Performance Modelling of UUM Local Area Network
(wired)

TAIWO, Ayankunle Adegbite

University of Utara Malaysia

2009
Performance Modelling of UUM Local Area Network (wired)

A thesis submitted to college Arts & Sciences
in partial fulfillment of the requirement for the degree
Master of Science (Information Technology)
University of Utara Malaysia

By

TAIWO, Ayankunle Adegbite

© TAIWO, Ayankunle Adegbite, May 2009. All rights reserved
PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a Master of Science in IT degree from University Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor or, in their absence by the Academic Dean College of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to University Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to

Dean (Academic) College of Art and Sciences
University Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman.
ABSTRACT

Slow network connection in accessing resources is a common complaint on a computer network that has switches as dominant network equipment, when certain nodes are heavily loaded with clients more than their capacity. In this study a simulation model was developed and validated for the University of Utara Malaysia wired Local Area Network. The effect of network parameters such as the processing time and the packet arrival rate on the performance metrics such as throughput, end to end delay and utilization of the servers and switches on the network was investigated. The analysis of the results from the simulations carried out can assist the management of computer centre that manages the network in identifying the bottleneck node on the network and for future network capacity building.
ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to the Almighty God, the giver of life, wisdom, knowledge and understanding. Without His grace and mercy this work would not have come to fruition.

My profound gratitude goes to my supervisor Prof. Dr. Ku Ruhana Ku-Mahamud for her constructive advice, scientific proven prowess, motherly encouragement and motivation during the course of this study. My second supervisor, Mr Mohd Samsu Sajat for his advice on networking. Also Mr. Amran bin Ahmad, who taught me Omnet++. Mr Amran and Mr Adli for their assistance on data collection at the computer centre. I am indeed very grateful.

This acknowledgement will not be complete without my mum, for her love and prayers, my brother, Tayo Taiwo and my sister, Rounke Kehinde for their financial support. Gbemisola, your love and prayer is appreciated. My late father, the training you gave with love has always kept me going. I would like to conclude by appreciating all academic scholars that taught me while at UUM, other UUM staff, friends and students that made my studies easier. A big thank you to you all.

Taiwo, Ayankunle Adegbite
May 19, 2009
TABLE OF CONTENT

PERMISSION TO USE .. I
ABSTRACT ... II
ACKNOWLEDGEMENT ... III
TABLE OF CONTENT ... IV
LIST OF TABLES ... VI
LIST OF FIGURES ... VII
LIST OF ABBREVIATIONS FOR THE DISTRIBUTION SWITCHES VII

CHAPTER ONE.. 1
INTRODUCTION ... 1
 1.1 PROBLEM STATEMENT .. 2
 1.2 OBJECTIVE ... 3
 1.3 SCOPE OF STUDY ... 3
 1.4 SIMULATION METHODOLOGY ... 3
 1.5 SIGNIFICANCE OF STUDY .. 6
 1.6 ORGANIZATION OF THE REPORT .. 6

CHAPTER TWO.. 8
LITERATURE REVIEW .. 8
 2.1 INTRODUCTION .. 8
 2.2 MODELLING TECHNIQUES OF COMPUTER NETWORK ... 8
 2.2.1 ANALYTICAL MODELING ... 8
 2.2.2 SIMULATION MODELLING .. 11
 2.2.3 OPERATIONAL MODELING .. 13
 2.3 LAN PERFORMANCE MODELING .. 16
 2.4 SIMULATION TOOLS ... 19
 2.5 SUMMARY ... 20

CHAPTER THREE... 21
OMNET++, THE DISCRETE EVENT SIMULATION SYSTEM AND UUM LAN 21
 3.1 INTRODUCTION .. 21
 3.2 MODELLING IN OMNET++ ... 21
 3.2.1 OMNET MODULES CONNECTION ... 23
 3.2.2 OMNET++ MODEL COMPONENTS .. 24
 3.3 UUM LOCAL AREA NETWORK ... 24
 3.3.1 THE LAN STRUCTURE .. 25
 3.3.1.1 CORE SWITCHES .. 26
 3.3.1.2 THE DISTRIBUTION SWITCHES .. 26
LIST OF TABLES

Table 1: A comparison of Actual RTT and model Acknowledgement..................37
Table 2: The initial parameters and symbols ..39
Table 3: The process time against the internet, and server2 and server3 throughput ...39
Table 4: The min end to end delay and process time on the Internet and the servers at the Data Centre..42
Table 5: The process time and the throughput on the internet and the servers........44
Table 6: The process time and the corresponding throughput on the switches45
Table 7: The processing time and the minimum end to end delay on the network....47
Table 8: The results of processing time on the internet and the Servers at the data centre. ...48
Table 9: The processing time and throughput on the core switch and distribution switches. ...49
Table 10: The processing time and end to end delay on the internet and the servers at the data centre. ..51
Table 11: The arrival rate and the corresponding throughput on the Internet and Servers at the data centre..53
Table 12: The arrival rate and the corresponding end to end delay on the switches...54
Table 13: The classification of low, medium and high throughput on the distribution switch ..55
Table 14: The arrival rate and the corresponding end to end delay on the Internet and Servers at the data centre..56
Table 15: The results of arrival rate variation the internet and servers at the data centre..57
Table 16: The results of arrival rate variation on the distribution switches..........59
Table 17: The classification of low, medium and high throughput on the distribution switch ..61
Table 18: The results of arrival rate on min end to end delay.........................61
Table 19: The utilization of the Internet when using max user nodes.............62
Table 20: The utilization of the distribution switches when using max user nodes....63
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1: The Flow Diagram of the simulation methodology</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2: Hierarchy of Modules in OMNeT++</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3: A snapshot the computer centre, Faculty of Economics, and the data centre on the Simulation Model</td>
<td>33</td>
</tr>
<tr>
<td>Figure 4: A snapshot of the data centre, gateway to the internet and FTM on the Simulation Model</td>
<td>34</td>
</tr>
<tr>
<td>Figure 5: A snapshot of convention centre, Kolej Eon, Palapes, PKP on the Simulation Model</td>
<td>34</td>
</tr>
<tr>
<td>Figure 6: A snapshot of Buka Kachi, FSK, FWB and FPK on the Simulation Model</td>
<td>35</td>
</tr>
<tr>
<td>Figure 7: A snapshot of 12 pc on a switch in the Simulation Model</td>
<td>35</td>
</tr>
<tr>
<td>Figure 8: A snapshot of 23 pc on a switch in the Simulation Model</td>
<td>36</td>
</tr>
<tr>
<td>Figure 9: The graph of the process time on against the internet, server2&3 throughputs</td>
<td>40</td>
</tr>
<tr>
<td>Figure 10: The graph of the process time on against the throughputs on the distribution switches</td>
<td>41</td>
</tr>
<tr>
<td>Figure 11: The graph of the process time on against the end to end delay on the network</td>
<td>43</td>
</tr>
<tr>
<td>Figure 12: The graph of the process time on against throughput on the internet and data centre servers</td>
<td>44</td>
</tr>
<tr>
<td>Figure 13: The graph of the process time on against the switches throughput on the network</td>
<td>46</td>
</tr>
<tr>
<td>Figure 14: The graph of the processing time and end to end delay</td>
<td>47</td>
</tr>
<tr>
<td>Figure 15: The graph of the process time on against the throughput on the Internet, and the Servers at the data centre</td>
<td>49</td>
</tr>
</tbody>
</table>
Figure 16: The graph of the process time on against the throughput of the distribution switches…………………………………………………………………………50

Figure 17: The process time and the end to end delay on internet and the servers at the data centre…………………………………………………………………………52

Figure 18: The graph of the arrival rate and the throughput on the internet and the servers at the data centre…………………………………………………………………………53

Figure 19: The graph of arrival rate and throughput on the switches…………55

Figure 20: The graph of arrival rate and the end to end delay………………56

Figure 21: The graph of arrival rate on internet and the servers at the data centre.58

Figure 22: The graph of arrival rate on the distribution switch………………60

Figure 23: The graph of arrival rate on the end to end delay on the network……61
LIST OF ABBREVIATIONS FOR THE DISTRIBUTION SWITCHES

<table>
<thead>
<tr>
<th>Switch</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>COMPUTER CENTRE</td>
</tr>
<tr>
<td>B2</td>
<td>FSKP/FKBM</td>
</tr>
<tr>
<td>B3</td>
<td>FPP/FSK</td>
</tr>
<tr>
<td>B4</td>
<td>RACK A PERPUSTAKAN</td>
</tr>
<tr>
<td>B5</td>
<td>BENDAHARI</td>
</tr>
<tr>
<td>B6</td>
<td>CONVENTION CENTRE</td>
</tr>
<tr>
<td>B7</td>
<td>KOLEJ EON</td>
</tr>
<tr>
<td>B8</td>
<td>PALAPES</td>
</tr>
<tr>
<td>B9</td>
<td>BKP</td>
</tr>
<tr>
<td>B10</td>
<td>FWB/FPAU</td>
</tr>
<tr>
<td>B11</td>
<td>BUKIT KACHI</td>
</tr>
<tr>
<td>B12</td>
<td>KOLEJ B.MUAMALAT</td>
</tr>
<tr>
<td>B13</td>
<td>FTM</td>
</tr>
<tr>
<td>B14</td>
<td>FACULTY OF ECONOMICS</td>
</tr>
<tr>
<td>B15</td>
<td>PPK</td>
</tr>
<tr>
<td>S</td>
<td>CORE SWITCH</td>
</tr>
<tr>
<td>X</td>
<td>DATACENTER SWITCH 1</td>
</tr>
<tr>
<td>Y</td>
<td>DATACENTRE SWITCH 2</td>
</tr>
<tr>
<td>Z</td>
<td>SWITCH AT THE DMZ</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

Computer networking enables people or devices to communicate with one another. The telephones are networked in the GSM and public telephone systems. Data networks connect several computers, making it possible for them to connect and exchange data. A data network can simply be created by connecting two computers together with a cable.

A voice and data network Local Area Network (LAN) is a collection of individual networks connected by network equipments to function as a single large network known as internetworking. Local Area Network makes it possible for multiple users in a small geographic area to access shared resources, exchange files and messages on a data network. WANs interconnect the LAN to make it possible for geographically dispersed users to share information. It is slower in comparison to a LAN, and usually requires a connection request in order to send data. This is made possible by service providers with a monthly tariff paid (Teare, 2008).

In a computer network that has switches as dominant network equipment, data packets are sent on a shared link via the switches. The switch will have to make a decision on which packet goes first. In a packet switched network a switch could be designed to service packets on a FIFO basis, so as to ensure that packet flows receive a specific share of the link’s bandwidth and that the packets are not delayed in the switch for more than a certain length of time. When a network allows such packets flow to request the above treatment, it is said to
The contents of the thesis is for internal user only
REFERENCES

