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ABSTRAK (BAHASA MALAYSIA)

Faktor terpenting dalam menentukan kualiti konkrit ialah kekuatannya. Untuk
mencapal kekuatan yang dikehendaki, nisbah bahan-bahan dalam konkrit seperti

air, smen, pasir dan batu baur hendaklah dikenalpasti. Kaedah rekabentuk
campuran yang ada pada masakini seperti kaedah ACI dan DoE yang melibatkan
banyak pengiraan, carta rekabentuk dan jadua adalah rumit serta panjang. Tujuan
projek ini adalah untuk membina satu kaedah rekabentuk campuran konkrit lebih
mudah dan umum dengan mengunakan teknik rangkaian neural. Tatacara untuk
membina model rangkaian neural menggunakan rangkaian perambatan balik dan
beberapa isu berkaitan dengan penyediaan data, dibincangkan bagi membantu
pembangunan aplikas yang berkesan. Dapatan projek ini menunjukkan bahawa
aplikas rangkaian neural mampu menyediakan penyelesaian kepada masalah
kegluruteraan awam, terutamanya dalam merekabentuk campuran konkrit .




ABSTRACT

The most important factor in determining the quality of concrete is its strength. In
order to achieve the required strength, a right proportion of materials in concrete

such as water, cement, sand and course aggregate, need to be identified. The
present mix design methods such as ACI and DoE methods, which involve
numerous calculations, design charts and table look-up are seem to be tedious and

lengthy. The purpose of this project is to develop a simpler and generalized
concrete mix design method using neural network techniques. A procedure for
developing neural network models using back propagation networks is presented,

and a number of issues related to data preparation are described to facilitate the

development of efficient gpplication. The findings of this project show that the
application of neural network is capable of providing solutions to the civil
engineering problem, particularly in designing the concrete mixes.
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CHAPTER 1

INTRODUCTION

Concrete becomes a material that literally forms the basis of our modern society
and until today, concrete is the most widely used man-made construction
materials. Most of all buildings, drains, dams, piles and bridges are made of
concrete, including some portions of highways. Concrete structures are
everywhere. Concrete offers a lot of advantages such as the ability to cast,
economical, durable, fire resistant, on-site fabrication and aesthetic properties

(Sidney and Young, 1981).

Due to lots of usage and its importance especially in civil and construction
engineering, there are needs to fully utilize or optimize the capabilities of the
concrete. As higher and higher performance is sought from concrete, obtaining
the proper mixture proportion to achieve specific objectives is becoming more
difficult (Simon, et al., 1999). It has to be designed with the correct mixture in
such a way that it can perform to the required strength, durability, workability,
safety, economics and other specified elements. Durability is the ability of
concrete to withstand the conditions for which it has been designed, without
deterioration over a period of years. Meanwhile, the workability is the ability of

concrete to compact and easy to work with.



Basically, concrete is produced by mixing cement with fine aggregate (sand),
coarse aggregate (gravel or crushed stone), water and small amounts of various
chemicals called admixtures. The admixtures control properties such as setting
time and plasticity, whereas cement is the key ingredient in concrete and acting as
the binding agent that holds sand, and gravel together in a stone-like mass when
the concrete becomes hard. The process of hardening or setting is actually a
chemical reaction called hAydration. When water is added to the cement, it forms a
slurry or gel that coats the surfaces of the aggregate and fills the voids to form the

solid concrete.

Concrete strength is affected by many factors such as types and size of aggregate,
chemical composition and fineness of cement, water/cement ratio, time,
temperature of hydration (Sidney and Young, 1981), air entrapment, admixtures,
preparation method (Hsu and Tsai, 1997) and conditions of surrounding area. In
order to take account of these factors that affect the concrete strength, in 1975 the
British Department of the Environment (DoE) has published a procedure of
concrete mix design. The procedure is based on data obtained from the Building
Research Establishment, the Transport and Road Research Laboratory, and by the
British Cement Association. The method is then revised in 1988. Since this
procedure involves a lot of calculations, graphs and tables look-up, the alternative
procedure that can provide quicker solution need to be explored. In seeking the
alternative method, the neural network technology is able to relate all those factors
affecting the concrete strength. Furthermore, in view of the problem nature in this
project, which requires a method to solve a classification problem, neural network

is found to be the best approach as compared to other artificial intelligence (Al)




tools such as expert system, fuzzy logic or case-based reasoning (CBR). The
expert system is a rule-based approach, which requires knowledge from human
expert to solve a particular problem. It only suits problems that require a solution
by following a certain rules (Luger and Stubblefield, 1998), whereas, the fuzzy
logic is suitable for solving a problem that deals with uncertainty and inexact
information or imprecise term (Welstead, 1994; Awad, 1996). Since the project
deals with precision rather that uncertainty, fuzzy logic will not be explored in this
project. Meanwhile, CBR is a technique that records and documents cases and
then searches the previous cases for solving a current problem. The old solution is
adapted to fit a new case, even they are not exactly the same (Awad, 1996). Since
the CBR is unable to generalize, it is not suitable for solving the problem of this
project. Therefore, for this project, neural network has been employed as a tool

to improve the existing process of designing concrete mixes.

1.1 Problem Statement

Concrete is inexpensive and readily available material, and easy to work
with. Although concrete has these advantages, the process of designing
the concrete mix remains a complex task involving numerous calculations,
graphs and tables look-up such as in DoE (1988) and ACI (1994) methods.
Every time in designing a concrete mix, the same procedure as outlined by
these methods has to be followed. A simpler method such as neural
network, which is possibly able to generalize the concrete mix design, can
be the alternative design method. This alternative method has to assure

that the required strength, durability, workability, safety, economics and
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1.3

other specified elements of the produced concrete are complied with. It
should be born in mind that the mix design method is only produce the
initial mix proportion and should be followed by trial mixes where

adjustments are made to achieve the required performance.

Objectives

The main objective of this project is to develop a neural network model as
an alternative method in designing the concrete mixes. The project will
attempt to develop a system that is simpler, faster and more accurate in
designing the concrete mixture using the back propagation neural network
modeling. The developed model can be used to evaluate the concrete
properties and have the know-how of the interaction of different materials
and proportion for optimum usage. Users can play around with the input

parameters and see their effects to the outputs.

Other objective of this project is to apply Information Technology (1.T.) in
civil engineering and to gain the advantages offered by the neural network

technology.

Scope of the project

This project is mainly to model a concrete mix design according the DoE
method using neural network. The data for training and testing the neural

network model, are generated through the DoE mix design method. This
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method has been chosen for this project because it is widely used in this

country. In order to achieve the objectives of this project, the following

exercises have been carried out:

i) Develop Neural Network Simulator using back propagation
technique to train and test the generated data

i) Identify two neural network models to:
(a) Predict concrete mixture by specifying concrete grade
(b) Predict concrete grade by specifying the mixture.

iii)  Develop user interface for the prediction of concrete mix design
and strength.

iv) All program codes are written in Microsoft Visual Basic 5.0
programming language and data is prepared in Microsoft Excel

2000 spreadsheet.

Significance of the project

The project is significant since it is the first project initiated to design a
concrete mix using neural network technique. The result of this project is
expected to benefit the construction industry as a whole and those people
involved in the industry such as engineers, contractors, developers, ready
mix concrete suppliers, concrete product producers and as well as

researchers.

Engineers can use the developed software to help them in developing the

concrete specification and design. The contractors can use it to design




their on-site concrete mix whereas the ready mix concrete suppliers can
integrate it with their batching plants system to produce concrete according
to the customers’ requirements. Meanwhile, the concrete product
producers can use it to manipulate the mix of concrete to suit to their
products and the developers can estimate the concrete cost by identifying
quantity of materials such as cement, sand and course aggregate. This
project is also beneficial to the researchers as a reference in finding the

solution to their problems especially in the engineering domain.
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2.1

CHAPTER 2

NEURAL NETWORK

Overview

In order to make the presentation of the developed neural network more
meaningful, a brief description of neural network concepts is explained in
this chapter. For better understanding, it is also helpful to explore the

actual building blocks of biological neural system.

What is a Neural Network

The main objective of the neural network technology is to mimic the brain
approach in processing data and information by capturing the architectural
and functional aspects of intelligent behavior (Schalkoff, 1997). That is
why a neural network or sometimes called an artificial neural network is a
form of artificial intelligence (Ural and Saka, 1998). The most basic
element of the human brain is a specific type of cell, which provides the
human beings the abilities to remember, think, and apply previous
experiences to our every action. These cells are known as neurons and
each of these neurons usually can connect between 1000 up to 10000 with

other neurons through what is called synapse (Schalkoff, 1997). The




power of the brain comes from the numbers of these basic components and

the multiple connections between them.

All natural neurons have four basic components, which are dendrites,
soma, axon, and synapses. Basically, a biological neuron receives inputs
from other sources, combines them in some way, performs a generally
nonlinear operation on the result, and then output the final result. Figure
2.1 shows a simplified biological neuron and the relationship of its four

components.

4 Pansof a
Typical Nerve Cell

Dendrites: Accept inputs

@ it Soma: Proocess the inputs

Axon: Turn the processed inputs
into outputs

Synapses: The electrochemical
contact between neurons

Figure 2.1: A biological neuron

The basic unit of neural network, which is called artificial neuron,
simulates the four basic functions of biological neurons. Artificial neuron
is much simpler than the biological neuron. Figure 2.2 shows the basics of

an artificial neuron, which is based on the model proposed by (McCulloch
8




and Pitt, 1943). Note that various inputs to the network are represented by
the mathematical symbol, x,. Each of these inputs are multiplied by a
connection weight and these weights are represented by w.. In the
simplest case, these products are simply summed, fed through a transfer

function to generate a result, and then output.

X
\wo‘
W
X, ! synll TRANSEER Output
FUNCTION -

/

) w,
£

Figure 2.2 . An artificial neuron

The input signal to each neuron can be mathematically defined as:
n

in =in X Wi 2-1
=0

and the output signal from neuron is determined after applying a transfer
or activation function.

out=f(in) 2-2

Specifically, a neural network consists of a number of artificial neurons or

processing units. Each neuron is connected to other neurons by means of



directed communication links, each with an associated weight or strength
and formed a complete network. The weights represent the knowledge
being used by the network to solve a problem. These weights are
determined and fixed during the learning or training stage of the network.
To train the network, a number of examples of a particular problem are
given or shown to it. The network learns and makes adjustments to its
weights from these examples in much the same way that people learn

through experimentation and interaction with their environment.

The processing units of neural network are structured in three layers of
nodes: input, hidden and output layers as shown in Figure 2.3. The
number of nodes or processing units in the input and output layer,

represents the number of input and output results.

yvl o o6 -~
Yol XK

o T KT

YN

K) Weighted connection

Figure 2.3 : Typical structure of neural network
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Briefly, the input layer passed the received input data to the hidden layer,
so that it can be processed. The output from the hidden layer is then pass
to the output layer as the final network result. The most important
function of network is performed by the hidden layer. It is the neurons in
this layer that have the job of associating a particular input pattern with the
appropriate desired output values. The ability of the hidden layer to
perform this job surprisingly well has made neural networks such useful

tools.

Neural Network Models

Neural network model is defined by its topology, learning paradigm and
learning algorithm (Bigus, 1996). The topology of neural network
describes the flow of data between the input, hidden and the output units.
Basically, there are three main categories of connection topologies, which
are feed forward, limited recurrent and fully recurrent. In the feed forward
topology, the data flows through the network in one direction and the
result based solely on the current set of input pattern. The limited
recurrent topology on the other hand required the network to store a record
of prior inputs and factor them in with the current data to generate the
output. Whereas, the fully recurrent topology is quite complex, which
provides a two-way connections between all units and data flows to all
adjacent units back and forth until the activation of the units stabilizes

(Bigus, 1996).

11



There are two main learning paradigm or approach to develop neural
network applications, which are supervised learning and unsupervised
learning . In a supervised learning, the designed network is presented with
a training set of several input-output pairs of examples. Each time an input
is presented, the net produces an output. The produced output is then
compared with the corresponding desired or target output. If there is a
discrepancy, the net computes the error and makes corrections by updating
the weights of the links that connecting the units together. This explains
the learning algorithm of the network. The network is consider completed
one iteration or epoch of the training process after the entire set of the
input-output training pairs have been presented. This training process is
repeated several hundreds, or more times until the output errors become
small and the net outputs are within a user-specified tolerance level for all

the input-output training pairs.

In an unsupervised learning, no sample outputs are provided to the
network. When presented with a set of input patterns, the network will
make a clustering process by putting all similar patterns into the same

cluster.

The well-known neural network models such as Adaptive Resonance
Theory (ART), Back propagation (BP), Radial basis function (RBF),
Probabilistic neural network (PNN), Kohonen feature maps (KFM),
Learning vector quantization (LVQ) and Recurrent back propagation

(RBP) are listed in Table 2.1, together with their functions.

12




2.3

Table 2.1: Neural network models and their functions (Bigus, 1996)

Model | Learning |  Topology |  Function

ART | Unsupervised Recurrent Clustering

BP Supervised Feed forward Classification

RBF Supervised Feed forward | Classification, time-series
PNN Supervised Feed forward Classification
KFM | Unsupervised Feed forward Clustering

LVQ Supervised Feed forward Classification

RBP Supervised | Limited recurrent Time-series

Back Propagation Neural Network

Among the variety of neural network paradigms, the back propagation
(also called multilayer perceptron, MLP) is perhaps the most commonly
use to train networks and has been applied successfully to a broad range of
areas (Awad, 1996; Ural and Saka ,1998) ranging from character and
speech recognition to playing backgammon. Back propagation neural
network is introduced in this section since it has been implemented in this

project.

The structure of the back propagation network is quite similar to the
typical structure shown in Figure 2.3. The different with other networks is
its learning approach, which is called back propagation algorithm. This
algorithm was proposed by (Rumelhart e al., 1986) and was responsible in
large part for the reemergence of neural networks in the mid 1980s (Bigus,

1996).

13



2.3.1 Back Propagation Algorithm

Basically, the back propagation algorithm consists of three stages:
feed forward the input pattern, compute and back propagate the
errors and finally updating the weights. In the feed forward stage,
the input patterns are presented to the network. These inputs are
then propagated forward from the input layer, through hidden
layer, to the output layer, resulting in the network output. Because
back propagation is a supervised learning algorithm, the target or

desired outputs are given as part of the training requirements.

During the second stage, the actual network output in each output
unit is compared with its target to determine the associated error
for that pattern. Based on these errors, the corrections to the
connecting weights are calculated. The process of getting these
weights correction term, starts with the output units and propagates
backward through the hidden layer to the input layer - hence the

term back propagation.

The third stage involved with updating the weights by correcting
each of the existing weights based on the above calculated weights
correction term. Figure 2.4 shows the flow of the back propagation
training process or algorithm based on the architecture of back

propagation network in Figure 2.5.

14




Calculate input signal receive from input units to each hidden units. ]T
n
3
Apply activation function to compute output of hidden units
Z;=fz_iny) mry
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)‘__ink =Wd:+ Z Zj X W_)k e
j=1
Apply activation function to compute output of output units
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Calculate error correction term for each output units and bias
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Y
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m 0
= o
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Multiply derivative of activation function to calculate error
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Update all weights
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Figure 2.4. Back propagation algorithm.
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Figure 2.5: Back-propagation neural network architecture

2.3.2 Activation Function for Back Propagation Network

An activation function (sometimes is called a transfer or squashing
function) is used to map neuron input activation to an output signal
of hidden unit. The function is needed to introduce non-linearity
into the network. It is the non-linearity (i.e. the capability to
represent nonlinear functions) that makes neural networks so

powerful.

The most widely used activation function is sigmoid. This is due
to the facts that (Schalkoff, 1997):
i) It squashes very well.

16




ii) It is semilinear (i.e. nondecreasing and differentiable
everywhere).

iii) It is expressible in closed form.

iv) Modifications or extensions lead to or relate to other activation
functions.

v) Its derivative is easy to form.

This function is also suitable to use in back propagation network
together with hyperbolic tangent (tanh) function. There are two
types of sigmoid activation function, namely the binary and the
bipolar sigmoid functions. The binary sigmoid function is used
when the values in the data set are between 0 and 1. This function
also known as logistic function (Schalkoff, 1997). The bipolar
sigmoid function is used when the values in the data set are
between -1 and +1. The tanh function is quite similar to the bipolar
sigmoid function that produces both positive and negative values.
The functional form for these three activation functions are written

in the following equations.

Binary sigmoid function:
S=_1___ 2-3
1+ ¢e*

and it first derivative is :

F®=r0-f()] 2-4

17



Bipolar sigmoid function:

fx)= _2 -1

1+ ™

and it first derivative is :

f®= % [1+/x) ]1-f ()]

Hyperbolic tangent (tanh) function:

fx)y= ¢ -¢"
e+ e*

and it first derivative is :

f®= __4

( ex + e-x)z
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3.0

3.1

CHAPTER 3

LITERATURE REVIEW

Overview

This chapter provides a review on the neural networks applications and
other Al tools in the field of civil engineering. The existing methods of

designing the concrete mixes are also discussed.

Neural Network Application in Civil Engineering

Many of the problems that engineers must deal with are exactly the types
of problems for which neural networks appear to be most applicable.
Engineers are interpreters of incomplete, noisy data - such as interpreting
sensor information to determine the existence, and location of damages in
a structural system. Engineers are designers and controllers of complex
systems for which there is no exact model of behavior and expected

performance is unknown, requiring it to be estimated.
Neural networks are being used in civil engineering in a variety of

applications. This section illustrates some of the different types of

problems to which neural networks have been applied.

19



Neural network has been investigated as a means to develop efficient
predictive models of the structural behavior of concrete slabs (Hegazy, et
al., 1998). Four neural networks were trained and tested using the
experimental results of 38 full-scale slabs. Hsu and Tsai (1997) have
studied a diagnosing model for reinforced concrete structures by using of
back propagation neural network technique to assess the severity and
location of defects. Theoretical analysis of a simply-supported reinforced
concrete beam in specified size (i.e., rectangular cross section and 4 meter
span) by finite element program is performed to generate training and
testing samples for neural network assessing task. The same approach has
been used by (Abdullah, ef al., 2000) in estimating the in-situ strength of
concrete. They have used multilayer perceptron (MLP) network to
develop a generalized prediction models based on combined non-
destructive testing techniques, namely, the rebound hammer test and

ultrasonic pulse velocity test.

Neural network has been trained to identify civil engineering structures
using records from structural responses under different earthquake loading
conditions (Amini, et al,, 1997). The study indicates that the trained
neural network is capable of providing sensible outputs (generalization)
when presented with input data that has never been used during its
training. Meanwhile, Hsu ef a/. (1993) have shown that neural network
also could be applied in hydrology area, where they have used three layer
feed-forward network model for simulating the nonlinear hydrologic

behavior of watersheds.

20



3.2

Other Artificial Intelligence (AI) Applications in Civil

Engineering

The capabilities of Al approaches have inspired Che Wan Putra, et al.
(2000) to conduct a study to develop a prototype of expert system that can
generate materials scheduling by the integration of construction scheduling
and knowledge-based systems. The same approach has been used by
(Zhao and Fan, 2000) to design a concrete box girder bridge. They
developed an expert system, which integrates the neural network and the
fuzzy network in order to provide a few feasible design configurations.
On the other approach, Hung and Jan (1997) have developed an
unsupervised fuzzy neural network case-based learning model to recall the
similar cases, which have been designed before and obtain the solution

from these similar cases in a way of adaptation or synthesis.

Genetic algorithm is another Al technique, which is based on Darwinian
strife for survival theory. This technique has been applied by Hadi (2000)
to calculate the optimum solution in designing a reinforced concrete T
beams. He has proven that the genetic algorithm can achieve the goal of
optimization of T beams quickly and without the need to use high level of

mathematics. .
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3.3

Existing Method in Designing Concrete Mixes

The concrete mix design is a process of selecting suitable ingredients for
concrete and determining their proportions which would produce, as
economically as possible and concrete that satisfies the job requirements

such as strength, workability and durability (Gambhir, 1995).

There are two most popular methods in designing concrete mix, which use
certain empirical relations as a guide to select the best combination of the
ingredients of concrete. The first method is known as American ACI
method which is followed the ACI Standard Practice ACI 211.1-91 (1994).
This standard describes a method of selection of mix proportions of
concrete containing Portland cement alone or together with other
cementitious materials, and admixtures (Neville, 1995). This method is
based on the fact that for a given maximum size of well shaped aggregate,
the water/cement ratio determines the workability of mix and it is largely
independent of mix proportions (Gambhir, 1995). Generally, the method
consists of eight steps, which take into account the characteristics of
materials to be used. These steps are:

i) Choice of slump

it) Choice of maximum size of aggregate

iii) Estimate of water content and air content

iv) Selection of water/cement ratio

v) Calculation of cement content

vi) Calculation of coarse aggregate content
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3.4

vii)  Estimate of fine aggragate content

viii)  Adjustments to mix proportions.

The second method, which is quite similar to the ACI approach, is the
British DoE method (Neville, 1995). The method is suitable for the design
of normal concrete mixes having 28-day compressive strength as high as
75 N/mm2 for non-air-entrained concrete. Description of the procedure is

given in Section 4.2.1.

Statistical Approach in Designing Concrete Mixes

There is an attempt to design the concrete mixture with statistical approach
(Simon, et al, 1997). In the study, a statistically designed mixture
experiment is used to identify the best factor settings for optimizing
properties of high performance concrete. They have prepared thirty nine
batches of concrete in this experiment to find the optimum proportions for
a concrete mix meeting the following conditions: 50 — 100mm slump for
the fresh concrete, 1-day target compressive strength of 22.06 N/mm2, 28-
day target compressive strength of 51.02 N/mm2, target 42-day “rapid
chloride” (ASTM C1202) test (RCT) measurement less than 700
coulombs, and minimum cost (dollars per m3). The mixing materials used
are water, cement, microsilica (silica fume), high-range water reducing

admixture (HRWRA), course aggregate, and fine aggregate.
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The same approach has also been used by NSERC (1996) in building the
automated concrete mix design prototype model to provide optimum
productivity/performance which may result in a significant cost saving to a
ready-mix concrete plant. A large number of functions have been used in
their concrete mix optimization model to describe the relationships
between the many variables affecting the design, batching, mixing,
delivery and quality control of ready mix concrete. Generally, in terms of
performance, the statistical approach is less compared to the neural

network (Abdullah, e at., 2000).
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4.0

CHAPTER 4

PROJECT METHODOLOGY

Overview

This chapter describes the methodology adopted for this project. The key
issues that have been considered while developing the application such as
design of network architecture are discussed. The most important issues in
neural network, is data. Since there are no data available for this project,
the application starts with generating a concrete mix design data. This
generated raw data was not in a suitable format to be used for training and
testing the neural network. It had to be pre-processed and translated into
useful format before it can be presented to the network. Prior to the
development of the neural network simulator, the network architecture or
model is identified. The selected topology, learning approach and learning
algorithm are used in developing the neural network simulator. Training
and testing will be carried out once the development of the data and the
simulator are completed. Several network configurations will be trained
and tested in order to find out the network model, which gives the best
performance. The best weight file will be kept and used in the

development of concrete design system.
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4.1

Generally, there are five phases involved in developing the neural network
application for designing the concrete mixture.

i) Design of Neural Network Architecture.

ii) Data Preparation

iii) Development of Neural Network Simulator

iv) Training and Testing

v) Development of Conrete Design System

These phases are described in the proceeding sections.

Designing Neural Network Architecture

First step in designing neural network model, is to identify the nature of
our problem that we are going to solve. This will determine the suitable
network topology is selected. Only certain network topologies were
suitable to perform the required function to solve our problem. The next
step is to look at the input data whether it is all binary (0/1) or bipolar (-
1/+1) or the data contains real-valued inputs. These types of data might
disqualify some of the network architectures, which used certain activation
functions in their learning algorithm. The last step is to determine the
number of input and outputs units, and the hidden nodes that can give the

best performance.

The problem of this project is to classify the mixture of concrete that can

give a required strength based on a various factors. Therefore, the
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4.2

designed network must be able solved the classification problem. The
network has to map the features of the inputs and produced the desired
output. So, the network has to use the supervised training approach. Since
the prepared data, contains real values between 0 and 1, the most suitable
activation function is binary sigmoid function. This function is suitable to
use in back propagation learning algorithm. Since enough training data is
already available and can represent the problem to be solved, the training

of the network is done offline.

As such, the back propagation network is selected as the best model since
it has satisfied all the above requirements (solve classification problem,
need supervised training approach, use binary sigmoid activation function

and offline training).

Lastly, in determining the number of input and output units in the network,
once again it depends to the problems that are to be solved. For this
project, seven factors have been identified as the most significant factors
that affect the amount of the four main ingredients in concrete. The details
of these factors and four main materials in concrete are listed in Table 4.1

and Table 4.2.

Data Preparation

It is certainly true that having data is a necessary prerequisite to solve

problem using neural network approach. Preparing the data is the most
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important part of the project development. This procedure is crucial to the
success of applying neural network approach. The performance of a
neural network is largely depend upon the data set it was trained,
especially when using the back propagation network that learns from the
input/output examples. In general, the better the training data sets
represent the problem to be solved, the better performance of the neural
network. Only someone with domain knowledge, someone who
understands the data and what it means, can select the right data set to be
trained in the neural network (Bigus, 1996). By selecting a wrong data,
the neural network may not able to give desired results accurately. Figure

4.1 shows the data preparation process for this project.

Generation of Raw Data

v

Data Cleansing

'

Data Selection

v

Data Preprocessing

v

Data Representation

Figure 4.1: Data preparation process
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4.2.1 Generation of Raw Data

This project used a set of generic raw data that follows the British
DoE (1988) method in designing a concrete mix. Briefly, there are

five stages involved in the mix design process.

Stage 1 is to determine the target water/cement ratio. In this stage,
characteristic strength of concrete, standard deviation, percentage
of defect, type of cement and type of aggregate, are specified. The

concept of target mean strength is introduced, which is defined as:

fm = fctkxs 4-1
where  fm =  the target mean strength
fc = the characteristic strength
k = aconstant
s = the standard deviation obtained from Figure
3 of DoE (1988) .
kxs=  the margin

The constant k is derived from the mathematics of the normal
distribution of concrete strength and it increases as the proportion

of defectives is decreased (DoE, 1988). Thus,

k for 10% defectives = 1.28 4-2
k for 5% defectives = 1.64 4-3
k for 1% defectives =2.33 4-4
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For better illustration, an example of a design concrete mix with

the following specifications shall be used.

i) characteristic strength of 30 N/mm2 at the age of 28 days.

ii) type of cement is Ordinary Portland Cement (OPC).

iti) type of course aggregate is uncrushed with maximum size of 10
mm.

iv) workability with a slump of 10-30 mm.

v) no previous information of strength test.

vi) 5% defectives level

vii) 40% fine aggregate passing a 600.m sieve

The standard deviation of 8 N/mm2 is selected since we have no
previous records of concrete strength test (DoE, 1988). From
equations 4-1 and 4-3, the calculated target mean strength is 43.12
N/mm2. Then, a value of 42 N/mm?2 is obtained from Table 2 of
DoE (1988) for the strength of a mix made with a free-
water/cement ratio of 0.5 according to specified age of 28 days, the
type of cement is OPC and the aggregate type is uncrushed. This
strength is then plotted on Figure 4 of DoE (1988) and a curve
drawn from this point and parallel to the printed curves until it
intercepts a horizontal line passing through the ordinate
representing the target mean strength. The value of 0.49 for free-
water/cement ratio is read from the abscissa. If the specification
has specified the maximum water/cement ratio, then used the lower

value.
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Stage 2 is simply of determining the free-water content. In this
stage, slump and maximum aggregate size are specified where in
this case are 10-30 mm and 10mm respectively. The water content

is identified as180 kg/m3 (refer Table 3 of DoE (1988)).

Stage 3 is to determine the cement content, where it was calculated
using equation 4-5 with the water/cement ratio (from Stage 1) and
water content (from Stage 2), which is equal to 367.35 kg/m3.

Cement content = __water content 4.5
water/cement ratio

If the specification has specified the maximum cement content and
the calculated is greater than the specified value, then use the
specified maximum cement content. Whereas if the specification
has specified the minimum cement content and the calculated is
less than the specified value, then use the specified minimum
cement content. Other than these, use the calculated cement

content.

Stage 4 is to determine the total aggregate content by subtracting
the cement and water from the wet density of concrete (refer Figure
5 of DoE (1988)). Since there is no information available
regarding the relative density of the aggregate, a value 2.6 for
uncrushed aggregate should be taken. The value of 2.7 is for

crushed aggregate. Therefore, the wet density is 2375 kg/m3 and
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the total aggregate content of 1827.65 kg/m3 is determined from
equation 4-6 below (refer Figure 5 of DoE (1988)).

Total aggregate content = wet density—cement—water 4-6

Stage 5 is to decide how much of the total aggregate should consist
of materials smaller than 5Smm (classified as sand or fine aggregate
content) and larger than that as course aggregate. Depending on
water/cement ratio, the maximum size of aggregate, slump and
grading of fine aggregate which is defined by its percentage
passing a 600um sieve, the proportion of fine aggregate identified
as 46% (refer Figure 6 of DoE (1988)). Finally, the fine and course
aggregate content can be calculated as:

Fine aggregate = total aggregate x proportion of fine 4-7

Course aggregate = total aggregate — fine aggregate 4-8

The process is repeated for other specifications which covers most
of the possibilities in the concrete design. For this project, the total
of 4080 raw data have been generated and tabulated in Microsoft

Excel spreadsheet. A sample of raw data is given in Appendix A.

Limitations to the data set were imposed to maintain simplicity of

the problem and not to produce too much data, hence reduced

training time. Those limitations are:
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4.2.2
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1) No specified values of maximum cement content and
water/cement ratio are imposed during the generation of
data.

it) The data is catered for Ordinary Portland Cement (OPC)

type only.

Data Cleansing

Data cleansing is a process of removing or correcting any data that
contain inaccurate values, missing values or other inconsistencies
in the data. This process is very important because the
performance of neural network is much depends on the accuracy of
the training data. The existence of outliers data can reduced the
performance of the network (Bigus, 1996). In this project, the
cleansing process is done manually by viewing through all the data
and any detected incorrect or missing values will be corrected

accordingly.

Data Selection

The most important and crucial part in data preparation is to select
the right variables that have a strong effect to the output results.
After examined the problem, the required result and the data, all
the proposed inputs are considered as major factors that affecting

the mix proportion of the concrete. Seven input variables and four
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output variables were proposed in this project. All variables have

been listed in Table 4.1 and Table 4.2 and the descriptions of these

variables are as follow.

Input variables:

1.

Characteristic strength — the specified strength of concrete
at the age of 28 days. The generated data consist of seven
different strengths, which are 25, 30, 40, 50, 60, 65 and 70
N/mm2.

Slump — a measure of the workability of concrete in order
to get concrete suitable for placing and compacting under
site conditions using the tool available. Slumps that were
used are; 0-10mm, 10-30mm, 30-60mm and 60-180mm.
Maximum aggregate size — the biggest nominal diameter of
the aggregate. The sizes that were used are 10mm, 20mm
and 40mm.

% of defectives level — is defined from the normal
distribution of concrete strength. The defectives levels that
were used to generate the project’s data are: 10%, 5% and
1%, but user can specified a value between 0% to 10%.
Type of aggregate — uncrushed or crushed.

% of fine aggregate passing a 600.m sieve — is between 0%

to 100%
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7. Standard deviation — is between 4 N/mm2 to 8 N/mm2. If
no previous record available, the value of 8 N/mm2 will be

adequate.

With the above inputs, the mix design process shall be proceeded
to determine the mix proportion of water, cement, fine aggregate
and course aggregate. These four materials are classified as the

output variables.

Data Preprocessing

Once we have a clean of selected data, it must be preprocessed to
transform into a form that is presentable to the neural network.
The transformation process is done by normalizing every single
data in order to distribute the data evenly and scale it into an
acceptable range for the network, which depends on the activation
function used. After examining the data set, the following

normalization scheme was proposed (also known as linear scaling):

X(new) = X(old) / Xmax 4-9

or

X(new) = X(old) - Xuin 4-10
Xmax - Xmm

where, X(new) and X(old) represented a new and old input value

respectively. Xmx and Xmin are representing the maximum and
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minimum values of the selected item respectively. Equation 4(9) is
used if zero (0) is existed in the list. The result of the

normalization will return the values between 0 and 1.

Another transformation that was encountered in this project is to
map symbols to numerical values. In order to change the slump’s
input that has been categorized as 0-10mm, 10-30mm, 30-60mm or
60-180mm, an evenly distributed value between 0 and 1 is chosen.
So, the above four categories can be mapped into 0, 1/3 (0.3333),

2/3 (0.6667) and 1 respectively.

In this project, transforming the outputs values are different from
the values in the inputs variables. Since all the outputs can be any
values, it is difficult for the network to make a prediction correctly.
Therefore, the outputs values must be classified into a number of
classes and each class is representing a range of values. For
example in the water content’s output variable, where all values are
grouped into classes with 5kg of range. From the data set, 28
classes have been identified for this first output. The process of
transforming the output data is easily can be done in Microsoft

Excel by using the provided look-up function.
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4.2.5 Data Representation

After the data had been preprocessed, it has to be represented in a

suitable form in order for neural network to learn well. If not, the

network will not learn at all (Bigus, 1996). Table 4.1 and Table 4.2

shows the final data representation for all inputs and outputs

respectively, together with their normalization methods.

Table 4.1: Representation of input variables

Input| Inputname | Datatype | Value |Reprosented|Normalization
wol b e _method _
1 [Characteristic | Continuous | 25 to 70 Otol linear scalin;
strength value
2 |% of defective | Contimuous| 0to 10 Otol linear scaling
level value
3 |[Standard Continuous | 4to0 8 Otol linear scaling
deviation value
4 |Typeof Symbolic juncrushed 0 mapping
aggregate crushed 1
5 {Shump Symbolic {0 - 10mm 0 mapping
10-30mm| 0.3333
30-60mm| 0.6667
60- 1
180mm
6 |Maximun Contimious | 10 to 40 Otol linear scaling
aggregate size value
7 |% of fine Continuous | 0 to 100 Otol linear scaling
aggregate value
Table 4.2: Representation of output variables
Output| Output | Value | Range | No. |Represented| Normalization
no. | name | = lofeach| of | by | omethod
b b} class class| : ~
Water 115 to 250 5 28 Otol mapping
Cement | 185 to 825 10 65 Oto1 mapping
Fine 240t0 1260] 20 52 Otol mapping
aggregate
Course  |420 to 1800 20 70 Otol mapping
aggregate
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4.2.6 Data Randemization and Segmentation

The network must not in any event be trained continuously with the
same input patterns and then switched to another pattern (Freeman
and Skapula, 1992). The network would tend to memorize the
latest pattern only. So, to avoid this situation, the order of the data
set had to be randomized. The data was sorted according to the
random numbers created by Microsoft Excel in order to get the

randomized data set.

The data set is then segmented into two subsets of data. First
subset is for training data set, which contains 80% of the total data
and the remaining 20% are used for testing the network. The
training data set once again had been randomized twice, which
produced another two set of training data with same input patterns
but in different order. The best set out of these three will be used
in training the best model until the highest generalization is

achieved.

Development of Neural Network Simulator

The program has been developed as the neural network simulator based on
the selected architecture, which is back propagation network. Therefore,
the algorithm of the simulator must follow the back propagation learning

algorithm. Figure 4.2 shows the flowchart of Neural Network Simulator’s
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algorithm that has been used for training and testing purposes and it’s

coding was written in Visual Basics. Please refer Appendix B for the

codes.

Specify total no. of input patterns, input, hidden and output nodes, no. of training data,
stopping criteria (i.¢. iteration and limit of (tsme) total mean square error), learning and
momentum rates, number of bin (i.e. class) for each output unit, data file name

y

Load all input/output pairs (X;, t;) from data file

Yes

Initialize random
weights (vij and wix)

l

No

Read last
weight file

Loop until
meet specified
iteration

> Feed forward

tsme < limit

No

Back propagate error and
introduce momentum rate (A)

(Loopforalldata I

Update weights |

Loop for ail J

l training patterns

Yes

:

Save weight file

v

Feed forward

v

Calculate performance ( % of
training and testing correct)

Figure 4.2 : Flow chart of Neural Network Simulator
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4.4

Neural Network Training and Testing

Training and testing the network will start immediately prior to the
completion of the simulator development and data preparation. The

training will follows exactly to the designed algorithm of the simulator.

First of all, several parameters need to be specified. Beside the total
number of input patterns, number of bin for every class and the network
configuration (input, hidden and output units), the major parameters used
in supervised training have to do with how the error is computed and how
big a step to take when adjusting the connection weights in achieving the

desired output.

In neural network, this step is represented by a learning rate. By selecting
a slower learning rate, the chances of getting a good generalization are
very high (Bigus, 1996). So, the learning rate of 0.1 was specified for the
whole training exercises. If large learning rate is used, learning becomes
unstable, where the network oscillates back and forth across the desirable
value (Fausett, 1996). On the other hand, if learning rate is too small,
learning process will take longer time. Therefore, the momentum rate was
introduced as another training parameter to speed up the learning process.
This parameter will give some momentum to the weight change in the next
iteration and thus overcome the above limitations. The momentum rate of

0.5 was introduced during the training process.
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During the training, all the training patterns will be feed into the feed
forward algorithm, In this stage, as mentioned earlier in the design of the
neural network architecture, the binary sigmoid activation function had
been applied in the training algorithm rather than other functions since the
values in the data set are between O and 1. If the computed total mean
square error (tmse) less than the specified tolerance (limit), then the
connection weights were adjusted by back propagating the error and

updated accordingly.

Stopping criteria allows the neural network enough time to make
significant adjustments. It also can be used to avoid over-training, where
the network is in the situation of memorizing the patterns rather than
learning the features of the problem. Therefore, two stopping criteria were
set in the designed neural network simulator, which can be specified by the
users. In this project, they were set as:

i) Total mean square error (tmse) less than 0.0001. Training will stop

when the tmse reaches this value.
i) Total of iteration of 100. Training will also stop after completing

the last iteration.

If the specified iterations are too big, the network may be in over-training
situation. Where as, with too small iterations, the network may be in
under-training problem. It will not has enough knowledge to solve the

problem. In order to overcome these problem, a little features has been
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4.5

attached to the simulator (reload the latest weight file). So, the users can
continue the training if the network is still in under-training situation. In
this project, the training was carried out in this manner, where the
performance of the network was checked after every 100 iterations. The

training is only stop when the test result starts to decrease.

After meting the stopping conditions, the performance of the network will
be calculated. Once again, the all training and testing data sets will be feed
into the feed forward algorithm in order to perform the classification of the

outputs. From there, the percentage of correct classifications is calculated.

The development of Concrete Mix Design System

The program of the Concrete Mix Design System is more simple
compared to the Neural Network Simulator. Even though it is simple, it
has to perform two functions.

1. To predict the amounts of 4 mixing materials in concrete based on the
specified strength and the other 6 factors that can affect the concrete
mixes.

2. To find the concrete strength based on the amounts of 4 mixing
materials and the above 6 factors, which more like reversing the first

function.

In working of the second function, another network with different
configuration of nodes has to be trained. The training and testing

procedures are still the same as the above network. After this second
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network has been trained and tested, its weights file will kept separately
from the first one and ready to be loaded into the Concrete Mix Design
System. The flowchart of the system is shown in Figure 4.3 and the
program’s codes and the user’s manual of the system are listed in

Appendix C and Appendix D respectively.

Main Menu

Predict mixture or
strength or exit?

mixture

Specify configuration Specify configuration
of nodes of nodes
Enter all the Enter all the
inputs values inputs values
Preprocess the inputs values Preprocess the inputs values
Read weight file Read weight file
Feed forward Feed forward
Map the network outputs to their Map the network outputs to their
own class and do the post process. own class and do the post process.
Produce classification results Produce classification results

I ]

Figure 4.3 : Flowchart of Concrete Design System
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CHAPTER 5

RESULTS AND DISCUSSIONS

The training and testing procedures are followed according to description in
Section 4.3. A total of 4080 input/output patterns of concrete mix design were
used to train and test the network. 80% of the total patterns were used for training

and the other 20% were used for testing the performance of the network.

Table 5.1 shows the results of the training and testing of the network to predict
concrete mix with different number of hidden units after 100 iterations. The
selection the best network configuration will based on which hidden unit gives the
highest testing result. If several hidden units produced same testing result, then

the hidden unit with the lowest training result will be selected.

Table 5.1: Selection of the hidden units in the network to predict concrete mix

No.of{ % |Outputl|{Output2| Output3 | Output4 | Average
_HU | Correct | Water | Cement | Fineagg |Courseagg.| ;
5 Training | 73.34 46.84 56.43 40.17 54.20
Testing 72.91 46.93 57.96 43.14 55.24
10 | Training| 8143 59.65 64.58 48.96 63.66
Testing 82.60 56.49 66.05 51.23 64.09
15 Training | 90.75 65.29 67.86 55.20 69.78
Testing 90.20 63.24 67.65 55.76 6921
20 | Training | 86.18 62.41 68.60 57.93 68.78
Testing | 86.25 | 62.50 68.34 57.84 68.73
25 Training | 81.34 61.82 70.28 56.62 67.52
Testing 82.35 59.80 72.79 56.13 67.77
30 | Training| 82.13 | 60.97 69.52 54.87 66.87
Testing 83.95 60.42 71.57 57.35 68.32
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The hidden unit 15 was selected since it produced the best testing result (69.21%

of correct classification).

Table 5.2: Selection of training data set for the network to predict concrete mix

HU 15 % | Output 1| Output2 | Output 3 | Output 4 | Average
' | Correct -y
Data set 1|Training] 90.75 65.29 67.86 55.20 69.78
Testing | 90.20 63.24 67.65 55.76 69.21
Data set 2|Training| 90.87 67.95 66.76 6275 | 7208
Testing [ 90.81 68.26 66.54 61.52 71.78
Data set 3 |Training] 90.69 67.37 65.29 60.81 71.04
Testing | 90.69 66.54 66.79 60.78 71.20

Table 5.2 shows that Data set 2 is giving the highest testing result (71.78% of
correct classification). Therefore, Data set 2 is used for further training of the 15

hidden units’ network.

As indicated by the results in Table 5.3, the best performance of the network was
obtained after 1600 iterations, which gives 83.7% correct of testing patterns.
After 1700 iterations, the testing result starts to drop even though the training
result becomes better. This situation of what we called over-training was happen

here, where the network starts to memorize and not generalize.
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Table 5.3: The best performance of the network in predicting the concrete mix

No.of | % Correct | Output 1 | Output 2 | Output 3 | Output 4 |Average
iteration il : '

100 Training 90.87 67.95 66.76 62.75 72.08
Testing 90.81 68.26 66.54 61.52 71.78

200 Training 91.67 67.31 71.02 62.59 73.15
Testing 91.67 66.42 72.43 61.76 | 73.07
300 Training 93.47 71.11 75.12 64.95 76.16
Testing 93.01 69.85 76.59 64.22 | 7592
400 Training 94.57 73.68 77.42 66.33 78.00
Testing 94.36 72.30 76.72 6446 | 76.96
500 Training 94.94 75.31 77.91 68.08 | 79.06

Testing 94.61 74.51 76.72 64.58 77.61
600 Training 95.34 76.65 77.97 68.72 79.67
Testing 95.22 76.47 77.45 66.67 78.95

700 Training 99.17 77.79 77.94 69.94 81.21
Testing 99.26 77.57 78.06 68.50 80.85
800 Training 100.00 78.40 78.16 70.53 81.77
Testing 100.00 78.92 78.92 69.12 81.74
900 Training 100.00 79.01 78.46 70.86 82.08

Testing 100.00 78.80 80.15 70.83 82.45
1000 Training 100.00 79.23 78.83 70.65 82.18
Testing 100.00 79.78 80.88 70.47 82.78
1100 Training 100.00 79.44 79.04 70.80 82.32
Testing 100.00 80.27 81.13 71.20 83.15
1200 Training 100.00 79.69 79.38 70.89 82.49
Testing 100.00 80.51 81.37 70.96 83.21
1300 Training 100.00 80.15 79.60 70.80 82.64
Testing 100.00 80.51 81.62 71.08 83.30
1400 Training 100.00 80.79 79.81 70.96 82.89
Testing 100.00 80.64 81.37 71.32 83.33
1500 Training 100.00 81.25 80.18 71.17 83.15
Testing 100.00 81.00 81.62 71.45 83.52
1600 Training | 100.00 81.86 80.58 71.32 8344
Testing 100.00 81.62 81.74 71.45 83.70
1700 Training 100.00 82.35 80.63 71.51 83.62
Testing 100.00 81.25 81.74 71.69 83.67

The training and testing the network for predicting the concrete strength are

similar to the network for predicting the concrete mix. Table 5.4 shows the results
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of the training and testing of the network to predict concrete strength with

different number of hidden units after 100 iterations.

Table 5.4: Selection of the hidden units in the network to predict concrete strength

HU | Training | Testing
] 87.71 87.38
2 93.08 92.65
3 95.53 94.98
4 93.63 92.89
5 9596 | 9510
6 95.19 94 .49
7 95.68 94.97
8 95.68 94.61
9 93.99 93.38
10 94.91 93.99
11 93.75 93.14
12 93.19 91.91

The hidden unit 5 was selected since it produced the best testing result (95.10% of

correct classification).

Table 5.5: Selection of training data set for the network to predict concrete

strength
HUS5 | Training | Testing
Data set 1 95.96 95.10
Data set 2 95.68 94.79
Data set 3 9522 | 96.08

Table 5.5 shows that Data set 3 is giving the highest testing result (96.08% of
correct classification). Therefore, Data set 3 is used for further training of the 5

hidden units’ network.
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Table 5.6: The best performance of the network in predicting the concrete

strength
No. of iteration| Training | Testing
100 95.22 96.08
200 98.35 98.28
300 98.86 99.02
400 99.14 99.39
500 99.20 99 51
600 99.35 99.51
700 99 .54 99.51
300 99.75 100.00
900 99.97 100.00
1000 100.00 100.00
1100 100.00 100.00
1200 100.00 100.00

From the results in Table 5.6, the network model with 5 hidden units was selected
as the best model, which gives the ultimate performance of 100% after 1000

iterations.

The final neural network models for predicting the concrete mix and the concrete

strength are shown in Table 5.7 and Table 5.8 respectively.

Table 5.7: Final Neural Network Model for Prediction of Concrete Mix

Architecture Back Propagation Network
Number of Input Units 7
Number of Hidden Units |15
Number of Qutput Units |4

Activation Function Binary Sigmoid
Learning Rate 0.1

Momentum Rate 0.5

Training Pattern Data set 2
Iterations 1700
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Table 5.8: Final Neural Network Model for Prediction of Concrete Strength

Architecture Back Propagation Network
Number of Input Units 10

Number of Hidden Units |5
Number of Output Units |1

Activation Function Binary Sigmoid
Learning Rate 0.1

Momentum Rate 0.5

Training Pattern Data set 3
Iterations 1000
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CHAPTER 6

CONCLUSION AND RECOMMENDATION

This project proves the capability and reliability of neural network model in
performing the design of concrete mixes. The performance of the developed
models with the accuracy of 83.70% and 100% respectively, are satisfactory. The
developed neural network simulator by using the back propagation architecture

has demonstrated its ability in training the given input/output patterns.

Future study should look into the following:

a) Other neural network models such as Radial Basis Functions (RBF) and
Probabilistic Neural Network (PNN).

b) Integrating neural network with fuzzy logic.

c) Consider other factor such as method of preparation.

d) Using real field data — produce more meaningful model.
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Appendix B

Program Codes of Neural Network Simulator




Appendix B Program Codes of Neural Network Simulator

Private Sub Command1_Click()

"Declaration of Arrays

Dim ref_no(), X(), TQ, VO, WO, Zin(), Z(), Yin(), YO

Dim delta_V(), delta_W(), del_V(), del_W(), mom_V(), mom_W()
Dim del_in(), Ep(), bin(), acc()

Dim timestart As Date

Dim timestop

'***************************************************#************

numdata = 4080 'total number of data

n=7 'number of input
p=15 ‘number of hidden unit
m=4 'number of output

numtraindata = Int(numdata * 0.8) '80% of training data

iter =100 'no. of iteration or epoch
alpha=0.1 'learning rate
lamda=0.5 ‘'momentum rate

"Redimension of Arrays
ReDim X(numdata, n + 1), T(numdata, m), Y(numdata, m), Ep(m), bin(m),
acc(m), ref_no(numdata)

bin(1) =28 'no. of class in Output 1 (i.e. water content)

bin(2) =65 'no. of class in Output 2 (i.e. cement content)

bin(3) =52 'no. of class in Output 3 (i.e. fine aggregate)

bin(4) =70 'no. of class in Output 4 (i.e. course aggregate)

limit = 0.0001 'stopping criteria

first run=1 '1 for new run : 2 for next run

best_wt_file$ = "c./CDS/witest.txt”  'best weight filename
data_file$ = "c:/CDS/data_mix.txt" ‘data set filename
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act_func =1 '1 for binary sigmoid : 2 for bipolar sigmoid

Fori=1Tom
acc(i) = 1/ bin(i) 'max. value of every classes in every outputs
Next i

'Load input/output patterns
Open data_file$ For Input As #1 '

For ndata = 1 To numdata
Input #1, ref_no(ndata) 'reference no. of data
Fori=1Ton
Input #1, X(ndata, i) ‘input pattren
Next i
Fork=1Tom
Input #1, T(ndata, k) ‘target or output pattern
Next k
Next ndata
Close #1

'Redimension of Arrays

ReDim V(n + 1, p), W(p + 1, m), Zin(p), Z(p)

ReDim Yin(m), delta W(p + 1, m), del_W(m), del_V(p), del_in(p)

ReDim delta_V(n + 1, p), mom_V(n+ 1, p), mom_W(p + 1, m)

ReDim count_train(m), count_test(m), per_test_correct(m), per_train_correct(m)

03k s o o o ok ok o ook A ok o oo sk ok ok o ok ok ok ok ok ke ok ok ok ok ok ok ok ok R ks Ak Rk ok ok ok e kok ek

If first_run =1 Then

'Initialize weights (bet. -0.5 to 0.5)

Forj=1Top
Fori=0Ton
V(,j)=Rnd - 0.5 ‘'weight from input units to HU
Next i

Next j

Fork=1Tom
Forj=0Top
W(, k)=Rnd - 0.5 ‘weight from HU to output units
Next j

Next k

'Save initial weights as last weights file
Open "c:/a_tesis/weight.txt" For Output As #1

Fork=1Tom
Forj=0Top
Write #1, W(j, k)
Next j
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Next k

Forj=1Top
Fori=0Ton
Write #1, V(i, j)
Next 1
Next j
Close #1

End If ' end of if first run =1

'***#*****t***********#*****************#**************#****

'Load the last weights file
Open "c:/a_tesis/weight.txt" For Input As #1

Fork=1Tom
Forj=0Top
Input #1, W(j, k)
Next j

Next k

Forj=1Top
Fori=0Ton
Input #1, V(i, j)
Next i
Next j
Close #1

‘*****#*#**#************************************************

timestart = Now  'set training and testing time

Forid =1 Toiter ‘iteration or epoch loop

‘Initialize momentum term

Forj=1Top
Fori=0Ton
mom_V(i, ) =0
Next i

Next j

Fork=1Tom
Forj=0Top
mom_W(j, k)=0
Next j

Next k

Fork=1Tom

Ep(k) =0 ‘initial value for square error
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Next k

Total Ep =0 ‘initial value for total square error

'*************#********************************************

For ct = 1 To numtraindata 'loop for training data set

Form1.Caption = "ITER " & id & " Record no.: " & ct just to monitor the
training progress

Forj=1Top
del_in(j)=0 ‘initial value of delta input of hidden unit
Next j

'Feed-forward

e

'CALCULATE Y(ct,k) - network output signal

‘Calculate input signals to each hidden unit.
Forj=1Top
ZinG) = V(O, )
Fori=1Ton
Zin(j) = Zin(j) + X(ct, 1) * V(, j)
Next i

‘Apply act. fn. to compute output signal

If act_func = 1 Then Z(j) = 1 / (1 + Exp(-Zin(j))) 'if using binary sigmoid

If act_func = 2 Then Z(j) = (2 / (1 + Exp(-Zin(j)))) - 1 if using bipolar sigmoid
Next j

'Calculate input signals from HU to output units
Fork=1Tom
Yin(k) = W(0, k)
Forj=1Top
Yin(k) = Yin(k) + Z(j) * W(, k)
Next j

'Apply act. fn. to compute output signal
Ifact func=1 Then Y(ct,k)=1/(1+ Exp(-Yin(k))) if using binary
sigmoid
If act_func =2 Then Y(ct, k) =(2/(1 + Exp(-Yin(k)))) - 1 'if using bipolar
sigmoid
Ep(k) = Ep(k) + 0.5 * (T(et, k) - Y(ct, k)) * (T(ct, k) - Y(ct, k)) ‘total
square error
Total Ep = Total_Ep + Ep(k)
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Next k

'‘Backpropagation Error

'Each output unit receives a target pattern corresponding
'to the input training pattern.

'Compute error information term
Fork=1Tom
If act_func = 1 Then del_W(k) = (T(et, k) - Y(ct, k) * (Y(ct, k) - (Y(ct, k) *
(Y(et, k)))
If act_func = 2 Then del_W(k) = (T(ct, k) - Y(ct, k) *0.5*(1+Y(ct,k)*
(1-Y(cet, k)

'Calculate its weight correction term

Forj=1Top
delta_W(j, k) = alpha * del_W(k) * Z(j) + lamda * mom_W(j, k)
mom_W(j, k) = delta_W(j, k)

Next j

'Calculate bias correction term
delta_W(O, k) = alpha * del_W(k) + lamda * mom_W(0, k)
mom_W(0, k) = delta_W(0, k)
Next k

"Each HU, sums its delta inputs (from units in the layer above)
Forj=1Top
Fork=1Tom
del_in(j) = del_in(j) + del_W(k) * W(j, k)
Next k

"Multiply derivative of its act.fn. to calculate error info. term
If act_func = 1 Then del_V(j) = del_in(j) * (ZG) - (ZG)) * (ZG))

If act_func = 2 Then del_V(j) = del_in(j) * 0.5 * (1 + Z(j)) *(1-(ZG)
Next j

'Calculate its weight correction term
Forj=1Top
Fori=1Ton
delta_V(i, j) = alpha * del_V(j) * X(ct, i) + lamda * mom_V(, j)
mom_V(i, j) = delta_V(i, j)
Next i
delta_V(0, j) = alpha * del_V(j) + lamda * mom_V(0, j)
mom_V(0, j) = delta_V(0, })
Next

'Update weights and bias
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Fork=1Tom

Forj=0Top

W(, k) = W(, k) + delta_W(j, k)
Next j

Next k

Forj=1Top

Fori=0Ton

V(, j) = V(, j) + delta_V(, j)
Next i

Next j

Next ¢t 'Go to next pattern
tmse = Total Ep /m/numtraindata '"Total Mean Square Error
If tmse < limit Then id = iter  'Stopping condition

' Debug.Print tmse

Nextid 'Go to next iteration or epoch
'#**************#*********************************##**************

*

'Save current weights as last weights file
Open "c:/a_tesis/weight.txt" For Output As #1

Fork=1Tom
Forj=0Top
Write #1, W(j, k)
Next j
Next k

Forj=1Top
Fori=0Ton
Write #1, V(4, j)
Next i
Next }

Close #1

’**********************************#***********#******************

Fork=1Tom
count_train(k) =0
count_test(k) =0
Next k
count_error =0

maxx =0

For dt = 1 To numdata
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'CALCULATE PERFORMANCE

'STEP 5: Calculate input signals to each hidden unit.

Forj=1Top
ZinGj) = V(0, )
Fori=1Ton
Zin(j) = Zin(j) + X(dt, 1) * V(@, j)
Next i

‘Apply act. fn. to compute output signal (binary sigmoid)

Ifact func=1ThenZ(G)=1/(1+ Exp(-Zin(j)))

If act_func =2 Then Z(G)=(2/(1+ Exp(-Zin(j)))) - 1
Next j

'STEP 6: Calculate input signals from HU to output units
Fork=1Tom
Yin(k) = W(0, k)
Forj=1Top
Yin(k) = Yin(k) + Z() * W(, k)
Next j

*Apply act. fn. to compute output signal (binary sigmoid)
Ifact func=1Then Y(dt,k)=1/(1+ Exp(-Yin(k)))
If act_func =2 Then Y(dt, k) =(2/(1 + Exp(-Yin(k)))) - 1

'To count correct training data
If dt <= numtraindata Then
If Abs(T(dt, k) - Y(dt, k)) < acc(k) Then
count_train(k) = count_train(k) + 1
End If
Else
'To count correct testing data
If Abs(T(dt, k) - Y(dt, k)) < acc(k) Then
count_test(k) = count_test(k) + 1
End If
End If

‘Calculate absolute error

per_error = Abs(T(dt, k) - Y(dt, k))

count_error = count_error + per_error
Next k

Next dt

Fork=1Tom

per_train_correct(k) = count_train(k) / numtraindata * 100
per_test_correct(k) = count_test(k) / (numdata - numtraindata) * 100

Next k
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Debug.Print "% Training correct”, per_train_correct(1); per_train_correct(2);
per_train_correct(3), per_train_correct(4)

Debug, Print "% Testing correct ", per_test_correct(1), per_test_correct(2),
per_test_correct(3), per_test_correct(4)

per_predict = (1 - (count_error / m) / numdata) * 100 'percentage of prediction
based on absolute error
Debug Print "% of Prediction ", per_predict

timestop = DateDiff("s", timestart, Now) 'stop training and testing time
Debug, Print "time taken (s) =", timestop

'*****************#**********#***************#**

'Save last weights as the best weight file
Open best_wt_file$ For Output As #1
Fork=1Tom
Forj=0Top
Write #1, W(j, k)
Next j
Next k

Forj=1Top
Fori=0Ton
Write #1, V(4, j)
Next 1
Next j

Close #1

'*********************#****************************t***********

Fori=1 To 100' Loop 3 times.

Beep 'Sound a tone just to alert that training complete
Next i
’*******#****************************#*******#*******#*********

End ‘end of program
End Sub
Private Sub Command2_Click()

End
End Sub
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Appendix C Program codes of Concrete Design System
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** Program of Predict Concrete Mix *
03 s sk e o e ok e ok ok ok ok ok o ok stk stk ook ek ke kb Rk ok ok ok

Private Sub Command1_Click()
Dim X(), TO, VO, W(), Zin(), Z(), Yin(), Y(), bin(), acc)

n=7
p=25
m=4

ReDim X(n), Y(m * 4), bin(m * 4), acc(m * 4)
ReDim V(n + 1, p), W(p + 1, m), Zin(p), Z(p), Yin(m)

X1 = Val(grade)

If X1 >= 25 And X1 <= 70 Then

X(1) = (X1 -25) /(70 - 25)

Else: MsgBox "Concrete grade only between 25 to 70"

Errors = 1

End If

X2 = Val(defect)

If X2 >= 0 And X2 <= 10 Then

X(2)=X2/10

Else: MsgBox "Proportion defective only between 0% to 10%”"
Errors = 1

End If

X3 = Val(std)

If X3 >= 4 And X3 <=8 Then

X3)=(X3-4)/(4)

Else: MsgBox "Standard deviation only between 4 N/mm2 to 8 N/mm2", X1
Errors = 1

End If

X6 = Val(aggsize)

If X6 >= 10 And X6 <= 40 Then

X(6) = X6/ 40

Else: MsgBox "Maximum aggregate size only between 10mm to 40mm", X1
Errors = 1

End If

X7 = Val(passing)

If X7 >= 0 And X7 <= 100 Then

X(7)=X7/100
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Else: MsgBox "% of fine aggregate passing 600micron seive only between 0% to
100%", X1

Errors = 1

End If

If Option1.Value Then X(4) = 1

If Option2. Value Then X(4) =0

If Option1.Value = False And Option2. Value = False Then
MsgBox "Please specify Aggregate type"

Errors = 1

End If

If Option3. Value Then X(5) = 0

If Option4. Value Then X(5) = 0.3333

If OptionS. Value Then X(5) = 0.6667

If Option6.Value Then X(5) =1

If Option3. Value = False And Option4.Value = False And Option5 Value = False
And Option6.Value = False Then

MsgBox "Please specify Slump”

Errors = 1

End If

If Errors = 1 Then
Form3 Hide
Form3.Show

Else

Errors =0

bin(1) =28
bin(2) = 65
bin(3) = 52
bin(4) = 70

Fori=1To4
acc(i) = 1/ bin(i)
Next i

'‘Load weight file

Open "c:/a_tesis/mix25.txt" For Input As #1
'********************#*********#***#****#**************t****

Fork=1Tom
Forj=0Top
Input #1, W(j, k)
Next j
Next k

Forj=1Top
Fori=0Ton



Input #1, V(, j)
Next i
Next j

Close #1

'Calculate input signals to each hidden unit.

.

Forj=1Top
Zin(j) = V(0, j)
Fori=1Ton
Zin(j) = Zin(j) + X(i) * V(, j)
Next i

'Apply act. fn. to compute output signal (binary sigmoid)
Z@G) =1/ +Exp(-Zin(j)))

Next j

'Calculate input signals from HU to output units

Fork=1Tom
Yin(k) = W(0, k)
Forj=1Top
Yin(k) = Yin(k) + Z(j) * W(, k)
Next j

‘Apply act. fn. to compute output signal (binary sigmoid)
Y(k) = 1/ (1 + Exp(-Yin(k)))

'Classification

For ¢ = 1 To bin(k)

'‘Output 1

If Y(1) <acc(1) * ¢ And k = 1 Then
wclow =(c- 1) * 5+ 115
wchig=c*5+115
Textl = wclow
Text2 = wchig
¢ =bin(1)

End If

'Output 2
Y(2) <acc(2) * c And k =2 Then
cementlow = (¢ - 1) * 10 + 185
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cementhig =c * 10+ 185
Text3 = cementlow
Text4 = cementhig
¢ =bin(2)

End If

If Y(3) <acc(3) * ¢ And k = 3 Then
sandlow = (¢ - 1) * 20 + 240
sandhig = ¢ * 20 + 240
Text5 = sandlow
Text6 = sandhig
¢ =bin(3)

End If

‘Output 4

e e s e

If Y(4) <acc(4) * ¢ And k = 4 Then
agglow = (¢ - 1) * 20 + 420
agghig = ¢ * 20 + 420
Text7 = agglow
Text8 = agghig
¢ = bin(4)

End If

Next ¢

Next k

End If

End Sub

Private Sub Command2_Click()
PrintForm
End Sub

Private Sub Command3_Click()
Unload Me

Form1.Show

End Sub
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** Program of Pridict Concrete Strength *
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Private Sub Command1_Click()
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PrintForm
End Sub

Private Sub Command2_Click()
Dim X(), TQ, V(), WO, Zin(), Z(), Yin(), Y(), bin(), acc()

i

10
5
1

g5 =

ReDim X(n), Y(m), bin(m), acc(m)
ReDim V(n + 1, p), W(p + 1, m), Zin(p), Z(p), Yin(m)

X1 = Val(defect)

If X1 >= 0 And X1 <= 10 Then

X(1)y=X1/10

Else: MsgBox "Proportion defective only between 0% to 10%"
Errors = 1

End If

X2 = Val(std)

If X2 >= 4 And X2 <=8 Then

X(2)=(X2-4)/(4)

Else: MsgBox "Standard deviation only between 4 N/mm2 to 8 N/mm2", X1
Errors = 1

End If

X5 = Val(aggsize)

If X5 >= 10 And X5 <= 40 Then

X(5)=X5/40

Else: MsgBox "Maximum aggregate size only between 10mm to 40mm", X1
Errors = 1

End If

X6 = Val(passing)

If X6 >= 0 And X6 <= 100 Then

X(6) = X6/ 100

Else: MsgBox "% of fine aggregate passing 600micron seive only between 0% to
100%", X1

Errors = 1

End If

X7 = Val(wc)

If X7 >= 115 And X7 <= 250 Then

X(7)=(X7-115)/(250 - 115)

Else: MsgBox "Water content only between 115kg to 250kg", X1
Errors = 1

End If

X8 = Val(Cement)

If X8 >= 185 And X8 <= 834 Then

X(8) = (X8 - 185.4839) / (833.3333 - 185.4839)

Flse: MsgBox "Cement content only between 185kg to 834kg", X1
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Errors = 1

End If

X9 = Val(sand)

If X9 >= 242 And X9 <= 1265 Then

X(9) = (X9 - 242.6667) / (1264.4306 - 242.6667)

Else: MsgBox "Fine aggregate content only between 242kg to 1265kg", X1
Errors = 1

End If

X10 = Val(cagg)

If X10 >= 420 And X10 <= 1809 Then

X(10) = (X10 - 420)/ (1808.8 - 420)

Else: MsgBox "Course aggregate content only between 420kg to 1809%g", X1
Errors = 1

End If

If Optionl.Value Then X(3) = 1

If Option2.Value Then X(3) =0

If Option1.Value = False And Option2.Value = False Then
MsgBox "Please specify Aggregate type"

Errors = 1

End If

If Option3.Value Then X(4) =0

If Option4.Value Then X(4) = 0.3333

If Option5.Value Then X(4) = 0.6667

If Option6.Value Then X(4) = 1

If Option3. Value = False And Option4. Value = False And Option5.Value = False
And Option6. Value = False Then

MsgBox "Please specify Slump"

Errors = 1

End If

If Errors = 1 Then
Form2 Hide
Form2.Show

Else

Errors =0

bin(1) = 10
Fori=1Tom

acc(i) = 1/ bin(1)
Next i

Yo 3k e S o o ok o0 ok 2K ok ok sk ok o5 o ok Aok S 3B o ok ok e ok ke ok ok 2K oK ok e ok ol ke ok e e o ok e ok ok o sk ok ok ok sk ok Bk R ok Ok

'‘Load weight file

Open “c:/a_tesis/fgrade.txt" For Input As #1

68




Fork=1Tom
Forj=0Top
Input #1, W(j, k)
Next j
Next k

Forj=1Top
Fori=0Ton
Input #1, V(i, j)
Next i
Next j

Close #1

‘Calculate input signals to each hidden unit.

Forj=1Top
Zin(j) = V(0, ))
Fori=1Ton
Zin(j) = Zin(§) + X(@) * V(, )
Next i
'Apply act. fn. to compute output signal (binary sigmoid)
Z@G) = 1/ (1 + Exp(-Zin(j)))
Next j

'Calculate input signals from HU to output units

Fork=1Tom
Yin(k) = W(0, k)
Forj=1Top
Yin(k) = Yin(k) + Z(j) * W(, k)
Next j

‘Apply act. fn. to compute output signal (binary sigmoid)
Y(k) = 1/(1 + Exp(-Yin(k)))

'Classification

For ¢ =1 To bin(k)
If Y(1) <acc(l) * ¢ And k=1 Then
grade=(c-1)*5+25
¢ = bin(k)
End If

Next ¢

Next k
End If
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End Sub

Private Sub Command3_Click()
Unload Me
Form1.Show

End Sub
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User’s Manual



Appendix D User’s Manual

1.0

2.0

Main Menu of Concrete Design System
¢ Click Predict Concrete Mix to find the mixes of concrete or
¢ Click Predict Concrete Strength to find the concrete strength

Predict Concrete Mix

¢ The screen below will appeared after you choose “Predict Concrete
Mix” button.

¢ Enter all the parameters required in order to get the prediction result
for mix of 1m3 of concrete.

¢ Then click “Start Prediction”.

b w Piestict Concrete

71




¢ Ifthe invalid values are entered, the following messages will appeared:

¢ The prediction result will only appeared if the entered values are valid.
The following is example of the prediction result of concrete mix.
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3.0 Predict Concrete Strength
¢ The screen below will appeared after you choose “Predict Concrete
Strength” button.

¢ Once again enter all the parameters required and then click “Start
Prediction”

o
4

¢ The above messages and the additional messages below, will appeared
if the invalid values are entered.

73




¢ The prediction result will only appeared if the entered values are valid.
The following is example of the prediction result of concrete strength.
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