MODELLING AND MEASURING
STRUCTURAL COMPLEXITY OF PROLOG
PROGRAM BASED ON RULE-
DEPENDENCY

Alizam Jonie (82595)
Master of Science (Information Technology) 2005

MODELLING AND MEASURING
STRUCTURAL COMPLEXITY OF PROLOG
PROGRAM BASED ON RULE-
DEPENDENCY

This thesis is presented to Faculty of Information Technology in
fulfillment of the requirements for the degree of Master of Science
(Information Technology), Universiti Utara Malaysia

© Alizam Jonie, 2005. All rights reserved

Kami, yang bertandatangan, memperakukan bahawa

JABATAN HAL EHWAL AKADEMIK

(DEPARTMENT OF ACADEMIC AFFAIRS)

UNIVERSITI UTARA MALAYSIA

PERAKUAN KERJA/TESIS
(Certification of Thesis Work)

(We, the undersigned, certify that)

calon untuk ljazah

(candidate for the degree of)

telah mengemukakan tesis/disertasinya yang bertajuk
(has presented his/ her thesis work of the following title)

ALIZAM JONIE

SARJANA SAINS (TEKNOLOGI MAKLUMAT)

MODELLING AND MEASURING STRUCTURAL COMPLEXITY
OF PROLOG PROGRAM BASED ON RULE-DEPENDENCY

seperti yang tercatat di muka surat tajuk dan kulit tesis/disertasi
(as it appears on the title page and front cover of thesis work)

bahawa tesis/disertasi tersebut boleh diterima dari segi bentuk serta kandungan, dan
liputan bidang ilmu yang memuaskan, sebagaimana yang ditunjukkan oleh calon dalam
ujian lisan yang diadakan pada : 16 Ogos 2005

(that the thesis/ dissertation is acceptable in form and content, and that a satisfactory
knowledge of the field covered by the thesis was demonstrated by the candidate through an

oral examination held on

Pengerusi Viva |
(Chairman for Viva)

- Pemeriksa Luar
~ (External Examiner)

Pemeriksa Dalaman
(Internal Examiner)

Penyelia Utama
(Principal Supervisor)

Dekan, Fakulti
Teknologi Maklumat
(Dean, Faculty of
Information Technology)

Tarikh
(Date)

Prof. Madya Dr. Suhaidi
Hassan

Dr. Azuraliza Abu Bakar

Prof. Madya Dr. Zulikha
Jamaluddin

Prof. Madya Dr. Zulkhairi
Md. Dahalin

Prof. Madya Dr. Zulkhairi
Md. Dahalin

16 OGOS 2005

Tandat R
(Signature el

) -

Tandatangan: OA

(Signature)

Tandatangan:
(Signature)

Tandatangan: W -
(Signature)

Tandatangan: P
(Signature)

P

Y

PERMISSION TO USE

In presenting this thesis as major requirements for a post-graduate degree from
Universiti Utara Malaysia, I agree that the University Library may make it freely
available for inspection after being submitted for a year. 1 further agree that
permission for copying of this thesis in any manner, in whole or in part, for scholarly
purposes may be granted by my supervisor or, in his absence, by the Director of
Center for Graduate Study. It is understood that any copying or publication or use of
this thesis or parts thereof for financial gain shall not be allowed without my written
permission. It is also understood that recognition shall be give to me and to
Universiti Utara Malaysia for any scholarly use, which may be made of any material

from my thesis.

Request for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Faculty of Information Technology
Universiti Utara Malaysia
06010 Sintok
Kedah Darul Aman
MALAYSIA

ii

EXECUTIVE SUMMARY

This thesis describes modelling and measuring structural complexity measure of
Prolog program based on rule-dependency. Rule-dependency can be defined as
relationships or interaction between rules. Usually, Prolog program is constructed by
rules. These rules are Horn clause subset of the clausal form of first-order predicate
logic. It is believed that rule-dependency is significant element of complexity and
this research investigates to corroborate the claim especially on how rule dependency
can be used to model and measure Prolog’s structural complexity. This research is
motivated by the lack of measures developed for Prolog due to the implicit control
flow and construct. This lack of explicit control flow and constructs precludes in
adapting conventional measures to Prolog program. This thesis shall present models
that can be used to partially solve this problem that can enabled direct application of
existing measures to Prolog program. To do measurement four criteria are explicitly
defined: (1) attribute of entity, (2) abstraction or model, (3) ordering relationships,
and (4) order-preserving mapping. These criteria are based on representational
approach of measurement theory. The model Prolog’s control flow and construct are
modelled in the second criteria, while the measure is achieved by completing the

process from identification of entity and attribute into numbers.

iii

RINGKASAN EKSEKUTIF

Tesis ini menghuraikan permodelan dan pengukuran kekompleksan struktur aturcara
Prolog berdasarkan pergantungan aturan. Pergantungan aturan boleh didefinisikan
sebagai hubungan atau interaksi di antara aturan-aturan. Pada kebiasaannya, aturcara
Prolog dibangunkan mengunakan aturan-aturan. Aturan-aturan ini merupakan klausa
Horn subset kepada clausal form of first-order predicate logic. Adalah dipercayai
bahawa pergantungan aturan adalah elemen penting kompleksiti dan tesis ini
menyediakan bukti sokongan kepada dakwaan tersebut terutama sekali bagaimana
pergantungan aturan boleh digunakan untuk memodel dan mengukur kekompleksan
struktur aturcara Prolog. Penyelidikan ini didorong oleh kekurangan ukuran-ukuran
yang dibangunkan khas untuk Prolog, berikutan kawalan aliran dan struktur Prolog
yang tidak jelas. Masalah ini mengakibatkan, adaptasi ukuran sedia ada terus ke
aturcara Prolog tidak dapat dilaksanakan. Tesis ini akan menghuraikan model-model
yang digunakan untuk menyelesaikan sebahagian daripada masalah ini yang
membolehkan aplikasi terus ukuran-ukuran sedia ada kepada Prolog. Untuk
membuat pengukuran empat kriteria diambil kira: (1) atribut sesuatu entiti, (2)
abstrak atau model, (3) hubungan tatasusunan, dan (4) order-preserving mapping.
Kriteria-kriteria ini berdasarkan interpretasi teori pengukuran berdasarkan
pendekatan perwakilan. Model aliran kawalan dan struktur Prolog diketengahkan
dalam kriteria kedua, sementara ukuran pula diperoleh dengan identifikasi atau

takrifan kepada setiap kriteria.

iv

ACKNOWLEDGEMENT

Praise be to Allah S.W.T for blessing me with healthiness and awareness in

completing this thesis.

Firstly I would like to thank my supervisor, Prof Madya Dr. Zulkhairi Md Dabhlin, for
steering me in the right direction and for always making the time to help me

throughout the development of this work.

Thanks to all my research colleagues at the School of Information Technology of
University Utara Malaysia for their friendship and for providing an environment
where | could learn so much, bird of the feathers: Mazlyda, Rohaya, Siti Salmah,
Adillah, Nurasiah, Noorul, Aida Liza, Izhar, Zuraidy, Mahyuddin, Farkhana, Mohd
Fadhli, Zulhazlin, Mohd Zaidil, Noraina, Rokiyah and Nurmayani. Also thanks to all
my friends who keep me sane throughout this period particularly: Syamsul Bahrin,

Harryizman and Zainizam.

Special thanks are due to Wan Hussain for giving me a knock in the head to stop me
from being mad scientist and for the time to discuss the difficult-to-grasp matters.
Also special thanks to Shair Abdullah, Austin Melton, Norman Fenton, Trevor
Moores, Valerie Barr, Steve Worthington, and John McDermid for helping me with

the book, article and idea that I certainly needed for the research.

Finally, [would like to thank my parents, Jonie Awang and Siti Latiah Serin, and my
Brothers, Firdaus and Mohd Syufaat. Their continued encouragement and support

has made the task of completing this thesis possible.

In for a penny, in for a pound.

TABLE OF CONTENTS

Page
Permission to Use ii
Executive Summary iii
Ringkasan Eksekutif iv
Acknowledgement v
Table of Contents vi
List of Tables viii
List of Figures ix
List of Symbols and Abbreviations Xi
CHAPTER ONE INTRODUCTION 1
1.1 Problem Statements 2
1.2 Research Objectives 4
1.3 Research Method 5
1.4 Research Scope and Focus 6
1.5 Research Significance 9
1.6 Outline of Thesis 10
CHAPTER TWO STRUCTURAL COMPLEXITY: MODEL AND 11
MEASURE
2.1 Measurement, Measure and Model ' 11
22 Software Measurement 13
23 Methodology for Software Measurement 14
24 Structural Complexity: Definition and Concept 18
2.5 Conventional Model and Measure of Structural 23
Complexity
2.6 Prolog’s Control Flow and Construct 28
2.7 Rule-Dependency 30
2.8 Summary 38

vi

CHAPTER
THREE
3.1
32
33
34
3.5

CHAPTER FOUR

4.1

4.2

4.3

CHAPTER FIVE

5.1
52
5.3
54

REFERENCES
APPENDIX A
APPENDIX B
APPENDIX C

SOFTWARE MEASUREMENT
METHODOLOGY

Definition of Entity and Attribute
Selection of a Model

Specification of Ordering Relationships
Definition of Order-preserving Function

Summary

MODELLING AND MEASURING
STRUCTURAL COMPLEXITY FOR PROLOG
PROGRAM

Structural Complexity Model

4.1.1 Extended AND/OR Graph

4.1.2 Prime Decomposition Trees

Structural Complexity Measure

4.2.1 Ordering Relationships and Number
Assignments

422 Order-preserving Function

Summary

DISCUSSIONS, CONCLUSIONS, AND FUTURE
WORKS

Modeling Prolog’s Structure

Structural Complexity Measure

Conclusions

Future Works

vii

40

42
44
45
48
50

51

51
54
58
63
65

67
70

72

74

79

87
89

90

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Table 3.1

Table 3.2

Table 3.3

Table 4.1

Table 5.1

Table 5.2

Table 5.3

Table 5.4

LIST OF TABLES

Definition of Measurement, Measure and Model.
Definitions.
Rule-firing, Rule-dependency, and Rule-firing Order.

Differences Application of Extended AND/OR Graph of Two
McCauley and Edwards, and Moores.

Measurement Methodology.
Description of Relation Applied in Ordering.
Summary of Type of Scale.

Basic Extended AND/OR Graph of Prolog.

Program’s Description.
Value of Structural Complexity of m(F).

Value of m(y)and m(F).

Occurrences of Prime Graph m(u) in Program X, Extended
AND/OR Graph g(X), and Prime Decomposition Tree

tree(X).

viii

Page
13
22
33

35

41
47
49

55-56

83
83

84

84

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9

Figure 2.10

Figure 3.1

Figure 4.1

Figure 4.2

Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7

Figure 4.8

Figure 4.9

LIST OF FIGURES

Characteristic of Complexity.

Flow Graph M.

The Defined Prime Graphs, S-structure.

Sequencing.

Nesting.

Prime Decomposition Trees of Flow Graph G and H.
The Reading of Nesting Level.

Predicates As Procedures.

Example of Simple Recursive Construct.

Multiple Procedure Definition for Case-Selection.
Construct.

The Measurement from Entity (on particular attribute) to
Number.

Rule-firing Order.

Comparison Between Selections Construct In Pascal and
Prolog.

A Prolog Program.

Example Extended AND/OR of Figure 4.3.

Prime Graph for Sequential.

Prime Graphs for Case-Selection and If-Then-Elsé.
Prime Graphs for Recursion and Repeat-Fail.

Converting Extended AND/OR Graph into Prime
Decomposition Tree.

Prime Decomposition Tree of Figure 4.3.

X

Page
20
24
25
26
26
27
27
36
37

37

53

53

57
57
59
60
60

62

68

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Extended AND/OR Graph for Program C and D
Excluding Built-In Predicate and Non Rule-Firing.

Prime Decomposition Trees of Program C and D if Non

rule-firing are excluded.

The Structure of Program E is explicitly presented in 7ree

&(E).

P-structure of Recursion (R4) and Repeat-Fail (Lo)
Construct.

77

77

78

81

LIST OF SYMBOLS AND ABBREVIATIONS

Z Summation

€ Member of

AOG AND/OR Graph

BNF Backus-Naur Form

CC Cyclomatic Complexity
DE Decision Count

FIFO Fan-in and Fan-out

ISO International Standard Organization
MT Measurement Theory
PRAM Prolog Automatic Marker
P-structure Prolog Local Structure
RD Rule-dependency

RFI Rule Fan-in

RFO Rule Fan-out

SE Software Engineering
SM Software Measurement
SPM Software Project Model
S-structure Local Standard Structure

UPN Unique Predicate Name

xi

CHAPTER ONE
INTRODUCTION

Measurement is an integral part of everyday life. Measurement provides objective
information (McGarry et al,, 2002) which cannot be provided by other means
(Shepperd, 1995). A chef used measurement to make a good proportion of cake. For
parents, they measure their children height to buy the right size of clothes. In
scientific and engineering discipline measurement allows the acquisition of
information that can be used for developing theories and models, devising, assessing,
and using methods and techniques (Morasca, 2000). It would be difficult to imagine
how the disciplines of electrical, mechanical and civil engineering could have

evolved without a central role of measurement (Fenton, 1991).

Measurement in software engineering (SE) is called software engineering
measurement or in short, sofiware measurement (SM). SE can be regarded as the use
of sound engineering principles to develop economical software that is reliable and
works efficiently on real machines (Pressman, 1992). Most of the SE methods that
have been proposed and developed provide rules, tools, and heuristics for producing
software products (Fenton, 1991). One of the reasons to measure software is to
indicate the quality of the software product according to particular structural

principles or program structure' (Pressman, 1992).

Program structure in this research concerns on the construction of a program based
on control constructs. It is believed that a program with a large number of control
constructs is relatively more complex and difficult to unders.tand (Conte et al., 2002).
This is known as structural complexity. In academia, a program with higher

structural complexity may indicate bad programming habits (Mansouri, 1998) e.g.

: Examples of program structure are modularity, re-use, coupling, cohesiveness, redundancy, D-
structuredness, hierarchic and structured programming.

The contents of
the thesis is for
internal user
only

REFERENCES

Apt, K. R. & Smaus, J. G. (2001). Rule-based versus Procedure-based View of
Programming. Joint Bulletin of the Novosibirsk Computing Center and

Institute of Informatics Systems Series: Computer Science, 16, p. 75 — 97.

Barr, V. (1996). Rule-Based System Testing with Control and Data Flow
Techniques. International Software Quality-Week 1996.

Baker, L. A., Bieman J. M, Fenton, N, Gustafson, D. A., Melton, A., & Whitty, R.
(1990). A Philosophy for Software Measurement (electronic version).

Journal of Systems and Software, 12, p. 277 - 281.

Bieman, J. M., Fenton, N, Gustafson, D. A, Melton, A. & Ott, L. M. (1995).
Fundamental Issues in Software Measurement, In Austin Melton (Ed.).

Software Measurement, p. 39 — 52. UK: International Thomson Computer.
Bieman, J. M. (1995). Metric Development for Object-Oriented Software. In Austin

- Melton (Ed.). Software Measurement, p. 75 — 92. UK: International Thomson

Computer.

Bratko, 1. (2001). PROLOG: Programming for Artificial Intelligence 3" ed.
— Singapore: Addison-Wesley.

- Briand, L., Morasca, S., & Basili, V. (1994). Property Based Software
Engineering Measurement (electronic version). Technical Report CS-TR-119.

University of Maryland.

90

Briand, L., Emam, K. E., & Morasca, S. (1995a). On the Application of
Measurement Theory in Software Engineering (electronic version). Technical

Report ISERN-95-04. International Software Engineering Research Network.

Briand, L., Emam, K. E. & Morasca, S. (1995b). Theoretical and Empirical
Validation of Software Product Measures. Technical Report ISERN-95-03.

International Software Engineering Research Network.

Cardoso, A.l, Kokol, P. & Crespo R. G. (2000). Two different views about software

complexity. 71" European Software Control and Metrics Conference,
p. 433 —438.

Cardoso, A. L., Kokol, P. & Crespo, R. G (2002). How to measure the complexity of
a program text. Proceedings of the third International Symposium on

Engineering of intelligent Systems, p. 119 — 122.

Carson, P. A. & Hunter, R. B. (1992). Source-Code Models and Their Use in
Assessing Software Quality. EUROMETRICS’ 92, p. 83 — 84.

Chen, Jeng-Rung & Cheng, A. M. K. (1994). A Fast, Partially Parallelizable
Algorithm for Predicting Execution Time of EQL Rule-Based Programs, In
Jagdish Chandra (Ed.). Proceedings of International Conference on Parallel
Processing, p. 17 - 20.

Ciancarini, P. & Levi, G. (1995). Applications of Logic Programming in Software
Engineering (electronic version). PAP Workshop on Logic Programming and
Software Engineering. Retrieved: (n.d.) from site:

http://citeseer.nj.nec.com/326955.html

Clocksin, W. F. & Mellish, C. S. (1984). Programming in Prolog 2™ ed. New York:
Springer-Verlag.

91

Conte, S. D., Dunsmore, H. E. & Shen, V. Y. (1986). Software Engineering Metrics
And Models. UK: Benjamin Cummings Publishing. ;

Covington, M. A, Nute, D. & Vellino, A. (1997). Prolog Programming in Depth.

London: Prentice-Hall International.

Dick, R. (1993). Subjective Software Measurement - Tools for the Human
Assessor. Esprit Project SCOPE Report. Department of Computer Science

b

University of Strathclyde, Glasgow. Retrieved: Jun 29, 2002 from site:
http://citeseer.nj.nec.com/433040.html

Emam, K. E. (2000). A Methodology for Validating Software Product
Metrics (electronic version). Technical Report NRC 44142. National
Research Council of Canada. Retrieved September 25,2001 from http://iit-

iti.nrc-cnre.ge.ca/publications/nrc-44142_e.html

Fenton, N. E. & Melton, A. (1995). Measurement Theory and Software
Measurement, In Austin Melton (Ed.). Software Measurement, p. 27 - 38.

UK: International Thomson Computer.

Fenton, N. E. (1991). Softiware Metrics a Rigorous Approach. London: Chapman &
Hall.

Fenton, N. E. & Pfleeger, S. L. (1997). Software Metrics a Rigorous Approach b

Edition. London: International Thomson.
Gordon, R. D. & Halstead, M. H. (1976). An Experiment Comparing Fortran
Programming Time with the Software Physics Hypothesis. Proceeding

AFIPS, p. 935 - 937.

Gross, J. & Yellen, J. (1998). Graph Theory and Its Applications. USA: CRC Press.

92

Gustafson, D. A, Tan, J. T. & Weaver, P. (1995). Software Metric Specifications. In
Austin Melton (Ed.). Software Measurement, p. 179 — 195. UK: International

Thomson Computer.

Hao, W. (1999). Software Metrics Collection Techniques for Product
Assessment. Retrieved August 27, 2001 from Wang Hao’s Homepage site

[offline]: http://www.comp.nus.edu.sg/~wanghao/ic52a5_content.html

Hass, M. & Hassel, J. (1983). A Proposal for a Measure of Program Understanding.
Proceedings of the Fourteenth SIGCSE Technical Symposium on Computer

Science Education, p. 7—13.

Henry, S. & Kafura, D. (1981). Software Structure Metrics based on Information
Flow. IEEE Transactions on Software Engineering, 7(5), p. 510 - 518.

Kaposi, A. A. (1993). Measurement Theory, In John A. McDermid (Ed.). Software

Engineer’s Reference Book. London: Butterworth-Heinemann.

Kearney, J. P., Sedlmeyer, R. L., Thompson, W. B., Gray, M. A. & Adler, M. A.
(1986). Software Complexity Measurement. Communications of the ACM,
29(11), p. 1044 — 1050.

Luger, G. F. (2002). Artificial Intelligence: Structures and Strategies for Complex

Problem Solving 4™ ed. Essex: Pearson Education.

Mansouri, F. Z., Gibbon, C. A. & Higgins, C. A. (1998). PRAM: Prolog Automatic
Marker. Proceedings of the Sixth Annual Conference on the Teaching of
Computing, p. 166 — 170.

Marco, L. (1997). Measuring Software Complexity (electronic version).

Enterprise System Journal. Retrieved August 27, 2001 from

http://cispom.boisestate.edu/cis320emaxson/metrics.htm

93

Markusz, Z. & Kaposi, A. A. (1985). Complexity Control in Logic-based
Programming (electronic version). The Computer Journal, 28(5),
p. 487 — 495.

McCabe, T. J. (1976). A Complexity Measure (electronic version). IEEE
Transactions on Software Engineering, 2(4), p. 308 — 320.

McCauley, R. A & Edwards, W. R. (1995). Analysis and Measurement Techniques
For Logic-Based Languages. In Austin Melton (Ed.), Sofiware Measurement,
p. 93 — 133. UK: International Thomson Computer.

McDermid, J. A. (2000). Complexity: Concept, Causes and Control.
Proceedings Sixth IEEE International Conference on Engineering of

Complex Computer Systems, p.2 — 9.

McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J. & Hall, F. (2002).
Practical Software Measurement. USA: Addison-Wesley.

Melton, A. C., Gustafson, D. A, Bieman, J. M., & Baker, A. L. (1990).
A Mathematical Perspective of Software Measures Research. IEE/BCS
Software Engineering Journal, 5(5), p. 246 — 254.

Moores, T. T. (1998). Applying Complexity Measures to Rule-based Prolog
Programs. Journal of Systems and Software, 44(1), p. 45 — 52.

Morasca, S. (2001). Software Measurement. In S.K. Chang (Ed.), Handbook Of
Software Engineering And Knowledge Engineering Volume 1: Fundamentals,
p. 239 — 276. USA: World Scientific.

Neal, R. D., Coppins, R. J., & Weistroffer, H. R. (1997). The Assignment of Scale to
Object-Oriented Software Measures. Working Report NCCW-0040. NASA.

94

Nilsson, U. & Maluszynski, J. (2000). Logic, Programming And Prolog 2™ ed
(electronic version). Retrieved December 28, 2003 from

http://www.ida.liu.se/~ulfni/lpp

O’Neal, M. B & Edward, W. R. (1994). Complexity Measures For Rule-Based
Programs. IEEE Transactions on Knowledge Data Engineering, 6(5),
p. 669 — 680.

Otto, K. N. (1994). Measurement Methods for Product Evaluation. Research in

Engineering Design, p. 157 — 166.

Ott, L. M. (1995). The Early Days of Software Metrics: Looking Back After 20
Years, In Austin Melton (Ed.). Software Measurement, p. 7 —25.

UK: International Thomson Computer.

Ottenstein, K. J. & Ottenstein, L. M. (1984). The Program Dependence Graph in a
Software Development Environment. ACM Software Engineering Notes,
9(3), p. 177 - 184.

Oviedo, E. (1980). Control Flow, Data Flow and Program Complexity. Proceedings
COMPSAC 80, p. 146 — 152.

Prather R. E. (1984). An Axiomatic Theory of Software Complexity Measure
(electronic version). The Computer Journal, 27(4), p. 340 — 347.

Prather, R. E. (1995). The Role of Recursion and Symmetry in the Design and
Analysis of Software Metrics, In Austin Melton (Ed.). Sofiware

Measurement, p. 145 — 156. UK: International Thomson Computer.

Pressman, R. S. (1992). Sofiware Engineering: A Practitioner’s Approach 3™
ed. New York: McGraw-Hill.

95

Riguzzi, F. (1996). A Survey of Software Metrics. Technical Report DEIS-LIA-96-
010. DEIS. Universita degli Studi di Bologna.

Robinson, J. A. (1965). A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM, 12(1), p. 23 — 41.

Rubey, R. J. & Hartwick R. D. (1968). Quantitative Measurement of Program
Quality. Proceedings of the 23rd ACM National Conference, p. 671 — 677.

Sebesta, W. Robert (1996). Concepts of Programming Languages 3 ed.
USA: Addison-Wesley.

Sellappan, P. (2000). Software Engineering: Management & Methods. Malaysia:
Sejana Publishing.

Shepperd, M. (1995). Foundations Of Software Measurement. London: Prentice
Hall.

Shepperd, M. (1993). Software Measurement: Past, Present and Future. In Martin
Shepherd (Ed.), Software Engineering Metrics Volume I: Measures &
Validations. UK: McGraw-Hill.

Tsai, Jefferey J. P. & Jen, Yuan-Heng (1997). Evaluation of Rule-Based Systems
(electronic version). Retrieved May 23, 2001 from [offline]:
http://kel3.eecs.uic.edu/USAF/cplxdf3/doccplxdf.html

Van den Berg, K.G & Van den Broek, P.M. (1995). Axiomaﬁc Validation in the
Software Metric Development Process. In Austin Melton (Ed.), Software

Measurement, p. 157 — 177. UK: International Thomson Computer.

Weyuker, E. J. (1988). Evaluating Software Complexity Measures (electronic
version). IEEE Transaction of Sofiware Engineering, 14(9), p. 1357 - 1365.

96

‘‘‘‘‘‘‘

Zhao, J., Cheng, J. & Ushijima, K. (1998). A Metrics Suite for Concurrent
Logic Programs (electronic version). Proceedings of the 2nd Euromicro
Conference on Software Maintenance & Reengineering, p. 172 — 178.
Retrieved February 28, 2001, from http://citeseer.nj.nec.com/35967.html

Zuse, Horst. (1995). History of Software Measurement. Retrieved June 3, 2001

from Dr. —Ing. Horst Zuse, Software Measurement - Software Metrics site:

http://irb.cs.tu-berlin.de/~zuse/sme.html

97

