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ABSTRACT 

 

 

Data mining gives a bright prospective in DNA sequences analysis 
through its concepts and techniques. This study carries out 
exploratory data analysis method to cluster DNA sequences. 
Feature vectors have been developed to map the DNA sequences to 
a twelve-dimensional vector in the space. Lysozyme, Myoglobin and 
Rhodopsin protein families have been tested in this space. The 
results of DNA sequences comparison among homologous 
sequences give close distances between their characterization 
vectors which are easily distinguishable from non-homologous in 
experiment it with a fixed DNA sequence size that does not exceed 
the maximum length of the shortest DNA sequence. Global 
comparison for multiple DNA sequences simultaneously presented 
in the genomic space is the main advantage of this work by 
applying direct comparison of the corresponding characteristic 
vectors distances. The novelty of this work is that for the new DNA 
sequence, there is no need to compare the new DNA sequence with 
the whole DNA sequences length, just the comparison focused on a 
fixed number of all the sequences in a way that does not exceed the 
maximum length of the new DNA sequence. In other words, parts 
of the DNA sequence can identify the functionality of the DNA 
sequence, and make it clustered with its family members. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 

This chapter introduces a brief description of this study. A general overview of the field 

of this work, problem statement, the objective and the scope of this study has been 

presented. 

 

In the last few decades the rapid development of technology reflects to the number of 

biological data which has been growing in an exponential curve, from Gene Bank 

(www.ncbi.nlm.nih.gov) site the growth falls down in Fig.1.1. GenBank in 1982 had 

only 606 sequences with 680,338 bp (base pairs). In year 1992, GenBank contained 

78,608 sequences with 101,008,486 bp. By the end of year 2002, GenBank had 

22,318,883 sequences with 28,507,990,166 bp. This number had almost doubled in only 

two years. By the end of year 2008, GenBank had 98,868,465 sequences with 

99,116,431,942 bp. Efficient and highly computational tools are needed to analyze the 

massive amount of data that contains rich information. 
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Data mining is the science of extracting useful information from large data sets or 

databases. This new discipline lies at the intersection of statistics, machine learning, 

artificial intelligence and other areas. The tasks of data mining include exploratory data 

analysis, descriptive modeling, predictive modeling, patterns and rules recognition etc. 

Compared to the traditional data analysis methods, the concepts and tools of data mining 

provide new prospective in the analysis of huge amount of biological sequences. DNA 

sequences clustering have been an issue in clustering analysis. 

 

 

 

A DNA is a long and un-branched polymer chain in double helix shape, composed of 

only four types of deoxyribonucleotides bases which are: adenine (A), cytosine(C), 

guanine (G), and thymine (T). The nucleotides are linked together by covalent 

phosphodiester bonds that join the 5’ (five prime) carbon of one deoxyribose group to 

Figure 1.1: GeneBank source : 
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html 
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the 3’ (three prime) carbon of the next. The four kinds of bases are attached to this 

repetitive sugar-phosphate backbone chain as shown in Fig.1.2. 

 

 

 

 

 The two long chains of a DNA molecule are held together by complementary base pairs.  

Three hydrogen bonds form between G and C, and two hydrogen bonds exist between A 

and T. The base-pairing mechanism is the basis for DNA replication. 

 

A DNA sequence or genetic sequence is a succession of letters constituent nucleotides 

listed from the 5'- to 3'- terminus representing the primary structure of DNA molecule or 

strand, which hold the information as described by the central dogma of molecular 

biology. Prior to discussion on applications of DNA sequences, several terminologies 

Figure 1.2: DNA 
U.S. Department Of Health And Human Services (2006) 
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related to DNA are defined. For example, Genome is a complete set of DNA 

(Deoxyribonucleic Acid) for an organisms, and the DNA arranged into 23 pairs of DNA 

molecule called chromosomes, and each chromosome contain many genes, DNA 

molecule has millions of bases or nucleotides, these nucleotides sequences or base 

sequences has the information of making proteins encoded in it. A nucleotide is made up 

of one phosphate group linked to a pentose sugar, which is linked to one of 4 types of 

nitrogenous organic bases symbolized by the four letters A, C, G, and T. The rules that 

govern the correspondence of the base/ nucleotide sequences for DNA and RNA 

(Ribonucleic Acid) to the amino acids or proteins are known as Genetic Code. Sequence 

Alignment is the process of locating regions that are equivalent to increase the similarity 

of these sequences. 

 

Each strand in the DNA complement the other, so an adenine (A) on one strand is 

always facing a thymine (T) (and vice versa), and cytosine (C) is always facing a 

guanine (G). When the sequence of nucleotides along one strand is known, 

automatically the sequence on the other one can be deduced. The double strand in helix 

structure of DNA makes the definition of a DNA sequence vague. Despite the 

convention of reading the nucleotides from the 5’ end toward the 3’ end, writing down 

the top or the bottom sequence. For convince they are both equally valid sequences by 

turning this page upside down. Thus, at each location, a DNA molecule corresponds to 

two different sequences, related by this reverse-and complement operation. 

 



 5 

Various researchers have worked on clustering DNA analysis, some focused on local 

similarity while others make it global. One of the techniques that have already been 

implemented is Spectral Clustering. 

 

1.1 Problem Statement  
 

Each DNA sequence has its own functions. Once biologists come up with a new 

sequence, it is important to compare it with the previous existing sequences to know its 

functionality and category. Some of the most popular and effective methods for 

comparing sequences are BLAST and FASTA, but these methods have weakness. 

Though there is an extended version of these tools to deal with multiple sequence 

alignments. The weaknesses are: 

 

� It can compare just two sequences at the same time and provide the similarity 

between them. 

� It uses alpha representation of the sequences, which will add more burdens on 

the system and take a lot of memory space.  

 

The area of DNA research is still considered at an infant stage. Therefore there are many 

sub-areas in DNA research that can be explored. One such area to focus on is DNA 

sequences representation, and how information and knowledge could be extracted from 

these sequences. To uncover the hidden information within DNA sequences, data mining 

approach can be employed. For example Liu et al. (2006) used Euclidian distance 

between the corresponding characterizations of DNA sequences to make clustering.  For 
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the purpose of this study, clustering technique has been chosen to be used since the 

DNA sequences represent unsupervised type of data. 

 

1.2 Research Question 

 

The research questions can be formulated as: 

(a) How to identify suitable numerical representation of DNA sequence? 

(b) How to evaluate DNA sequences features using clustering techniques? 

 

1.3 Research Objectives 

 

The research objectives are specified as: 

(a) To identify suitable numerical representation of DNA sequence. 

(b) To evaluate DNA sequences features using clustering techniques. 

 

1.4 Scope and Limitation  

 

The scope of this study will focus on some DNA sequences from the following families 

(Lysozyme, Myoglobin and Rhodopsin), and data mining that will be used in this study 

only uses clustering technique. The limitation of this study that it is concerned in DNA 

sequences; this study can be extended to other families of DNA sequences and can be 

implemented on protein sequences. 
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1.5 Chapters Overview 
 

This section will provide a general overview for each chapter. This study falls into five 

chapters; Introduction, Literature Review, Methodology, Results and Discussion and 

Conclusion. 

 

By starting with the introduction, an overall idea of this study will be gathered in the 

readers’ mind. Explaining some terminologies that have been used in this study will 

make it easy to understand this work. 

 

From the literature (Chapter TWO), the main concept of data mining and it applications 

has been clarified specially in clustering DNA sequences. Chapter THREE presents the 

methodology that has been applied in this study, which has been adopted from Liu et al. 

(2006). 

 

The experiments applied in this study can be found in Chapter FOUR, there is two main 

experiments; one used the whole DNA sequence to produce results of clustering, and the 

other one is to have a fixed number of the DNA sequence in a way does not exceed the 

maximum length of the shortest DNA sequence. A conclusion and future work are 

presented in Chapter FIVE. 



 8 

 

 

CHAPTER TWO 

 

LITERATURE REVIEW  

 

 

This chapter presents a general view of the data mining and its clustering techniques as 

well as some general applications for clustering, and ideas from previous researchers on 

using clustering algorithms especially in Bioinformatics. For the purpose of clustering 

DNA sequences the taxonomy of DNA sequences and DNA sequences representations 

have been presented. 

 

2.1 Data Mining 

 

Data mining is one of the steps in Knowledge Discovery in Database (KDD) process 

that consists of applying data analysis and discovery algorithms to produce a particular 

enumeration of patterns (or models) over the whole data (Fayyad et al., 1996). The 

desired outcome of data mining activities is to discover knowledge that is not explicit in 

the data, and to put that knowledge to use (Ayre, 2006). Data mining also can be defined 

as the process of selection, exploration, and modeling of large quantities of data to 

discover regulations or relations that are unknown with the purpose of obtaining clear 



 9 

and useful results. Data mining is divided into two models, predictive (Supervised) and 

descriptive (Unsupervised) models. 

 

2.1.1 Predictive Model 

 

This model describes one or more dependent variables that are related to all of the 

independent variables; asymmetrical or direct methods can be assigned to the predictive 

models. This would be done by searching for rules of classification or prediction based 

on the data. Predictive modeling falls into category of supervised learning; hence, one 

variable is clearly labeled as Target variable Y and can be explained as a function of 

other variables X. By determining the nature of the target, classification model can be 

defined if Y is discrete variable, regression model, or continuous one. Typical methods 

of predictive modeling are classification, regression and time series analysis. 

 

Classification, is the task of learning a target function f that maps each attribute set x to 

one of the predefined class labels y, also it can be defined as, assigning objects to one of 

several predefined categories (Tan et al., 2006), Classification problems aim to identify 

the characteristics that indicate the group to which each case belongs 

 

Regression is a predictive modeling technique using the value of one of a pair of 

correlated variables in order to predict the value of the second, where the target variable 

to be estimated is continuous, the goal of regression is to find a target function that can 

fit the input data with minimum error. 
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Time series forecasting predicts unknown future values based on a time-varying series 

of predictors. Like regression, it uses known results to guide its predictions. Models 

must take into account the distinctive properties of time, especially the hierarchy of 

periods (including such varied definitions as the five- or seven-day work week, the 

thirteen-“month” year, etc.), seasonality, calendar effects such as holidays, date 

arithmetic, and special considerations such as how much of the past is relevant. 

 

2.1.2 Descriptive Model 

 

Groups of data can be described more briefly in the descriptive models; these models 

can be named: symmetrical, unsupervised or indirect methods. A general description of 

the data is important but summaries also are important starting point and need more 

exploring. Models of data can be found through the descriptive models, so the aim is to 

describe not to predict. As a result, descriptive models are used in the setting of 

unsupervised learning. Typical methods of descriptive modeling are summarization, 

association rules, sequence discovery, and clustering. Data mining uses several types of 

analytical software such as statistical, machine learning, and neural network. In general, 

Classes are grouped into clusters, association rules, sequential patterns and 

summarization. 

 

Clustering can be defined as the process of partitioning as set of data / (objects) in a set 

of consequential sub-classes, called clusters. Some of the data mining approaches which 

use clustering are database segmentation, predictive modeling, and visualization of large 
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databases. Segmentation is a clustering method to segment databases into homogeneous 

groups, predictive modeling is statistical method of data analysis usually involves 

hypothesis testing of a model the analyst already has in mind. Visualization is the 

visualized representation of clusters in large databases in order to aid human analysts in 

identifying groups and subgroups that have similar characteristics (Jain et al., 1999). 

Also descriptive models can be evaluated along the dimensions of predictive accuracy, 

novelty, utility, and understandability of the fitted model (Abonyi & Feil, 2005). The 

next section focuses on the clustering techniques. 

 

2.2 Clustering Techniques 

 

Clustering techniques can be considered as a part of the undirected data mining tools, the 

goal of the undirected data mining is to discover structures in the data as a whole. There 

is no prediction for the target variable, because there is not, so the distinction   between 

independent and dependant variables will not be included. A cluster is a collection of 

objects, which are similar between them and dissimilar to the objects belonging to other 

clusters. Furthermore Clustering is seeks to identify a finite set of categories or clusters 

to describe data. Fayyad et al. (1996) defined that the categories can be mutually 

exclusive and exhaustive or consist of a richer representation, such as hierarchical or 

overlapping categories. Some times in loading databases, objects are physically 

allocated close to each other, and then it said that these objects have been clustered 

(Visnick, 2003) Fig. 2.1 illustrates how clustering works. 
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Two criteria have to be satisfied in order to use the clustering techniques for combining 

observed examples into clusters, namely  

� each group or cluster is homogeneous; examples that belong to the same group 

are similar to each other. 

� each group or cluster should be different from other clusters, that is, examples 

that belong to one cluster should be different from the examples of other clusters. 

Depending on the clustering technique, different ways are used to express clusters: 

• Identified clusters may be exclusive, so that any example belongs to only one 

cluster. 

• Overlapping can be happen; an example may belong to several clusters. 

• They may be probabilistic, whereby an example belongs to each cluster with a 

certain probability. 

• Clusters might have hierarchical structure, having crude division of examples at 

highest level of hierarchy, which is then refined to sub-clusters at lower levels. 

Fig. 2.2 and Fig. 2.3 show an example for hierarchical clusters, and overlapping 

clusters, respectively. 

Figure 2.1: Clustering Technique 
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Furthermore different approaches to clustering data can be described with the help of the 

hierarchy as shown in Fig. 2.4. 

 

 

 

Figure 2.3: Overlapping Clusters 
 

Figure 2.2: Hierarchical Clusters 
 

Figure 2.4: Taxonomy of clustering approaches (Jain et al., 1999) 
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The algorithms of the hierarchical clustering produces a nested series of partitions and 

that based on criterion for splitting or merging clusters based on similarity. To identify 

the partition that optimizes a clustering criterion (usually local) partitional clustering 

algorithms have to be implemented. 

 

2.2.1 Hierarchical Clustering Algorithms 

 

A hierarchical clustering can be defined as a sequence of similarity partitions in which 

each partition is nested into the next partition in the sequence (Irene, 1999), and be 

represented in dendrogram, and this can be broken at different levels to produce 

different clustering’s of the data. Different levels of abstraction might be represented in 

building a cluster of hierarchical structure. Most of hierarchical clustering algorithms are 

variants of the single-link, complete-link and minimum-variance algorithms. For these, 

the most popular are the single-link and complete-link algorithms. These two algorithms 

differ in the way they characterize the similarity between pairs of clusters. The 

clustering technique that works well on datasets that contains non-isotropic, chain like, 

well-separated, and concentric clusters is the single-link clustering algorithm. K-means 

algorithm as a typical partitional algorithm works well only datasets that are isotropic 

clusters. But partitional algorithms typically have lower space complexities and time 

than hierarchical algorithms. Lv et al. (2006) used hierarchical clustering to analyze 3D 

model database and improve the retrieval performance. Their proposed algorithm stops 

automatically by utilizing outlier information and adopts the concept of core group to 

reduce the influence of parameter on the clustering results. 
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Single Link Clustering  

 

One of the simplest agglomerative hierarchical clustering methods is single linkage, also 

known as the nearest neighbor technique. The defining feature of the method is that 

distance between groups is defined as the distance between the closest pair of objects, 

where only pairs consisting of one object from each group are considered (Tan et al., 

2006). 

 

Complete Link Clustering 

 

The complete linkage, also called farthest neighbor, clustering method is the opposite of 

single linkage. Distance between groups is now defined as the distance between the most 

distant pair of objects, one from each group (Jain et al., 1999). 

 

Basic Algorithm for Hierarchical Clustering 

 

The basic rules for agglomerative hierarchical clustering are: 

1. Derive vector representation for each entity (i.e. gene expression values for each 

experiment make up the vector elements for a specific gene). 

2. Compare every entity with all other entities by calculating a distance. Input that 

distance into a matrix. Calculation of the distance depends on: 

a. The linkage method being implemented. 

b. The method of calculation of actual distances. 
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3. Group closest two entities (or clusters) together (which make a new cluster) and 

go back to step 2, counting the new cluster as a single entity, until all entities are 

contained within one big cluster. 

 

2.2.2 Partitional Algorithms 

 

Jain et al. (1999) said that partitional clustering algorithm obtains a single partition of 

the data instead of a clustering structure, such as the dendrogram produced by a 

hierarchical technique. Partitional methods have advantages in applications involving 

large datasets for which the construction of a dendrogram is computationally prohibitive. 

A problem accompanying the use of a partitional algorithm is the choice of the number 

of desired output clusters.  Additionally, the partitional technique usually produce 

clusters by optimizing a criterion function defined either locally (on a subset of the 

patterns) or globally (defined over all the patterns). Combinatorial search of the set of 

possible labeling for an optimum value of criterion is clearly computationally prohibitive. 

In practice, therefore, the algorithm is typically run multiple times with different starting 

states, and the best configuration obtained from all the runs is used as the output 

clustering. 

 

Squared Error Algorithms 

 

The most intuitive and frequently used criterion function in partitional clustering 

techniques is the squared error criterion, which tends to work well with isolated and 
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compact clusters. The squared error for a clustering L of a pattern set X (containing K 

clusters) is: 

 

Where xi
(j) is the ith pattern belonging to the jth cluster and cj is the centroid  of the jth 

cluster. 

 

k-Means Clustering Algorithm 

 

The k-means is the simplest and most commonly used algorithm employing a squared 

error criterion. It starts with random initial partition and keeps reassigning the patterns to 

clusters based on the similarity between the pattern and the cluster centers until a 

convergence criterion is met. The k-means algorithm is popular because it is easy to 

implement, and its time complexity is O (n), where n is the number of patterns. 

Moreover k-means would work well even on problems with large datasets. A major 

problem with this algorithm is that it is sensitive to the selection of the initial partition 

and may converge to a local minimum of the criterion function value if the initial 

partition is not properly chosen, and the user needs to specify the number of clusters in 

advance (Erban & Moldovan, 2006). 

The steps of the k-means algorithm are given below: 

1. Select randomly k points (it can be also examples) to be the seeds for the 

centroids of k clusters. 
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2. Assign each example to the centroid closest to the example, forming in this way k 

exclusive clusters of examples. 

3. Calculate new centroids of the clusters. For that purpose average all attribute 

values of the examples belonging to the same cluster (centroid). 

4. Check if the cluster centroids have changed their “coordinates”. If yes, start 

again form step 2. If not, cluster detection is finished and all examples have their 

cluster memberships defined. 

 

Zhang et al. (2004) used k-means to get stuck at locally optimal points for high 

dimensional data. The proposed algorithm combines Genetic Algorithms and k-means 

algorithm together for improving the search ability of the k-means algorithm. Also k-

means clustering where used by Ng et al. (2006), to improve watershed segmentation 

algorithm making use of automated threshold on the gradient magnitude map and post-

segmentation merging on the initial partitions to reduce the number of false edges and 

over-segmentation. By comparing the number of partitions in the segmentation maps of 

50 images, they show that their proposed methodology produced segmentation maps 

which have 92% fewer partitions than the segmentation maps produced by the 

conventional watershed algorithm. 

 

2.2.3 Graph-Theoretic Clustering 

 

The best-known graph-theoretic divisive clustering algorithm is based on construction of 

the minimal spanning tree (MST) of the data, and then deleting the MST edges with the 
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largest lengths to generate clusters. Fig. 2.5 depicts the MST obtained from nine two 

dimensional points.  By breaking the link labeled CD with a length of 6 units (the edge 

with the maximum Euclidean length), two clusters ({A, B, C} and {D, E, F, G, H, I}) 

are obtained. The second cluster can be further divided into two clusters by breaking the 

edge EF, which has the length of 4.5 units. 

 

 

 

The hierarchical approaches are also related to graph-theoretic clustering. Single-link 

cluster are sub-graphs of the minimum spanning tree of the data which are also the 

connected components. Complete-link cluster is maximal complete sub-graphs, and 

related to the node color ability of graphs. 

 

Akosy and Haralick (1999), used graph-theoretic approach for image retrieval by 

formulating the database search as a graph clustering problem by using a constraint that 

retrieved images should be consistent with each other (close in the feature space) as will 

as being individually similar (close) to the query image. Graph-theoretic techniques 

where adopted by Schenker (2003) for performing data mining on web documents which 

Figure 2.5: Using minimal spanning tree for clustering 
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utilize graph representations of document content. Because the graphs are more robust 

than typical vector representations as they can model structural information that is 

usually lost when converting the original web content to a vector representation. 

 

2.2.4 Expectation-Maximization (EM) Algorithm 

 

The EM algorithm has become a popular tool in statistical estimation problems 

involving incomplete data or in problems which can be posed in a similar form, such as 

mixture estimation. The EM algorithm has also been used in various motion estimation 

frameworks and variant of it have been used in multi-frame super resolution restoration 

methods which combine motion estimation along the lines (Borman, 2009). 

 

EM algorithm used when data is only partially observable, unsupervised clustering 

(target value unobservable) or supervised learning (some instance attributes 

unobservable). Furthermore EM produce begins with an initial estimate of the parameter 

vector and iteratively rescores the patterns against the mixture density produced by the 

parameter vector. The rescored patterns are then used to update the parameter estimate. 

In a clustering context, the scores of the patterns (which essentially measure their 

likelihood of being drawn from particular components of the mixture) can be viewed as 

hints at the class of the pattern. Those patterns, placed (by their scores) in a particular 

component, would therefore be viewed as belonging to the same cluster. 
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Ansari and Viswanathan (1992), used EM algorithm to estimate the unknown jammer 

parameters and hence obtain a decision on the binary signal based on the estimated 

likelihood functions. Simulation results show that at low signal-to-thermal noise ratio 

and high jammer power, the EM detector performs significantly better than the hard 

limiter and somewhat better than the soft limiter. Also EM algorithm was implemented 

to joint depth estimation and segmentation from multi-view images is presented. The 

distribution of the luminance of each image pixel is modeled as a random variable, 

which is approximated by a “mixture of Gaussians model”. After recovering 3D motion, 

a reference images segmented into a fixed number of regions, each characterized by a 

distinct affine depth model with 3 parameters (Grammalidis et al., 2002). 

 

2.2.5 Fuzzy C-Means Clustering Algorithm 

 

Traditional clustering approaches generate partitions; in a partition, each pattern belongs 

to one and only one cluster. Hence, the clusters in a hard clustering are disjoint. Fuzzy 

clustering extends this notion to associate each pattern with every cluster using a 

membership function. FCM employs fuzzy partitioning such that a data point (method) 

can belong to all groups with different membership degrees between 0 and 1. The output 

of such algorithms is clustering, but not a partition. 

 

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to 

belong to two or more clusters. This method developed by Dunn in 1973 and improved 
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by Bezdek in 1981 is frequently used in pattern recognition. A high level partitional 

fuzzy clustering algorithm as below: 

1. Select initial fuzzy partition of the N objects into K clusters by selecting the N ×  

K membership matrix U. An element uij of this matrix represents the grade of 

membership of object xi in cluster cj. Typically, uij [0,1]. 

2. Using U, find the value of fuzzy criterion function, e.g., a weighted squared error 

criterion function, associated with the corresponding partition. One possible 

fuzzy criterion is: 

                            

is the kth fuzzy cluster center. Reassign patterns to clusters to reduce this 

criterion function value and recomputed U. 

3. Repeat step 2 until entries in U do not change significantly. 

 

Carvalho (2006) used fuzzy c-means clustering algorithm for symbolic interval data 

based on adaptive and non-adaptive Euclidean distance, the proposed method furnish a 

partition of the input data and a corresponding prototype (a vector of intervals) for each 

class by optimization and adequacy criterion which is based on adaptive and non-

adaptive Euclidean distance between vectors of intervals, after that the evaluation of this 

method has been carried out. The accuracy of the results furnished by these clustering 

methods were assessed by the corrected Rand index considering synthetic interval 

datasets in the framework of a Monte Carlo experience and application with real dataset. 

 

Where, 
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2.2.6 Spectral Clustering 
 

Spectral clustering is one of the most popular modern clustering algorithms. It is simple 

to implement, can be solved efficiently by standard linear algebra software. Spectral 

clustering refers to a class of techniques which rely on the Eigen structure of a similarity 

matrix to partition points into disjoint clusters with points in the same cluster having 

high similarity and points in different clusters having low similarity (Bach & Jordan, 

2003). 

 

The learning algorithm for spectral algorithm is the following: 

Input: Similarity matrix S, number of clusters K. 

� Compute transition matrix P by (2). 

� Compute v1, …,vk the eigenvectors corresponding to the k largest eigenvalues of 

P. 

� Clusters the rows of V = [v1, …,vk] as points in Rk by using K-means. 

Output: Clustering C. 

 

Spectral clustering used to support cases where the entries in the affinity matrix are 

costly to compute, this method is incremental – the spectral clustering algorithm is 

applied to the affinity matrix after each row/column is added – which makes it possible 

to inspect the clusters as new data points are added. The method is well suited to the 

problem of appearance-based, online topological mapping for mobile robots (Valgren et 

al., 2007). Moreover Weiming and Zhang (2007) used spectral clustering algorithm to 

propose a hierarchical corner detection framework in which the mean shift is embedded. 
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In the corner cell extraction stage, several atomic corner cells are obtained by spectral 

clustering. 

 

2.2.7 Kohonen Networks 

 

The Kohonen network was invented by Teuvo Kohonen (1981), and is closely modeled 

on the way that certain parts of the brain are known to work. The basic idea behind the 

kohonen network is to setup a structure of interconnected processing units “neurons” 

which compete for the signal. Kohonen networks make the basic assumption that 

clusters, or classes, are formed from pattern that share common features and groups 

similar patterns together. Teuvo Kohonen has been invented a variety of networks. The 

phrase “Kohonen network” most often refers to one of the following three types of 

networks: 

� VQ: Vector Quantization is a competitive network that can be viewed as 

unsupervised density estimates or auto-associators. 

� SOM: Self Organizing Map is a competitive network that provides a 

“topological” mapping from the input space to the clusters. 

� LVQ: Learning Vector Quantization is a competitive network for supervised 

classification. 

 

The objective of Kohonen Networks is to map input vectors (patterns) of arbitrary 

dimension N onto a discrete map with 1 or 2 dimensions. Patterns close to one another in 

the input space should be close to one another in the map: they should be topologically 
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ordered. A Kohonen Network is composed of a grid of output units and N input units. 

The input pattern is fed to each output unit. The input lines to each output unit are 

weighted. These weighted are initialized to small random numbers. 

 

This type of neural network is known as an unsupervised network. Clustering techniques 

apply when there is no classes to be predicted but rather when the instances are to be 

divided into natural groups. These clusters presumably reflect some mechanism that 

causes some instances to bear a stronger resemblance to one another that they do to the 

remaining instances. Clustering naturally requires different techniques to the 

classification and association learning methods. The kohonen SOM is fully connected, 

single layer linear network. The output generally is organized in a one or two 

dimensional arrangement of Processing Elements (PEs) in a line of elements, so each 

element only has two neighbors (the preceding and the following PE). A one 

dimensional SOM can be thought of as a string of PEs, where each PE is restricted to be 

near its two neighbors. When SOM adapts to an input of higher dimensions, it must 

stretch and curl itself to cover the input space. Basically, the clustering with the 

Kohonen Network consists of three layers: the input layer, where the data are introduced 

to the network, the hidden layer, where the data are processed and the output layer, 

where the results for given are produced. 

 

Arasa et al. (1999) introduced a new self organizing neural network, the Kohonen 

Incorporating Explicit Statistics (KNIES) that is based on Kohonen’s Self-Organization 

Map (SOM). The results of the study showed that the new scheme has been used to 

solve the Euclidean Travelling Salesman Problem (TSP). Moreover, it has been indicate 
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that NN the most accurate strategy for the TSP currently reported from TSPLIB (A 

Traveling Salesman Problem Library). 

 

2.3 Applications of Clustering 

 

Clustering algorithms have been used in a large variety of applications including image 

segmentation, information retrieval, fault diagnosis, condition monitoring and 

bioinformatics. However further discussion on the applications of clustering is focused 

on Bioinformatics. 

 

2.3.1 Bioinformatics 

 

The rapidly inflation of biological data, on a way it seems to be exponential, the 

increasing demand on getting information from such huge data, require to use 

intelligence techniques to speed up the process of preparing the information through the 

deep observation inside data and show the relations that can be found between it. Data 

mining can be applied in this case. For example Deoxyribonucleic acid (DNA) the 

molecule that our genes produced from is made from proteins which in its turn made 

from amino acids and there is typically 100 to 500 different amino acids produce protein 

sequence. 
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Zien et al. (2000) succeeded in determining the protein sequences that are included 

within nucleotides sequences, knowing where is the start point for the encoding regions 

for that protein which is called translation initiation sites (TIS), and it’s a classification 

problem that can be handled through support vector machines (SVMs) using the suitable 

kernel technique. Cancer disease is a significant research field. Tumor types have to be 

critically classified to be diagnosed, and for cure discovery. Many classification 

algorithms can be applied to the problem of cancer classification such as decision tree, 

linear discrimination analysis, nearest-neighbor analysis, and SVMs. All the previous 

algorithms face a major problem which is the high dimensionality of input space to 

express the gene, which increase the computational cost. The identification of the 

marker genes is challenging edge facing the researchers to discriminate tumors for 

cancer diagnosis (Hu & Pan, 2007). 

 

A new approach has been presented by Graham et al. (2003) for drug design process, 

which accelerates the chemical evaluation phase through parallel inductive logic search 

for pharmacophores, the new system applies the concept of data partitioning on a loosely 

coupled collection of parallel inductive logic searches. One of the key design features of 

this system is its portability and the ease of parallelizing sequential inductive logic 

programming (ILP) systems, the system shows ease of parallelizing sequential ILP 

systems based on the concept of data partitioning on a loosely coupled collection of 

parallel inductive searches. 

 

Distributed processing components using on a workflow model, for co-ordination the 

execution is the base of Discovery Net system for mixed data and text mining. a flexible 
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infrastructure has been designed to allow end users like biologists to construct their own 

text mining applications easily, a new form of text mining proceeds by using a generic 

pipeline that takes in text documents, performs any number of text pre-processing 

operations (cleaning, NLP parsing, regular expression operations, etc), followed by 

coding the features of the documents in vector form where counts are recorded for user-

defined (Ghanem et al., 2005). 

 

Clustering DNA Sequences 

 

Clustering techniques can be implemented to clustering DNA sequences. The prior to 

clustering the sequences of DNA, the DNA needs to be transformed into numeric 

sequence. Next, the distribution of the nucleotides must be identified. FitzGerald et al. 

(2004) determined the distribution of all sequences ranging from 2-mers to 8-mers, in 

addition to identified the clusters for Transition Split Site (TSS), and finally they 

identified DNA sequences that cluster in promoters. 

 

Liu et al. (2006), has used numeric characterization, through the number of A, T, G, and 

C nucleic bases in DNA sequence the total distance of each nucleotide from the origin (0, 

0), and the distribution of each nucleotide along the DNA sequence. Once the vector is 

being produced, the Euclidian distance between each characterization vector will be 

measured to identify the clusters and a sensitivity analysis is conducted.    

 

DNA curvature excess profile technique were used to reduce a comprehensively big text 

file (genome) to a numerical vector contains 801 real positive numbers smaller than 0.5. 
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Two widespread clustering methods: k-means and Partitioning Around Medoids (PAM) 

were used to cluster 205 complete prokaryotic genomes. The results obtained by k-

means algorithm application seem to possess better biological relevance. K-means 

algorithm was applied to cluster genomes using curvature excess distributions upstream 

of the starts of genes. Optimal growth temperature, genome size and the A + T 

composition are the main factors influencing curvature distribution in promoter regions 

of the prokaryotes (Kozobay-Avrahama et al., 2008). 

 

DNA splice site adjacent sequences have remarkable conservative feature and has much 

genetic information. 2796 donor sequences of human being have been chose as the 

experimental data set to cluster DNA sequences using DBSCAN and analyzing the 

clustered results to mine the regulation in each cluster. In order to improve the 

applicability of the algorithm, dissimilarity definition methods were used. The 

frequencies of ‘‘T+C” (A+C) and the di-base bias are identified. This helps to predict 

the functions of the sequences in each cluster, and it will be also helpful to mine more 

biological knowledge from the clustering results (Zhang et al., 2008). 

 

Based on orthologous gene property conservation profiles Bolshoy and Volkovich 

(2008) introduced an unsupervised genome clustering strategy of taxonomic analysis 

based on an information bottleneck method, supposing that n genomes have been used to 

construct a genome tree. They define an orthologous gene property conservation profile 

of a gene x as an n-component vector of zeros and ratios, this will reflects on an 

evolutionary conservation history of a property p across the n species. In their study, 
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Bacteria and Archaea clusters showed a clear separation and clustering of relatively 

close species. 

 

2.3.2 Image Segmentation  

 

The segmentation of image(s) presented to an image analysis system is a critically 

dependent on the scene to be sensed, the imaging geometry, configuration, and sensor 

used to transducer the sense into a digital image, and ultimately the desired output (goal), 

of the system. And image segmentation is typically defined as an exhaustive partitioning 

of an input image into regions, each of which is considered to be homogenous with 

respect to some image property of interest (e.g., intensity, color, or texture). 

 

The goal of clustering was to obtain a sequence of hyperellipsoid clusters starting with 

cluster centers positioned at maximum density locations in the pattern space, and 

growing clusters about these centers until the test for goodness of fit is violated. An 

agglomerative clustering algorithm was applied to solve the problem of unsupervised 

leaning of clusters of coefficient vectors for two image models that correspond to image 

segments. The algorithm proceeds by obtaining vectors of coefficients of least-squares 

fits to the data in M disjoint image windows (Silverman & Cooper, 1988). Two neural 

networks have been designed to perform pattern clustering when combined. A two layer 

network operates on multidimensional histogram of the data to identify prototypes which 

are used to classify the input patterns into clusters. These prototypes are fed to the 

classification network, another two-layer network operating on the histogram of the 
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input data, but are trained to have different weights from the prototype selection network. 

In both networks, the histogram of the image is used to weight the contributions of 

patterns neighboring the one under consideration to the location of prototypes or the 

ultimate classification; as such, it is likely to be more robust when compared to 

techniques which assume an underlying parametric density function for the pattern 

classes. This architecture was tested on gray-scale and color segmentation (Vinod et al., 

1994). 

 

2.3.3 Information Retrieval  

 

Information retrieval (IR) is concerned with automatic storage and retrieval of 

documents, many university libraries use IR systems to provide access to books, journals, 

and other documents. Libraries use the Library of Congress Classification (LCC) 

scheme for efficient storage and retrieval of books. 

 

The clustering problem can be stated as follows; given a collection B of books, its need 

to obtain a set of clusters. Jain and Dubes (1988) used a proximity dendrogram, using 

the complete link agglomerative clustering algorithm for the collection of 100 books. 

Seven clusters are obtained by the threshold (T) value of 0.12. It is well known that 

different values for T might give different clustering. This threshold value is chosen 

because the gap in the dendogram between the levels at which six and seven clusters are 

formed is the largest. An examination of the subject areas of the books in these clusters 

revealed that the clusters obtained are indeed meaningful. Each of these clusters is 
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represented using a list of string and frequency pairs, where the frequency represents the 

number of books in the cluster that is presented in the string. 

 

2.4 General Taxonomy of DNA Sequences 

 

DNA sequences in general have two types of cellular architecture: Prokaryotic (Bacteria 

and Archaea) and these two named as Prokaryotes and the other type is Eukaryotic. 

Bacteria and Archaea are unicellular, Eukaryotes are either unicellular (e.g. yeast) or 

multi cellular (e.g. mammals) as shown in Fig. 2.6, a general sampling of DNA 

sequences has helped establish the diversity of life and allowed researchers to analyze 

evolutionary relationships within groups in detail (Stoeckle, 2003). 

 

 

 

 

Figure 2.6: General Taxonomy for Species 
https://eapbiofield.wikispaces.com/FRF+PR9 
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Hebert et al. (2003) discussed in their paper that many mammalian genes can be 

organized into gene families consisting of a number of genes with similar sequences, 

and the DNA extracted from small tissue samples using the Isoquick protocol. DNA 

sequence should contain more than enough information to resolve 10 million or even 

100 million species, there is no universal DNA bar code gene, no single gene that is 

conserved in all domains of life and exhibits enough sequence divergence for species 

discrimination, there may be a need for a standalone; curate database to supplement 

GenBank, the stand-alone database would be designed to integrate sequence data with 

specimen and taxonomic information. 

 

A cytochrome “c” oxidase I (COI) database could serve as the basis for a global bio-

identification system (GBS) for animals. Implementation on this scale will require the 

establishment of a new genomics database. While GenBank aims for comprehensive 

coverage of genomic diversity, the GBS database would aim for comprehensive 

taxonomic coverage of just a single gene. The creation of the GBS will be a large 

undertaking and will require close bonds between molecular biologists and taxonomists. 

DNA-based species identification offers enormous potential benefits for the biological 

scientific community, educators, and the interested public. It will help open the treasury 

of biological knowledge and increase community interest in conservation biology and 

understanding of evolution. 

 

2.5 DNA Sequences Representations 
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It is possible to represent DNA sequence with numeric or graphs for easy analysis, these 

numeric or graph representations can be in the form or real numbers or complex 

numbers depending on the further analysis required for the clustering. 

 

2.5.1 Graphical Representation of DNA Sequences 

 

As mentioned in the previous chapter, there is a large volume of DNA sequences, and 

for the purpose of analyzing it in a mathematically way it will be challenging. For a 

simple way to view, compare and sort DNA sequences the graphical representation of 

DNA sequences gives an operative way. The main goal of graphical representation of 

DNA sequences is; to show the similarity and the difference in the gene structure in an 

easy way visually (Gates, 1985). 

 

In order to have a unique graphical representation for the DNA sequences, it is required 

that the graphical representation has no degeneracy. Many efforts have been made to 

avoid the degeneracy caused by overlapping and crossing paths itself. One of the 

examples of the degeneracy is the high dimensional graphical representations of the 

DNA sequences. For more straight visual display, 2-D graphical representation gives 

that with less computation and drawing tools. 

 

Song and Tang (2005) create a new 2-D graphical representation of DNA sequences 

based on chemical structure of bases. They reduced the DNA primary sequence into 

some characteristic curves. Each characteristic curve may be regarded as a coarse 
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grained description of the DNA primary sequence, which avoids overlapping and 

crossing of the curve, reflects the distribution of different base pairs. This approach is 

accompanied with an arbitrary decision in assigning to the different types of bases 

different geometrically non-equivalent graphical choices. The graphical representation 

results in a numerical characterization of a DNA sequence by the leading eigenvalues of 

M/M, L /L matrices associated with the DNA sequences, only six out of 12 possible 

graphs are shown in Fig. 2.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               

 

 

Figure: 2.7: 2-D characteristic curve of the sequence  TGGTGCACCTGACTCCTGA 
(Song & Tang, 2005). 
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Randi et al. (2002) transferred data from a DNA sequence to its mathematical 

representation presented in a 2-D graphical representation that preserve and avoid the 

loss of information on sequential adjacency of nucleotides and allow numerical 

characterization. Zigzag curve illustrates DNA sequence that will smooth the progress of 

quantitative comparisons of DNA sequences Fig 2.8. Associating the four nucleotide: A, 

T, C and G with the four horizontal lines, the consecutive bases along the horizontal 

axes are placed at unit displacement. Also 2D numeric representation using 2 Cartesian 

co-ordinate system where A, G, C and T are represented with a unit vector has been used 

by Wan and Johnson (2002). 

 

 

 

 

Guo and andy (2002) introduced a method to reduce the degeneracies of the DNA 

sequence representation, so that there are considerably less overlaps in the graphs. DNA 

sequence of four nucleotides A, T, C and G and have the length n can be considered as a 

successive vector sequence of length n containing the four vectors corresponding to A, T, 

C, G and used in 2-D graphical representation of the DNA sequence. The new 

descriptors of DNA sequences give a good numerical characterization of DNA 

sequences, which have lower degeneracy. 

Figure 2.8: Graphical representation of the sequence ATGGTGCACC. 
(Randi et al., 2002) 
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2.5.2 Numerical Representation of DNA Sequences 

 

It is possible to represent DNA sequence with numeric for easy analysis, these numeric 

can be in the form or real numbers or complex numbers depending on the further 

analysis required for the clustering. Real number representation has been implemented 

to represent the DNA sequence. For example, Kauer and Blocker (2003), assigned 

numbers to nucleotide such as an instance A=1, T=2, C=3 and G =4, based on the 

assumption that A<T<C<G. Complex numbers has been used by Anastassiou (2000) to 

represent DNA sequences. DNA sequences are converted to vectors of complex number 

by assigning nucleotide with complex Number and the corresponding nucleotides with a 

complex conjugate. 

 

Based on digital signal method, Qi and Qi (2009) propose a new representation of DNA 

primary sequence. It is very difficult to find DNA characteristic vector particularly when 

the sequence is very long. To deal with the situation, Qi and Qi used signal theory to 

characterize DNA sequences. By constructing a weak-H/strong-H bond graph in the first 

quadrant of the Cartesian coordinate system, the unit digital signals representing four 

nucleotides A, T, G and C can be represented as in Fig.2.9. 

 

 
Figure 2.9: A weak-H/strong-H bond graph. 

(Qi & Qi ,2009)  
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Four nucleotides, A, T, C and G have been represented as four two-component vectors 

(Huang et al., 2009). Each vector contains a constant (equal to 1) and different angles 

between A, T, C and G nucleotides and the x-axis. By comparing the corresponding 

curve of nucleotides, a new measure of similarity and dissimilarity was proposed. This 

conveniently discovers the evolutionary relationship among various DNA sequences by 

observing the graphical representations. 

 

2.6 Conclusion  

 

This chapter presented data mining concept and the clustering techniques which is part 

of the descriptive models. Clustering techniques have been categorized into two main 

categories; hierarchical and partitional, each of which has different clustering algorithm. 

From previous literature, representing the DNA sequences in a characterization vectors 

enables the use of Euclidean distance between the corresponding vectors for the DNA 

sequences, for the similarity between the DNA sequences. This methodology as 

proposed by Liu et al. (2006) has been adopted in this work. The next chapter discusses 

the methodology in more details. 
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CHAPTER THREE 

 

METHODOLOGY 

 

 

In this chapter, a twelve-dimensional vector is associated with each DNA sequence. A 

new genomic geometry will be produced in a twelve-dimensional space. The length of 

the vectors have to be the same in order to utilize vectors to characterize the DNA 

sequence, regardless the difference of the original sequences that are in alpha 

representation. 

 

3.1 Introduction  

 

Finding similarities between the new genes and the previous sequenced genes with 

known functions through sequence comparison will help to discover the function of the 

new sequenced gene. BLAST and FASTA is the most popular tools used in sequence 

comparison. However, BLAST and FASTA only compares two sequences at one time 

and does not provide a global picture of the comparison of all genes simultaneously. 

Consequently it will be advantageous to put all the genes in a fixed Euclidean space so 

that a global view will be produced for all genes comparison. 
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BLAST and FASTA tools cannot compare more than two DNA sequences 

simultaneously, also they are using the alpha representation of the DNA sequences, so 

the methodology which is adopted in this work does not compare the DNA sequences in 

its alpha representation but it converts it into a numerical representation which is 

characterization vector, this will make it easy to compare more than two DNA sequence 

simultaneously in a genomic space. Hence, no need to compare the results of this study 

with BLAST and FASTA tools because of the differences in the why of representing the 

DNA sequence and the way of comparing more than two DNA sequences. 

3.2 Research Methodology  
 

In this study, the methodology from Liu et al. (2006) as shown in Fig.3.1 is adopted. 

 

 

 

 

Experiments were conducted based on the following steps: 

Figure 3.1: Methodology (Liu et al., 2006) 
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STEP 1: Alpha DNA sequences were obtained from Gene Bank from the 

following site: 

http://www.ncbi.nlm.nih.gov/. An example of the data can be seen in Fig. 3.2. 

 

 

STEP 2: The alpha DNA sequences were converted into 12 parameter  

            characterization vector and this include: 

(a) The first four parameters of the characterization vector contain nA, nT, nC, 

and nG and can be defined as following: 

i. nA: Total number of nucleotide A in the DNA sequence. 

ii.  nT: Total number of nucleotide T in the DNA sequence. 

iii.  nC: Total number of nucleotide C in the DNA sequence. 

iv. nG: Total number of nucleotide G in the DNA sequence. 

For example if a sequence A is: GTGGGTGGTT, and sequence B is: 

TGAAGCTGTT, the sequences will be used in the following parts, 

whose corresponding four parts for each sequence is shown in Table 3.1. 

 

 

Parameter 
Sequence A 
GTGGGTGGTT 

Sequence B 
TGAAGCTGTT 

nA 0 2 
nT 4 4 
nC 0 1 
nG 6 3 

Figure 3.2: Original DNA sequence 
 

Table 3.1: Number of nucleotides (A, T, C, G) in the sequence 
GTGGGTGGTT 
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(b) The second four parameters of the characterization vector are the total 

distance for each nucleotide base on the first nucleotide, or the origin 

(0,0) of the DNA sequence. It can be defined as: 

Ti = ∑
=

in

j
jt

1
       (3.1) 

Where, i = A, T, C, G. And tj: is the distance from the first 

nucleotide to the jth nucleotide in the DNA sequence. Therefore the 

set of the four parameters for the characterization vector dictated by 

DNA sequence are TA, TT, TC, and TG. Fig.3.3 shows the positions 

of G base in the sequence GTGGGTGGTT; hence the total number 

of distances for base G is the summation of the distances which is: 1 

+ 3 + 4 + 5 + 7 + 8 = 28, and so on for the rest of nucleotide bases. 

 

 

Position 1 2 3 4 5 6 7 8 9 10 

Base G T G G G T G G T T 

 

 

The second four parts of the characterization vectors for the same 

sequences that have been used in the previous step is shown in 

Table 3.2. 

 

 

Figure 3.3: The position of nucleotide in the sequence 
GTGGGTGGTT 
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Parameter 
Sequence A 
GTGGGTGGTT 

Sequence B 
TGAAGCTGTT 

TA 0 7 
TT 27 27 
TC 0 6 
TG 28 15 

 

(c) The distribution of each nucleotide along the DNA sequence will produce 

the third four parameter of the characterization vector. 

The distribution is defined as: 

( )
∑

=

−
=

in

j i

ij
i n

t
D

1

2µ
       (3.2) 

Where  i = A, T, C, G. And tj: is the distance from the first nucleotide to the 

jth nucleotide in the DNA sequence and 

i

i
i n

T=µ          (3.3) 

The four parameters for the third part will be DA, DT, DC, and DG. 

  For example
T

T
T n

T=µ , this value will be used in main function to   

                        calculate the distribution D (3.2) of nucleotide T in the sequence, so the  

                        values of nT and TT can be obtained from Table 3.1 and Table 3.2  

                        respectively, then    
4

27=Tµ = 6.75, so this value  

Table 3.2: Total distance of nucleotides (A, T, C, G) in the sequence 
GTGGGTGGTT 
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( )

∑
=

−
=

Tn

j T

Tj
T n

t
D

1

2µ
= 9.68, the distribution of all the nucleotides (A, T,  

                       C and G) for the same sequences above shown in Table 3.3. 

 

 

Parameter 
Sequence A 
GTGGGTGGTT 

Sequence B 
TGAAGCTGTT 

DA 0 0.25 
DT 9.68 12.18 
DC 0 0 
DG 5.48 6 

 

So the characterization vector that contains 12-dimensional information 

is: 

  < nA , TA , DA , nT , TT , DT , nC , TC , DC , nG , TG , DG > 

STEP 3: Store the characterization vector that represents the DNA sequence into 

database. 

STEP 4: Clustering the numeric representation of DNA sequences 

(d) The distance between two characterization vectors has to be small to 

indicate that these two sequences are similar. 

(e) Two characterization vectors that have large distance between them 

correspond to non-homologous DNA sequences. 

(f) The distance between two characterization vectors defined as: 

( )∑∑ −=
j i

ii jjL
2'        (3.4) 

Where  i = A, T, C, and G; j = n, T, D. 

Table 3.3: The distribution of nucleotides (A, T, C, G) in the sequence 
GTGGGTGGTT 
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By applying the previous formula L (3.4) on the characterization vectors of 

the sequences A and B we will find that the distance between these two 

vectors is = 42.84. 

 

Fig 3.4 shows an example of DNA sequence from Lysozyme family named “Bos 

Taurus” and the corresponding characterization vector for this DNA sequence. 

 

 

 

The steps of the methodology shows that the numerical characterization of the DNA 

sequence after obtaining the alpha representation of the DNA sequences which contain 

the four nucleotides A, T, C and G falls in three main parts, each part contain four 

Figure 3.4: Bos taurus DNA sequence before and after characterization 
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parameters to produce the twelve dimensional vector. The first four parameters of the 

vector contains the total number of the nucleotides A, T, C and G which is represented 

by nA, nT, nC and nG respectively, using only these parameters cannot denote a specific 

DNA sequence, because two different DNA sequences can have exactly the same 

nucleotide contents. So more parameters are needed. 

 

The second four numerical parameters are the total distance of each nucleotide bases to 

the origin (0,0). For example if there is two DNA sequences, the first one has two 

thymine nucleotides at the position 4 and 5, and the second one has two thymine 

nucleotides at position 6 and 8, both DNA sequences have two thymine bases, the total 

distance generated from these two cases are different. Therefore, it is a special 

characteristic to the sequence. 

 

The characteristics of the four sets of total distances TA, TT, TC, and TG are dictated by 

the DNA sequence that reflect the information of how far each nucleic base is from the 

origin. The similarity between DNA sequences also can be reflected through the 

similarity between the total distances of the nucleotides from the origin. Though, the 

total distance of the nucleotides alone is not sufficient to denote the DNA sequence for 

comparison. So there is a need to other numerical parameters for further characterization 

of DNA sequence. 

 

The distribution of each nucleotide along the DNA sequence is the third four parameters 

selected for the vector. If the distribution of each nucleotide base is different, DNA 

sequences cannot be similar even though they may have the same nucleotide contents 



 47 

and the same total distance measurement. Therefore, the information about distribution 

has also been included in the vector analysis.  

 

As preceded above, each parameter of which the characterization vector is consists of is 

not sufficient to denote a specific DNA sequence. However, combining the parameters 

together to produce the characterization vector can be used to characterize the similarity 

between DNA sequences. 

 

After obtaining the characterization vector for each DNA sequence, the similarity of 

different DNA sequences can be measured. The distance between vectors is used for the 

comparison, if the distances between two DNA sequences are small, then they are 

similar. Otherwise, large distance between the characterization vectors is expected for 

non-homologous DNA sequences. 

 

The practical application of using the characterization vector for DNA sequence 

comparison is straightforward; the following chapter shows how to apply this method on 

different protein families. 
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CHAPTER FOUR 

 

RESULTS AND DISCUSSION  

 

 

This chapter presents the results that have been obtained from the conducted 

experiments. Two main experiments have been carried out; the first experiment has been 

applied on the whole sequence, the second experiment contains five stages in each stage 

just a part of the sequence considered in such way that does not exceed the maximum 

length of the shortest DNA sequence. 

 

For the purpose of presenting the DNA sequence in a 12-dimensional feature vector that 

contains the following components; the number of instances for each nucleotides A, T, C 

and G that creates the first 4 parameters of the vector, the second 4 parameters of the 

vector is the total distances for each nucleotide from the origin of the sequence, the 

distribution of each nucleotide among the sequence will generate the last 4 parameters of 

the vector, a program in JAVA has been developed to generate the corresponding 

vectors for each sequence, and the results are stored in an Access database. This chapter 

shows how make DNA sequences comparison. The global comparison of gene structures 

is tested on Lysozyme, Myoglobin and Rhodopsin families 

(http://www.ncbi.nlm.nih.gov/). 
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The comparison will be in two ways on the DNA sequences. First the compare is made 

on the whole DNA sequences, while the other is to take part of the DNA sequences such 

that it does not exceed the maximum number of nucleotides for the shortest sequence. 

 

4.1 DNA Sequences (Data) 

 

A DNA sequence or genetic sequence is a succession of letters constituent nucleotides 

listed from the 5'- to 3'- terminus representing the primary structure of DNA molecule or 

strand, which hold the information as described by the central dogma of molecular 

biology. Prior to discussion on applications of DNA sequences, several terminologies 

related to DNA are defined for example, Genome is a complete set of DNA 

(Deoxyribonucleic Acid) for an organisms, and the DNA arranged into 23 pairs of DNA 

molecule called chromosomes, and each chromosome contain many genes, DNA 

molecule has millions of bases or nucleotides, these nucleotides sequences or base 

sequences has the information of making proteins encoded in it. A nucleotide is made up 

of one phosphate group linked to a pentose sugar, which is linked to one of 4 types of 

nitrogenous organic bases symbolized by the four letters A, C, G, and T. The rules that 

govern the correspondence of the base/ nucleotide sequences for DNA and RNA to the 

amino acids or proteins are known as Genetic Code. Sequence Alignment is the process 

of locating regions that are equivalent to increase the similarity of these sequences.  

 

The number of nucleotides that have been used in this study for all the three protein 

families and its members is 10779 base pairs (bp), more information about the DNA 



 50 

sequences that have been used in this study will be found in Table 4.1. As mentioned 

earlier, the gene structures are classified into Lysozyme, Myoglobin and Rhodopsin 

families. Note that the structures are not of the same length although they are from the 

same gene structures. Due to this reason, the experiments were conducted by 

considering the length of the gene structures. In other words, gene structures were 

considered as a whole or fixed size sequences. 

 

 

Bos taurus 915(bp) 

L
ys

o
zy

m
e 

Homo sapiens 1487(bp) 

Danio rerio 1360(bp) 

Homo sapiens 1206(bp) 

Mus musculus 505(bp) 

Rattus norvegicus 1015(bp) M
yo

g
lo

b
in

 

Sus scrofa 1111(bp) 

Homo sapiens 1620(bp) 

R
h

od
o

ps
in

 
 

Rattus norvegicus 1560(bp) 

 

 

The total number (nA, nT, nC and nG) of nucleotides A, T, C and G respectively can be 

graphically represented as shown in Fig. 4.1.  

 

 

 

Table 4.1: Number of Nucleotides in each family member 
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The DNA sequences are stored in an MS Access database, with its name and the name 

of the family that it belong to, and stored in alpha characters. This database will facilitate 

the process of retrieving and storing the feature vectors later. 

 

4.2 The Experiment 

 

After obtaining the DNA sequence from the NCBI web site, the DNA sequences was 

then stored in the database. A JAVA program has been designed to make the process of 

global comparison among all sequences Fig. 4.2.  

Lysozyme Myoglobin Rhodopsin 

Figure 4.1: The total number of Nucleotides in each 
sequence 
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This program retrieves the DNA sequence from the database and then converts it to a 

12-dimensional vector, and stores it again in the database to produce a featured vectors 

database. Fig. 4.3 shows the feature vectors produced from the converter program and 

how are they stored in the database as a table of featured vectors.  

 

 

 

Figure 4.2: DNA sequences comparison program 

Figure 4.3: How feature vectors stored in the database 
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The next step is to compare all the featured vectors that have been stored in the database 

through the same program and then stores the results (distances) in the database. Fig. 4.4 

shows the output for the program in the form of pivot table form designed in MS-Access 

program. 

 

 

 

 

In this experiment two main approaches have been carried out to produce the 

characterization vectors. The first one is to produce the feature vectors from the 

complete sequence nucleotides, and the second one is produce the feature vectors by 

taking a fixed size of the sequences. The next sections show how the results produced in 

these two approaches. 

 

Figure 4.4: Pivot table form for the output 
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4.2.1 Whole Size Sequence Experiment 

 
In this experiment, the whole sequences for the three families (Lysozyme, Myoglobin 

and Rhodopsin) have been included and the results are shown in Table 4.2, taking in 

consideration the various lengths for each sequence, which varies from 505(bp) up to 

1620(bp). Table 4.1 shows the number of nucleotides in each sequence. 

 

 

Lysozyme Myoglobin Rhodopsin 
Bos 

 taurus 
Homo 

 sapiens 
Danio 
 rerio 

Homo 
 sapiens 

Mus  
musculus 

Rattus  
norvegicus 

Sus 
 scrofa 

Homo 
 sapiens 

Rattus 
 norvegicus 

  
  
  I II III IV V VI VII VIII IX 

I 0.00E+00 4.05E+05 2.95E+05 1.98E+05 1.76E+05 9.80E+04 1.72E+05 5.60E+05 4.88E+05 

II   0.00E+00 1.19E+05 2.57E+05 5.78E+05 3.60E+05 3.37E+05 3.09E+05 2.28E+05 

III     0.00E+00 1.52E+05 4.67E+05 2.49E+05 2.29E+05 3.33E+05 2.41E+05 

IV       0.00E+00 3.51E+05 1.22E+05 1.49E+05 4.09E+05 3.25E+05 

V         0.00E+00 2.32E+05 2.92E+05 6.97E+05 6.36E+05 

VI           0.00E+00 1.12E+05 4.88E+05 4.17E+05 

VII             0.00E+00 4.06E+05 3.48E+05 

VIII               0.00E+00 1.15E+05 

IX                 0.00E+00 

  

The results shown in Table 4.2 shows that the protein families did not clustered in a 

proper way, and that can be identified through the ranges that each family fall in. For 

example in the Lysozyme family the distance between the two sequences is 4.05E+05 

but the distance between it and the two families (Myoglobin and Rhodopsin) is not 

significant. Consequently, there is a need to examine the DNA sequences in such way 

that have the same length.  

 

Table 4.2: Whole sequence comparison results 
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4.2.2 Fixed Size Sequence Experiment 

 

In this section, five different experiments have been implemented on the protein families 

with its DNA sequences. In each experiment the same number of nucleotides has been 

chosen for the purpose of comparison. 

 

First 100, 200, 300, 400 Nucleotides 

 

The first 100 nucleotides have been chosen to produce the feature vectors for each 

sequence. Table 4.3 shows that there is improvement for the clustering in each family, 

but this improvement not yet significant to cluster each protein family and distinguish 

each family from the other.  

 

 

Lysozyme Myoglobin Rhodopsin 
Bos 

 taurus 
Homo 

 sapiens 
Danio 
 rerio 

Homo 
 sapiens 

Mus  
musculus 

Rattus  
norvegicus 

Sus 
 scrofa 

Homo 
 sapiens 

Rattus 
 norvegicus 

  
  
  I II III IV V VI VII VIII IX 

I 0.00E+00 3.81E+02 1.06E+03 8.94E+02 1.25E+03 1.39E+03 9.17E+02 1.09E+03 1.56E+03 

II   0.00E+00 8.01E+02 5.91E+02 9.37E+02 1.14E+03 5.80E+02 1.04E+03 1.28E+03 

III     0.00E+00 7.30E+02 4.32E+02 6.53E+02 6.86E+02 9.91E+02 7.84E+02 

IV       0.00E+00 8.13E+02 1.04E+03 2.35E+02 8.57E+02 8.64E+02 

V         0.00E+00 5.55E+02 7.14E+02 1.30E+03 9.56E+02 

VI           0.00E+00 9.30E+02 1.35E+03 1.10E+03 

VII             0.00E+00 9.41E+02 8.69E+02 

VIII               0.00E+00 9.53E+02 

IX                 0.00E+00 

 

 

 

Table 4.3: Results for the first 100 nucleotides 
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By increasing the number of participated nucleotides in the comparison process for the 

DNA sequences from different families, each family has been clustered in the proper 

way, and the difference between families become more significant. Table 4.4, Table 4.5 

and Table 4.6 shows the results for the first 200, 300 and 400 nucleotides respectively. 

 

 

Lysozyme Myoglobin Rhodopsin 
Bos 

 taurus 
Homo 

 sapiens 
Danio 
 rerio 

Homo 
 sapiens 

Mus  
musculus 

Rattus  
norvegicus 

Sus 
 scrofa 

Homo 
 sapiens 

Rattus 
 norvegicus 

  
  
  I II III IV V VI VII VIII IX 

I 0.00E+00 1.15E+03 2.60E+03 3.03E+03 2.26E+03 1.92E+03 2.58E+03 4.34E+03 2.76E+03 

II   0.00E+00 2.34E+03 2.26E+03 1.64E+03 1.76E+03 1.86E+03 3.93E+03 2.26E+03 

III     0.00E+00 2.14E+03 1.80E+03 3.01E+03 1.97E+03 2.16E+03 1.30E+03 

IV       0.00E+00 8.89E+02 2.79E+03 8.00E+02 2.33E+03 1.30E+03 

V         0.00E+00 2.32E+03 4.09E+02 2.62E+03 1.23E+03 

VI           0.00E+00 2.59E+03 4.53E+03 2.80E+03 

VII             0.00E+00 2.58E+03 1.40E+03 

VIII               0.00E+00 1.91E+03 

IX                 0.00E+00 

 

 

 

Lysozyme Myoglobin Rhodopsin 
Bos 

 taurus 
Homo 

 sapiens 
Danio 
 rerio 

Homo 
 sapiens 

Mus  
musculus 

Rattus  
norvegicus 

Sus 
 scrofa 

Homo 
 sapiens 

Rattus 
 norvegicus 

  
  
  I II III IV V VI VII VIII IX 

I 0.00E+00 1.78E+03 7.51E+03 5.69E+03 4.31E+03 5.17E+03 6.00E+03 9.61E+03 7.06E+03 

II   0.00E+00 6.25E+03 4.29E+03 3.06E+03 4.38E+03 4.49E+03 9.03E+03 6.26E+03 

III     0.00E+00 2.64E+03 3.48E+03 4.87E+03 2.97E+03 4.58E+03 2.65E+03 

IV       0.00E+00 2.10E+03 3.42E+03 1.60E+03 6.39E+03 3.60E+03 

V         0.00E+00 3.50E+03 2.05E+03 6.65E+03 4.21E+03 

VI           0.00E+00 3.76E+03 6.40E+03 4.56E+03 

VII             0.00E+00 6.85E+03 4.65E+03 

VIII               0.00E+00 3.56E+03 

IX                 0.00E+00 

 

 

Table 4.4: Results for the first 200 nucleotides 

Table 4.5: Results for the first 300 nucleotides 
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Lysozyme Myoglobin Rhodopsin 
Bos 

 taurus 
Homo 

 sapiens 
Danio 
 rerio 

Homo 
 sapiens 

Mus  
musculus 

Rattus  
norvegicus 

Sus 
 scrofa 

Homo 
 sapiens 

Rattus 
 norvegicus 

  
  
  I II III IV V VI VII VIII IX 

I 0.00E+00 3.54E+03 9.64E+03 7.34E+03 6.76E+03 7.65E+03 9.07E+03 1.52E+04 1.23E+04 

II   0.00E+00 9.73E+03 7.12E+03 7.25E+03 8.11E+03 9.02E+03 1.35E+04 1.06E+04 

III     0.00E+00 4.04E+03 4.41E+03 6.65E+03 3.77E+03 9.33E+03 6.50E+03 

IV       0.00E+00 3.89E+03 5.11E+03 2.37E+03 9.66E+03 6.19E+03 

V         0.00E+00 4.11E+03 4.08E+03 1.04E+04 7.96E+03 

VI           0.00E+00 5.29E+03 1.01E+04 8.77E+03 

VII             0.00E+00 9.31E+03 6.29E+03 

VIII               0.00E+00 4.64E+03 

IX                 0.00E+00 

 

 

The first 400 nucleotides experiment shows significant clustering results Table 4.6. The 

distances between Lysozyme family is 3.54E+03 and the distance between it and the 

other families range from 6.76E+03 to 1.52E+04. Myoglobin family sequences range 

from 2.37E+03 - 6.65E+03, the distances between the Myoglobin family and the other 

families range from 6.19E+03 - 9.66E+03. For the third family (Rhodopsin), the 

distance inside this family is 4.64E+03, and the distances between it and the other 

families range from 6.19 - 1.52E+04. Form the previous results it is easy to distinguish 

the family cluster and the differences between the families. 

 

First 500 Nucleotides 

 

This experiment has included the first 500 nucleotides of each sequence, and this 

number of nucleotides has been chosen because the shortest sequence length is 505. 

Table 4.6: Results for the first 400 nucleotides 



 58 

Table 4.7 shows significant results for clustering each family, the vector distance for the 

Myoglobin family are clustered together ranging from 3.66E+03 - 8.89E+03, also for all 

families the distance become significantly large between different families Table 4.8. 

 

 

Lysozyme Myoglobin Rhodopsin 
Bos 

 taurus 
Homo 

 sapiens 
Danio 
 rerio 

Homo 
 sapiens 

Mus  
musculus 

Rattus  
norvegicus 

Sus 
 scrofa 

Homo 
 sapiens 

Rattus 
 norvegicus 

  
  
  I II III IV V VI VII VIII IX 

I 0.00E+00 3.55E+03 1.79E+04 1.49E+04 1.35E+04 1.41E+04 1.73E+04 2.07E+04 1.84E+04 

II   0.00E+00 1.83E+04 1.53E+04 1.39E+04 1.53E+04 1.77E+04 2.02E+04 1.79E+04 

III     0.00E+00 4.69E+03 8.89E+03 6.96E+03 5.68E+03 1.03E+04 6.74E+03 

IV       0.00E+00 5.70E+03 4.75E+03 3.66E+03 1.07E+04 6.27E+03 

V         0.00E+00 5.29E+03 5.92E+03 1.17E+04 7.64E+03 

VI           0.00E+00 5.55E+03 1.16E+04 8.86E+03 

VII             0.00E+00 9.41E+03 5.20E+03 

VIII               0.00E+00 5.97E+03 

IX                 0.00E+00 

 

A complete set of the corresponding characterization vectors in each of the result table 

can be found in the appendix. 

 

4.3 Discussion 

 

As preceded in the previous section, the experiments that have been implemented on 

three protein families Lysozyme, Myoglobin and Rhodopsin showed significant results 

for the first 400 and 500 nucleotides. The results for the first 400 nucleotides are nearly 

close to the first 500, but it is distinguishable that the first 500 nucleotides have shown 

more significant discrimination among the three families. 

 

Table 4.7: Results for the first 500 nucleotides 
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As a summary for all the experiments that have been applied, Table 4.8 show the 

distances inside and outside the families for all the members of the families. 

 

 

Distance Inside Family Distance with Other Families 
Experiment Protein Family 

From To From To 

Lysozyme 3.81E+02 5.80E+02 1.56E+03 

Myoglobin 2.35E+02 1.04E+03 5.80E+02 1.39E+03 First 100 Nucleotides 

Rhodopsin 9.53E+02 7.84E+02 1.56E+03 

Lysozyme 1.15E+03 1.64E+03 4.34E+03 

Myoglobin 4.09E+02 2,79E+03 1.23E+03 4.53E+03 First 200 Nucleotides 

Rhodopsin 1.91E+03 1.23E+03 4.53E+03 

Lysozyme 1.78E+03 3.06E+03 9.61E+03 

Myoglobin 1.60E+03 4.87E+03 2.65E+03 7.51E+03 First 300 Nucleotides 

Rhodopsin 3.56E+03 2.65E+03 9.61E+03 

Lysozyme 3.54E+03 6.76E+03 1.52E+04 

Myoglobin 2.37E+03 6.65E+03 6.19E+03 1.04E+04 First 400 Nucleotides 

Rhodopsin 4.64E+03 6.19E+03 1.52E+04 

Lysozyme 3.55E+03 1.35E+04 2.07E+04 

Myoglobin 3.66E+03 8.89E+03 5.20E+03 1.83E+04 First 500 Nucleotides 

Rhodopsin 5.97E+03 5.20E+03 2.07E+04 

Lysozyme 4.05E+05 9.80E+04 5.78E+05 

Myoglobin 1.12E+05 4.67E+05 9.80E+04 6.97E+05 Whole Sequence 

Rhodopsin 1.15E+05 2.28E+05 6.97E+05 

 

 

For good clustering, Distance Inside Family is minimized whereas the Distance with 

Other Families is maximized. From Table 4.8, Distance Inside Family for Lysozyme 

family is minimal for First 500 Nucleotides and maximal for Distance with Other 

Table 4.8: Distances inside and outside families in different experiments 
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Families. For the Myoglobin family the minimal Distance Inside Family and maximal in 

Distance with Other Families shown by the Whole Sequence. For the  Rhodopsin family 

its clearly seen that is has interchangeable values that it has the maximal distance in 

Distance with  Other Families in the First 100 Nucleotides. 

 

In all of the previous experiments in section 4.2.2, the number of the nucleotides that 

have been associated in the global comparison between the DNA sequences did not 

exceed the maximum length of the shortest DNA sequence which is referred to the “Mus 

musculus”  sequence from the Myoglobin family with a length of 505(bp). These 

indications will give this work a novelty in distinguishing the protein families that have 

DNA sequences nearly the same length. In the same family the length of nucleotides 

vary, so if there is a big difference in the length of the DNA sequences this will lead to a 

big difference in distance in the same family and this will reflect on the distances 

between that family and other families. 
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All the experiments can be illustrated graphically in Fig 4.5, the lines indicates the 

differences that is less and more than the maximum distance inside each family, the 

results for the whole DNA sequence, first 100 bases, first 200 bases, and first 300 bases 

shows interchangeable values between the percentage of the distances less and more 

than the maximum distance inside the same protein family. For the first 400 bases and 

first 500 bases the results shows significant distinguish between the three protein 

families and this due to the information that is extracted from the DNA sequence to 

produce the characterization vector that is used to compute the distance become more 

significant to the DNA sequence. In all cases the numbers of nucleotides that have to be 

included in the comparison have not to exceed the maximum length of the shortest DNA 

sequence. This will reduce the number of nucleotides that are associated in the 

experiments and will reduce the overall calculations for determining the cluster of the 

new DNA sequence. 

 

As a conclusion, there is no need to compare the new DNA sequences with all the whole  

DNA sequences, number of nucleotides included in the comparison has not exceed the 

length of the new DNA sequence. For more details for conclusion and future work will 

be found in the next chapter. 
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CHAPTER FIVE  

 

CONCLUSION AND FUTURE WORK  

 

 

This chapter will conclude what have been done in this study with the results that have 

been obtained, in addition to the future work and further research. 

 

5.1 Conclusion  

 

The results of DNA sequences comparison among homologous sequences give close 

distances between their characterization vectors which are easily distinguishable from 

non-homologous in experiment it with a fixed DNA sequence size that does not exceed 

the maximum length of the shortest DNA sequence.  

 

Global comparison for multiple DNA sequences simultaneously presented in the 

genomic space is the main advantage of this work by applying direct comparison of the 

corresponding characteristic vectors distances. The novelty of this work is that for the 

new DNA sequence, there is no need to compare the new DNA sequence with the whole 
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DNA sequences length, just the comparison focused on a fixed number of all the 

sequences in a way that does not exceed the maximum length of the new DNA sequence.  

In other words, parts of the DNA sequence can identify the functionality of the DNA 

sequence, and make it clustered with its family members. 

 

5.2 Future Work  

 

Future work will emphasize on determining the ranges of DNA sequences lengths that 

have to be included in the comparison (the number of nucleotides). In order not to 

include all the DNA sequences that vary in the length, just those DNA sequences that 

fall in this range will be included to reduce the overhead calculations. 

 

Another future work part is to extend this study to be implemented on other protein 

families that have other amino acids. 
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Appendix 

 

This appendix contains the characterization vectors that have been obtained from 

conducting the experiments. The Latin numbers in the following table are used in the 

following tables to indicate the DNA sequence and the family belonging to.  

Lysozyme Myoglobin Rhodopsin 
Bos 

 taurus 
Homo 

 sapiens 
Danio 
 rerio 

Homo 
 sapiens 

Mus  
musculus 

Rattus  
norvegicus 

Sus 
 scrofa 

Homo 
 sapiens 

Rattus 
 norvegicus 

  
  
  I II III IV V VI VII VIII IX 

 

Whole DNA sequence characterization vectors 

 nA nT nC nG tA tT tC tG dA dT dC dG 

I 276 277 155 198 132608 133071 64150 81042 67588.44 70538.11 65868.82 63326.28 

II 435 438 306 308 344405 339226 218925 203772 196744.23 183621.25 157667.92 181834.44 

III 402 340 288 328 291887 261556 170330 199424 151300.93 155066.07 143049.54 143072.70 

VI 356 242 278 314 264119 139662 149610 159430 149983.09 99333.04 95233.57 92678.64 

V 135 96 123 151 35385 24539 32870 34971 19455.83 20629.20 21210.31 22585.99 

VI 303 197 251 264 176247 96720 122451 120202 103618.72 80336.52 73433.89 71774.74 

VII 234 212 310 355 128573 119903 176528 192712 109720.01 104229.91 104802.61 95409.95 

VIII 328 314 518 460 267116 238401 412714 394779 201810.10 213958.35 225327.79 222221.95 

IX 372 302 416 470 308336 229825 311717 367702 193672.25 201757.14 211208.41 200292.94 

 

First 100 nucleotides characterization vectors  

 

 nA nT nC nG tA tT tC tG dA dT dC dG 

I 18 37 21 24 811 1873 955 1411 1080.274691 742.1271 668.820862 819.248264 

II 19 30 24 27 902 1565 984 1599 1095.091413 669.738889 655.666667 822.691358 

III 25 20 27 28 1080 1068 1180 1722 622.88 955.94 720.504801 823.035714 

VI 18 22 28 32 855 1193 1325 1677 984.6944444 398.993802 676.432398 1156.74121 

V 22 17 22 39 969 937 1060 2084 659.8615702 888.927336 648.694215 966.451019 

VI 18 24 22 36 944 969 1025 2112 531.5802469 939.984375 1182.33264 553.333333 

VII 18 21 30 31 844 1137 1278 1791 1092.098765 537.931973 753.173333 830.626431 

VIII 15 25 37 23 692 1370 1794 1194 738.5155556 746 883.276844 868.340265 

IX 19 15 36 30 1139 622 1728 1561 748.6814404 703.448889 800.055556 884.365556 
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First 200 nucleotides characterization vectors 

 nA nT nC nG tA tT tC tG dA dT dC dG 

I 52 58 38 52 6098 5028 3435 5539 3803.773669 2985.6968 3273.1863 2689.4804 

II 50 51 41 58 5592 4688 3597 6223 3495.7344 2988.386 3882.7329 2771.0348 

III 48 47 52 53 4419 5392 5048 5241 3224.766927 3665.8171 3818.9556 2402.0627 

VI 39 42 52 67 4073 4192 5075 6760 3637.835634 2952.3447 3654.7023 3129.2279 

V 45 40 45 70 4530 4487 4614 6469 3875.288889 3263.9444 3446.8711 2805.4141 

VI 53 42 44 61 6390 3534 4193 5983 3152.547526 3378.0272 3216.0263 2984.5343 

VII 40 42 52 66 4317 4446 4643 6694 3999.519375 3392.3605 3637.4745 2500.5776 

VIII 29 51 66 54 2758 5403 6115 5824 3448.989298 3307.3495 3330.6816 3125.7558 

IX 38 44 58 60 4091 4895 4991 6123 2960.067175 3307.233 3214.2904 3382.2808 

 

First 300 nucleotides characterization vectors 

 

 nA nT nC nG tA tT tC tG dA dT dC dG 

I 87 80 59 74 14816 10482 8687 11165 6797.312987 7534.7244 8352.6556 6728.9176 

II 84 72 61 83 14012 9940 8647 12551 6881.130385 7451.7469 8907.4969 6673.1819 

III 69 60 79 92 9806 8616 11983 14745 8191.667717 6082.44 8541.1277 6831.0022 

VI 68 61 73 98 11026 8951 10524 14649 6808.537197 7190.0296 8204.4387 7513.8618 

V 77 58 66 99 12399 8965 10103 13683 7773.635689 6526.2452 8035.464 7249.1368 

VI 79 58 74 89 12829 7563 11787 12971 5919.453613 8324.3427 8263.2573 7255.1355 

VII 70 56 74 100 11727 7975 10166 15282 7438.563469 6751.992 8225.1812 7052.5876 

VIII 55 61 105 79 9359 7894 15638 12259 8461.991405 5720.0451 7799.567 7168.399 

IX 60 63 90 87 9716 9607 13054 12773 7294.962222 6517.3928 8627.0869 7049.3225 

 

First 400 nucleotides characterization vectors 

 nA nT nC nG tA tT tC tG dA dT dC dG 

I 116 102 78 104 25051 18113 15299 21737 11523.66194 13978 13979 13366.51 

II 108 102 82 108 22537 20261 15956 21446 11690.92275 14306 14946 12731.93 

III 101 76 108 115 20982 14260 21859 23099 15167.6169 12216 13430 12210.4 

VI 97 79 101 123 21076 15353 20433 23338 12142.13902 13489 14939 12489.09 

V 108 76 97 119 23265 15527 20869 20539 13147.22454 13149 13849 12034.8 

VI 108 79 102 111 22963 15131 21283 20823 11398.14292 16604 12662 13076.76 

VII 97 73 108 122 21280 14052 22097 22771 12570.5246 13631 15711 11127.65 

VIII 71 89 137 103 15120 17783 26563 20734 13036.04047 14954 12769 12722.66 

IX 79 85 121 115 16466 17333 23819 22582 12509.23249 12625 14456 13158.01 
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First 500 nucleotides characterization vectors 

 nA nT nC nG tA tT tC tG dA dT dC dG 

I 138 134 97 131 34800 32867 23894 33689 16719.17265 25441.498 21745.582 19689.636 

II 133 133 100 134 33701 34492 24206 32851 18261.90729 23280.66 22684.636 19407.087 

III 119 93 133 155 29253 22096 32985 40916 21092.27978 21312.994 20034.248 20728.477 

VI 119 97 127 157 30971 23396 32094 38789 18223.78928 20763.312 21907.057 21844.263 

V 133 95 122 150 34380 24036 32365 34469 18866.32517 20195.358 20916.991 22245.857 

VI 130 96 127 147 32809 22843 32517 37081 17360.66562 23792.508 19485.046 23000.855 

VII 119 90 136 155 31295 21593 34808 37554 18785.57955 20877.938 22802.129 20373.765 

VIII 94 106 166 134 25520 25347 39557 34826 20605.31372 20758.73 20004.979 21393.914 

IX 106 100 148 146 28666 24037 36070 36477 20811.03809 18358.673 21833.406 21124.571 

 

 




