UTILISING 3D GAME ENGINE
TO DEVELOPING A REAL-WORLD
WALKTHROUGH-VIRTUAL REALITY
APPLICATION

A thesis submitted to the Graduate School in full fulfillment of the requirements for the degree Master of Science (Information Technology), Universiti Utara Malaysia

by
Mohd.Fairuz bin Shiratuddin

Copyright © 2000 Mohd.Fairuz bin Shiratuddin. All rights reserved.
PERAKUAN KERJA KERTAS PROJEK
(Certification of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

MOHD. FAIRUZ BIN SHIRATUDDIN

calon untuk ijazah
(candidate for the degree of) Sarjana Sains (Teknologi Maklumat)

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

UTILISING 3D GAME ENGINE TO DEVELOPING

A REAL-WORLD WALKTHROUGH—VIRTUAL REALITY

APPLICATION

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan,
dan meliputi bidang ilmu dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia
(Name of Supervisor) Prof. Madya Dr. Abdul Razak bin Yaakub

Tandatangan
(Signature)

Tarikh
(Date) 31 OKTOBER 2010
PERMISSION TO USE

In presenting this thesis in full fulfillment of the requirements for a post-graduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
ABSTRAK

Penyelidikan ini memperkenalkan suatu teknik menggunakan teknologi Enjin 3D yang wujud di dalam permainan komputer bagi membangunkan aplikasi realiti maya Walkthrough. Enjin 3D yang digunakan adalah daripada permainan komputer yang dikategorikan di dalam kumpulan First Person Shooter (FPS) computer game. Sebuah aplikasi prototaip realiti maya yang bermodelkan Masjid Sultan Badlishah di Universiti Utara Malaysia telah dibangunkan dengan menggunakan teknik ini. Ini menunjukkan elemen-elemen di dalam permainan komputer boleh digunakan untuk tujuan yang lebih serius dan selain bukan untuk hiburan semata-mata.

Teknik penggunaan enjin ini juga menjadi alternatif yang lebih baik daripada teknik realiti maya yang lazimnya digunakan iaitu Virtual Reality Modelling Language and Panoramic View yang masing-masing mempunyai kekangan tersendiri.

Empat metodologi telah digunapakai iaitu mengenalpasti enjin sesuai, membezakan ciri yang wujud di dalam FPS Game dan aplikasi Walkthrough, mengenalpasti ciri-istimewa yang terdapat di dalam FPS Game yang boleh dimasukkan ke dalam aplikasi bermodelkan Masjid Sultan Badlishah dan seterusnya pembangunan prototaip Walkthrough dengan berpandukan kepada metod yang telah dicapai sebelumnya.

Metodologi yang digunapakai telah berjaya membangunkan sebuah prototaip realiti maya yang mengeksploitasi teknologi Enjin Permainan Komputer 3D. Penggunaan teknologi ini memberikan paparan yang lebih realistik dan visual yang berkualiti yang hanya dibangunkan oleh komputer peribadi pada kos yang rendah di samping memberikan kualiti paparan yang canggih.
ABSTRACT

The research introduces methods of utilising 3D Game Engine that prevails in the First Person Shooter computer game into developing a usable real-world Walkthrough-VR application. The prototype is targeted at the lower-end of the computer consumer market whereby its operator are normally the home/office and desktop PC users.

This technique is proposed as a solution to the limitation of the widely used low cost VR technologies namely Virtual Reality Modelling Language (VRML) and 360’ Panoramic View (based on Apple QuickTime VR).

In achieving the main objectives, four methods were employed. The first was to find a suitable 3D Game Engine to developing the prototype application. The second was to find distinctive characteristics differences that are present in both FPS Game and Walkthrough-VR application. The third was to determine the added advantages that are present in the FPS Game that can be incorporated into and enhance the Walkthrough-VR application. Finally findings from the three methods were used a guide to develop the prototype.

From the successfully developed prototype, it was concluded that by utilising the 3D Game Engine technology the Walkthrough-VR experience was enhanced in terms of real-time realistic representation and good visual quality. It was proven that a good VR application could be developed using a lower cost desktop computer system where the users have the freedom to explore a visually engaging virtual environment with minimal PC requirement.
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful.

I would like to thank:

The Ministry of Science and Technology for the financial support,

The Northern University of Malaysia for the facilities and resources provided,

My supervisors, Associate Professor Dr. Abdul Razak Yaakub and Mr. Ahmad Suki Che Mohamed Arif,

The Dean, Professor Abu Talib Othman,

The ex-Dean, Associate Professor Shahrum Hashim for paving the way of the M.Sc by Research at the School of Information Technology,

Associate Professor Dr. Wan Rozaini Sheikh Osman,

My wife, Ms. Khamsila Ahmad for her love, support and expertise in building construction. My children, Hikmah, Haneef and Hidayah for their happy smiles
My sisters and brother-in-laws, Rozina and Norshudaha, Aminuddin and Shahizan.
Both my parents and parents-in-law for being there,

And all the individuals involved in the establishment of this research.

Finally Epicgames for their wonderfully created game – Unreal and the online community for the interest and support rendered.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>I</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>III</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>IV</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>IX</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>X</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XV</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION TO THE RESEARCH</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 VRML</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2 The 360° Panoramic View based on QTVR technology</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Proposed Solution – The Use of a 3D Game Engine</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER 2 INTRODUCTION TO VIRTUAL REALITY</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Definitions of VR</td>
<td>10</td>
</tr>
<tr>
<td>2.2 History of VR</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Chronology of VR Development</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Types of VR Systems</td>
<td>15</td>
</tr>
<tr>
<td>2.4.1 Immersive Systems</td>
<td>16</td>
</tr>
<tr>
<td>2.4.2 Desktop or ‘Window on World’ (WoW) VR Systems</td>
<td>18</td>
</tr>
<tr>
<td>2.4.3 Video mapping</td>
<td>18</td>
</tr>
<tr>
<td>2.4.4 Telepresence</td>
<td>19</td>
</tr>
<tr>
<td>2.4.5 Fish Tank Virtual Reality</td>
<td>20</td>
</tr>
</tbody>
</table>
2.5 Present Application of VR
 2.5.1 Architecture and Design - Computer Aided Design (CAD)
 2.5.2 Medical
 2.5.3 Education
 2.5.4 Entertainment and Leisure

CHAPTER 3 THE FIRST PERSON SHOOTER COMPUTER GAMES
 3.1 What is a Computer Game?
 3.2 What is a First Person Shooter (FPS) Game?
 3.3 History of FPS
 3.3.1 Wolfenstein 3D
 3.3.2 DOOM
 3.3.3 Quake
 3.3.4 Quake 2
 3.3.5 Unreal
 3.4 Unreal Real-World Applications
 3.5 Conclusion

CHAPTER 4 METHODOLOGIES
 4.1 Methodology 1: Determining the 3D Game Engine to be Used for
 the Research
 4.1.1 Licensing and Software Development Kit (SDK)
 4.1.2 3D API Renderers' Support
 4.1.3 Operating Platforms
 4.1.4 Frame Per Second (fps) Count Test
 4.1.5 Scripting Languages and their Expandability
 4.1.6 Lighting Effects
 4.1.7 The 3D Level Editor
 4.1.8 Skies Generation
 4.2 Methodology 2: Determination of characteristic differences
 between an FPS game and a walkthrough-VR application.
 4.2.1 Virtual Environment
 4.2.2 Immersive requirement
 4.2.3 Interactivity
4.2.4 Freedom to Explore 58
4.2.5 Participant movement speed 59
4.2.6 Violence 59
4.2.7 Time Constrain 59
4.2.8 Goals and objectives 60
4.2.9 Sound, Music and Audio Effect 60
4.2.10 Hostile and Friendly Artificial Intelligent Character 62

4.3 Methodology 3: Determination of the advantages of the FPS Game that can be added in the Walkthrough-VR Application 65
4.3.1 Fly Mode 65
4.3.2 Invincible Mode 65
4.3.3 Multi-participant Networked Capability 66
4.3.4 Real Time Computer Special Effects 66
4.3.5 Automated Flybys 66

CHAPTER 5 DEVELOPMENT OF THE WALKTHROUGH-VR APPLICATION 68

5.1 Image Snapshots 71
5.2 Measurement of the Building 72
5.3 Identification of the Interactive Elements 72
5.4 Identification of the Special Effects Elements 73
5.5 Unreal Editor Terms 75
5.6 Pre-Modelling 76
5.6.1 Patching the UnrealEd 76
5.6.2 Panoramic View References 78
5.6.3 Unit Conversion 78
5.7 Texture Preparation 79
5.7.1 Normal Seamless Texture 79
5.7.2 Masked Texture 82
5.7.3 Creating A Single Coloured Texture for the Skybox 83
5.7.4 Animated Water Textures Using the Water Engine 83
5.7.5 Importing the Water texture into UnrealEd 85
5.8 MODELLING
5.8.1 Modelling the Mosque Interior Layout
5.8.2 Placing Lights
5.8.3 Adding Actors
5.8.4 Rebuilding Geometry
5.8.5 The Chandelier
5.8.6 Creating The Arches, The Mehrab and The Pillars

5.9 APPLYING THE SPECIAL EFFECTS ELEMENTS
5.9.1 Water
5.9.2 Lamppost Lens Flares
5.9.3 Reflective and Mirrored Surfaces
5.9.4 Sky Boxes

5.10 CUSTOM SCRIPTING
5.10.1 The Weapon
5.10.2 Configuring the Unreal.ini

5.11 BACKGROUND MUSIC

5.12 MINIMUM PC REQUIREMENT (SOFTWARE RENDERING ONLY)
5.13 RECOMMENDED PC REQUIREMENT (HARDWARE RENDERING)

CHAPTER 6 DISCUSSION AND CONCLUSION

6.1 DISCUSSION

6.2 RESEARCH CONSTRAINT
6.2.1 Vertex Editing
6.2.2 Stability
6.2.3 Support or Help Files
6.2.4 In Game Elements Implementation
6.2.5 CAD files compatibility
6.2.6 Curve or Spline Editing
6.2.7 The Editing Concept

6.3 CONCLUSION

REFERENCES & BIBLIOGRAPHY
APPENDICES

APPENDIX A: THE HISTORY OF VR
APPENDIX B: LICENSE AGREEMENT
APPENDIX C: SNAPSHOTS OF 'FPS'
APPENDIX D: TYPES OF UNREAL LIGHTING
APPENDIX E: UNREAL INITIALISATION (*.INI) FILE
APPENDIX F: THE MOSQUE PANORAMIC IMAGES
APPENDIX G: UNREAL ED TOOL BUTTONS
APPENDIX H: UNREAL ED TERMS
APPENDIX I: UNREAL ED TOOL BAR
APPENDIX J: THE WATER ENGINE PROPERTIES
APPENDIX K: EQUIPMENT USED IN THE RESEARCH
LIST OF TABLES

Table 2-1 Qualitative performances of different VR systems ... 16
Table 4-1 A features summary of the three 3D game engines .. 41
Table 4-2 Comparison of Major APIs for PC 3D Graphics ... 43
Table 4-3 PC configuration to test the 3D Game Engine fps .. 46
Table 4-4 fps results in software rendering mode ... 47
Table 4-5 fps results in hardware rendering mode ... 48
Table 4-6 The 3D game engine lighting effect support .. 50
Table 4-7 Summary of Methodology 2 ... 64
Table 4-8 Summary of Methodology 3 ... 67
Table 5-1 The VRikersGame UnrealScript .. 120
Table 5-2 The new custom script to remove the weapon ... 121
Table 5-3 Unreal Engine import musical format .. 125
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>The VRML one colour shaded model of the School of Information Technology building</td>
<td>6</td>
</tr>
<tr>
<td>1-2</td>
<td>VRML non-intuitive navigation interface</td>
<td>6</td>
</tr>
<tr>
<td>1-3</td>
<td>Using Apple QuickTime VR (QTVR) for 360° panoramic view</td>
<td>6</td>
</tr>
<tr>
<td>2-1</td>
<td>Early promotional picture of the Sensorama prototype (Image source: Virtual Reality – Through the New Looking Glass - Pimental & Teixeira, 1993, pp 29)</td>
<td>14</td>
</tr>
<tr>
<td>2-3</td>
<td>Ivan Sutherland’s firstly invented HMD (Image source: Virtual Reality – Through the New Looking Glass, Pimental & Teixeira, 1993, pp 34)</td>
<td>14</td>
</tr>
<tr>
<td>2-4</td>
<td>An Immersive VR system: The PC VR System from Virtuality and IBM (Image source: Virtual Reality System – Vince, 1995, plate 4)</td>
<td>17</td>
</tr>
<tr>
<td>2-5</td>
<td>A CAVE system illustrated by Milana Huang of the Electronic Visualisation Laboratory, University of Illinois at Chicago (1997)</td>
<td>17</td>
</tr>
<tr>
<td>2-6</td>
<td>An example of a workstation based Desktop VR system (Image source: Virtual Reality Systems, Vince, 1995, pp 12)</td>
<td>18</td>
</tr>
<tr>
<td>2-7</td>
<td>An example of a Video Mapping system (Adapted from Virtual Reality – Looking Through the New Glass, Pimental & Teixeira, 1993, pp 11)</td>
<td>19</td>
</tr>
<tr>
<td>2-8</td>
<td>An example of a Telepresence system (Adapted from: Virtual Reality – Through the New Looking Glass, Pimental & Teixeira, 1993, pp 12)</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 2-11 Boeing 777 full-flight simulator with 6-DOF motion platform, panoramic collimated display, 3D sound system and force feedback flight controls (Image source: Virtual Reality Systems, Vince, 1995, plate 1) 22

Figure 3-1 Id Software Wolfenstein 3D opening splash screen image 29

Figure 3-2 Wolf 3D allowed the user to see and experience 3D virtual environment through the eyes of the game’s main character 30

Figure 3-3 Walls in Wolf 3D are always 90 degrees to each other 30

Figure 3-4 DOOM splash screen image 31

Figure 3-5 DOOM revolutionised technologies over Wolf 3D 31

Figure 3-6 Quake was the first FPS game to include full 3D environment and characters 32

Figure 3-7 Quake 2 OpenGL support provides smoother graphic as compared to its predecessor 34

Figure 3-8 Image captured from Unreal introductory sequence displays many visual improvements over the Quake 2 3D game engine 34

Figure 3-9 An early production snapshot taken from the Digitalo’s VRND project 35

Figure 3-10 The Virtual Graz depicting the use of Epicgames’s Unreal Engine 36

Figure 3-11 A sample image showing one of the streets in the Virtual Graz city, Austria 36

Figure 4-1 Genesis 3D splash screen logo 42

Figure 4-2 UnrealEd with its dynamic lighting feature 51

Figure 4-3 Quake 2 Skybox concept 53

Figure 4-4 A sample of a skybox effect in Quake 2 53

Figure 4-5 Unreal skybox concept – top wire frame view 54

Figure 4-6 Unreal skybox concept – BSP Cuts view 54

Figure 4-7 An example of Unreal multiple sky layers effect 55

Figure 4-8 Some of the computer generated textures in Unreal 56

Figure 4-9 Real world images used in the research as textures in the Walkthrough-VR prototype application 57

Figure 4-10 Unreal closed and secluded area of exploration 58

Figure 4-11 A friendly AI character in Unreal 62

Figure 4-12 One of monsters in Unreal 62

Figure 5-1 An overview of the development flow-chart 70

Figure 5-2 A sample of the Mosque’s interior panoramic image 71
Figure 5-3 Example of the unprocessed Mosque's image
Figure 5-4 Some of the Mosque fixture
Figure 5-5 Empty initial workspace in AutoDesk 3D Studio MAX
Figure 5-6 The 6 main elements surrounding the 3D Game Engine
Figure 5-7 Key spots for the panoramic images
Figure 5-8 Sample textures for the Mosque level
Figure 5-9 Importing texture into the UnrealEd
Figure 5-10 The Import Texture dialog box
Figure 5-11 The Mosque grating
Figure 5-12 The texture masking option to create the Mosque grating
Figure 5-13 Wall texture seen from a distance
Figure 5-14 Wall texture seen closely
Figure 5-15 The image size setting up in PSP of the basic animated texture image
Figure 5-16 The shade of blue water texture image
Figure 5-17 The water image was converted into Seamless Pattern.
Figure 5-18 Texture was chosen under the Browse bar
Figure 5-19 The texture import button
Figure 5-20 UnrealEd 'Import Texture' option window
Figure 5-21 The still image of the water texture
Figure 5-22 The Water texture information window
Figure 5-23 The black square box
Figure 5-24 The SourceTexture using the still water texture image
Figure 5-25 The black square was replaced by the water texture
Figure 5-26 The 'Drop Type' options PhaseSpot option was selected.
Figure 5-27 Sketch of the rooms to represent the Mosque layout
Figure 5-28 The Build a Cube brush properties window
Figure 5-29 General overview of the creation of a room in UnrealEd
Figure 5-30 The plain Mosque interior
Figure 5-31 The plain Mosque from the Top View window
Figure 5-32 Adding light to the level
Figure 5-33 The location of PlayerStart class
Figure 5-34 Adding the 'PlayerStart' class to the level and the 'PlayerStart' icon
Figure 5-35 The 'Rebuilder' window
Figure 5-36 The Mosque's chandelier brush made from 3 cylinders
Figure 5-37 The chandelier light masked texture
Figure 5-38 The chandelier as rendered by the Unreal Engine
Figure 5-39 The 2D Shape Editor option from UnrealEd menu bar
Figure 5-40 Error message generated when UnrealEd and the 2D Editor crashed
Figure 5-41 The 2D Shape Editor initial workspace
Figure 5-42 The arch wall design of the Mosque
Figure 5-43 The arch bitmap file loaded into the 2D Editor.
Figure 5-44 The arch brush being shaped in the 2D Editor
Figure 5-45 Loft → Extrude → 2D Extruder
Figure 5-46 Arch carved-like wall design
Figure 5-47 The arches in the Mosque
Figure 5-48 The real arches in the Mosque
Figure 5-49 The rotation point was relocated to the right of brush and then the revolve command was applied
Figure 5-50 The real mehrib in the Mosque
Figure 5-51 The mehrib in the Walkthrough-VR application
Figure 5-52 The main pillar
Figure 5-53 The supporting pillars
Figure 5-54 Side 2D sketch view of the Mosque pillar
Figure 5-55 The pillar brush drawn and later extruded in the 2D Editor
Figure 5-56 The resulting pillars resized and rendered
Figure 5-57 The WaterZoneInfo function
Figure 5-58 The ZoneInfo function placed inside the Mosque pool
Figure 5-59 The Water Special Brush function
Figure 5-60 The Mosque pool
Figure 5-61 The settings to achieve the lens flare effect
Figure 5-62 Marble floor shine effect
Figure 5-63 Full Mirror effect settings
Figure 5-64 Partially Reflective Surfaces effect settings
Figure 5-65 The skybox room being a separate room from the level
Figure 5-66 All the elements of the skybox
Figure 5-67 The location of the SkyZone class
Figure 5-68 The properties applied to the sky surface
Figure 5-69 The pan speed adjustment option
Figure 5-70 Hidden weapon state display in Unreal
Figure 5-71 Right-hand weapon state display in Unreal
Figure 5-72 The VRikersGame class
Figure 5-73 The location of the Level Properties command under the Menu bar
Figure 5-74 The new weapon class was used as the DefaultGameType
Figure 5-75 The Audio subsystem class
Figure 5-76 Unreal Engine musical format
Figure 5-77 Using the digital music file as the background music for the Mosque level
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVE</td>
<td>Collaborative Virtual Environment</td>
</tr>
<tr>
<td>FPS</td>
<td>First Person Shooter</td>
</tr>
<tr>
<td>fps</td>
<td>Frames per Second</td>
</tr>
<tr>
<td>QTVR</td>
<td>QuickTime Virtual Reality</td>
</tr>
<tr>
<td>VE</td>
<td>Virtual Environment</td>
</tr>
<tr>
<td>VR</td>
<td>Virtual Reality</td>
</tr>
<tr>
<td>VRML</td>
<td>Virtual Reality Modelling Language</td>
</tr>
<tr>
<td>WoW</td>
<td>Windows on World</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION TO THE RESEARCH
In the last few years, our dependency on computers has increased tremendously. The rapid development of faster microprocessors has resulted not only faster central processing units (CPU) but also faster and better graphics boards to be equipped in the computers. Hence computer graphics nowadays have been used in many forms of our lives. By the turn of the 21st century it is hard to contemplate architects, interior designers, engineers and even surgeons working without the assistance of graphics workstations. It is now possible even for the average home-user to shift into the world of computer graphics or popularly known as virtual reality. This new virtual world often make a start in the computer games domain and from there onwards it usually lasts forever (Mazuryk, 1996).

Yim (1995) defined computer games as “all types of games that can be played on an electronic device; this device can be a console machine, a coin-operated machine or a personal computer”.

Computer games have become one of most popular types of entertainment for young adults. The new generation of Americans regard computers games as part of their culture, educational and social acquaintance. The total revenue for the year 1998 alone amounted to 6.3 billion in the USA (Beckham, 1999). 90% of their households have either rented or owned a computer game (Quittner, 1999) with an average time spend of 20 minutes spent per day for playing computer games (Jensen, 1999).
Yim (1995) categorised computer games into 7 types. They are:

1. Action / Arcade
2. Strategy / War games
3. Simulation
4. Role Play Game (RPG)
5. Adventure
6. Sports
7. Educational

All computer games have engines and basically are the backbone of the games. Games that include 3D environment have 3D Game Engines behind them to take the description of 3D levels or virtual worlds. The uttermost goal of a 3D Game Engine is to generate photo-realistic images in real-time and display it on the computer monitor (Tyberghen, 1998).

The research introduces methods of utilising and applying 3D Game Engine technology, into developing a low cost but high performance Walkthrough-VR application. The 3D Game Engine used is present in the Action games' sub-category that is known as the First Person Shooter (FPS) game.

The current widely used VR technologies which are Virtual Reality Modelling Language (VRML) and QuickTime VR (QTVR) are either slow in simulating real-life walking movement or it is just simply not interactive enough. Wright (2000) describes VRML as slow in performance, awkward user interfaces (See Figure 1.2), and mediocre graphics. QTVR graphics cannot come close to the quality of the current FPS games that are already available. QTVR displays real panoramic pictures however it presents very limited movement and interactivity.

It is hoped by the end of the research, Walkthrough-VR application can be applied in many areas. The methods described in the research will encourage the use of 3D Game Engine as a tool to developing real-world Walkthrough-VR application.
1.1 OBJECTIVES

1) To utilise the FPS 3D Game Engine technology that prevails in the entertainment sector into developing usable real world Walkthrough-VR application.

2) To determine the appropriate FPS 3D Game Engine to be used in the research

3) To study the major differences between FPS 3D Game and a Walkthrough-VR application

4) To determine the features of the FPS Game that can be included into the prototype Walkthrough-VR application

5) To introduce an alternative VR technology other than the popularly known VRML and Panoramic View

6) To reconstruct an approximate 3D Model using the 3D Game Engine based on a specific building

1.2 PROBLEM STATEMENT

The VR technology has not been widely geared towards industrial and social sectors. The major hindrance is the requirement of high cost equipment. Smith (1999) reported that in the 1960's only the American Military was able to use the highly cost and sophisticated virtual simulator for their military training purposes. In contrast, nowadays, VR is widely used in the entertainment industries. As such, they produce products that mimic the military technologies, as seen in virtual rides and simulators.

The low cost and high performance aspects were not the focus of the research but their definition would help synthesize the focus of this research. Shiratuddin et al (2000:3) defines 'low cost' as affordable by the home user, which refers to a present
The contents of the thesis is for internal user only

Note: Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

137

http://www.ds.arch.tue.nl/Research/publications/marc/MarcCoomans_DDSS98.htm

http://www.agocg.ac.uk/reports/virtual/37/report37.htm

http://www.loonygames.com/content/1.16/feat/

http://jerrypournelle.com/reports/mitchell/mitchell1.html

http://www.pioneerpress.com/tech/vox/docs/014754.htm

http://www.irth.net/milo/3dgames/tech.htm

http://www.csc.liv.ac.uk/~ped/teachadmin/histsei/htmlform/lect4.html

http://syllabus.syr.edu/TRF/lpelin/TRF351/bookchapters/chapter4.htm

Epicgames Website. http://unreal.epicgames.com

http://www.gamedev.net/reference/articles/article685.asp

http://www.idsoftware.com/killer/doommac.html
ID Software (2000) Killer Games – Quake -
http://www.idsoftware.com/killer/hotquake.html

ID Software Website http://www.idsoftware.com

http://cg.cs.tu-berlin.de/~ki/engines.html

http://www.digipen.edu/homepages/alumni/1999/SJacobi/IndStudy.htm

Worlds. SAM Publishing.

http://graphics.stanford.edu/~bjohanso/telepresence/bj-telepresence.html

Kalawsky, Roy S. (1996) Exploiting Virtual Reality in Education and Training:
Technological Issues. Report prepared for the Advisory Group on Computer

Krasuski, Adam. (1999) History of FPS.
http://www.cs.twsu.edu/~wakrasu2/assignment2.html

http://www.gruntose.com/Info/Games/combative/Doom/doom.faq

http://www.gruntose.com/Info/Games/combative/Doom/dmfaq66a.txt

Licensing Information for the Genesis3D SDK. http://www.genesis3d.com/licensing.htm

Institute of Computer Graphics, Vienna University of Technology, Austria, A-1040 Karlsplatz 13/186/2.

http://www.vsmm.org/vsmm99/

http://www.zdnet.com/gamespot/stories/news/0,10870,2463249,00.html
http://www.evl.uic.edu/pape/CAVE/prog/CAVEGuide.html

http://www.evl.uic.edu/pape/CAVE/

http://www.advechip.microsoft.com/research/BARC/Gray/Morpe_Law.html

Urban, Reini. (1996) DOOM & QUAKE as Walkthrough VR. http://xarch.tu-graz.ac.at/autocad/adge/CAMP_Adge96_doom.html

Valve Software Website http://www.valvesoftware.com

http://webopedia.internet.com/TERM/r/real_time.html

http://www.whatis.com/virtualr.htm

http://www.bluetongue.com/~pang/DRAFT.html