The Development of Virtual Training Environment for Computer Parts Installation Process

Maizatul Akmal Yahaya(86521)
Supervisor: Dr. Nor Laily Hashim
Graduate Department of Information Technology College of Arts and Sciences
(Applied Science)
Universiti Utara Malaysia 06010 UUM Sintok Kedah
s86521@ss.uum.edu.my
Saya, yang bertanda tangan, memperakuan bahawa
(I, the undersigned, certify that)

MAIZATUL AHMAD ZAHAYA
(B6581)

calon untuk lizah
(candidate for the degree of) MSc. Information Technology

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

THE DEVELOPMENT OF VIRTUAL TRAINING ENVIRONMENT
FOR COMPUTER PARTS INSTALLATION PROCESS

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
and meliputi bidang lima dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelidik Utama
(Name of Main Supervisor) DR. NOR LAILY BINTI HASHIM

Tandatangan
(Signature)

Tarikh
(Date) 2015/09
Acknowledgement

I would like to take this opportunity to thank the numerous people who provided the time, advise, support and kindness towards the completion of the thesis. I am thankful to Dr. Nor Laily Hashim, my supervisor for her constant encouragement, invaluable insights and unconditional support.

Finally, I would like to acknowledge my family for the supports and love they gave when there were some of the difficult time.
Abstract

Virtual Reality-based training system (VRTS) is an advanced computer-assisted training system using Virtual Reality (VR) technology. VR is a computer generated environment which gives the illusion of three dimensions. It provides a true 3D interface to a range of computer applications. The essence of virtual reality is immersion, which is the ability to immerse the computer user in a computer generated experience.

In this project, I proposed the video based interaction in the distributed virtual training environment. To make the interaction possible, I will develop a video based using 3D software to guide customer for parts installation. The use of 3D of 3D virtual training will allow the organization to help customers to install parts in the computer will be easier and cost saving.

The proposed video will allow cost efficient video based interaction, and the discussion regarding the advantages of virtual training, limitations and possible future research on the video based interactions in the virtual environment.
TABLE OF CONTENTS

TITLE PAGE ... 1

ACKNOWLEDGEMENT ... II

ABSTRACT .. III

TABLE OF CONTENTS .. IV

LIST OF TABLES ... VII

LIST OF FIGURES ... VIII

LIST OF ABBREVIATIONS .. IX

CHAPTER 1

INTRODUCTION ... 3

1.0 Background of the Study ... 3

1.1 Motivation for the Research ... 4

1.2 Problem Statement ... 4

1.3 Research Questions .. 5

1.4 Research Objectives .. 5

1.5 Scope of the Study ... 6

1.6 Research Significance .. 6

1.7 Summary .. 7

CHAPTER 2

LITERATURE REVIEW ... 8

2.0 Introduction ... 8

2.1 The Virtual Reality Modeling Language 8

2.2 Virtual Reality System ... 10

2.3 Types of VR System .. 13

2.4 Virtual Training Environment 14

2.4.1 General Architecture ... 15

2.4.2 Human Computer Interaction 15

2.4.3 Synthetic Characters ... 15

2.5 Education in Virtual Environments 16

2.6 Realism for Virtual Environment Design 16

2.7 System Model Training .. 18

2.7.1 Advantages of System Model Training 20

2.8 Technology Acceptance Model 21

2.9 Usability Evaluation in Virtual Environments 24
APPENDICES

REFERENCES
LIST OF TABLES

Table 1.1 : Research Question Table .. 5
Table 3.1 : Likert Scale Classification .. 36
Table 5.1: General Information Data Summary .. 55
Table 5.2 : Cross tabulation Between Race and Gender ... 56
Table 5.3: Cross tabulation Between Customer Experience and Type
of Respondents .. 57
Table 5.4 : Cronbach Alpha Values for All Dimensions ... 60
Table 5.5: Descriptive Statistics for Ease of Learning ... 60
Table 5.6: Descriptive Statistics for Perceived Ease of Use ... 61
Table 5.7: Descriptive Statistics for Future Use .. 61
Table 5.8: Mean, Standard Deviation and T-test for All Measures by type of
respondents ... 63
LIST OF FIGURES

Figure 2.1 Components of a VR System ... 13
Figure 2.2 : System Model Training ... 21
Figure 2.3: Original Technology Acceptance Model (Davis, 1989) 22
Figure 2.4: An Adapted TAM model by Paul Pavlou (Pavlou, 2003) 24
Figure 3.1 : Traditional Rapid Application Development Methodology 31
Figure 3.2: Compressed phases from traditional development 32
Figure 3.3: Questionnaire Research Flow Chart 35
Figure 3.4: Timeline Schedule for Virtual Training Environment for Computer Parts Installation Process .. 39
Figure 4.1: Module of Prototype Design .. 43
Figure 4.2: Image of Laptop .. 47
Figure 4.3: Image of memory ... 47
Figure 4.4: Interface Design .. 48
Figure 4.5: The Front Image of the laptop Using 3D Studio Max 50
Figure 4.6: The Back Image of the laptop Using 3D Studio Max 51
Figure 4.7: The Image of Memory from Laptop Using 3D Studio Max 51
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR</td>
<td>Virtual Reality</td>
</tr>
<tr>
<td>VE</td>
<td>Virtual Environment</td>
</tr>
<tr>
<td>VTE</td>
<td>Virtual Training Environment</td>
</tr>
<tr>
<td>SPSS</td>
<td>A Software for Statistic Calculation</td>
</tr>
<tr>
<td>VRTS</td>
<td>Virtual Reality-based Training System</td>
</tr>
<tr>
<td>TAM</td>
<td>Technology Acceptance Model</td>
</tr>
<tr>
<td>MR</td>
<td>Mixed Reality</td>
</tr>
<tr>
<td>TRA</td>
<td>Theory of Reasoned Action</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.0 Background of the Study

Virtual Reality (VR) is the use of computer graphics system in combination with various displays and interface devices to provide the effect of immersion in the interactive 3D computer generated environment.

Research and development in VR and Virtual Environment (VE) applications can be found in many places all over the world. According to Wikipedia, VE is a "computer-based simulated environment intended for its users to inhabit and interact via avatars" (http://wapedia.mobi/en/Virtual_world). This habitation usually is represented in the form of two or three-dimensional graphical representations of humanoids (or other graphical or text-based avatars)" (Oliviera et. al., 2000). VE has many potential applications, including education, training, design and prototyping, entertainment, rehabilitation, and research. The utility of VE for many applications increases the spatial judgments which is similar to VE as in the real world (Creem-Regehr et. al. 2006). Mixed reality (MR) refers to incorporation of virtual computer graphics object into a real three dimensional scene or alternatively the conclusion of real worlds element into a virtual environment.
The contents of the thesis is for internal user only

