

**WIRELESS NETWORK DESIGN FOR TELECENTER
IN RURAL AREA**

SATEA HIKMAT ABOUD

UNIVERSITY UTARA MALAYSIA

2009

**WIRELESS NETWORK DESIGN FOR TELECENTER
IN RURAL AREA**

**Thesis Submitted To the Graduate School in Partial Fulfillment of the
Requirements for the Degree Master of Science
Information and Communication Technology**

University Utara Malaysia

By

SATEA HIKMAT ABOUD

KOLEJ SASTERA DAN SAINS
(College of Arts and Sciences)
Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK
(Certificate of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

SATEA HIKMAT ABOUD
(800168)

calon untuk Ijazah
(candidate for the degree of) **MSc. (Information Communication Technology)**

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

WIRELESS NETWORK DESIGN FOR TELECENTER IN RURAL AREA

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmu dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia Utama
(Name of Main Supervisor): **ASSOC. PROF. DR. WAN ROZAINI SHEIK OSMAN**

Tandatangan
(Signature)

Tarikh
(Date)

10 May 2009

PERMISSION TO USE

In presenting this project in partial fulfillment of the requirements for a postgraduate degree from the University Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner in whole or in part, for scholarly purposes may be granted by my supervisor(s) or in their absence by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to University Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman.

ABSTRACT

Information and communication technology (ICT) employment and dissemination assists many countries in incorporating many goals of digital divide most importantly by opening telecenters in rural areas. Many telecenter projects have been implemented in Malaysia for example in the last ten years. Deployment of the projects usually, is subjected to so many problems due to inadequate infrastructure and appropriate design. This project aimed at the selection of an effective design of the network with a budget cost estimate, by using a system program which subsequently includes smart questions that would contribute to the solution. The research questions stated are: How to use the technology that fit telecenter project in rural areas? What is the estimated cost of the basic requirements for the design of network infrastructure and the deployment in this area? It was then found that Wi-Fi technology can be adopted as a viable technology in terms of cost for rural areas connectivity by connecting community centers to each other and to the Internet.

ACKNOWLEDGEMENT

By the Name of Allah, the Most Gracious and the Most Merciful

First, I would like to express my appreciation to Allah, the Most Merciful and, the Most Compassionate who has granted me the ability and willing to start and complete this study. I do pray to His Greatness to inspire and enable me to continue the work for the benefits of humanity my most profound thankfulness goes to my supervisor **Assoc. Prof. Dr. Wan Rozaini Sheik Osman** for her creativity, encouragement, and guidance. I am also thankful to all staff, my colleagues and friends at UUM, especially academic staff from the College of Arts and Science for their help and support, with whom I shared pleasant times.

Last but not least, I wish to thank all my dearest family members, especially Mother, Wife and my sisters for being by my side since I left home. Also thank you to my lecturers and friends who have given me emotional support during my study.

Thank you UUM.

CONTENTS

Permission to Use	i
Abstract	ii
Acknowledgement	iii
Contents	iv
List of Figures	xi
List of Table	xv

CHAPTER 1

Introduction

1.0	Introduction	1
1.1	Problems Background	2
1.2	Problem Statements	3
1.3	Research Questions	3
1.4	Research Objectives	3
1.5	Scope and Limitation	4
1.6	Significance of the Study	4
1.7	Organization of the Report	4
1.8	Summary	5

CHAPTER 2

Literature Review

2.1	Introduction	6
2.1.1	Telecenters	7
2.1.2	Vision: A Knowledge Society, From the Ground Up	7
2.1.3	Telecasters in Malaysia	8
2.1.4	Challenges toward Telecenter Sustainability in Rural Area	9
2.1.5	Telecaster Networks	10

2.2	Rural Connectivity	10
2.2.1	Wireless Is Important For Rural Service	10
2.3	Wireless Networks and Community Development	11
2.3.1	IEEE 802, Wireless Standard	11
2.3.2	WiMAX and Wi-Fi Together: Synergies for Next-Generation Broadband	13
2.4	VSAT Technology	13
2.5	Coverage Is More than Distance	15
2.6	Economic Analysis of Networking Technologies for Rural Developing Region	16
2.6.1	Daknet Provides Extraordinarily Low-Cost Digital Communication	16
2.7	Building Wireless Mesh Networks in Rural Area	17
2.8	Bandwidth Management	18
2.8.1	Definitions of Bandwidth	18
2.8.2	How to Calculate Network Bandwidth Requirements	18
2.9	Key Factors Affected In Design Network Wireless	19

CHAPTER 3

Methodology

3.1	Introduction	21
3.2	Phase 1: Awareness of the Problem	22
3.3	Phase 2: Suggestion	22
3.4	Phase 3: Development	22
3.5	Phase 4: Evaluation	23
3.6	Phase 5: Conclusion	23

CHAPTER 4

System Development and Prototype

4.0	Introduction	24
4.1	Selecting the Appropriate Network Wireless Design For Telecenter	25
4.1.2	Justification to Use Wi-Fi 802.11 in Telecenter Wireless Network	26
4.1.3	Characteristics of Wireless Link Standards	29
4.1.4	Choose the Appropriate Technique From During the Previous Conclusions	30
4.1.5	Analysis Models Design Choice for Telecenter Network	31
4.1.5.1	Wireless Networking Protocols	32
4.1.5.1.1	Typical Models for Wireless Networks Design	32
4.1.5.2	Wi-Fi Specifications	33
4.1.5.2.1	Wi-Fi802.11	34
4.1.6	Wireless Network Design Components of Telecenter Project	35
4.1.6.1	Simulation Design for Telecenter Wireless Network	35
4.1.6.1.1	VSAT Component Technology	36
4.1.6.1.1.1	VSAT technology	36

4.1.6.1.1.2 Basic components of VSAT technology	37
4.1.6.1.2 Stage 2: Internal equipment for telecenter	38
4.1.6.1.33 Point-To-Point to Extended the Range	40
4.1.6.1.4 Case 2 Wireless Mesh Network	45
4.1.6.1.4.1 Wireless Mesh Network	45
4.1.6.1.4.2Wireless Mesh Networking Principles	45
4.1.6.1.4.3 Important Considerations	46
4.1.7 Wireless Network Design for Kampong Tradisi –Changlun	47
4.1.8 Summery	50
4.2 W.N.D.T.R System Specifications	51
4.2.1 System over View	51
4.2.2 Software Requirement	51
4.2.3 Overall Flow Diagram W.N.D.T.R System	52
4.2.3.1 Use Case Input Variables Set A Wndtr_Uc_01	54
4.2.3.2 Use Case Display Equipment Cost Wndtr_Uc_02	56
4.2.3.3 Use Case Calculate Fresnel Zone (Wndtr_Uc_03)	58
4.2.3.4 Use Case Input Variables Set C Wndtr_Uc_04	60
4.2.3.5 Display Total Cost of Bandwidth Wndtr_Uc_05	62
4.2.3.6 Display Total Cost Wndtr_Uc_06	64
4.2.4 Sequence Diagram	67

4.2.4 .1	Diagram Use Case Input Variables Set A Wndtr_Uc_01	67
4.2.4.2	Sequence Diagram Use Case Input Variables Set A	
	Wndtr_Uc_01 (Alt)	68
4.2.4 .3	Sequence Diagram for Use Case Display Equipment	
	Cost Wndtr_Uc_02	69
4.2.4 .4	Sequence Diagram for Use Case Calculate	
	Fresnel Zone (Wndtr_Uc_03)	69
4.2.4 .5	Sequence Diagram of Use Case Input Variables Set C	
	Wndtr_Uc_04	70
4.2.4 .6	Sequence Diagram of Use Case Input Variables Set C	
	Wndtr_Uc_04 (Alt)	70
4.2.4 .7	Sequence Diagram Display Total Cost Of Bandwidth	
	Wndtr_Uc_05	71
4.2.4 .8	Sequence Diagram for Display Total Cost Wndtr_Uc_06	71
4.2.5	Class Diagrams	72
4.2.5.1	Class Diagram for Sequence Input Variables Set A	72
4.2.5.2	Class Diagram for Sequence Input Variables Set A (Alternative)	73
4.2.5.3	Class Diagram for Use Case Display Equipment Cost	
	Wndtr_Uc	73
4.2.5.4	Class Diagram Use Case Calculate Fresnel Zone (Wndtr_Uc_03)	74

4.2.5.5	Class Diagram Of Use Case Input Variables Set C Wndtr_Uc_04)	74
4.2.5.6	Class Diagram of Use Case Input Variables Set C Wndtr_Uc_04 (Alt)	75
4.2.5.7	Class Diagram Display Total Cost Of Bandwidth Wndtr_Uc_05	75
4.2.5.8	Class Diagram for Display Total Cost Wndtr_Uc_06	76
4.2.6	Explain the Specifications of the Program Pages	77
4.2.6.1	Identification	77
4.2.6.2	Main Page for User	78
4.2.6.3	Bandwidth Page	83
4.2.7	Overall Flow Diagram W.N.D.T.R System	85

CHAPTER 5

Simulation and Results

5.1	Introduction	86
5.2	System Evaluation	86
5.2.1	Usability Test for the Computer Program on Network Design Telecaster Progress Prototype	86

5.2.2	Data Analysis	86
5.3	Conclusion	94

CHAPTER 6

Conclusion and Recommendations

6.1	Introduction	95
6.2	Contributions of the Study	96
6.3	Recommendations and Future Work	96
6.4	Conclusion	97
6.4.1	Some Important Concepts In This Study	97

REFERENCES	98
------------	----

Appendix	104
Appendix A Questionnaire	107
Appendix B Table	116
Appendix C Experts Interview	117
Appendix E Telecenter Owner Interview	129

LIST OF FIGURES

Figure Number		page
Figure 2.1	Telecenter Specifications	8
Figure 2.2	E-Bario Network Diagrams	15
Figure 2.3	Example of How the Fresnel Zone Can Be Disrupted	19
Figure3.1	The General Methodology	21
Figure 4.1	The Project Policy And Specification Characteristics	25
Figure 4.2	Telecenter & Wireless Network Choices Available From Source Connection	32
Figure 4.3	Wireless Standards IEEE Family	33
Figure 4.4	Extend Distance 802.11	34
Figure 4.5	Proposed Telecenter & wireless network design	36
Figure 4.6	VSAT system architecture in Kampong Tradisi –Changlun	37
Figure 4.7	Linking the Center to the Regions Neighbors	41
Figure 4.8	Use (P-P) To Link Telecenter with another Area (Village)	42
Figure 4.9	The Link Points, Arrivals to The Target	44
Figure 4.10	Mesh Network	46
Figure 4.11	Wireless Network Design for Perpustkaan Disa Telecenter	47

Figure 4.12	The Major Component and Method Link to Use for Kg Tradisi Telecenter	48
Figure 4.2.1	Main Use Case Diagram	53
Figure 4.2.2	Input Variable Set A	54
Figure 4.2.3	Display Equipment Cost	56
Figure 4.2.4	Calculate Fresnel Zone	58
Figure 4.2.5	Input Variables Set C	60
Figure 4.2.6	Display Total Cost Of Bandwidth	62
Figure 4.2.7	Display Total Cost	64
Figure 4.2.8	Sequence Diagram	67
Figure 4.2.9	Input Variables set A Sequence Diagram	68
Figure 4.2.10	Case Display Equipment Cost Sequence Diagram	69
Figure 4.2.11	Calculate Fresnel zone Sequence Diagram	69
Figure 4.2.12	Input Variables set C Sequence diagram	70
Figure 4.2.13	Input Variables set C (Alt) Sequence diagram	70
Figure 4.2.14	Total Cost Of Bandwidth Sequence Diagram	71
Figure 4.2.15	Display total cost Sequence diagram	71
Figure 4.2.16	Input Variables set A Class Diagram	72
Figure 4.2.17	Input Variables set A (Alternative) Class Diagram	73
Figure 4.2.18	Display Equipment Cost Class Diagram	73

Figure 4.2.19	Calculate Fresnel zone Class Diagram	74
Figure 4.2.20	Input Variables set C Class diagram	74
Figure 4.2.21	Input Variables set C (Alt) Class diagram	75
Figure 4.2.22	Display total cost of Bandwidth Class Diagram	75
Figure 4.2.23	Display total cost Class diagram	76
Figure 4.2.24	Login Page	77
Figure 4.2.25	Main page for user	78
Figure 4.2.26	Main page Select your equipment requirement (part 1)	79
Figure 4.2.27	Equipment page (part 1)	79
Figure 4.2.28	Main page Select your equipment requirement (part 2)	80
Figure 4.2.29	The Range and Price of device (P-P/P-MP) (part 2)	81
Figure 4.2.30	Equipment cost	81
Figure 4.2.31	Fresnel Zone	82
Figure 4.2.32	Calculates bandwidth cost if the owner inter the No Of user in network	83
Figure 4.2.33	Calculate bandwidth cost if the owner select the region Of telecenter network	84
Figure 4.2.33	W.N.D.T.R system Overall flow diagram	85
Figure 5.1	Q3's frequency	89
Figure 5.2	Q3's Statistics	89

Figure 5.3	Q14's frequency	90
Figure 5.4	Q3's Statistics	90
Figure 5.5	Q2's Statistics	91
Figure 5.6	Q2's Statistics	91
Figure 5.7	Q11's Statistics	92
Figure 5.8	Q11's Statistics	92
Figure 5.9	Q8's Statistics	93
Figure 5.10	Q8's Statistics	93

LIST OF TABLE

Table Number	Name of table	page
Table 2.1	Shows the Number of Telecenters in Malaysia	9
Table 4.1	Shows the Projects and Studies Which Relied Upon To Determine the Appropriate Design	28
Table 4.2	VSAT Component Technology	37
Table 4.3	Basic Telecenter Component in Rural Area	38
Table 4.4	Telecenter Wireless Network Component	39
Table 4.5	Recruitment for Telecenter Wireless Network Deployment	40
Table 4.6	Recruitments for site1	49
Table 4.7	Recruitments for site2	49
Table 5.1	Descriptive Statistics	87

CHAPTER 1

Introduction

1.0 Introduction

Increasing the efficiency of information and communication technology increases the development of a country. Employing the ICT information and technology and its dissemination help many countries in incorporating the goals of digital divide most importantly by opening telecenters in rural areas (Khushchu, 2008).

According to Shamsudin & Arshad (1997) the rural sector is vital to the growth of the country's economic social and political sector (Hilam, 2007). The main focus of the Department of Energy, Water and Communications, Malaysia or KTAK (Kementerian Tenaga Air Dan Komunikasi) like the rest of the world is in the development of infrastructure and services that encourage the development of information and communication technology, part of this is to provide infrastructure facilities for telecommunications and Internet services in rural areas.

The facilities for telecommunications should clarify the roll of telecenter Telecenter is a facility that offers community members the ability to use ICT (information and communication technologies) in a public place. Telecenter often provide the only connectivity available to many community members, and their services may be offered with or without a fee (Mathew, 2002).

In general, according to Hayakawa et al. (2007) telecommunications is where people are able to access computers, the Internet and other techniques that help in the collection of information and communication at the same time as they to participate develop digital skills.

The contents of
the thesis is for
internal user
only

References

Asia, M. (2005). *Wireless technologies for rural communications*. Retrieved January 12, 2009, from <http://www.tenet.res>

Bar, F., & Galperin, H. (2003). Wireless Networks and Community Development.

Best, M., Burnes, L., Escobedo, M., & Shakeel, H. (2001). *Village Area Network, Bohechio*. Retrieved February 03, 2009, from nomads.usp.br: http://www.nomads.usp.br/site/textos/arq_textos/BEST_BURNES_ESCOBEDO_S_HAKEEL_%20VAN_%20Bohechio.pdf

Bhagwat, P., Raman, B., & Sanghi, D. (2003). *Turning 802.11 Inside-Out*. Retrieved January 12, 2009, from <http://www.cse.iitk.ac.in/users/braman/papers/inside-out.pdf>

Bhaskar. (2005). *Deregulation for out door use of Wi-Fi in india*. Retrieved January 20, 2009, from Air Jaldi.com: <http://drupal.airjaldi.com/>

Bicket, J., Aguayo, D., Biswa, S., & Morris, R. (2005). Archetecture and evaluation of an unplanned 802.11 b measn network. *Mobile Computing and Networking*.

Brewer, E., Demmer, M., Bowei, W., Du, B., Ho, M., Kam, M., et al. (2005). The case for technology in developing regions. *Computer* , 36 (6), 25.

Colle, R. (2000). Communication Shops and Tele-centers in Developing Nations. in *M. Gurstein, ed., Community Informatics: Enabling Communities with Information and Communication Technologies* , (pp. 415-445). Hershey, PA: Idea Group.

Colle, R., & Roman, R. (1999). *Communication Centers and Developing Nations*. Retrieved February 08, 2009, from A State of the Art Report: www.devmedia.org/documents/Banga.htm

Colle, R., Roman, R., & Yang, F. (2000). Access is More than Hardware: Building a Constituency for Telecenters. *paper prepared for INET2000, The 10th Annual Internet Society Conference*. Yokohama.

DjurslandS.net. (2004). *The story of a project to support the weak IT infrastructure in an low populated area of Denmark*. Retrieved January 12, 2009, from DjurslandS. net: http://djurslands.net/biblioteket/international/djurslands_net_englishpresentation.ppt

Garai, A., & Shadrach, B. (2006). *Taking ICT to Every Indian Village: Opportunities and Challenges*. Retrieved january 20, 2009, from Social Science Research Network: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=897910

Gohnson, D., & Roux, K. (2007). *Technology and infrastructure for Emerging Regions*. Retrieved February 12, 2009, from <http://tier.cs.berkeley.edu/wiki/>

Gohnson, D., & Roux, K. (2008). Wireless Network and System for developing Regions. *Mobile Computing*.

Greensfelder, L. (2006). *New wireless networking system brings eye care to thousands in India*. Retrieved February 12, 2009, from berkeley.edu: http://berkeley.edu/news/media/releases/2006/06/06_telemedicine.shtml

Harris, R. (2002). <http://rogharris.org/Threshold.pdf>. Retrieved February 4, 2009, from <http://rogharris.org/Threshold.pdf>

Harris, R. (2007). Telecenter Evaluation in the Malaysian Context. *Presented at the 5th International Conference on IT in Asia*. Hilton Hotel, Kuching, Sarawak, Malaysia.

Havard University. (2009). *Glosary of terms*. Retrieved February 03, 2009, from [cyber.law.harvard.edu: http://cyber.law.harvard.edu/readinessguide/glossary.html#T](http://cyber.law.harvard.edu/readinessguide/glossary.html#T)

Hayakawa, R., Saga, K., McGary, D., Molivere, A., Teofilo, J., Sovalini, S., et al. (2007). *Pacific Islands Telecenter Report*. Retrieved February 03, 2009, from pacrics.net: http://pacrics.net/index2.php?option=com_docman&task=doc_view&gid=15&Itemid=30

HP. (2006). *Planning a Wireless Network*. Retrieved January 13, 2009, from HP.com: <http://www.hp.com/rnd/pdfs/802.11technicalbrief.pdf>

IEEE. (2003). Standard for Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements. *IEEE , NY 10016-5997*.

Intel. (2008). *WiMAX* and Wi-Fi* Together: Synergies for Next-Generation Broadband*. Retrieved February 23, 2009, from http://download.intel.com/netcomms/technologies/WiMAX/WiMAX_and_Wi-Fi_together.pdf

Intelecon. (2004). *UNIVERSAL ACCESS FUNDS*. Retrieved February 20, 2009, from [inteleconresearch.com:](http://www.inteleconresearch.com/pdf/ua%20funds%202004%20update.pdf)
<http://www.inteleconresearch.com/pdf/ua%20funds%202004%20update.pdf>

Johnson, D., Matthee, K., & Sokoya, D. (2007). *Building a Rural Wireless Mesh Network*. Retrieved February 12, 2009, from http://wirelessafrica.meraka.org.za/wiki/images/f/fe/Building_a_Rural_Wireless_Mesh_Network_-_A_DIY_Guide_v0.7_65.pdf

KDDI. (2005). *NURTURES THE FUTURE OF COMMUNICATION*. Retrieved January 10, 2009, from KDDI Corporation:
http://www.kddi.com/english/corporate/r_and_d/index.html

Konvert, S. (2004). *The weak IT infrastructure in a low population area of Denmark*. Retrieved February 15, 2009, from www.Djursland.net

Kurose, J., & Ross, K. (2008). *Computer Networking: A Top-Down Approach*. (4th, Ed.) Addison-Wesley.

Kushchu, I. (2008). Public Access to Information in Malaysia. *Mobile Government Consortium International* .

Hilam. (2007). *ICT development in Malaysia-KTAK's view*. Retrieved February 4, 2009, from i4donline.net: <http://www.i4donline.net/Feb07/feb07.pdf>

Hilam. (2008). Overview of the country initiatives. *Vol. MYCO4*, p58.

Manoj, B., Zhou, P., & Rao, R. (2008). Dynamic adaptation of CSMA/CA MAC protocol for wide area wireless mesh networks. *Computer Communications , Volume 31* (Issue 8), 1627-1637.

Marrow, R. (2004). *Wireless Network Coexistence* (1st ed.). McGraw-Hill.

Mathew, G. (2002). *802.11 wireless networks: The Definition Guide*. O'Reilly.

Mesh Dynamics. (2007). *WiMAX and Wi-Fi Wireless Mesh -- Friends or Foes?* Retrieved January 12, 2009, from meshdynamics.com:
<http://www.meshdynamics.com/documents/MDWiMAXFriendOrFoe.pdf>

Mishra, N., Chebrolu, K., Raman, B., & Pathak, V. (2006). *WakeonWLAN*. Retrieved February 16, 2009, from <http://www.cse.iitb.ac.in/~br/iitk-webpage/papers/2006-www-wake-on-wlan.pdf>

Mishra, S., Hwang, J., Filippini, D., Moazzami, R., Subramanian, L., & Du, T. (2005). *Economic Analysis of Networking Technologies for Rural Developing Regions*. Retrieved January 15, 2009, from openarchitecturenetwork.org:
[http://www.openarchitecturenetwork.org/system/files/TIER%20economic%20analys is%20of%20wireless%20\(WiLD\)%20technologies.pdf](http://www.openarchitecturenetwork.org/system/files/TIER%20economic%20analys is%20of%20wireless%20(WiLD)%20technologies.pdf)

Muilulu, P., Chatelain, D., & Moemedi, M. (2004). Low cost data access system for Rural and Under-Semed Areas. *IEEE AFRICON 2004* (pp. 107-113). Botswana: IEEE.

OHTRTMAN. (2009). *What is WiMAX?* Retrieved January 16, 2009, from WiMAX.com Broadband Solutions, Inc: <http://www.WiMAX.com/education/faq/faq01>

Osman, S. (2008). My Broadband. *Paper presented in BRIDGING THE DIGITAL DIVIDE*. Malasyia.

Pentland, A., Fletcher, R., & Hasson, A. (2004). DakNet: Rethinking Connectivity in Developing Nations. *Computer*, 37 (1), 78 - 83.

Proenza, F. (2005). *THE ROAD TO BROADBAND DEVELOPMENT IN DEVELOPING COUNTRIES IS THROUGH COMPETITION DRIVEN BY WIRELESS AND VOIP*. Retrieved January 15, 2009, from http://arnic.info/workshop05/Proenza_Wireless&VoIP_5Oct2005.pdf

Proenza, F., Bastidas-Buch, R., & Montero, G. (2001). *Telecenters for Socioeconomic and Rural Development in Latin America and the Caribbean*. Retrieved February 13, 2009, from itu.int: http://www.itu.int/ITU-D/ict/mexico04/doc/doc/10_telecenters_e.pdf

Pun, M. (2008). *Development of the Wireless network infrastructure*. Retrieved February 12, 2009, from <http://www.nepalwireless.net/>

Raman, B. (2004). *Digital Gangetic Plains (DGP): 802.11-based Low-Cost Networking for Rural Areas*. Kanpur: The DGP Media Labs Asia Team.

Raman, B., & Chebrolu, K. (2005). Design and Evaluation of a new MAC Protocol for Long-Distance 802.11 Mesh Networks. *11th Annual International Conference on Mobile Computing and Networking (MOBICOM)*. Cologne, Germany.

Saga, K. (2004). *Key Issues for the Successful Implementation of ICT Projects -A Case Study on Rural Tele-centers*. Retrieved February 13, 2009, from www.tc.apii.net/APT-JICA-HP-2004/file/CRL-SAGA/APT%20Seminar%20Part%202,%202004.ppt

Sarroco, & Claudia. (2008). Improving IP connectivity in the least developed. *Emerald* , 4 (3), 14-28.

SearchEnterpriseWan.com. (2009). *Bandwidth*. Retrieved february 12, 2009, from SearchEnterpriseWan.com: http://searchenterprisewan.techtarget.com/sDefinition/0,,sid200_gci211634,00.html

Shamsudin, M., & Arshad, F. *Rural Development in Malaysia*. (U. P. Malaysia, Ed.) *F.O.E.A Management , 43400 Serdang*.

Surman, M., & Diceman, J. (2003). *REMOTE IT VILLAGE*. USA: JHAI Foundation.

telecenter.org. (2006). *Telecenter.org business plan*. Retrieved February 23, 2009, from telecenter.org: http://www.idrc.ca/uploads/user-S/11513366761telecenter_org_business_plan_-_FINAL_public_version.pdf

TeraBeam. (2004). *Calculations: Fresnel Clearance Zone*. Retrieved February 22, 2009, from TERABEAM Wireless: <http://www.terabeam.com/support/calculations/fresnel-zone.php>

TM Global. (2008). *Discover TM's wide coverage via satellites and submarine cables to major world cities*. Retrieved February 23, 2009, from www.tm.com.my/business/tm-global/

Upadhaya, G. (2002). The Internation Conference on Information, Technology, Communications and Development (ITCD) Conference Summary. *The Electronic Journal on Information System in Developing Countries* , 1-3.

Vaishnavi, V., & Kuechler, W. (2004). *Design Research in Information Systems*.

Retrieved February 23, 2009, from

<http://www.isworld.org/Researchdesign/drisISworld.htm>

Winget, N., Housley, R., Wagner, D., & Walker, J. (2003). Security flaws in 802.11 data

link protocols. *Communications of the ACM*, 46 (5), 35 - 39.