

**DESIGN OF NORMAL CONCRETE MIXES USING NEURAL NETWORK
MODEL**

A thesis submitted to the Graduate School in partial
fulfillment of the requirements for the degree
Master of Science (Information Technology),
Universiti Utara Malaysia

by
Mohd Dzulkonnain bin Abu Bakar

**Sekolah Siswazah
(Graduate School)
Universiti Utara Malaysia**

**PERAKUAN KERJA KERTAS PROJEK
(Certification of Project Paper)**

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

MOHD DZULKONNAIN BIN ABU BAKAR

calon untuk Ijazah Sarjana Sains (Teknologi Maklumat)
(candidate for the degree of) _____

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

DESIGN OF NORMAL CONCRETE MIXES USING NEURAL NETWORK MODEL

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan,
dan meliputi bidang ilmu dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia
(Name of Supervisor) : Prof. Ir. Dr. Che Sobry Abdullah / Puan Fadzilah Siraj

Tandatangan
(Signature)

:

Tarikh
(Date)

: 19/11/2006

**GRADUATE SCHOOL
UNIVERSITI UTARA MALAYSIA**

PERMISSION TO USE

In presenting this project in partial fulfilment of the requirements for a postgraduate degree from the Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this project or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project paper.

Requests for permission to copy or to make other use of material in this project in whole or in part should be addressed to:

**Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman**

ABSTRAK (BAHASA MALAYSIA)

Faktor terpenting dalam menentukan kualiti konkrit ialah kekuatannya. Untuk mencapai kekuatan yang dikehendaki, nisbah bahan-bahan dalam konkrit seperti air, simen, pasir dan batu baur hendaklah dikenalpasti. Kaedah rekabentuk campuran yang ada pada masa kini seperti kaedah ACI dan DoE yang melibatkan banyak pengiraan, carta rekabentuk dan jadual adalah rumit serta panjang. Tujuan projek ini adalah untuk membina satu kaedah rekabentuk campuran konkrit lebih mudah dan umum dengan menggunakan teknik rangkaian neural. Tatacara untuk membina model rangkaian neural menggunakan rangkaian perambatan balik dan beberapa isu berkaitan dengan penyediaan data, dibincangkan bagi membantu pembangunan aplikasi yang berkesan. Dapatan projek ini menunjukkan bahawa aplikasi rangkaian neural mampu menyediakan penyelesaian kepada masalah kejuruteraan awam, terutamanya dalam merekabentuk campuran konkrit .

ABSTRACT

The most important factor in determining the quality of concrete is its strength. In order to achieve the required strength, a right proportion of materials in concrete such as water, cement, sand and course aggregate, need to be identified. The present mix design methods such as **ACI** and **DoE** methods, which involve numerous calculations, design charts and table look-up are seem to be tedious and lengthy. The purpose of this project is to develop a simpler and generalized concrete mix design method using neural network techniques. A procedure for developing neural network models using back propagation networks is presented, and a number of issues related to data preparation are described to facilitate the development of efficient application. The findings of this project show that the application of neural network is capable of providing solutions to the civil engineering problem, particularly in designing the concrete mixes.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful. Praise be to Allah the Cherisher and Sustainer of the world. Many thanks to Allah for giving opportunity to me to broaden my academic horizons, which would be useful for the benefit of humankind.

The completion of this project has a special meaning in my life. Therefore I would like to express my gratitude to all these people who have spent their energy and time to assist me in this work.

First of all, my greatest thanks goes to my supervisors Prof. Ir. Dr. Che Sobry Abdullah and Puan Fadzilah Siraj for their close guidance, valuable criticism, advice and technical support in completion of the project and writing this report.

The completion of this project is also due to the hope, prayer and support of my beloved wife Hanissah A. Razak and my children Muhammad Farhan, Muhammad Ariff and new born Muhammad Zikry as a source of inspiration to complete this project on time.

TABLE OF CONTENTS

	Page
PERMISSION TO USE	i
ABSTRACT (BAHASA MALAYSIA)	ii
ABSTRACT (ENGLISH)	iii
ACKNOWLEDGEMENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
CHAPTER ONE : INTRODUCTION	1
1.1 Problem Statement	3
1.2 Objectives	4
1.3 Scope of the Project	4
1.4 Significance of the Project	5
CHAPTER TWO : NEURAL NETWORK	
2.0 Overview	7
2.1 What is a Neural Network	7
2.2 Neural Network Models	11
2.3 Back Propagation Neural Network	13
2.3.1 Back Propagation Algorithm	14
2.3.2 Activation Function for Back Propagation Network	16
CHAPTER THREE : LITERATURE REVIEW	
3.0 Overview	19
3.1 Neural Network Application in Civil Engineering	19
3.2 Other Artificial Intelligence (AI) Application in Civil Engineering	21

3.3	Existing Method in Designing Concrete Mixes	22
3.4	Statistical Approach in Designing Concrete Mixes	23
CHAPTER FOUR : PROJECT METHODOLOGY		
4.0	Overview	25
4.1	Designing Neural Network Architecture	26
4.2	Data Preparation	27
4.2.1	Generation of Raw Data	29
4.2.2	Data Cleansing	33
4.2.3	Data Selection	33
4.2.4	Data Preprocessing	35
4.2.5	Data Representation	37
4.2.6	Data Randomization and Segmentation	38
4.3	The Development of Neural Network Simulator	38
4.4	Neural Network Training and Testing	40
4.5	The Development of Concrete Design System	42
CHAPTER FIVE : RESULTS AND DISCUSSIONS		44
CHAPTER SIX : CONCLUSION AND RECOMMENDATION		50
BIBLIOGRAPHY		51
APPENDICES		
Appendix A	Sample of Raw Data	54
Appendix B	Program Codes of Neural Network Simulator	55
Appendix C	Program Codes of Concrete Design System	63
Appendix D	User's Manual	71

LIST OF TABLES

	Page
Table 2.1 Neural network models and their functions	13
Table 4.1 Representation of input variables	37
Table 4.2 Representation of output variables	37
Table 5.1 Selection of the hidden units in the network to predict concrete mix	44
Table 5.2 Selection of training data set for the network to predict concrete mix	45
Table 5.3 The best performance of the network in predicting the concrete mix	46
Table 5.4 Selection of the hidden units in the network to predict concrete strength	47
Table 5.5 Selection of training data set for the network to predict concrete strength	47
Table 5.6 The best performance of the network in predicting the concrete strength	48
Table 5.7 Final Neural Network Model for Prediction of Concrete Mix	48
Table 5.8 Final Neural Network Model for Prediction of Concrete Strength	49

LIST OF FIGURES

	Page
Figure 2.1 A biological neuron	8
Figure 2.2 An artificial neuron	9
Figure 2.3 Typical structure of neural network	10
Figure 2.4 Back propagation algorithm.	15
Figure 2.5 Back-propagation neural network architecture	16
Figure 4.1 Data preparation process	28
Figure 4.2 Flow chart of Neural Network Simulator	39
Figure 4.3 Flowchart of Concrete Design System	43

CHAPTER 1

INTRODUCTION

Concrete becomes a material that literally forms the basis of our modern society and until today, concrete is the most widely used man-made construction materials. Most of all buildings, drains, dams, piles and bridges are made of concrete, including some portions of highways. Concrete structures are everywhere. Concrete offers a lot of advantages such as the ability to cast, economical, durable, fire resistant, on-site fabrication and aesthetic properties (Sidney and Young, 1981).

Due to lots of usage and its importance especially in civil and construction engineering, there are needs to fully utilize or optimize the capabilities of the concrete. As higher and higher performance is sought from concrete, obtaining the proper mixture proportion to achieve specific objectives is becoming more difficult (Simon, *et al.*, 1999). It has to be designed with the correct mixture in such a way that it can perform to the required strength, durability, workability, safety, economics and other specified elements. Durability is the ability of concrete to withstand the conditions for which it has been designed, without deterioration over a period of years. Meanwhile, the workability is the ability of concrete to compact and easy to work with.

The contents of
the thesis is for
internal user
only

Bibliography

Abdullah, C.S., Abu Bakar, A. and Yusuf, Y. (2000), *Neural Network Modelling for In-Situ Concrete Strength*, , Proceedings of the 4th Asia-Pacific Structural Engineering and Construction Conference, Kuala Lumpur, pages 223-236.

ACI 211.1-91 (1994), *Standard practice for selecting proportions for normal, heavyweight, and mass concrete*, ACI Manual of Concrete Practice, Part 1: Materials and General Properties of Concrete, Detroit, Michigan.

Amini, F., Chen, H.M., Qi, G.Z. and Yang, C.S. (1997), *Generalized Neural Network Based Model for Structural Dynamic Identification, Analytical and Experimental Studies*, in Proceeding of the 1997 IASTED International Conference on Intelligent Information System (IIS '97)
<http://www.computer.org/proceedings/iis/8218/82180138abs.htm>

Awad, E.M., (1996), *Building Expert System – Principles, Procedures, and Applications*, West Publishing.

Bigus, J.P. (1996), *Data Mining with Neural networks: Solving Business Problems - from application development to decision support*, McGraw Hill, New York

Che Wan Putra, C.W.F, Abd Majid, M.Z. and Kasim, N. (2000), *Integrating Construction Scheduling and Knowledge-based Systems for Generating Material Scheduling*, Proceedings of the 4th Asia-Pacific Structural Engineering and Construction Conference, Kuala Lumpur, pages 51-57.

Department of the Environment, (1988), *Design of Normal Concrete Mixes*, Building Research Establishment, U.K.

Freeman, J. A. & Skapula, D. M. (1992). *Neural Networks: Algorithms, Applications and Programming Techniques*, Addison-Wesley Publishing Company, New York.

Fausett, L. (1994), *Fundamentals of Neural Networks: Architectures, Algorithms and Applications*, New Jersey: Prentice Hall

Gambhir, M.L. (1995), *Concrete Technology*, McGraw-Hill, New York.

Hadi, M.N.S. (2000), *Optimum Design of Reinforced Concrete T Beams by Genetic Algorithms*, , Proceedings of the 4th Asia-Pacific Structural Engineering and Construction Conference, Kuala Lumpur, pages 161-168.

Hegazy, T., Tully, S., and Marzouk, H. (1998), *A neural network approach for predicting the structural behavior of concrete slabs*, Canadian Journal of Civil Engineering, Volume 25, Number 4, pages 668-677

Hsu, K.L., Gupta, H.V. and Sorooshian, S. (1993), *Artificial Neural Network Modeling Of The Rainfall-Runoff Process*, Water Resources Research, 29 (4), pages 1185-1194.

Hsu, D.S. and Tsai, C.H. (1997), *Reinforced concrete structural damage diagnosis by using artificial neural network*, in Proceeding of the 1997 IASTED International Conference on Intelligent Information System (IIS '97)
<http://www.computer.org/proceedings/iis/8218/82180149abs.htm>

Hung, S.L. and Jan, J.C. (1997), *Machine learning in engineering design- an unsupervised fuzzy neural network case-based learning model*, in Proceeding of the 1997 IASTED International Conference on Intelligent Information System (IIS '97)

Luger, G.F. and Stubblefield, W.A. (1998), *Artificial Intelligence: Structures and Strategies for Complex Problem Solving*. Addison Wesley.

McCulloch, W.S. and Pitts, W. *A logical calculus of the ideas imminent in nervous activity*. In Schalkoff, R.J., editor, *Artificial Neural Network*, pages 74-75, McGraw-Hill.

Neville, A.M. (1995), *Properties of Concrete*, Longman, England.

NSERC, (1996), *Optimization of Concrete Mix Performance/Production*, Alberta Construction Industry Research Chair, University of Alberta.
<http://cem.civil.ualberta.ca/Research/concrete-mix-design-summary.htm>

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1996), *Learning internal representations by error propagation*. In Bigus J.P., editor, *Data Mining with Neural Network*, page 69, McGraw-Hill

Schalkoff, R.J. (1997), *Artificial Neural Network*, McGraw-Hill, New York.

Sidney, M. and Young, J.F. (1981), *Concrete*, Prentice Hall.

Simon, M.J., Lagergreen, E.S. and Sayder, K.S. (1997), *Concrete Mixture Optimization using Statistical Mixture Design Methods*, Proceedings of the PCI/FHWA International Symposium on High Performance Concrete, New Orleans, Luisiana. Pages 230-244.

Simon, M.J., Sayder, K.S., and Frohnsdorff, G. (1999), *Concrete Durability and Repair Technology Conference*, Uni. Of Dundee, UK.

Ural, D.N. and Saka, H. (1998), *Liquefaction Assessment by Artificial Neural Networks*, in electronic journal of geotechnical engineering.
<http://geotech.civeng.okstate.edu/ejge/ppr9803/>

Welstead, S.T., (1994), *Neural Network and Fuzzy Logic Applications in C/C++*, John Wiley and Sons.

Zhao, Z. and Fan, S.C. (2000), *An Expert System for Box Girder Bridge Design*,
Proceedings of the 4th Asia-Pacific Structural Engineering and Construction
Conference, Kuala Lumpur, pages 75-81.