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ABSTRACT

Data mining gives a bright prospective in DNA sequences analysis
through its concepts and techniques. This study carries out
exploratory data analysis method to cluster DNA sequences.
Feature vectors have been developed to map the DNA sequences to
a twelve-dimensional vector in the space. Lysozyme, Myoglobin and
Rhodopsin protein families have been tested in this space. The
results of DNA sequences comparison among homologous
sequences give close distances between their characterization
vectors which are easily distinguishable from non-homologous in
experiment it with a fixed DNA sequence size that does not exceed
the maximum length of the shortest DNA sequence. Global
comparison for multiple DNA sequences simultaneously presented
in the genomic space is the main advantage of this work by
applying direct comparison of the corresponding characteristic
vectors distances. The novelty of thiswork is that for the new DNA
sequence, there is no need to compare the new DNA sequence with
the whole DNA sequences length, just the comparison focused on a
fixed number of all the sequences in a way that does not exceed the
maximum length of the new DNA sequence. In other words, parts
of the DNA sequence can identify the functionality of the DNA
sequence, and make it clustered with its family members.
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CHAPTER ONE

INTRODUCTION

This chapter introduces a brief description of 8tisdy. A general overview of the field
of this work, problem statement, the objective @nhé scope of this study has been

presented.

In the last few decades the rapid development dinelogy reflects to the number of
biological data which has been growing in an exptiaé curve, from Gene Bank
(www.ncbi.nlm.nih.gov) site the growth falls down Figl.1 GenBank in 1982 had
only 606 sequences with 680,338 bp (base pairsyelr 1992, GenBank contained
78,608 sequences with 101,008,486 bp. By the endgeaf 2002, GenBank had
22,318,883 sequences with 28,507,990,166 bp. Tmtoer had almost doubled in only
two years. By the end of year 2008, GenBank hadB@®3465 sequences with
99,116,431,942 bp. Efficient and highly computadiotools are needed to analyze the

massive amount of data that contains rich inforomati



Data mining is the science of extracting usefubiinfation from large data sets or
databases. This new discipline lies at the intéieeof statistics, machine learning,
artificial intelligence and other areas. The tagkslata mining include exploratory data
analysis, descriptive modeling, predictive modelipgtterns and rules recognition etc.
Compared to the traditional data analysis methibésconcepts and tools of data mining
provide new prospective in the analysis of huge warhof biological sequences. DNA

sequences clustering have been an issue in chugi@nalysis.

Growth of GenBank
(1982 - 2008)
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Figure 1.1: GeneBank source :
http://www.ncbi.nlm.nih.gov/Genbank/genbankstatslht

A DNA is a long and un-branched polymer chain inlge helix shape, composed of
only four types of deoxyribonucleotides bases whach: adenine (A), cytosine(C),
guanine (G), and thymine (T). The nucleotides ar&ked together by covalent

phosphodiester bonds that join the 5’ (five primajbon of one deoxyribose group to



the 3’ (three prime) carbon of the next. The fourds of bases are attached to this

repetitive sugar-phosphate backbone chain as shofig.1.2.

Figure 1.2: DNA
U.S. Department Of Health And Human Services (2006)

The two long chains of a DNA molecule are heldetbgr by complementary base pairs.
Three hydrogen bonds form between G and C, andhyioogen bonds exist between A

and T. The base-pairing mechanism is the basiBNgk replication.

A DNA sequence or genetic sequence is a succeséilatters constituent nucleotides
listed from the 5'- to 3'- terminus representing pimary structure of DNA molecule or
strand, which hold the information as describedtlwy central dogma of molecular

biology. Prior to discussion on applications of DMAquences, several terminologies



related to DNA are defined. For exampl€enome is a complete set of DNA
(Deoxyribonucleic Acid) for an organisms, and thdAarranged into 23 pairs of DNA
molecule called chromosomes, and each chromosom&igomany genes, DNA
molecule has millions of bases or nucleotides, ghescleotides sequences or base
sequences has the information of making proteigsdsgd in it. A nucleotide is made up
of one phosphate group linked to a pentose sudachws linked to one of 4 types of
nitrogenous organic bases symbolized by the fatere A, C, G, and T. The rules that
govern the correspondence of the base/ nucleoedeences for DNA and RNA
(Ribonucleic Acid) to the amino acids or proteins known as GenetiCode. Sequence
Alignment is the process of locating regions thratequivalent to increase the similarity

of these sequences.

Each strand in the DNA complement the otrsr,an adenine (A) on one strand is
always facing a thymine (T) (and vice versa), agtbgsine (C) is always facing a
guanine (G). When the sequence of nucleotides along strand is known,
automatically the sequence on the other one catetieced. The double strand in helix
structure of DNA makes the definition of a DNA seque vague. Despite the
convention of reading the nucleotides from the rid éoward the 3’ end, writing down
the top or the bottom sequence. For convince theybath equally valid sequences by
turning this page upside down. Thus, at each lonath DNA molecule corresponds to

two different sequences, related by this reverseemmplement operation.



Various researchers have worked on clustering DNAly&is, some focused on local
similarity while others make it global. One of tkechniques that have already been

implemented is Spectral Clustering.

1.1 Problem Statement

Each DNA sequence has its own functions. Once gist® come up with a new
sequence, it is important to compare it with thevprus existing sequences to know its
functionality and category. Some of the most popwdad effective methods for
comparing sequences are BLAST and FASTA, but thmsthods have weakness.
Though there is an extended version of these ttwldeal with multiple sequence

alignments. The weaknesses are:

» |t can compare just two sequences at the sameairdeprovide the similarity
between them.
» |t uses alpha representation of the sequenceshwtilcadd more burdens on

the system and take a lot of memory space.

The area of DNA research is still considered ahéant stage. Therefore there are many
sub-areas in DNA research that can be explored. SDok area to focus on is DNA
sequences representation, and how information andlkedge could be extracted from
these sequences. To uncover the hidden informatiilvm DNA sequences, data mining
approach can be employed. For example éfual. (2006) used Euclidian distance

between the corresponding characterizations of BBduences to make clustering. For



the purpose of this study, clustering technique lesn chosen to be used since the

DNA sequences represent unsupervised type of data.

1.2 Research Question

The research questions can be formulated as:
(a) How to identify suitable numerical representatiédIA sequence?

(b) How to evaluate DNA sequences features using clagtéechniques?

1.3 Research Objectives

The research objectives are specified as:
(a) To identify suitable numerical representation of ®skquence.

(b) To evaluate DNA sequences features using clustésnigiques.

1.4 Scope and Limitation

The scope of this study will focus on some DNA sFges from the following families
(Lysozyme, Myoglobin and Rhodopsin), and data ngrtimat will be used in this study
only uses clustering technique. The limitation liktstudy that it is concerned in DNA
sequences; this study can be extended to othelidamif DNA sequences and can be

implemented on protein sequences.



1.5 Chapters Overview

This section will provide a general overview fockahapter. This study falls into five
chapters; Introduction, Literature Review, Methadpl, Results and Discussion and

Conclusion.

By starting with the introduction, an overall idefthis study will be gathered in the
readers’ mind. Explaining some terminologies thatvéhbeen used in this study will

make it easy to understand this work.

From the literature (Chapter TWO), the main conadptata mining and it applications
has been clarified specially in clustering DNA segqees. Chapter THREE presents the
methodology that has been applied in this studychvhas been adopted from Let al.

(2006).

The experiments applied in this study can be fann@dhapter FOUR, there is two main
experiments; one used the whole DNA sequence wuperesults of clustering, and the
other one is to have a fixed number of the DNA sege in a way does not exceed the
maximum length of the shortest DNA sequence. A kmien and future work are

presented in Chapter FIVE.



CHAPTER TWO

LITERATURE REVIEW

This chapter presents a general view of the datengniand its clustering techniques as
well as some general applications for clusterimgl @eas from previous researchers on
using clustering algorithms especially in Bioinfatics. For the purpose of clustering
DNA sequences the taxonomy of DNA sequences and B&tiences representations

have been presented.

2.1 Data Mining

Data mining is one of the steps in Knowledge Discgvin Database (KDD) process
that consists of applying data analysis and disgoaigorithms to produce a particular
enumeration of patterns (or models) over the whiata (Fayyadet al, 1996). The

desired outcome of data mining activities is tadigr knowledge that is not explicit in
the data, and to put that knowledge to use (AyP862 Data mining also can be defined
as the process of selection, exploration, and nmogledf large quantities of data to

discover regulations or relations that are unknavith the purpose of obtaining clear



and useful results. Data mining is divided into tmodels, predictive (Supervised) and

descriptive (Unsupervised) models.

2.1.1 Predictive Model

This model describes one or more dependent vasabiat are related to all of the
independent variables; asymmetrical or direct ndthman be assigned to the predictive
models. This would be done by searching for rufeslassification or prediction based
on the data. Predictive modeling falls into catggoir supervised learning; hence, one
variable is clearly labeled as Target variallland can be explained as a function of
other variablesX. By determining the nature of the target, clasatfon model can be
defined ifY is discrete variable, regression model, or comiusuone. Typical methods

of predictive modeling are classification, regreasand time series analysis.

Classification, is the task of learning a target functiothat maps each attribute set x to
one of the predefined class labglslso it can be defined as, assigning objects&oad
several predefined categories (Tetral, 2006), Classification problems aim to identify

the characteristics that indicate the group to tvieach case belongs

Regressionis a predictive modeling technique using the vabfieone of a pair of
correlated variables in order to predict the valtithe second, where the target variable
to be estimated is continuous, the goal of regoess to find a target function that can

fit the input data with minimum error.



Time seriesforecasting predicts unknown future values basea time-varying series
of predictors. Like regression, it uses known ressth guide its predictions. Models
must take into account the distinctive propertiédime, especially the hierarchy of
periods (including such varied definitions as tiheef or seven-day work week, the
thirteen-“month” year, etc.), seasonality, calendsdfects such as holidays, date

arithmetic, and special considerations such asrhaeh of the past is relevant.

2.1.2 Descriptive Model

Groups of data can be described more briefly indéscriptive models; these models
can be named: symmetrical, unsupervised or indirethods. A general description of
the data is important but summaries also are irapbrstarting point and need more
exploring. Models of data can be found throughdbscriptive models, so the aim is to
describe not to predict. As a result, descriptivedels are used in the setting of
unsupervised learning. Typical methods of desemptinodeling are summarization,

association rules, sequence discovery, and clagteliata mining uses several types of
analytical software such as statistical, machimaeni@g, and neural network. In general,
Classes are grouped into clusters, associations,ruequential patterns and

summarization.

Clustering can be defined as the process of gariitg as set of data / (objects) in a set
of consequential sub-classes, called clusters. Sdrtiee data mining approaches which

use clustering are database segmentation, presglitiddeling, and visualization of large

10



databases. Segmentation is a clustering methoegtment databases into homogeneous
groups, predictive modeling is statistical methdddata analysis usually involves
hypothesis testing of a model the analyst alreaay im mind. Visualization is the
visualized representation of clusters in large liadas in order to aid human analysts in
identifying groups and subgroups that have sintlaaracteristics (Jaiet al, 1999).
Also descriptive models can be evaluated alongdthmensions of predictive accuracy,
novelty, utility, and understandability of the &tt model (Abonyi & Feil, 2005). The

next section focuses on the clustering techniques.

2.2 Clustering Techniques

Clustering techniques can be considered as a ptre aindirected data mining tools, the
goal of the undirected data mining is to discovwarcdures in the data as a whole. There
is no prediction for the target variable, becaulmd is not, so the distinction between
independent and dependant variables will not blided. A cluster is a collection of
objects, which are similar between them and didambo the objects belonging to other
clusters. Furthermore Clustering is seeks to ifieatifinite set of categories or clusters
to describe data. Fayyaet al. (1996) defined that the categories can be mutually
exclusive and exhaustive or consist of a richeraggntation, such as hierarchical or
overlapping categories. Some times in loading amed, objects are physically
allocated close to each other, and then it sait ttiese objects have been clustered

(Visnick, 2003) Fig. 2.1 illustrates how clusteriwgrks.

11
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Figure 2.1: Clustering Technique

Two criteria have to be satisfied in order to use d¢lustering techniques for combining
observed examples into clusters, namely
= each group or cluster is homogeneous; examplesdb#iang to the same group
are similar to each other.
= each group or cluster should be different from ottasters, that is, examples
that belong to one cluster should be different ftbmexamples of other clusters.

Depending on the clustering technique, differengsvare used to express clusters:

Identified clusters may be exclusive, so that axgngple belongs to only one
cluster.

* Overlapping can be happen; an example may beloseMeral clusters.

» They may be probabilistic, whereby an example bg8aio each cluster with a

certain probability.

» Clusters might have hierarchical structure, havangle division of examples at
highest level of hierarchy, which is then refinedsub-clusters at lower levels.
Fig. 2.2 and Fig. 2.3 show an example for hieraahclusters, and overlapping

clusters, respectively.

12
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Figure 2.2: Hierarchical Clusters
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Figure 2.3: Overlapping Clusters

Furthermore different approaches to clustering databe described with the help of the

hierarchy as shown in Fig. 2.4.

Clustering

Hierarchical Partitional

Single Complete Square Graph Mixture Mode
Link Link Error Theoretic| | Resolving Seeking

k-means Expectation

Maximization

Figure 2.4: Taxonomy of clustering approaches (Jetial, 1999)
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The algorithms of the hierarchical clustering proslia nested series of partitions and
that based on criterion for splitting or mergingsters based on similarity. To identify
the partition that optimizes a clustering criteri@usually local) partitional clustering

algorithms have to be implemented.

2.2.1 Hierarchical Clustering Algorithms

A hierarchical clustering can be defined as a secp®f similarity partitions in which
each partition is nested into the next partitionthe sequence (Irene, 1999), and be
represented in dendrogram, and this can be brokediffarent levels to produce
different clustering’s of the data. Different lesealf abstraction might be represented in
building a cluster of hierarchical structure. Moghierarchical clustering algorithms are
variants of the single-link, complete-link and nmmim-variance algorithms. For these,
the most popular are the single-link and compligtie-4lgorithms. These two algorithms
differ in the way they characterize the similaripetween pairs of clusters. The
clustering technique that works well on datase#$ tiontains non-isotropic, chain like,
well-separated, and concentric clusters is thelesiligk clustering algorithm. K-means
algorithm as a typical partitional algorithm work&ll only datasets that are isotropic
clusters. But partitional algorithms typically halmver space complexities and time
than hierarchical algorithms. Let al. (2006) used hierarchical clustering to analyze 3D
model database and improve the retrieval perforemanbeir proposed algorithm stops
automatically by utilizing outlier information aretlopts the concept of core group to

reduce the influence of parameter on the clusteesglts.

14



Single Link Clustering

One of the simplest agglomerative hierarchicalteliisg methods is single linkage, also
known as the nearest neighbor technique. The defifeature of the method is that
distance between groups is defined as the disthetveeen the closest pair of objects,
where only pairs consisting of one object from egobup are considered (Tat al,

2006).

Complete Link Clustering

The complete linkage, also called farthest neighbloistering method is the opposite of
single linkage. Distance between groups is nowngeffias the distance between the most

distant pair of objects, one from each group (&aal, 1999).

Basic Algorithm for Hierarchical Clustering

The basic rules for agglomerative hierarchical telusg are:
1. Derive vector representation for each entity (gene expression values for each
experiment make up the vector elements for a $peeihe).
2. Compare every entity with all other entities byccédting a distance. Input that
distance into a matrix. Calculation of the distartEpends on:
a. The linkage method being implemented.

b. The method of calculation of actual distances.

15



3. Group closest two entities (or clusters) togethehich make a new cluster) and
go back to step 2, counting the new cluster asiglsientity, until all entities are

contained within one big cluster.

2.2.2 Partitional Algorithms

Jainet al. (1999) said that partitional clustering algoritlitains a single partition of
the data instead of a clustering structure, suchthasdendrogram produced by a
hierarchical technique. Partitional methods haveaathges in applications involving
large datasets for which the construction of a degyém is computationally prohibitive.
A problem accompanying the use of a partitionabatgm is the choice of the number
of desired output clusters. Additionally, the pamal technique usually produce
clusters by optimizing a criterion function definedher locally (on a subset of the
patterns) or globally (defined over all the pat®rrCombinatorial search of the set of
possible labeling for an optimum value of criteriertlearly computationally prohibitive.
In practice, therefore, the algorithm is typicailyy multiple times with different starting
states, and the best configuration obtained froimthe runs is used as the output

clustering.

Squared Error Algorithms

The most intuitive and frequently used criteriomdtion in partitional clustering

techniques is the squared error criterion, whiaid$eto work well with isolated and
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compact clusters. The squared error for a cluggdriof a pattern set X (containing K

clusters) is:

N K ny ]
XX, L) = D > |x¥ — ¢’
1

j=1li=

Where ¥ is the I" pattern belonging to thé jcluster and icis the centroid of the"j

cluster.
k-Means Clustering Algorithm

The k-means is the simplest and most commonly asgatithm employing a squared
error criterion. It starts with random initial péidn and keeps reassigning the patterns to
clusters based on the similarity between the patterd the cluster centers until a
convergence criterion is met. The k-means algorithrpopular because it is easy to
implement, and its time complexity is O (n), whereis the number of patterns.
Moreover k-means would work well even on problemthviarge datasets. A major
problem with this algorithm is that it is sensititeethe selection of the initial partition
and may converge to a local minimum of the criterfonction value if the initial
partition is not properly chosen, and the user sgedspecify the number of clusters in
advance (Erban & Moldovan, 2006).
The steps of the k-means algorithm are given below:

1. Select randomly k points (it can be also examptespe the seeds for the

centroids of k clusters.
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2. Assign each example to the centroid closest texaenple, forming in this way k
exclusive clusters of examples.

3. Calculate new centroids of the clusters. For thatgmse average all attribute
values of the examples belonging to the same cl(cstatroid).

4. Check if the cluster centroids have changed thewdrdinates”. If yes, start
again form step 2. If not, cluster detection issiired and all examples have their

cluster memberships defined.

Zhang et al. (2004) used k-means to get stuck at locally ogtipaints for high
dimensional data. The proposed algorithm combinese@c Algorithms and k-means
algorithm together for improving the search abilifythe k-means algorithm. Also k-
means clustering where used by Blgal. (2006), to improve watershed segmentation
algorithm making use of automated threshold ongttaelient magnitude map and post-
segmentation merging on the initial partitions @éduce the number of false edges and
over-segmentation. By comparing the number of f@ns in the segmentation maps of
50 images, they show that their proposed methogofwgduced segmentation maps
which have 92% fewer partitions than the segmematinaps produced by the

conventional watershed algorithm.

2.2.3 Graph-Theoretic Clustering

The best-known graph-theoretic divisive clustem@tgprithm is based on construction of

the minimal spanning tree (MST) of the data, arehttieleting the MST edges with the
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largest lengths to generate clusters. Fig. 2.5ctephe MST obtained from nine two
dimensional points. By breaking the link labeled ®@ith a length of 6 units (the edge
with the maximum Euclidean length), two cluster,(8, C} and {D, E, F, G, H, I})

are obtained. The second cluster can be furthédetivinto two clusters by breaking the

edge EF, which has the length of 4.5 units.
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Figure 2.5: Using minimal spanning tree for clustering

The hierarchical approaches are also related tpheftzeoretic clustering. Single-link
cluster are sub-graphs of the minimum spanning ¢fethe data which are also the
connected components. Complete-link cluster is makicomplete sub-graphs, and

related to the node color ability of graphs.

Akosy and Haralick (1999), used graph-theoreticreagh for image retrieval by

formulating the database search as a graph clogtproblem by using a constraint that
retrieved images should be consistent with eacérdtiose in the feature space) as will
as being individually similar (close) to the quamage. Graph-theoretic techniques

where adopted by Schenker (2003) for performing dahing on web documents which

19



utilize graph representations of document contBatause the graphs are more robust
than typical vector representations as they canemsettuctural information that is

usually lost when converting the original web cont® a vector representation.

2.2.4 Expectation-Maximization (EM) Algorithm

The EM algorithm has become a popular tool in stiahl estimation problems

involving incomplete data or in problems which d@nposed in a similar form, such as
mixture estimation. The EM algorithm has also based in various motion estimation
frameworks and variant of it have been used in iAmaline super resolution restoration

methods which combine motion estimation along itmesl (Borman, 2009).

EM algorithm used when data is only partially obsbéte, unsupervised clustering
(target value unobservable) or supervised learnfiggme instance attributes
unobservable). Furthermore EM produce begins witindial estimate of the parameter
vector and iteratively rescores the patterns agaesmixture density produced by the
parameter vector. The rescored patterns are theshtosupdate the parameter estimate.
In a clustering context, the scores of the pattdmisich essentially measure their
likelihood of being drawn from particular comporeif the mixture) can be viewed as
hints at the class of the pattern. Those pattgiased (by their scores) in a particular

component, would therefore be viewed as belongirthe same cluster.

20



Ansari and Viswanathan (1992), used EM algorithnestmate the unknown jammer
parameters and hence obtain a decision on theybgignal based on the estimated
likelihood functions. Simulation results show ttetlow signal-to-thermal noise ratio
and high jammer power, the EM detector performsiaantly better than the hard
limiter and somewhat better than the soft limi#iso EM algorithm was implemented
to joint depth estimation and segmentation fromtauwkw images is presented. The
distribution of the luminance of each image pixelnnodeled as a random variable,
which is approximated by a “mixture of Gaussiangleld After recovering 3D motion,
a reference images segmented into a fixed numbesgiéns, each characterized by a

distinct affine depth model with 3 parameters (Graaidiset al, 2002).

2.2.5 Fuzzy C-Means Clustering Algorithm

Traditional clustering approaches generate pamstiin a partition, each pattern belongs
to one and only one cluster. Hence, the clustees hiard clustering are disjoint. Fuzzy
clustering extends this notion to associate eadtenpawith every cluster using a
membership function. FCM employs fuzzy partitionsuch that a data point (method)
can belong to all groups with different membergsiegrees between 0 and 1. The output

of such algorithms is clustering, but not a paotiti

Fuzzy c-means (FCM) is a method of clustering whadlows one piece of data to

belong to two or more clusters. This method dewedopy Dunn in 1973 and improved
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by Bezdek in 1981 is frequently used in patterrogedtion. A high level partitional
fuzzy clustering algorithm as below:

1. Select initial fuzzy partition of the N objectsait clusters by selecting the >N
K membership matrix U. An element of this matrix represents the grade of
membership of object i cluster ¢ Typically, y [0,1].

2. Using U, find the value of fuzzy criterion functieng., a weighted squared error
criterion function, associated with the corresparglipartition. One possible
fuzzy criterion is:

N K N
E2%,U) = 3 Yux, — ¢, Where, €, = 2 U;pX;
i=1h=1 i=1
is the kth fuzzy cluster center. Reassign patteéonslusters to reduce this

criterion function value and recomputed U.

3. Repeat step 2 until entries in U do not changeiBagmtly.

Carvalho (2006) used fuzzy c-means clustering dlgor for symbolic interval data

based on adaptive and non-adaptive Euclidean distahe proposed method furnish a
partition of the input data and a correspondinggiype (a vector of intervals) for each
class by optimization and adequacy criterion whighbased on adaptive and non-
adaptive Euclidean distance between vectors ofvalg, after that the evaluation of this
method has been carried out. The accuracy of thdtsefurnished by these clustering
methods were assessed by the corrected Rand imglesidering synthetic interval

datasets in the framework of a Monte Carlo expegand application with real dataset.
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2.2.6 Spectral Clustering

Spectral clustering is one of the most popular moadéustering algorithms. It is simple
to implement, can be solved efficiently by standiangar algebra software. Spectral
clustering refers to a class of techniques whithoa the Eigen structure of a similarity
matrix to partition points into disjoint clustergtiv points in the same cluster having
high similarity and points in different clustersvirey low similarity (Bach & Jordan,

2003).

The learning algorithm for spectral algorithm is fbllowing:
Input: Similarity matrix S, number of clusters K.
= Compute transition matrix P by (2).
= Compute Y ...,V the eigenvectors corresponding to the k largegemialues of
P.
= Clusters the rows of V = fy...,V] as points in Rby using K-means.

Output: Clustering C.

Spectral clustering used to support cases wherestibiies in the affinity matrix are
costly to compute, this method is incremental — $pectral clustering algorithm is
applied to the affinity matrix after each row/colans added — which makes it possible
to inspect the clusters as new data points aredaddes method is well suited to the
problem of appearance-based, online topologicalpmagpfor mobile robots (Valgreat
al., 2007). Moreover Weiming and Zhang (2007) usecttspleclustering algorithm to

propose a hierarchical corner detection framewonkhich the mean shift is embedded.
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In the corner cell extraction stage, several atoroimer cells are obtained by spectral

clustering.

2.2.7 Kohonen Networks

The Kohonen network was invented by Teuvo Kohord&81), and is closely modeled
on the way that certain parts of the brain are kmtovwork. The basic idea behind the
kohonen network is to setup a structure of intemeated processing units “neurons”
which compete for the signal. Kohonen networks méke basic assumption that
clusters, or classes, are formed from pattern shate common features and groups
similar patterns together. Teuvo Kohonen has beeented a variety of networks. The
phrase “Kohonen network” most often refers to ofdhe following three types of
networks:
* VQ: Vector Quantization is a competitive networkatthcan be viewed as
unsupervised density estimates or auto-associators.
= SOM: Self Organizing Map is a competitive networkatt provides a
“topological” mapping from the input space to thesters.
» LVQ: Learning Vector Quantization is a competitimetwork for supervised

classification.

The objective of Kohonen Networks is to map inpetters (patterns) of arbitrary
dimension N onto a discrete map with 1 or 2 dimamsi Patterns close to one another in

the input space should be close to one anothdreinmap: they should be topologically
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ordered. A Kohonen Network is composed of a grisatipput units and N input units.
The input pattern is fed to each output unit. Thput lines to each output unit are

weighted. These weighted are initialized to smatidom numbers.

This type of neural network is known as an unsuged/network. Clustering techniques
apply when there is no classes to be predicteddiber when the instances are to be
divided into natural groups. These clusters presilyneeflect some mechanism that
causes some instances to bear a stronger resemibdtanoe another that they do to the
remaining instances. Clustering naturally requirddgferent techniques to the
classification and association learning method® Kbhonen SOM is fully connected,
single layer linear network. The output generally arganized in a one or two
dimensional arrangement of Processing Elements) (iAEz line of elements, so each
element only has two neighbors (the preceding dmel following PE). A one
dimensional SOM can be thought of as a string of, here each PE is restricted to be
near its two neighbors. When SOM adapts to an imgbpltigher dimensions, it must
stretch and curl itself to cover the input spacesiBally, the clustering with the
Kohonen Network consists of three layers: the ingyer, where the data are introduced
to the network, the hidden layer, where the datampcessed and the output layer,

where the results for given are produced.

Arasaet al (1999) introduced a new self organizing neurawoek, the Kohonen
Incorporating Explicit Statistics (KNIES) that isded on Kohonen’s Self-Organization
Map (SOM). The results of the study showed thatrtbes scheme has been used to

solve the Euclidean Travelling Salesman ProblenP{T $loreover, it has been indicate

25



that NN the most accurate strategy for the TSPeaty reported from TSPLIB (A

Traveling Salesman Problem Library).

2.3 Applications of Clustering

Clustering algorithms have been used in a largetyaof applications including image
segmentation, information retrieval, fault diagsosicondition monitoring and
bioinformatics. However further discussion on tipplecations of clustering is focused

on Bioinformatics.

2.3.1 Bioinformatics

The rapidly inflation of biological data, on a wdly seems to be exponential, the
increasing demand on getting information from suulge data, require to use
intelligence techniques to speed up the procegsepiaring the information through the
deep observation inside data and show the relatlmatscan be found between it. Data
mining can be applied in this case. For examplexiaioonucleic acid (DNA) the

moleculethat our genes produced from is made from proteihgh in its turn made

from amino acids and there is typically 100 to Bifferent amino acids produce protein

sequence.
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Zien et al (2000) succeeded in determining the protein secpee that are included
within nucleotides sequences, knowing where isstag point for the encoding regions
for that protein which is called translation iniiean sites (TIS), and it’'s a classification
problem that can be handled through support veonemhines (SVMs) using the suitable
kernel technique. Cancer disease is a significesearch field. Tumor types have to be
critically classified to be diagnosed, and for cudiscovery. Many classification
algorithms can be applied to the problem of cawmtassification such as decision tree,
linear discrimination analysis, nearest-neighbaoalygsis, and SVMs. All the previous
algorithms face a major problem which is the higmehsionality of input space to
express the gene, which increase the computatioosth. The identification of the
marker genes is challenging edge facing the relseescto discriminate tumors for

cancer diagnosis (Hu & Pan, 2007).

A new approach has been presented by Gradtaah (2003) for drug design process,
which accelerates the chemical evaluation phaseigir parallel inductive logic search
for pharmacophores, the new system applies theepbiof data partitioning on a loosely
coupled collection of parallel inductive logic sefaes. One of the key design features of
this system is its portability and the ease of lizng sequential inductive logic
programming (ILP) systems, the system shows easpaddllelizing sequential ILP
systems based on the concept of data partitionm@ ¢oosely coupled collection of

parallel inductive searches.

Distributed processing components using on a wowkfinodel, for co-ordination the

execution is the base of Discovery Net system faethdata and text mining. a flexible
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infrastructure has been designed to allow end Ugerdiologists to construct their own
text mining applications easily, a new form of texining proceeds by using a generic
pipeline that takes in text documents, performs anynber of text pre-processing
operations (cleaning, NLP parsing, regular expogsperations, etc), followed by
coding the features of the documents in vector famere counts are recorded for user-

defined (Ghanersat al, 2005).

Clustering DNA Sequences

Clustering techniques can be implemented to clingfdDNA sequences. The prior to
clustering the sequences of DNA, the DNA needs dotransformed into numeric
sequence. Next, the distribution of the nucleotinesst be identified. FitzGeralet al.

(2004) determined the distribution of all sequenexying from 2-mers to 8-mers, in
addition to identified the clusters for Transiti@plit Site (TSS), and finally they

identified DNA sequences that cluster in promoters.

Liu et al (2006), has used numeric characterization, thrabg number of A, T, G, and
C nucleic bases in DNA sequence the total distafeach nucleotide from the origin (0,
0), and the distribution of each nucleotide alomg DNA sequence. Once the vector is
being produced, the Euclidian distance between ehehnacterization vector will be

measured to identify the clusters and a sensitaviiglysis is conducted.

DNA curvature excess profile technique were usesdoice a comprehensively big text

file (genome) to a numerical vector contains 8 pesitive numbers smaller than 0.5.
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Two widespread clustering methods: k-means andtiBaimg Around Medoids (PAM)
were used to cluster 205 complete prokaryotic geasnihe results obtained by k-
means algorithm application seem to possess bbitdogical relevance. K-means
algorithm was applied to cluster genomes usingature excess distributions upstream
of the starts of genes. Optimal growth temperatgenome size and the A + T
composition are the main factors influencing cunvatdistribution in promoter regions

of the prokaryotes (Kozobay-Avraharegal, 2008).

DNA splice site adjacent sequences have remarkallgervative feature and has much
genetic information. 2796 donor sequences of hubeing have been chose as the
experimental data set to cluster DNA sequencesguBIBSCAN and analyzing the
clustered results to mine the regulation in eaahstel. In order to improve the
applicability of the algorithm, dissimilarity defton methods were used. The
frequencies of “T+C” (A+C) and the di-base bia® alentified. This helps to predict
the functions of the sequences in each cluster,tandl be also helpful to mine more

biological knowledge from the clustering resulthériget al, 2008).

Based on orthologous gene property conservatiofiilggoBolshoy and Volkovich
(2008) introduced an unsupervised genome clustesirggegy of taxonomic analysis
based on an information bottleneck method, supgdbiat n genomes have been used to
construct a genome tree. They define an orthologeug property conservation profile
of a gene x as an n-component vector of zeros atidsy this will reflects on an

evolutionary conservation history of a property ggogs the n species. In their study,
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Bacteria and Archaea clusters showed a clear deparand clustering of relatively

close species.

2.3.2 Image Segmentation

The segmentation of image(s) presented to an inaagdysis system is a critically

dependent on the scene to be sensed, the imagomgetyy, configuration, and sensor
used to transducer the sense into a digital image ultimately the desired output (goal),
of the system. And image segmentation is typicaddifined as an exhaustive partitioning
of an input image into regions, each of which issidered to be homogenous with

respect to some image property of interest (entgnsity, color, or texture).

The goal of clustering was to obtain a sequendaypérellipsoid clusters starting with
cluster centers positioned at maximum density lonat in the pattern space, and
growing clusters about these centers until the fmsgoodness of fit is violated. An
agglomerative clustering algorithm was applied atve the problem of unsupervised
leaning of clusters of coefficient vectors for timeage models that correspond to image
segments. The algorithm proceeds by obtaining veaib coefficients of least-squares
fits to the data in M disjoint image windows (Silirean & Cooper, 1988). Two neural
networks have been designed to perform pattertecring when combined. A two layer
network operates on multidimensional histogramhefdata to identify prototypes which
are used to classify the input patterns into chsst&hese prototypes are fed to the

classification network, another two-layer netwonerating on the histogram of the
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input data, but are trained to have different wiidrom the prototype selection network.
In both networks, the histogram of the image isduse weight the contributions of
patterns neighboring the one under consideratiothéolocation of prototypes or the
ultimate classification; as such, it is likely tee bnore robust when compared to
techniqgues which assume an underlying parametnisige function for the pattern
classes. This architecture was tested on gray-scalecolor segmentation (Vinad al,

1994).

2.3.3 Information Retrieval

Information retrieval (IR) is concerned with autdibastorage and retrieval of
documents, many university libraries use IR systenovide access to books, journals,
and other documents. Libraries use the Library ohg@ess Classification (LCC)

scheme for efficient storage and retrieval of books

The clustering problem can be stated as followgemia collection B of books, its need
to obtain a set of clusters. Jain and Dubes (1888) a proximity dendrogram, using
the complete link agglomerative clustering algontlor the collection of 100 books.
Seven clusters are obtained by the threshold (Tgevaf 0.12. It is well known that
different values for T might give different clusteg. This threshold value is chosen
because the gap in the dendogram between the #welsich six and seven clusters are
formed is the largest. An examination of the subgeas of the books in these clusters

revealed that the clusters obtained are indeed imgfah Each of these clusters is
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represented using a list of string and frequendnspahere the frequency represents the

number of books in the cluster that is presentdterstring.

2.4 General Taxonomy of DNA Sequences

DNA sequences in general have two types of celldahitecture: Prokaryotic (Bacteria
and Archaea) and these two named as Prokaryoteshandther type is Eukaryotic.
Bacteria and Archaea are unicellular, Eukaryotesather unicellular (e.g. yeast) or
multi cellular (e.g. mammals) as shown in Fig. 2a6,general sampling of DNA
sequences has helped establish the diversityeofatild allowed researchers to analyze

evolutionary relationships within groups in det&toeckle, 2003).

Tree of Life
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Figure 2.6: General Taxonomy for Species
https://eapbiofield.wikispaces.com/FRF+PR9
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Hebert et al. (2003) discussed in their paper that many mammajjenes can be
organized into gene families consisting of a numtifegenes with similar sequences,
and the DNA extracted from small tissue samplesgushe Isoquick protocol. DNA
sequence should contain more than enough informatiaesolve 10 million or even
100 million species, there is no universal DNA bade gene, no single gene that is
conserved in all domains of life and exhibits erosgquence divergence for species
discrimination, there may be a need for a standalonrate database to supplement
GenBank, the stand-alone database would be destgnetiegrate sequence data with

specimen and taxonomic information.

A cytochrome “c” oxidase | (COI) database couldveeas the basis for a global bio-
identification system (GBS) for animals. Implemeiata on this scale will require the
establishment of a new genomics database. WhileB&®n aims for comprehensive
coverage of genomic diversity, the GBS databaseldva@m for comprehensive
taxonomic coverage of just a single gene. The ioreatf the GBS will be a large
undertaking and will require close bonds betweefemdar biologists and taxonomists.
DNA-based species identification offers enormoutepiial benefits for the biological
scientific community, educators, and the interegteblic. It will help open the treasury
of biological knowledge and increase community resé in conservation biology and

understanding of evolution.

2.5 DNA Sequences Representations
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It is possible to represent DNA sequence with nierargraphs for easy analysis, these
numeric or graph representations can be in the fornreal numbers or complex

numbers depending on the further analysis reqdioethe clustering.

2.5.1 Graphical Representation of DNA Sequences

As mentioned in the previous chapter, there isrgelaolume of DNA sequences, and
for the purpose of analyzing it in a mathematicallgry it will be challenging. For a

simple way to view, compare and sort DNA sequertisesgraphical representation of
DNA sequences gives an operative way. The main gbgraphical representation of
DNA sequences is; to show the similarity and tHiféeténce in the gene structure in an

easy way visually (Gates, 1985).

In order to have a unique graphical representdtiothe DNA sequences, it is required
that the graphical representation has no degenehdagy efforts have been made to
avoid the degeneracy caused by overlapping andsiogaths itself. One of the
examples of the degeneracy is the high dimensigregbhical representations of the
DNA sequences. For more straight visual displajy @raphical representation gives

that with less computation and drawing tools.

Song and Tang (2005) create a new 2-D graphicakseptation of DNA sequences
based on chemical structure of bases. They redieedNA primary sequence into

some characteristic curves. Each characteristivecunay be regarded as a coarse
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grained description of the DNA primary sequence,ctwhavoids overlapping and
crossing of the curve, reflects the distributionddferent base pairs. This approach is
accompanied with an arbitrary decision in assignioghe different types of bases
different geometrically non-equivalent graphicabickes. The graphical representation
results in a numerical characterization of a DNAusnce by the leading eigenvalues of
M/M, L /L matrices associated with the DNA sequesjcenly six out of 12 possible

graphs are shown in Fig. 2.7.
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Figure: 2.7: 2-D characteristic curve of the sequence TGGTGCAGACTCCTGA
(Song & Tang, 2005).
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Randi et al (2002) transferred data from a DNA sequence $ nitathematical
representation presented in a 2-D graphical reptaen that preserve and avoid the
loss of information on sequential adjacency of eattles and allow numerical
characterization. Zigzag curve illustrates DNA sagee that will smooth the progress of
guantitative comparisons of DNA sequences Fig 2s80ociating the four nucleotide: A,
T, C and G with the four horizontal lines, the cemgive bases along the horizontal
axes are placed at unit displacement. Also 2D nignnepresentation using 2 Cartesian
co-ordinate system where A, G, C and T are reptedemith a unit vector has been used

by Wan and Johnson (2002).

Figure 2.8: Graphical representation of the sequence ATGGTGCACC
(Randi et al., 2002)

Guo and andy (2002) introduced a method to redbeedegeneracies of the DNA
sequence representation, so that there are coaBlgdess overlaps in the graphs. DNA
sequence of four nucleotides A, T, C and G and liadength n can be considered as a
successive vector sequence of length n contaihedour vectors corresponding to A, T,
C, G and used in 2-D graphical representation @& EBINA sequence. The new
descriptors of DNA sequences give a good numerdataracterization of DNA

sequences, which have lower degeneracy.
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2.5.2 Numerical Representation of DNA Sequences

It is possible to represent DNA sequence with niorfer easy analysis, these numeric
can be in the form or real numbers or complex numlkpending on the further
analysis required for the clustering. Real numle@resentation has been implemented
to represent the DNA sequence. For example, Kaodr Blocker (2003), assigned
numbers to nucleotide such as an instance A=1, G=3 and G =4, based on the
assumption that A<T<C<G. Complex numbers has bsed by Anastassiou (2000) to
represent DNA sequences. DNA sequences are codvertectors of complex number
by assigning nucleotide with complex Number anddbwesponding nucleotides with a

complex conjugate.

Based on digital signal method, Qi and Qi (2009ppise a new representation of DNA
primary sequence. It is very difficult to find DNeharacteristic vector particularly when
the sequence is very long. To deal with the situmatQi and Qi used signal theory to
characterize DNA sequences. By constructing a wéalkong-H bond graph in the first
quadrant of the Cartesian coordinate system, tliedigital signals representing four

nucleotides A, T, G and C can be represented Bigi.9.

a b c d
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Figure 2.9: A weak-H/strong-H bond graph.
(Qi & Qi ,2009)
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Four nucleotides, A, T, C and G have been repredesss four two-component vectors
(Huanget al, 2009). Each vector contains a constant (equd) tand different angles

between A, T, C and G nucleotides and the x-axisc@mparing the corresponding
curve of nucleotides, a new measure of similaritgl dissimilarity was proposed. This
conveniently discovers the evolutionary relatiopsdimong various DNA sequences by

observing the graphical representations.

2.6 Conclusion

This chapter presented data mining concept andlttstering techniques which is part
of the descriptive models. Clustering techniqguegehaeen categorized into two main
categories; hierarchical and partitional, each biclv has different clustering algorithm.
From previous literature, representing the DNA ssges in a characterization vectors
enables the use of Euclidean distance betweenattiesponding vectors for the DNA
sequences, for the similarity between the DNA segese. This methodology as
proposed by Litet al. (2006) has been adopted in this work. The nexptenaliscusses

the methodology in more details.
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CHAPTER THREE

METHODOLOGY

In this chapter, a twelve-dimensional vector isoagged with each DNA sequence. A
new genomic geometry will be produced in a twelimmahsional space. The length of
the vectors have to be the same in order to utiigetors to characterize the DNA
sequence, regardless the difference of the origsegjuences that are in alpha

representation.

3.1 Introduction

Finding similarities between the new genes and prexious sequenced genes with
known functions through sequence comparison wilh ke discover the function of the
new sequenced gene. BLAST and FASTA is the mostlpopools used in sequence
comparison. However, BLAST and FASTA only compates sequences at one time
and does not provide a global picture of the coimsparof all genes simultaneously.
Consequently it will be advantageous to put allgkees in a fixed Euclidean space so

that a global view will be produced for all genesnparison.
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BLAST and FASTA tools cannot compare more than tWINA sequences

simultaneously, also they are using the alpha semtation of the DNA sequences, so
the methodology which is adopted in this work doescompare the DNA sequences in
its alpha representation but it converts it inton@merical representation which is
characterization vector, this will make it easyctoimpare more than two DNA sequence
simultaneously in a genomic space. Hence, no needrpare the results of this study
with BLAST and FASTA tools because of the differesdn the why of representing the

DNA sequence and the way of comparing more thanDiNé sequences.

3.2 Research Methodology

In this study, the methodology from Lat al (2006) as shown in Fig.3.1 is adopted.

Data Base

Alpha to Numeric
Convert

Numerical

Sequences

Clustering

Figure 3.1 Methodology (Liuet al, 2006)

Experiments were conducted based on the followiegss
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STEP 1. Alpha DNA sequences were obtained from Gene Bamm frthe

following site:

http://www.ncbi.nlm.nih.gov/. An example of the datan be seen in Fig. 3.2.

CRIGIN
1 gacatttgac ttctcagtca acatgaaggc tCLcAtLtatt ctggggtttbc tottocttto
61 tgttgcoctghbc cagggcaagg tctttgagag atghbgagoctt gocagaactc tgaagaaact
121 tggactggat ggcoctataagg gagtcagbtct ggoaaactgg ctgbgtttga ccaaatggga
181 aagcagttat aacacaaaag ctacaaacta caatcctggec agtgaaagca ctgattatgg
241 gatatttcag atcaacagca aatggtggtg taatgatggec aaaaccocca acgcagttga
301 cggcotgtcat gtatcoctgca gogaattaat ggaaaatgag atcgogaaag ctgtagogtg

Figure 3.2: Original DNA sequence
STEP 2: The alpha wvuiNA sequences were converied into 12 npse

characterization vector and this inelud
(a) The first four parameters of the characterizatieoter contain g, nr, nc,
and i and can be defined as following:
I. na: Total number of nucleotide A in the DNA sequence.
ii. ny: Total number of nucleotide T in the DNA sequence.
iii. nc: Total number of nucleotide C in the DNA sequence.
iv. ng: Total number of nucleotide G in the DNA sequence.
For example if a sequence A is: GTGGGTGGTT, andusece B is:
TGAAGCTGTT, the sequences will be used in the fellg parts,

whose corresponding four parts for each sequersteoisn in Table 3.1.

Table 3.1 Number of nucleotides (A, T, C, G) in the sequenc

GTGGGTGGTT
Parameter Sequence A Sequence B
GTGGGTGGTT TGAAGCTGTT
Na 0 2
Nt 4 4
Nc 0 1
Ng 6 3
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(b) The second four parameters of the characterizatgmtor are the total
distance for each nucleotide base on the firstaaticle, or the origin

(0,0) of the DNA sequence. It can be defined as:

1=t (3.)
=1

Where, i = A, T, C, G. Andjitis the distance from the first
nucleotide to the"j nucleotide in the DNA sequence. Therefore the
set of the four parameters for the characterizatextor dictated by
DNA sequence area] Tr, Tc, and T. Fig.3.3 shows the positions
of G base in the sequence GTGGGTGGTT; hence taérnatber

of distances for base G is the summation of thiadces which is: 1

+3+4+5+7+ 8= 28, and so on for the restwafleotide bases.

Position | 1 | 2| 3| 4| 5| 6| 7| 8 9 10

Base G| T| G| G| G| T G G 1 T

Figure 3.3: The position of nucleotide in the sequence
GTGGGTGGTT

The second four parts of the characterization vediar the same
sequences that have been used in the previousisstgipown in

Table 3.2.
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Table 32: Total distance of nucleotides (A, T, C, G) in #egjuence

GTGGGTGGTT
Parameter Sequence A Sequence B
GTGGGTGGTT TGAAGCTGTT
Ta 0 7
Tr 27 27
Tc 0 6
Ts 28 15

(c) The distribution of each nucleotide along the DNe§jisence will produce
the third four parameter of the characterizatioctee

The distribution is defined as:

c (tj _:Ui)z

D, = ]ZJ:-T (3.2)

Where i=A, T, C, G. And:tis the distance from the first nucleotide to the

j™ nucleotide in the DNA sequence and

H = L (33)
n

The four parameters for the third part will bg, Dy, D¢, and .

T . . . . .
For examplew, =—L , this value will be used in main function to
n,

calculate the distributibn(3.2) of nucleotide T in the sequence, so the

values offnand T can be obtained from Table 3.1 and Table 3.2

respectively, then U, =— = 6.75, so this value
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D, :i(tj —,uT)

2
= 9.68, the distribution of all the nucleotides [A,

C and G) for the same segasrmabove shown in Table 3.3.

Table 33: The distribution of nucleotides (A, T, C, G) imetsequence

n,

GTGGGTGGTT
Sequence A Sequence B
Parameter GTGGGTGGTT TGAAGCTGTT
Da 0 0.25
Dy 9.68 12.18
D¢ 0 0
Dg 5.48 6

So the characterization vector that contains 12dsional information
is:
<M, Ta,Da,m,Tr,Dr,nc, Te, Dc, g, Te, Dg >
STEP 3: Store the characterization vector that represér@<DINA sequence into
database.
STEP 4: Clustering the numeric representation of DNA segasn
(d) The distance between two characterization vectass tb be small to
indicate that these two sequences are similar.
(e) Two characterization vectors that have large digtabetween them
correspond to non-homologous DNA sequences.

(H The distance between two characterization vectoefined as:

(3.4)

Where i=A, T,C,andG;j=n,T,D.
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By applying the previous formula L (3.4) on the @werization vectors of
the sequences A and B we will find that the distabetween these two

vectors is = 42.84.

Fig 3.4 shows an example of DNA sequence from Lyswz family named “Bos
Taurus” and the corresponding characterizationordot this DNA sequence.

gacattigactictcagicaacatgaaggctctoatta
tictggggtticteticettictaiigetgiceagggeaag
gictitgagagatgtgagcttgecagaacicigaaga
aacltggactggatggctataagggagteaglelgac
aaactggctgtgtitoaccaaatgggaaageagttata
acacaasaagclacaaactacaatcclggcagtoaaa

geacigattalgggatatilcagalcaacagcaaatag
tggtgtaatgatggcaaaacccecaacgeagiigacy
getgtcatgtatccligoagegaattaatggaaaatgag

ategegaaagetgtagegigtgccaageagatigtca
glgageaaggealiacageatggglggeatggaaaa
gtcacigicgagaccatgacgicageagttalgtigag
9 goacgclgtaacigtggagiiateaticticagclo

giotctitticacaltaaggaagtaatagtigastga

aag@ltﬂtamaoﬂatmd&:aagﬂaaacaatggtmﬂ
cagaagcaggageatatgglctictaagaageitaaltg
titatctaatglgitaatiatiigacactaggectataatattt.
Iteagtttyctagtaasactaatgetggigaatattiglcta
aattcttaattatciaatatatciccagtataticagticttaa
ttaaagcaagaacatitatgcacctigetgateatgaag
gaatataaagagggaliagatgaactgiigetitticttas
tticattagcatiatgacaaaticagagacagatgagtct
geaactatigaaatiaaligclogitaaccacagatatga
aatga

~<nA,TA,DA,nT,TT,DT,nC,7C,DC,nG, TG, DG >

\:w_‘l 31,34800,32867 23504 33689, 16719.17, 2544 14&&1W

Figure 3.4: Bos taurus DNA sequenbefore and after characterizat

The steps of the methodology shows that the nusdecicaracterization of the DNA
sequence after obtaining the alpha representafitimeoDNA sequences which contain

the four nucleotides A, T, C and G falls in threaimparts, each part contain four
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parameters to produce the twelve dimensional vedtoe first four parameters of the
vector contains the total number of the nucleotile3, C and G which is represented
by na, nr, nc and s respectively, using only these parameters caneonbté a specific

DNA sequence, because two different DNA sequeneas lave exactly the same

nucleotide contents. So more parameters are needed.

The second four numerical parameters are the digtdnce of each nucleotide bases to
the origin (0,0). For example if there is two DNA&gsiences, the first one has two
thymine nucleotides at the position 4 and 5, amel gecond one has two thymine
nucleotides at position 6 and 8, both DNA sequehee® two thymine bases, the total
distance generated from these two cases are diffefénerefore, it is a special

characteristic to the sequence.

The characteristics of the four sets of total dis&s T, Tt, Tc, and T are dictated by

the DNA sequence that reflect the information ofvifar each nucleic base is from the
origin. The similarity between DNA sequences alsm de reflected through the
similarity between the total distances of the noiitkes from the origin. Though, the
total distance of the nucleotides alone is notigefit to denote the DNA sequence for
comparison. So there is a need to other numerarainpeters for further characterization

of DNA sequence.

The distribution of each nucleotide along the DNejgence is the third four parameters
selected for the vector. If the distribution of lkeawucleotide base is different, DNA

sequences cannot be similar even though they mes the same nucleotide contents
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and the same total distance measurement. Theraf@rénformation about distribution

has also been included in the vector analysis.

As preceded above, each parameter of which thexctesization vector is consists of is
not sufficient to denote a specific DNA sequencewklver, combining the parameters
together to produce the characterization vectorbeansed to characterize the similarity

between DNA sequences.

After obtaining the characterization vector for Rrd2NA sequence, the similarity of

different DNA sequences can be measured. The distaetween vectors is used for the
comparison, if the distances between two DNA segeemare small, then they are
similar. Otherwise, large distance between the adtarization vectors is expected for

non-homologous DNA sequences.

The practical application of using the charactéigra vector for DNA sequence

comparison is straightforward; the following chagkows how to apply this method on

different protein families.
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CHAPTER FOUR

RESULTS AND DISCUSSION

This chapter presents the results that have bedrnined from the conducted

experiments. Two main experiments have been caouedhe first experiment has been
applied on the whole sequence, the second expdricoatains five stages in each stage
just a part of the sequence considered in suchthatydoes not exceed the maximum

length of the shortest DNA sequence.

For the purpose of presenting the DNA sequenceliz-dimensional feature vector that
contains the following components; the number stances for each nucleotides A, T, C
and G that creates the first 4 parameters of tlstoxethe second 4 parameters of the
vector is the total distances for each nucleotidenfthe origin of the sequence, the
distribution of each nucleotide among the sequ&viltgenerate the last 4 parameters of
the vector, a program in JAVA has been developedjdoerate the corresponding
vectors for each sequence, and the results amdsioan Access database. This chapter
shows how make DNA sequences comparison. The gboloaparison of gene structures
is tested on Lysozyme, Myoglobin and Rhodopsin fiasi

(http://www.ncbi.nlm.nih.gov/).

48



The comparison will be in two ways on the DNA setpes. First the compare is made
on the whole DNA sequences, while the other isike part of the DNA sequences such

that it does not exceed the maximum number of wtides for the shortest sequence.

4.1 DNA Sequences (Data)

A DNA sequence or genetic sequence is a successil@iters constituent nucleotides
listed from the 5'- to 3'- terminus representing pimary structure of DNA molecule or
strand, which hold the information as describedtlwy central dogma of molecular
biology. Prior to discussion on applications of DdAquences, several terminologies
related to DNA are defined for example, Genome isamplete set of DNA
(Deoxyribonucleic Acid) for an organisms, and thdAarranged into 23 pairs of DNA
molecule called chromosomes, and each chromosom&igomany genes, DNA
molecule has millions of bases or nucleotides, ¢hegcleotides sequences or base
sequences has the information of making proteiosded in it. A nucleotide is made up
of one phosphate group linked to a pentose sudachws linked to one of 4 types of
nitrogenous organic bases symbolized by the fatere A, C, G, and T. The rules that
govern the correspondence of the base/ nucleotigeesices for DNA and RNA to the
amino acids or proteins are known as Genetic C8dgquence Alignment is the process

of locating regions that are equivalent to increhgesimilarity of these sequences.

The number of nucleotides that have been usedisnstiidy for all the three protein

families and its members is 10779 base pairs (mpye information about the DNA
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sequences that have been used in this study wilbined in Table 4.1. As mentioned
earlier, the gene structures are classified intsokyme, Myoglobin and Rhodopsin
families. Note that the structures are not of e length although they are from the
same gene structures. Due to this reason, the imgés were conducted by
considering the length of the gene structures. therowords, gene structures were

considered as a whole or fixed size sequences.

Table 4.1 Number of Nucleotides in each family member

qg; Bos taurus 915(bp)
N
o
% Homo sapiens 1487(bp)
Danio rerio 1360(bp)
-E Homo sapiens 1206(bp)
o
(_cjn Mus musculus 505(bp)
>
= | Rattus norvegicus 1015(bp)
Sus scrofa 1111(bp)
c
s Homo sapiens 1620(bp)
3
o
& | Rattus norvegicus 1560(bp)

The total number (nA, nT, nC and nG) of nucleotided, C and G respectively can be

graphically represented as shown in Fig. 4.1.
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Figure 4.1: The total number of Nucleotides in each
sequence

The DNA sequences are stored in an MS Access dsabath its name and the name
of the family that it belong to, and stored in aptharacters. This database will facilitate

the process of retrieving and storing the featexos later.

4.2 The Experiment

After obtaining the DNA sequence from the NCBI wste, the DNA sequences was
then stored in the database. A JAVA program has designed to make the process of

global comparison among all sequences Fig. 4.2.
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A_Sequence Converter - NetBea
File Edit View Mavigate Source Refactor Run Debug Profile Versioning Tools Window Help

TILLE R 1T W D E-G-

_{default config>

kil : Profiler |iPrujec1= < = | | StartPage B||@“)DN&JEVB HL@Peroepnon.jaua al@@EP.java H!E}\c’ac.java ssl
T | = B T B P — T
Elo& e mE R R e 200 H &
[] chapteroammiets public class DNA {
§ Iy dbdo = public static void main(String args[]){
% g DMA_Seguence_Converter String url = "idbc:odbc Tonn™
% £ Source Packages Connection con;
=<default package » Statement stmt,stmtl,stmtd ;
@'} DNA.java
{0 TestPackages |z int recMo=0,n&=0,nT=0,nG=0,nC=0, tA=0, tT=0, tC=0, tG=0, VecLen—=0;
B Libraries le ul=0,ul=0,uG=0,uC=0;
B TestLbraries double da=0,dT=0,4dC=0,d
== double [1[] Vect = rull;
B Ex3 double [1[] Euclidean = null;
GameBuilderDemo1 try {
Group_iWork Class. forName("sun.jdbc.odbe. Jd beDriver™})
& Hebb 3
& JavaApplication® i catch(java.lang.ClassNotFoundException e) {
{5 Javahpplications System.err.print ("Clas tFou 0 "y
| I:l J5R172Demol System. err.printin(e.getMessage ()
E List_Test ¥
E MobileApplications ey i
Mew3D con = DriverManager.getConnecticn(url, i v
El OpenGLESDemol stmt = con.createStatement();
E| Pacer b : - =
String query = I * FROM INFC
: main - Navigator as ResultSet rs = stmt.executeluery(guery);
biu®
while (rs.next()){

Figure 4.2 DNA sequences comparison program

This program retrieves the DNA sequence from thalidese and then converts it to a

12-dimensional vector, and stores it again in tatlobse to produce a featured vectors

database. Fig. 4.3 shows the feature vectors peadfrom the converter program and

how are they stored in the database as a tabéabfred vectors.

¢ File Edit View Inset Format Records Tools Window Help
HAAN" ReNI= NS AR W= RN N A=A A A= E= RN |
_1 vectors : Table

Seq MNo| nA | nT | nC [ nG | 1A tT tC 1G5 dA dr dc dG |
id 138 134 97 131 34800 32867 23844 33689 16719.172652804  25441.495384941 21745.5818896801 19689.6359186528
|| 112 133 133 100 134 3371 34492 24206 32851 18261.9072870145 23280.6599581661 22684.6364 19407.0873802629

113 119 93 133 155 29253 22096 32985 40916 21092.2797825012 21312.9943346052 20034.2480637684 20728.4767533819

|| 114 118 97 127 167 30971 23396 32094 38789 18223.7892804181 20763.3121479435 21907.0568541137 21844 2634589639
|| 115 133 95 122 160 34380 24036 32365 34468 16866.3251738369 20195.3577839335 20916.9914673475 22245 8572858589
L 116 130 96 127 147 32808 22843 32517 37081 17360.6656213018 23792 5077039931 19485.0456940914 23000.8550141145
|| 117 119 90 136 1585 31295 21593 34808 37554 18785.5795494668 20877.9383950617 22602.1268927336  20373.764578564
|| 122 94 106 166 134 26520 26347 39557 34826 20605.3137166138  20758.730242079 20004.9791334011 21393.9144575629
L | 123 106 100 148 146 23666 24037 36070 36477 20811.0380918476 18358.6731 21833.4059532505 21124 5710733721

Figure 4.3 How feature vectors stored in the database
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The next step is to compare all the featured vedtwt have been stored in the database
through the same program and then stores the sgglidtances) in the database. Fig. 4.4
shows the output for the program in the form ofopitable form designed in MS-Access

program.

Pl Microsoft Access

i File Edit View PivotTable Tools Window Help

] 1 Al
AN RN NN e Y iZRENR MRS R Nf=R=RANCY
=5 results [

seq_1~

111 112 113 114 115 116 17 122 123

+[= +[= +[= +[= +[= +[= +[= +[= +[=
seq_2 v | |distance ~+ | |distance ~ | |distance ~| |distance ~ | |distance ~ | |distance ~ | |distance ~ | |distance ~ | distance ~
111 2 0| 3546.70893| 17909.80818| 1489263055 13540.71373| 14090.78076| 17310.66541| 2072097647 18399.6098
112 +  3546.70893 0| 18288.56562| 15329.7394| 13855.95937| 15322 35466/ 17684.99381| 2022751997 17888.92866
113 + 17909.80818| 18288.56552 0| 4690138168 8887.15558| 6964499339 5676.309005 10263.11947| 6736.377436
114 + 14892.63055 15329.7394| 4690.138168 0| 5699.359614| 47505492556 3657438234 10687.11693] 6273.78178
115 * 13540.71373| 13855.95937| BBB7.15558 5699.359614 0| 5290.931764| 5915876795 1167253225 7642352156
116 * 14090.78076) 1532235466 6964.499339) 4750549255 5290.931764 0| 5554.782436| 11578.05384| 8861.502051
17 * 17310.66541) 17684.99381| 5676.309005 3657.438234| 5915.876795 5554.782436 0| 9412252855 5195.61184
122 * 20720.97647 2022751997 10263.11947) 10687.11693| 1167253225 11578.05384) 9412 252855 0| 5970.336711
123 * 18399.6098) 17888.92866| 6736.377436 6273.78178| T7642.352156| B861.502051 5198.61184] 5970.336711 0

Figure 4.4 Pivot table form for the output

In this experiment two main approaches have beaniedaout to produce the

characterization vectors. The first one is to poeduhe feature vectors from the
complete sequence nucleotides, and the secondsopeduce the feature vectors by
taking a fixed size of the sequences. The nextwecshow how the results produced in

these two approaches.
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4.2.1 Whole Size Sequence Experiment

In this experiment, the whole sequences for theettfamilies (Lysozyme, Myoglobin
and Rhodopsin) have been included and the reswdtsteown in Table 4.2, taking in
consideration the various lengths for each sequembih varies from 505(bp) up to

1620(bp). Table 4.1 shows the number of nucleoiidesch sequence.

Table 4.2 Whole sequence comparison results

Lysozyme Myoglobin Rhodopsin
Bos Homo Danio Homo Mus Rattus Sus Homo Rattus
taurus | sapiens rerio sapiens | musculus [norvegicus| scrofa | sapiens | norvegicus
| Il 11 |\ \ VI \l VI IX

| 0.00E+00|4.05E+05] 2.95E+05 | 1.98E+05 | 1.76E+05 | 9.80E+04 |1.72E+05]5.60E+05| 4.88E+05
Il 0.00E+00] 1.19E+05 | 2.57E+05 |5.78E+05| 3.60E+05 |3.37E+05]|3.09E+05| 2.28E+05
1l 0.00E+00 | 1.52E+05 |4.67E+05| 2.49E+05 |2.29E+05]3.33E+05| 2.41E+05

\Y 0.00E+00 | 3.51E+05| 1.22E+05 |1.49E+05]4.09E+05| 3.25E+05
V 0.00E+00 | 2.32E+05 |2.92E+05}6.97E+05| 6.36E+05
VI 0.00E+00 [1.12E+05]4.88E+05| 4.17E+05
Vil 0.00E+00J4.06E+05| 3.48E+05
VI 0.00E+00{ 1.15E+05
IX 0.00E+00

The results shown in Table 4.2 shows that the prdeemilies did not clustered in a
proper way, and that can be identified throughrdreges that each family fall in. For
example in the Lysozyme family the distance betw#entwo sequences is 4.05E+05
but the distance between it and the two familieydiobin and Rhodopsin) is not
significant. Consequently, there is a need to erantine DNA sequences in such way

that have the same length.
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4.2.2 Fixed Size Sequence Experiment

In this section, five different experiments havem&nplemented on the protein families

with its DNA sequences. In each experiment the saumber of nucleotides has been

chosen for the purpose of comparison.

First 100, 200, 300, 400 Nucleotides

The first 100 nucleotides have been chosen to pedhe feature vectors for each
sequence. Table 4.3 shows that there is improvefoerthe clustering in each family,

but this improvement not yet significant to cluseach protein family and distinguish

each family from the other.

Table 4.3 Results for the first 100 nucleotides

Lysozyme Myoglobin Rhodopsin
Bos Homo Danio Homo Mus Rattus Sus Homo Rattus
taurus | sapiens rerio sapiens | musculus [norvegicus| scrofa | sapiens | norvegicus
| Il 11 |\ \ VI \l VI IX
[ 0.00E+00|3.81E+02] 1.06E+03 | 8.94E+02 | 1.25E+03 | 1.39E+03 [9.17E+02|1.09E+03| 1.56E+03
1l 0.00E+00] 8.01E+02 | 5.91E+02 |9.37E+02| 1.14E+03 [5.80E+02|1.04E+03| 1.28E+03
11l 0.00E+00 | 7.30E+02 |4.32E+02 | 6.53E+02 |6.86E+02]§9.91E+02| 7.84E+02
|\ 0.00E+00 | 8.13E+02 | 1.04E+03 |2.35E+02}8.57E+02| 8.64E+02
\ 0.00E+00 | 5.55E+02 |7.14E+02]1.30E+03| 9.56E+02
VI 0.00E+00 |9.30E+02§1.35E+03| 1.10E+03
VI 0.00E+00]9.41E+02| 8.69E+02
VIII 0.00E+00| 9.53E+02
IX 0.00E+00
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By increasing the number of participated nucleaigethe comparison process for the
DNA sequences from different families, each fantigs been clustered in the proper
way, and the difference between families becomeers@nificant. Table 4.4, Table 4.5

and Table 4.6 shows the results for the first 300, and 400 nucleotides respectively.

Table 4.4 Results for the first 200 nucleotides

Lysozyme Myoglobin Rhodopsin
Bos Homo Danio Homo Mus Rattus Sus Homo Rattus
taurus | sapiens rerio sapiens | musculus |norvegicus| scrofa | sapiens | norvegicus
| Il 1l \Y V VI VI VI 1X

| 0.00E+00|1.15E+03] 2.60E+03 | 3.03E+03 | 2.26E+03 | 1.92E+03 | 2.58E+03|4.34E+03| 2.76E+03
1l 0.00E+00] 2.34E+03 | 2.26E+03 | 1.64E+03| 1.76E+03 |1.86E+03]|3.93E+03| 2.26E+03
1l 0.00E+00 | 2.14E+03 | 1.80E+03 | 3.01E+03 |1.97E+03}2.16E+03| 1.30E+03

\Y 0.00E+00 | 8.89E+02 | 2.79E+03 |8.00E+02]2.33E+03| 1.30E+03
V 0.00E+00 | 2.32E+03 |4.09E+02}2.62E+03| 1.23E+03
VI 0.00E+00 [2.59E+03§4.53E+03| 2.80E+03
Vil 0.00E+00§2.58E+03| 1.40E+03
VIl 0.00E+00( 1.91E+03
IX 0.00E+00

Table 4.5 Results for the first 300 nucleotides

Lysozyme Myoglobin Rhodopsin
Bos Homo Danio Homo Mus Rattus Sus Homo Rattus
taurus | sapiens rerio sapiens | musculus |norvegicus| scrofa | sapiens | norvegicus
| I I \Y \Y VI \all VI IX

| 0.00E+00|1.78E+03} 7.51E+03 | 5.69E+03 | 4.31E+03 | 5.17E+03 |6.00E+03]9.61E+03| 7.06E+03
1l 0.00E+00] 6.25E+03 | 4.29E+03 | 3.06E+03 | 4.38E+03 |4.49E+03]9.03E+03| 6.26E+03
I 0.00E+00 | 2.64E+03 | 3.48E+03 | 4.87E+03 |2.97E+03]4.58E+03| 2.65E+03

\%4 0.00E+00 | 2.10E+03 | 3.42E+03 |1.60E+03]6.39E+03| 3.60E+03
\% 0.00E+00 | 3.50E+03 |2.05E+03}6.65E+03| 4.21E+03
VI 0.00E+00 [3.76E+03§16.40E+03| 4.56E+03
VII 0.00E+00]6.85E+03| 4.65E+03
VIl 0.00E+00( 3.56E+03
IX 0.00E+00
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Table 4.6 Results for the first 400 nucleotides

Lysozyme Myoglobin Rhodopsin
Bos Homo Danio Homo Mus Rattus Sus Homo Rattus
taurus | sapiens rerio sapiens | musculus |norvegicus| scrofa | sapiens | norvegicus
| I I \Y \Y VI VI VI IX

| 0.00E+00|3.54E+03] 9.64E+03 | 7.34E+03 | 6.76E+03 | 7.65E+03 |9.07E+03|1.52E+04| 1.23E+04
1l 0.00E+00] 9.73E+03 | 7.12E+03 | 7.25E+03 | 8.11E+03 [9.02E+03|1.35E+04| 1.06E+04
Il 0.00E+00 | 4.04E+03 | 4.41E+03 | 6.65E+03 |3.77E+03]9.33E+03| 6.50E+03

\% 0.00E+00 | 3.89E+03 | 5.11E+03 |2.37E+03]9.66E+03| 6.19E+03
\% 0.00E+00 | 4.11E+03 |4.08E+03J1.04E+04| 7.96E+03
VI 0.00E+00 [5.29E+03§1.01E+04| 8.77E+03
VII 0.00E+00§9.31E+03| 6.29E+03
VIl 0.00E+00( 4.64E+03
IX 0.00E+00

The first 400 nucleotides experiment shows sigaiftcclustering results Table 4.6. The
distances between Lysozyme family is 3.54E+03 daddistance between it and the
other families range from 6.76E+03 to 1.52E+04. Wlgbin family sequences range
from 2.37E+03 - 6.65E+03, the distances betweerMyeglobin family and the other

families range from 6.19E+03 - 9.66E+03. For thedtHfamily (Rhodopsin), the

distance inside this family is 4.64E+03, and thstatices between it and the other
families range from 6.19 - 1.52E+04. Form the poasiresults it is easy to distinguish

the family cluster and the differences betweerfanalies.

First 500 Nucleotides

This experiment has included the first 500 nuctéedti of each sequence, and this

number of nucleotides has been chosen becausenthtest sequence length is 505.
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Table 4.7 shows significant results for clustergagh family, the vector distance for the
Myoglobin family are clustered together rangingnir8.66E+03 - 8.89E+03, also for all

families the distance become significantly largeneen different families Table 4.8.

Table 4.7 Results for the first 500 nucleotides

Lysozyme Myoglobin Rhodopsin
Bos Homo Danio Homo Mus Rattus Sus Homo Rattus
taurus | sapiens rerio sapiens | musculus |norvegicus| scrofa | sapiens | norvegicus
| Il 1l \Y V VI VI VI 1X

| 0.00E+00|3.55E+03] 1.79E+04 | 1.49E+04 | 1.35E+04 | 1.41E+04 |1.73E+04|2.07E+04| 1.84E+04
1l 0.00E+00] 1.83E+04 | 1.53E+04 |1.39E+04 | 1.53E+04 [1.77E+04|2.02E+04| 1.79E+04

Il 0.00E+00 | 4.69E+03 | 8.89E+03 | 6.96E+03 |5.68E+03]1.03E+04| 6.74E+03

\Y% 0.00E+00 | 5.70E+03 | 4.75E+03 |3.66E+03]1.07E+04| 6.27E+03
V 0.00E+00 | 5.29E+03 |5.92E+03}1.17E+04| 7.64E+03
VI 0.00E+00 [5.55E+03)1.16E+04| 8.86E+03
VIl 0.00E+00J9.41E+03| 5.20E+03
VIl 0.00E+00( 5.97E+03
IX 0.00E+00

A complete set of the corresponding characterimatiectors in each of the result table

can be found in the appendix.

4.3 Discussion

As preceded in the previous section, the experisnédrdt have been implemented on
three protein families Lysozyme, Myoglobin and Rbpsin showed significant results
for the first 400 and 500 nucleotides. The resladtghe first 400 nucleotides are nearly
close to the first 500, but it is distinguishaltkattthe first 500 nucleotides have shown

more significant discrimination among the three ifeas.
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As a summary for all the experiments that have bagplied, Table 4.8 show the

distances inside and outside the families forralrnembers of the families.

Table 4.8 Distances inside and outside families in différexperiments

Distance Inside Family Distance with Other Families
Experiment Protein Family

From To From To
Lysozyme 3.81E+02 5.80E+02 1.56E+03
First 100 Nucleotides Myoglobin 2.35E+02 1.04E+03 5.80E+02 1.39E+03
Rhodopsin 9.53E+02 7.84E+02 1.56E+03
Lysozyme 1.15E+03 1.64E+03 4.34E+03
First 200 Nucleotides Myoglobin 4.09E+02 2,79E+03 1.23E+03 4.53E+03
Rhodopsin 1.91E+03 1.23E+03 4.53E+03
Lysozyme 1.78E+03 3.06E+03 9.61E+03
First 300 Nucleotides Myoglobin 1.60E+03 4.87E+03 2.65E+03 7.51E+03
Rhodopsin 3.56E+03 2.65E+03 9.61E+03
Lysozyme 3.54E+03 6.76E+03 1.52E+04
First 400 Nucleotides Myoglobin 2.37E+03 6.65E+03 6.19E+03 1.04E+04
Rhodopsin 4.64E+03 6.19E+03 1.52E+04
Lysozyme 3.55E+03 1.35E+04 2.07E+04
First 500 Nucleotides Myoglobin 3.66E+03 8.89E+03 5.20E+03 1.83E+04
Rhodopsin 5.97E+03 5.20E+03 2.07E+04
Lysozyme 4.05E+05 9.80E+04 5.78E+05
Whole Sequence Myoglobin 1.12E+05 4.67E+05 9.80E+04 6.97E+05
Rhodopsin 1.15E+05 2.28E+05 6.97E+05

For good clustering, Distance Inside Family is miizied whereas the Distance with
Other Families is maximized. From Table 4.8, Distamnside Family for Lysozyme

family is minimal for First 500 Nucleotides and nragl for Distance with Other
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Families. For the Myoglobin family the minimal Dasice Inside Family and maximal in
Distance with Other Families shown by the Wholeugege. For the Rhodopsin family
its clearly seen that is has interchangeable valbasit has the maximal distance in

Distance with Other Families in the First 100 Nuntides.

In all of the previous experiments in section 4.2 number of the nucleotides that
have been associated in the global comparison bketilee DNA sequences did not
exceed the maximum length of the shortest DNA secgigvhich is referred to the “Mus
musculus” sequence from the Myoglobin family wahlength of 505(bp). These
indications will give this work a novelty in disgaishing the protein families that have
DNA sequences nearly the same length. In the saméyf the length of nucleotides
vary, so if there is a big difference in the lengftihe DNA sequences this will lead to a
big difference in distance in the same family aht twill reflect on the distances

between that family and other families.
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Figure 4.5 All experiment results
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All the experiments can be illustrated graphicaflyFig 4.5, the lines indicates the
differences that is less and more than the maxirdistance inside each family, the
results for the whole DNA sequence, first 100 baBest 200 bases, and first 300 bases
shows interchangeable values between the perceofatiee distances less and more
than the maximum distance inside the same protemly. For the first 400 bases and
first 500 bases the results shows significant miystish between the three protein
families and this due to the information that idragted from the DNA sequence to
produce the characterization vector that is usedotapute the distance become more
significant to the DNA sequence. In all cases thmlpers of nucleotides that have to be
included in the comparison have not to exceed themum length of the shortest DNA
sequence. This will reduce the number of nuclestitteat are associated in the
experiments and will reduce the overall calculaidor determining the cluster of the

new DNA sequence.

As a conclusion, there is no need to compare theDNA sequences with all the whole
DNA sequences, number of nucleotides included enciimparison has not exceed the
length of the new DNA sequence. For more detailscémclusion and future work will

be found in the next chapter.

61



CHAPTER FIVE

CONCLUSION AND FUTURE WORK

This chapter will conclude what have been donéis $tudy with the results that have

been obtained, in addition to the future work amdher research.

5.1 Conclusion

The results of DNA sequences comparison among lagoak sequences give close
distances between their characterization vectorghware easily distinguishable from
non-homologous in experiment it with a fixed DNAgsence size that does not exceed

the maximum length of the shortest DNA sequence.

Global comparison for multiple DNA sequences sismgéously presented in the
genomic space is the main advantage of this wordplying direct comparison of the
corresponding characteristic vectors distances. rnidwelty of this work is that for the

new DNA sequence, there is no need to compareeWweDNA sequence with the whole
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DNA sequences length, just the comparison focused dixed number of all the
sequences in a way that does not exceed the maxiength of the new DNA sequence.
In other words, parts of the DNA sequence can ifletite functionality of the DNA

sequence, and make it clustered with its family imers

5.2 Future Work

Future work will emphasize on determining the rangé DNA sequences lengths that
have to be included in the comparison (the numbenuzleotides). In order not to
include all the DNA sequences that vary in the tepgist those DNA sequences that

fall in this range will be included to reduce theethead calculations.

Another future work part is to extend this studybt® implemented on other protein

families that have other amino acids.
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Appendix

This appendix contains the characterization vedt@ashave been obtained from

conducting the experiments. The Latin numbersénftfiowing table are used in the

following tables to indicate the DNA sequence dmelfamily belonging to.

Lysozyme Myoglobin Rhodopsin
Bos Homo Danio Homo Mus Rattus Sus Homo Rattus
taurus | sapiens rerio sapiens | musculus |norvegicus| scrofa | sapiens | norvegicus
| Il 11 |\ \ \i VIl VI IX
Whole DNA sequence characterization vectors
nA nT nC nG tA tT tC tG dA dT dC dG
| 276 | 277 | 155 198 132608 | 133071 64150 81042 67588.44 70538.11 | 65868.82 63326.28
Il 435 | 438 | 306 | 308 | 344405 | 339226 218925 | 203772 196744.23 183621.25 | 157667.92 | 181834.44
11 402 | 340 | 288 | 328 | 291887 | 261556 170330 | 199424 | 151300.93 155066.07 | 143049.54 | 143072.70
\ 356 | 242 | 278 | 314 | 264119 | 139662 149610 | 159430 149983.09 99333.04 | 95233.57 92678.64
\ 135 96 | 123 151 35385 24539 32870 34971 19455.83 20629.20 | 21210.31 22585.99
4 303 197 | 251 | 264 | 176247 96720 122451 | 120202 103618.72 80336.52 | 73433.89 71774.74
Vil 234 | 212 | 310 | 355 128573 | 119903 176528 | 192712 109720.01 104229.91 | 104802.61 95409.95
VIl 328 | 314 | 518 | 460 | 267116 | 238401 | 412714 | 394779 | 201810.10 213958.35 | 225327.79 | 222221.95
IX 372 | 302 | 416 | 470 | 308336 | 229825 | 311717 | 367702 193672.25 201757.14 | 211208.41 | 200292.94
First 100 nucleotides characterization vectors
nA | nT nC nG tA tT tC tG dA dT dc dG
| 18 37 21 24 811 1873 955 1411 1080.274691 742.1271 668.820862 | 819.248264
Il 19 30 24 27 902 1565 984 1599 1095.091413 669.738889 | 655.666667 | 822.691358
11 25 20 27 28 1080 1068 | 1180 | 1722 622.88 955.94 720.504801 | 823.035714
\i 18 22 28 32 855 1193 | 1325 | 1677 984.6944444 | 398.993802 | 676.432398 1156.74121
\ 22 17 22 39 969 937 1060 | 2084 | 659.8615702 | 888.927336 | 648.694215 | 966.451019
\i 18 24 22 36 944 969 1025 | 2112 531.5802469 | 939.984375 | 1182.33264 553.333333
Vi 18 21 30 31 844 1137 | 1278 | 1791 1092.098765 537.931973 | 753.173333 | 830.626431
VIl 15 25 37 23 692 1370 | 1794 | 1194 | 738.5155556 746 883.276844 | 868.340265
IX 19 15 36 30 1139 622 1728 | 1561 748.6814404 | 703.448889 | 800.055556 | 884.365556
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First 200 nucleotides characterization vectors

nA nT nC nG tA T tC tG dA dT dC dG

| 52 58 38 52 6098 5028 3435 5539 3803.773669 2985.6968 3273.1863 2689.4804

1 50 51 41 58 5592 4688 3597 6223 3495.7344 2988.386 3882.7329 2771.0348

11 48 47 52 53 4419 5392 5048 5241 3224.766927 3665.8171 3818.9556 2402.0627

VI 39 42 52 67 4073 4192 5075 6760 3637.835634 2952.3447 3654.7023 3129.2279

Vv 45 40 45 70 4530 4487 4614 6469 3875.288889 3263.9444 3446.8711 2805.4141

VI 53 42 44 61 6390 3534 4193 5983 3152.547526 3378.0272 3216.0263 2984.5343

VI 40 42 52 66 4317 4446 4643 6694 3999.519375 3392.3605 3637.4745 2500.5776

VIl 29 51 66 54 2758 5403 6115 5824 3448.989298 3307.3495 3330.6816 3125.7558

IX 38 44 58 60 4091 4895 4991 6123 2960.067175 3307.233 3214.2904 3382.2808

First 300 nucleotides characterization vectors

nA nT nC nG tA tT tC tG dA dT dC dG
| 87 80 59 74 14816 10482 8687 11165 6797.312987 7534.7244 8352.6556 6728.9176
1l 84 72 61 83 14012 9940 8647 12551 6881.130385 7451.7469 8907.4969 6673.1819
1l 69 60 79 92 9806 8616 11983 14745 8191.667717 6082.44 8541.1277 6831.0022
VI 68 61 73 98 11026 8951 10524 14649 6808.537197 7190.0296 8204.4387 7513.8618
\Y% 77 58 66 99 12399 8965 10103 13683 7773.635689 6526.2452 8035.464 7249.1368
VI 79 58 74 89 12829 7563 11787 12971 5919.453613 8324.3427 8263.2573 7255.1355
VIl 70 56 74 100 11727 7975 10166 15282 7438.563469 6751.992 8225.1812 7052.5876
VIII 55 61 105 79 9359 7894 15638 12259 8461.991405 5720.0451 7799.567 7168.399
IX 60 63 90 87 9716 9607 13054 12773 7294.962222 6517.3928 8627.0869 7049.3225

First 400 nucleotides characterization vectors
nA nT nC nG tA tT tC tG dA dT dC dG

| 116 102 78 104 25051 18113 15299 21737 11523.66194 13978 13979 13366.51

1l 108 102 82 108 22537 20261 15956 21446 11690.92275 14306 14946 12731.93

11 101 76 108 115 20982 14260 21859 23099 15167.6169 12216 13430 12210.4

VI 97 79 101 123 21076 15353 20433 23338 12142.13902 13489 14939 12489.09

\Y 108 76 97 119 23265 15527 20869 20539 13147.22454 13149 13849 12034.8

VI 108 79 102 111 22963 15131 21283 20823 11398.14292 16604 12662 13076.76

VIl 97 73 108 122 21280 14052 22097 22771 12570.5246 13631 15711 11127.65

VI 71 89 137 103 15120 17783 26563 20734 13036.04047 14954 12769 12722.66

IX 79 85 121 115 16466 17333 23819 22582 12509.23249 12625 14456 13158.01
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First 500 nucleotides characterization vectors

nA nT nC nG tA tT tC tG dA dT dc dG

| 138 134 97 131 34800 32867 23894 33689 16719.17265 25441.498 21745.582 19689.636

I 133 133 100 134 33701 34492 24206 32851 18261.90729 23280.66 22684.636 19407.087
Il 119 93 133 155 29253 22096 32985 40916 21092.27978 21312.994 20034.248 20728.477
Vi 119 97 127 157 30971 23396 32094 38789 18223.78928 20763.312 21907.057 21844.263
\ 133 95 122 150 34380 24036 32365 34469 18866.32517 20195.358 20916.991 22245.857
\i 130 96 127 147 32809 22843 32517 37081 17360.66562 23792.508 19485.046 23000.855
Vil 119 90 136 155 31295 21593 34808 37554 18785.57955 20877.938 22802.129 20373.765
VIl 94 106 166 134 25520 25347 39557 34826 20605.31372 20758.73 20004.979 21393.914
IX 106 100 148 146 28666 24037 36070 36477 20811.03809 18358.673 21833.406 21124.571
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