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EXECUTIVE SUMMARY

This thesis describes modelling and measuring structural complexity measure of
Prolog program based on rule-dependency. Rule-dependency can be defined as
relationships or interaction between rules. Usually, Prolog program is constructed by
rules. These rules are Horn clause subset of the clausal form of first-order predicate
logic. It is believed that rule-dependency is significant element of complexity and
this research investigates to corroborate the claim especially on how rule dependency
can be used to model and measure Prolog’s structural complexity. This research is
motivated by the lack of measures developed for Prolog due to the implicit control
flow and construct. This lack of explicit control flow and constructs precludes in
adapting conventional measures to Prolog program. This thesis shall present models
that can be used to partially solve this problem that can enabled direct application of
existing measures to Prolog program. To do measurement four criteria are explicitly
defined: (1) attribute of entity, (2) abstraction or model, (3) ordering relationships,
and (4) order-preserving mapping. These criteria are based on representational
approach of measurement theory. The model Prolog’s control flow and construct are
modelled in the second criteria, while the measure is achieved by completing the

process from identification of entity and attribute into numbers.
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RINGKASAN EKSEKUTIF

Tesis ini menghuraikan permodelan dan pengukuran kekompleksan struktur aturcara
Prolog berdasarkan pergantungan aturan. Pergantungan aturan boleh didefinisikan
sebagai hubungan atau interaksi di antara aturan-aturan. Pada kebiasaannya, aturcara
Prolog dibangunkan mengunakan aturan-aturan. Aturan-aturan ini merupakan klausa
Horn subset kepada clausal form of first-order predicate logic. Adalah dipercayai
bahawa pergantungan aturan adalah elemen penting kompleksiti dan tesis ini
menyediakan bukti sokongan kepada dakwaan tersebut terutama sekali bagaimana
pergantungan aturan boleh digunakan untuk memodel dan mengukur kekompleksan
struktur aturcara Prolog. Penyelidikan ini didorong oleh kekurangan ukuran-ukuran
yang dibangunkan khas untuk Prolog, berikutan kawalan aliran dan struktur Prolog
yang tidak jelas. Masalah ini mengakibatkan, adaptasi ukuran sedia ada terus ke
aturcara Prolog tidak dapat dilaksanakan. Tesis ini akan menghuraikan model-model
yang digunakan untuk menyelesaikan sebahagian daripada masalah ini yang
membolehkan aplikasi terus ukuran-ukuran sedia ada kepada Prolog. Untuk
membuat pengukuran empat kriteria diambil kira: (1) atribut sesuatu entiti, (2)
abstrak atau model, (3) hubungan tatasusunan, dan (4) order-preserving mapping.
Kriteria-kriteria ini berdasarkan interpretasi teori pengukuran berdasarkan
pendekatan perwakilan. Model aliran kawalan dan struktur Prolog diketengahkan
dalam kriteria kedua, sementara ukuran pula diperoleh dengan identifikasi atau

takrifan kepada setiap kriteria.
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CHAPTER ONE
INTRODUCTION

Measurement is an integral part of everyday life. Measurement provides objective
information (McGarry et al,, 2002) which cannot be provided by other means
(Shepperd, 1995). A chef used measurement to make a good proportion of cake. For
parents, they measure their children height to buy the right size of clothes. In
scientific and engineering discipline measurement allows the acquisition of
information that can be used for developing theories and models, devising, assessing,
and using methods and techniques (Morasca, 2000). It would be difficult to imagine
how the disciplines of electrical, mechanical and civil engineering could have

evolved without a central role of measurement (Fenton, 1991).

Measurement in software engineering (SE) is called software engineering
measurement or in short, sofiware measurement (SM). SE can be regarded as the use
of sound engineering principles to develop economical software that is reliable and
works efficiently on real machines (Pressman, 1992). Most of the SE methods that
have been proposed and developed provide rules, tools, and heuristics for producing
software products (Fenton, 1991). One of the reasons to measure software is to
indicate the quality of the software product according to particular structural

principles or program structure' (Pressman, 1992).

Program structure in this research concerns on the construction of a program based
on control constructs. It is believed that a program with a large number of control
constructs is relatively more complex and difficult to unders.tand (Conte et al., 2002).
This is known as structural complexity. In academia, a program with higher

structural complexity may indicate bad programming habits (Mansouri, 1998) e.g.

: Examples of program structure are modularity, re-use, coupling, cohesiveness, redundancy, D-
structuredness, hierarchic and structured programming.
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