سنن النابلسية السعيدة
المير بيحانة على عينين
وليتان وشفيتين
وهدية التجابين
صلوات العظيم
ACCESS WINDOWS BY IRIS RECOGNITION

This thesis is presented to the Graduate School
In fulfilment of the requirements for
Master of Science (Information Technology)
University Utara Malaysia

By

Musab A. M. Ali

Copyright © Musab A. M. Ali, 2009. All rights reserved.
PERMISSION TO USE

In presenting this thesis of the requirements for a Master of Science in Information Technology (MSc. IT) from Universiti Utara Malaysia, I agree that the University library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or in their absence, by the Dean of College of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project.

Request for permission to copy or make other use of materials in this project, in whole or in part, should be addressed to:

Dean of College of Arts and Sciences
Universiti Utara Malaysia
06010 Sintok
Kedah Darul Aman
ACKNOWLEDGEMENTS

All the praises and thanks are to Allah, the Lord of the ‘Alamin’

First, I would like to express my gratitude to my supervisor, Associate Professor Fadzilah Siraj and Madam Nur Azzah Abu Bakar for expertise, gentle guidance and encouragement, which ensured that, progress was continuously maintained. Our discussions since the last three months have contributed to the completion of this work.

I also would like to express my thanks to the University Utara Malaysia, especially to my colleagues of the Faculty of Information Technology, for the enjoyable working environment, and for the given support. I owe particular thanks to the people that contributed for the earliest stage of this work, by offering themselves as volunteers, in the construction of the UBIRIS database.

Last, but not least, I would like to thank my parents for their endless encouragement, my brother Ammar, my sisters and all the people close to myself, for their strong support, encouragement, friendship and love. I am grateful for their understanding during the time during which I was absent due to this project work.

Sincere Grateful

Eng. Musab A. M. Ali
This project aims to design and develop an iris recognition system for accessing Microsoft Windows. The system is built using digital camera and Pentium 4 with SVGA display adapter. MATLAB ver. 7.0 is used to preprocess the taken images convert the images into code and compare the picture code with the stored database. The project involves two main steps: (1) applying image processing techniques on the picture of an eye for data acquisition. (2) applying Neural Networks techniques for identification. The image processing techniques display the steps for getting a very clear iris image necessary for extracting data from the acquisition of eye image in standard lighting and focusing. In a use of your images, the images are enhanced and segmented into 100 parts. The standard deviation is computed for every part in which the values are used for identification using NN techniques. Locating the iris is done by following the darkness density of the pupil. For all networks, the weights and output values are stored in a text file to be used later in identification. The Backprobagation network succeeded in identification and getting best results because it attained to (False Acceptance Rate = 10% - False Rejection Rate = 10%), while the Linear Associative Memory network attained to (False Acceptance Rate = 20% - False Rejection Rate = 20%)
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>I</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>II</td>
</tr>
<tr>
<td>TABLE OF FIGURE</td>
<td>VI</td>
</tr>
<tr>
<td>TABLE OF TABLE</td>
<td>IX</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Problem statement | 4 |
1.2 Research questions | 5 |
1.3 Research objectives | 5 |
1.4 Scope of the project | 5 |
1.5 Significance of the project | 6 |
1.6 Organization of the report | 6 |

CHAPTER TWO: LITERATURE REVIEW

2.1 Overview of biometrics | 8 |
 2.1.1 Fingerprint recognition | 10 |
 2.1.2 Facial recognition | 10 |
 2.1.3 Voice recognition | 11 |
 2.1.4 Retina scan | 11 |
 2.1.5 Hand geometry | 12 |
 2.1.6 Signature dynamics | 12 |
CHAPTER THREE: METHODOLOGY

3.1 Daugman’s method 35
3.2 Wilde’s method 36
3.3 Clustering algorithm 37
3.4 Personal recognition methodology 39
3.5 Iris recognition system methodology 42
 3.5.1 Image acquisition 43
 3.5.2 Preprocessing 43
 3.5.3 Feature extraction 46
3.6 Design Prototype 46
 3.6.1 Software specification 46
 3.6.2 Hardware specification 47
3.7 Iris recognition 48
3.8 Phase based IRIS recognition algorithms 49
3.9 Preprocessing 49
3.10 Matching
 3.10.1 Effective region extraction
3.11 Automated iris recognition system
3.12 Block diagram
3.13 Types of noise in the captured iris images
 3.13.1 Iris obstructions by eyelids (NEO)
 3.13.2 Iris obstructions by eyelashes (NLO)
 3.13.3 Lighting reflections (NLR)
 3.13.4 Specular reflections (NSR)
 3.13.5 Poor focused images (NPF)
 3.13.6 Partial captured irises (NPI)
 3.13.7 Out-of-iris images (NOI)
 3.13.8 Off-angle iris (NOA)
 3.13.9 Motion blurred images (NMB)
 3.13.10 Pupil wrongly considered as belonging to the iris (NPS)
 3.13.11 Sclera wrongly considered as belonging to the iris (NSS)

CHAPTER FOUR: RESULTS

4.1 Use case diagram
4.2 Sequence diagram
4.3 Neural Networks Experiments
4.4 Iris Recognition Data Using Neural Network (Data Preprocessing)
 4.4.1 Dataset
 4.4.2 Description of data
 4.4.2.1 Target and attributes
4.4.3 Data preprocessing

4.4.3.1 Data selection

4.4.4 Data representation

4.4.5 Data normalization

4.4.6 Results

4.5 Access Windows by iris recognition

4.6 The accuracy of image

4.7 Check iris in database

4.8 Processor

4.9 IriTech public database results

4.10 Iris database

4.11 UBIRIS

4.12 Conclusion

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

5.2 Future work
TABLE OF FIGURE

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The eye parts</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>The biometric system security</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Cost versus accuracy and security for different biometric systems</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Iris features</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Iris recognition steps</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>The Three-layer BP Architecture</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Tested feature sets</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>The overall flow of personal recognition/identification system by using the iris</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Picture of an iris and graphical representation of an IrisCode</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Iris recognition system methodology</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Automatically capturing iris images</td>
<td>43</td>
</tr>
<tr>
<td>3.6</td>
<td>Image of an iris direction in the binary image</td>
<td>44</td>
</tr>
<tr>
<td>3.7</td>
<td>Localized iris of Figure 3.5 to find the radius</td>
<td>45</td>
</tr>
<tr>
<td>3.8</td>
<td>Unwrapped normalized iris</td>
<td>45</td>
</tr>
<tr>
<td>3.9</td>
<td>Enhanced unwrapped iris</td>
<td>46</td>
</tr>
<tr>
<td>3.10</td>
<td>Identity Controller</td>
<td>49</td>
</tr>
<tr>
<td>3.11</td>
<td>Baseline algorithm</td>
<td>51</td>
</tr>
</tbody>
</table>
3.12 Normalized iris image in (a) spatial domain, and in (b) frequency
3.13 Example of genuine matching using the original POC function and the BLPOC function: (a) original POC function
3.14 Effective region extraction: (a) normal case, and (b) case when multiple sub-regions should be extracted.
3.15 Flowchart of automatic iris recognition system.
3.16 Block Diagram access windows
3.17 Noisy iris image due to eyelids and eyelashes obstructions
3.18 Noisy iris image due to isolated eyelashes obstructions.
3.19 Noisy iris image due lighting reflections
3.20 Noisy iris image due specular reflections.
3.21 Noisy iris image due to poor focus.
3.22 Partial captured iris
3.23 Out-of-iris image.
3.24 Off-angle iris image
3.25 Motion blurred iris image.
3.26 Normalized iris image with a translation error on the pupil segmentation
3.27 Identity Controller
3.28 Use Case Diagrams for access windows by iris recognition
4.2 Sequence diagram for access windows by iris recognition
4.3 Number of training images vs. failure rate

4.4 Number of training images

4.5 Training Database

4.6 Comparative between the time and accuracy of image processor

4.7 Comparative between speed and accuracy of the use of image camera with high accuracy

4.8 Comparative research in Data Base entry

4.9 Comparative between the time and accuracy of image processor

4.10 Comparison between FRR and FAR

4.11 Images were again heavily occluded

4.12 with a variety of different illumination conditions

4.13 very poor quality captured

4.14 Reject images.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Biometric pictures</td>
<td>13</td>
</tr>
<tr>
<td>2.2 New biometric technologies</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Comparison of various biometric technologies, according to (Jain, 2004).</td>
<td>17</td>
</tr>
<tr>
<td>2.4 Comparison of biometric systems based on their characteristics</td>
<td>18</td>
</tr>
<tr>
<td>3.1 Variants of the proposed algorithm</td>
<td>39</td>
</tr>
<tr>
<td>3.2 Hardware Specification</td>
<td>47</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

Biometrics is a study of methods for recognizing and identifying a person based upon one or more intrinsic physical or behavioral traits such as fingerprints, Deoxy Ribonucleic Acid (DNA) or retinal patterns (Russ, 2004). A good biometric identifier has two basic characteristics: [1] stability [2] distinctiveness. A stable biometric does not change over time thus hair length would not be a good identifier. Meanwhile a distinctive biometric is unique to an individual (Mohammed et al., 2004).

Traditionally, personal identification is based upon what a person possesses for example a physical key or identity (ID) card. It can also base upon what a person knows, e.g. a password. However these methods have some limitations: keys and ID cards may be lost or misplaced while passwords may be forgotten. Biometrics, on the other hand, minimizes those risks as it uses traits that are part of humans. In recent years, biometric personal identification grows as an interesting field from industrial and academic point of view (Zhu et al., 2000). It provides an alternative to username and password, as well as to smart card. Biometrics seeks to tie identity much more tightly to a person's particular unique features. These could be anatomical, physiological, or even behavioral. The sounds of a person's voice, or the way in which they sign their name, are examples of behavioral biometrics. Their blood type or markers in their tissue or fluid samples (including DNA itself) are examples of physiological biometrics which are typically used in forensic applications. Most
The contents of the thesis is for internal user only

Dory L. Hudspeth, Sarah J. Spinks, (2001). "Iris Scan Technology", Faulkner Information Services, and Publication Date: 0109, Publication Type: TUTORIAL.

Oliver, Richard L (1999), "Whence Consumer Loyalty," Journal of Marketing, 63 (Special Issue), 33-44.

