class 2	108
Table 4.110: Kelantan state Accuracy	109

Table 4.111: Experiment results on weight between 0.1 to 0.2	109
Table 4.112: Sample of OER Cases Base for Malacca State.	110
Table 4.113: Three cases for Class 0	111
Table 4.114: Experiment results on weight's results for Class 0	112
Table 4.115: Three cases for Class 1	112
Table 4.116: Experiment results on weight's results for Class 1	113
Table 4.117: Three cases for Class 2	113
Table 4.118: Experiment results on weight's results for Class 2	113
Table 4.119: Malacca state Accuracy	114
Table 4.120: Sample of OER Cases Base for Penang State.	114
Table 4.121: Three cases for Class 0	115
Table 4.122: Experiment results on weight's results for Class 0	116
Table 4.123: Three cases for Class 1	116
Table 4.124: Experiment results on weight's results for Class 1	117
Table 4.125 Three cases for Class 2	117
Table 4.126: Experiment results on weight's results for Class 2	117
Table 4.127: Penang state Accuracy	118
Table 4.128: Sample of OER Cases Base for Perak State.	118
Table 4.129: Three cases for Class 0	119
Table 4.130: Experiment results on weight's results for Class 0	120
Table 4.131: Three cases for Class 1	120
Table 4.132: Experiment results on weight's results for Class 1	120
Table 4.133: Three cases for Class 2	121
Table 4.134: Experiment results on weight's results for Class 2	121
Table 4.135: Perak state Accuracy	121
Table 4.136: Experiment results on weight range (0.2 to 0.4).	122
Table 4.137: Model Summary for monthly and daily attributes	124
Table 4.138: Coefficients(a) for monthly and daily attributes	124
Table 4.139: Correlations for monthly and daily attributes	125
Table 4.140: Model Summary for monthly and daily attributes	126
Table 4.141: Coefficients(a) for monthly and daily attributes	126

Table 4.142: Correlations for monthly and daily attributes	127
Table 4.143: Model Summary for monthly and daily attributes	128
Table 4.144: Coefficients(a) for monthly and daily attributes	128
Table 4.145: Correlations for monthly and daily attributes	129
Table 4.146: Model Summary for monthly and daily attributes	130
Table 4.147: Coefficients(a) for monthly and daily attributes	130
Table 4.148: Correlations for monthly and daily attributes	131
Table 4.149: Model Summary for monthly daily attributes	132
Table 4.150: Coefficients(a) for monthly and daily attributes	132
Table 4.151: Correlations for monthly and daily attributes	133
Table 4.152: Model Summary for monthly daily attributes	134
Table 4.153: Coefficients(a) for monthly and daily attributes	134
Table 4.154: Correlations for monthly and daily attributes	135
Table 4.155 Model Summary for monthly daily attributes	136
Table 4.156: Coefficients(a) for monthly and daily attributes	136
Table 4.157: Correlations for monthly and daily attributes	137
Table 4.158: Model Summary for monthly daily attributes	138
Table 4.159: Coefficients(a) for monthly and daily attributes	138
Table 4.160: Correlations for monthly and daily attributes	139
Table 4.161: Model Summary for monthly daily attributes	140
Table 4.162: Coefficients(a) for monthly and daily attributes	140
Table 4.163: Correlations for monthly and daily attributes	141
Table 4.164: Model Summary for monthly daily attributes	142
Table 4.165: Coefficients(a) for monthly and daily attributes	142
Table 4.166: Correlations for monthly and daily attributes	142
Table 4.167: Classification Accuracy	144

LIST OF FIGURES

Figure 1.1: Malaysia Agricultural Land Use (Year 2003 = 6.02 mil ha)	2
Figure 1.2: Palm Oil and Global Oils and Fats Production (Year 2003 = 123.5	5 2
million tones)	
Figure 3.1: Process Flow (Vaishnavi et al., 2005)	17
Figure 3.2: Distribution of Kedah rainfall datasets	22
Figure 3.3: Distribution of Kedah FFB datasets	22
Figure 3.4: Distribution of Kedah OER datasets	22
Figure 3.5: Distribution of Kelantan rainfall datasets	23
Figure 3.6: Distribution of Kelantan FFB datasets	23
Figure 3.7: Distribution of Kelantan OER datasets	24
Figure 3.8: Distribution of Malacca state rainfall datasets	24
Figure 3.9: Distribution of Malacca state FFB datasets	25
Figure 3.10: Distribution of Malacca state OER datasets	25
Figure 3.11: Distribution of Penang state rainfall datasets	26
Figure 3.12: Distribution of Penang state FFB datasets	26
Figure 3.13: Distribution of Penang state OER datasets	26
Figure 3.14: Distribution of Perak state rainfall datasets	27
Figure 3.15: Distribution of Perak state FFB datasets	27
Figure 3.16: Distribution of Perak state OER datasets	28
Figure 3.17: System Development Research Process Model	28
Figure 3.18 Flow of System Architecture	29
Figure 3.19: CBR cycle	30
Figure 3.20: Retrieval Phase	30
Figure 3.21: Reuse Phase	31
Figure 3.22: Pseudo code for retrieval phase	32
Figure 3.23: Pseudo code for Reuse Phase	32
Figure 3.24: Pseudo code for Revision Phase	33
Figure 3.25: Rainfall system interface	34
Figure 3.26: Palm Oil system interface	35

Figure 4.1: Rainfall target refer to class 0	39
Figure 4.2: Rainfall target still refer to class 0 of class 0	39
Figure 4.3: Rainfall target has changed to class 1	40
Figure 4.4: Rainfall target should refer to target 1 of class 1	41
Figure 4.5: Rainfall target should be target 2 of class 2	42
Figure 4.6: Rainfall target should be target 2 of class 2	42
Figure 4.7: Rainfall target refer to 3 of class 3	43
Figure 4.8: Rainfall target still referred to target 3 of class 3	44
Figure 4.9: Rainfall target refer to class 0	47
Figure 4.10: Rainfall target still refer to class 0 of class 0	47
Figure 4.11: Rainfall target has changed to class 1	48
Figure 4.12: Rainfall target should refer to target 1 of class 1	49
Figure 4.13: Rainfall target refer to target 2 of class 2	50
Figure 4.14: Rainfall target still target 2 of class 2	50
Figure 4.15: Rainfall target becomes 1 instead of 3	51
Figure 4.16: Rainfall target has change to target 3 of class 3	52
Figure 4.17: Rainfall target refer to class 0	54
Figure 4.18: Rainfall target still refer to class 0 of class 0	55
Figure 4.19: Rainfall target should refer to target 1 of class 1	56
Figure 4.20: Rainfall target has changed to class 1	56
Figure 4.21: Rainfall target refer to target 2 of class 2	57
Figure 4.22: Rainfall target still refer to target 2 of class 2	58
Figure 4.23: Rainfall target becomes 2 instead of 3	59
Figure 4.24: Rainfall target has change to target 3 of class 3	59
Figure 4.25: Rainfall target refer to class 0	62
Figure 4.26: Rainfall target still refer to class 0 of class 0	63
Figure 4.27: Rainfall target refer to target 1 of class 1	64
Figure 4.28: Rainfall target has changed to class 1	64
Figure 4.29: Rainfall target refer to target 2 of class 2	65
Figure 4.30: Rainfall target still refer to target 2 of class 2	66
Figure 4.31: Rainfall target becomes 2 instead of 3	67

Figure 4.32: Rainfall target has change to target 3 of class 3	67
Figure 4.33: Rainfall target refer to class 0	70
Figure 4.34: Rainfall target still refer to class 0 of class 0	70
Figure 4.35: Rainfall target refer to target 1 of class 1	71
Figure 4.36: Rainfall target has changed to 2 of class 1	72
Figure 4.37: Rainfall target refer to target 2 of class 2	73
Figure 4.38: Rainfall target still refer to target 2 of class 2	73
Figure 4.39: Rainfall target refer to 3 of class 3	74
Figure 4.40: Rainfall target still referred to target 3 of class 3	75
Figure 4.41: FFB target refer to class 0	77
Figure 4.42: FFB target still refer to class 0 of class 0	77
Figure 4.43: FFB target refer to target 1 of class 1	78
Figure 4.44: FFB target still referred to target 1 of class 1	79
Figure 4.45: FFB target should be target 2 of class 2	80
Figure 4.46: FFB target should be target 2 of class 2	80
Figure 4.47: FFB target refer to class 0	83
Figure 4.48: FFB target still refer to class 0 of class 0	83
Figure 4.49: FFB target has changed to class 1	84
Figure 4.50: FFB target should refer to target 1 of class 1	85
Figure 4.51: FFB refer target 2 of class 2	86
Figure 4.52: FFB target refer to class 0	86
Figure 4.53: FFB target should be target 2 of class 2	89
Figure 4.54: FFB target still refer to class 0 of class 0	89
Figure 4.55: FFB target refer to class 0	93
Figure 4.56: FFB target still refer to class 0 of class 0	93
Figure 4.57: FFB target should refer to class 0	97
Figure 4.58: FFB target changed to class 0 of class 0	97
Figure 4.59: OER target refer to class 0	100
Figure 4.60: OER target still refer to class 0 of class 0	101
Figure 4.61: OER target refer to target 1 of class 1	102
Figure 4.62: OER target should refer to target 1 of class 1	102

103
104
106
107
111
112
115
116
119
119
123
123

LIST OF ABBREVIATIONS

AI	Artificial Intelligence
BN	Bayesian Network
CBR	Case-Based Reasoning
FFB	Fresh Fruit Bunches
NN	Neural Network
MPOB	Malaysia Palm Oil Board
OER	Oil Extraction Rate
SIM	Similarity

CHAPTER 1

INTRODUCTION

1.1 Background

Oil palm is the most productive oil seed crops in which one hectare of oil palm can produce more than 4.5 metric tons of palm oil. Malaysia and Indonesia are the two countries responsible for over 80% of the world palm oil production; the palm oil sector is one of the most important commodities in Malaysia. Malaysian palm oil has been accepted globally and recognized internationally as one of the major oils and fats in the world. The Malaysian Palm Oil Board (MPOB) is responsible for forecasting Malaysia's crude palm oil (CPO) production which is expected to reach more than 20 million tones. The Malaysian Palm Oil Association (MPOA), on the other hand, has listed out the important of palm oil industry for Malaysia and the world as follows:

- 1. Third pillar of nation's economy and catalyst for rural development and resultant political stability.
- 2. Provides direct employment to 400,000 people plus other multiplier effects and spinoffs.
- 3. Major foreign exchange earner RM27 billion in 2003.
- Feeding the world Malaysian palm oil is consumed in more then 150 countries worldwide.

The contents of the thesis is for internal user only

REFERENCES

Aamodt, A. (1993). Explanation-Driven Retrieval, Reuse and Learning of Cases. *Proceedings of European Workshop on Case-Based Reasoning*, p. 279-384.

Aamodt, A and Plaza, E. (1994). Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches, p. 39–59.

Avesani, P., Perini, A. & Ricci, F. (2000). Combining CBR and Constraint Reasoning in Planning Forest Fire Fighting.

Bartlmae, K., & Riemenschneider, M. (2005). Case Based Reasoning for Knowledge Management in KDD-Projects Concepts, Organizational Setting, Categorization into KM and Application in the case of Knowledge Discovery in Databases.

Basak, J., Sudarshan, A., Trivedi, D. (2004). Weather Data Mining Using Independent Component Analysis, Journal of Machine Learning Research 5 (2004), p. 239–253.

Basiron, Y. (2007). Palm oil production through sustainable plantations. Malaysian Palm Oil Council, Jalan Perbandaran, Kelana Jaya, Selangor, Malaysia.

Bhaskar, N. (2001). Estimation of Rain Height from Rain Rate using Regression-based Statistical Model: Application to SeaWinds on ADEOS-II. *Master of Science thesis, Department of Electrical Engineering and Computer Science.*

Breese, J., Heckerman, D. and Kadie, C. (1998).Uncertainty in Artificial Intelligence: Proceedings of the Fourteenth Conference.

Bremnes, J. B. (2006). A comparison of a few statistical models for making quartile wind power forecasts. Wind Energy 9, p. 3–11.

Bogner, K., Thielen, J., deRoo, A.(2007). Evaluation of an ensemble based medium range probabilistic flood forecasting system for the Upper Danube catchment. *Geophysical Research Abstracts*. Joint Research Centre, Natural Hazards Action (NAHA).

Cattle, H. (1999). Experimental forecast of east African rainfall for October-December 1999. Retrieved September, 2007, from: www.metoffice.gov.uk/research/seasonal/regional/east_africa/pdf/east_africa_1999.pdf.

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Thomas, R., Shearer, C., & Wirth, R., (2000). CRISP-DM 1.0 Step-by-step data mining guide.

Clokea, H. L., & Pappenbergerb, F. (2008). Evaluating forecasts of extreme events for hydrological applications: an approach for screening unfamiliar performance measures. *Meteorological Applications*. Wiley InterScience,

Einfalt T., Jensen T. S., Klinting A. (2004). Combining NWP data, radar data, raingauge data and a hydrological-hydrodynamical model for flood forecasting in Turkey. *Proceedings of ERAD, Copernicus GmbH*, 6-10 September, Sweden, p. 522–524.

Eric, W. (1997). U.S. Global Change Research Information Office, Suite 250, 1717 Pennsylvania Ave, NW, Washington, DC 20006.

Fairhust, T. H. (1999). Twenty Two Tips for Practical Oil Palm Planters. Better Crops International, vol.13

Fatih, K. (2007). Rainfall forecasting system of Tefer Project, State Hydraulic Works, *Investigation and Planning Department, Flood Forecasting Center*, p. 461-471.

Glastra, R., Wakker, E. & Richert, W. (2002). Oil Palm Plantation & Deforestation in Indonesia.

Gu, M. & Aamodt, A. (2005). A knowledge-intensive method for conversational CBR. *Proceedings of the Fourth International Conference on Case-Based Reasoning* p.296-311. Chicago, IL: Springer.

Harmon, P. (1992). Case-based reasoning III. Intelligent Software Strategies, 8(i).

Jensen, F. V. (1996) An Introduction to Bayesian Networks. NewYork: Springer.

Kim, J., & Miller, N. L. (1996). Simulating Winds and Floods: Regional weather-river prediction and regional climate research. *IEEE Potentials*. 15(4). p. 17-20.

Kourtz, P. (1987). Expert System Dispatch of Forest Fire Control Resources, *AI Applications*, vol.19, p. 1-8.

Li, W. Y. and Chandrasekar, V. (2002). Rainfall Estimation from Vertical Profiles of Reflectivity Using Neural Networks, *Colorado State University Fort Collins*, CO 80523-1373.

Lorenz, E. N. and Bull, A. (1969). Meteorol. Soc., p. 50, 345–349.

Malaysian Palm Oil Association. (2005, Jan 6). RSPO Public Forum on Sustainable Palm Oil, Malaysian Palm Oil Association (MPOA). Retrieved March, 2009, from: http://www.cs.nott.ac.uk/~rxq/files/PhDThesis.pdf

Mcqueen, R. J.(2000) Applying Machine Learning to Agricultural Data. University of Waikato, Hamilton, New Zealand.

Montaner, M., L'opez, B., and Rosa, J. L. D. L. (2003). A taxonomy of recommender agents on the internet. *Articial Intelligence Review*, 19(4): p. 285.330.

Nielsen, H. A., Madsen, H. & Nielsen, T. S. (2006). Using quartile regression to extend an existing wind power forecasting system with probabilistic forecasts. Wind Energy. p. 95–108.

Nunamaker, Jr., Jay F., Minder Chen, Titus D. M. Purdin, (1990). Systems development in information systems research, Journal of Management Information Systems, v.7 n.3, p.89-106

Perrin, O., Rootz´en, H. & Taesler, R. (2006). A discussion of statistical methods used to estimate extreme wind speeds. Theoretical and Applied Climatology. p. 85, 203–215.

Polumetla, A. (2006). Machine Learning Methods for The Detection Of RWIS Sensor Malfunctions. University of Minnesota.

Porter, B.W. & Bareiss, E.R. (1986). PROTOS: An experiment in knowledge acquisition for heuristic classification tasks. *In Proceedings of the First International Meeting on Advnces in Learning (IMAL)*, Les Arcs, France, p. 159-74.

Qu, R. (2002). Case-Based Reasoning for Course Timetabling Problems. Retrieved October, 2006, from: http://www.cs.nott.ac.uk/~rxq/files/PhDThesis.pdf

Rafiei, D. (1999) Fourier-Transform Based Techniques in Efficient Retrieval of Similar Time Sequences, *Ph.D. thesis, Department of Computer Science, University of Toronto*, Ontario, Canada.

Raftery, A. E., Gneiting, T., Balabdaoui, F. & Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles : Monthly Weather Review p. 133, 1155–1174.

Raible, C. C., Bischof, G., Fraedrich, K. and Kirk. E. (1999). Statistical Single-Station Short-Term Forecasting of Temperature and Probability of Precipitation: Area Interpolation and NWP Combination. *Proceedings of American Meteorological Society*, vol 15, p. 203-214.

Ramli, A (2003) Short-Term and Long-Term Projection of Malaysian Palm oil Production. Malaysian Palm Oil Board, P. O. Box 10620, 50720 Kuala Lumpur, Malaysia.

Ridge, G. (2007) Strategic Business Development, Aerospace Sciences and Engineering Division.

Riordan, A. and Sorensen, H. (1995). An intelligent agent for highprecision information filtering. In Proceedings of the CIKM-95 Conference.

Rougegrez, S. (1993) Similarity evaluation between observed behaviors and the prediction of processes. *Proceedings First European Workshop on Case-Based Reasoning*, 1993, Springer-Verlag, Berlin, p.155–166.

Roulston, M. S., D. T. Kaplan, J. Hardenberg, and L. A. Smith (2003). Using mediumrange weather forcasts to improve the value of wind energy production. Renewable Energy. 28, p. 585–602.

Siew, W.L. (2000) Analysis of palm and palm kernel oils. Advances In Oil Palm Research. Malaysian Palm Oil Board, Kuala Lumpur, Malaysia. p. 968-1035.

Singhrattna, N., Rajagopalan, B., Clark, M. and Kumar, K. K. (2005). Seasonal Forecasting of Thailand Summer Monsoon Rainfall. *International Journal of Climatology*, November, 2005.

Sloughter, J. M., Gneiting, T., & Raftery A. E. (2008), Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging ,Department of Statistics, University of Washington.

Sundram, K. (2002) Palm Oil: Chemistry and Nutrition Updates. Malaysian Palm Oil Board (MPOB), Kuala Lumpur, Malaysia.

Sycara, K., & Navichandra, D (1992). Retrieval strategies in a case-based design system. In, *Artificial Intelligence in engineering design, Vol.2*, C.Tong and D.Sriram ed. Academic Press.

Toomarian, N.B., Barhen, J., & Aminzadeh, F. (2000). Oil Reservoir Properties Estimation Using Neural Networks.

Vaishnavi, V., & Kuechler, B. (2006). *Design Research in Information Systems*. Retrieved October, 2007, from http://www.isworld.org/Researchdesign/drisISworld.htm.

Watson, I.D., & Abdullah, S. (1994). Developing Case-Based Reasoning Systems: A Case Study in Diagnosing Building Defects. In, Proc. *IEE Colloquium on Case-Based Reasoning: Prospects for Applications*, Digest No: 1994/057, p. 1/1-1/3.

Wilks, D.S. (1999) Multisite generalization of a daily stochastic precipitation generation model. *Journal of Hydrology* 210. p. 178-191.

Xiao, R. R. and Chandrasekar, V., (1997). Development of a Neural Network Based Algorithm for Rainfall Estimation from Radar Observations, *IEEE Transactions on geoscience and remote sensing*, vol.35, no.1, p. 160-170.

Xu, G. and Chandrasekar, V. (2005). Operational Feasibility of Neural-Network-Based Radar Rainfall Estimation, *IEEE Transactions on geoscience and remote sensing*, vol.2, no.1, p. 13-17.