TCP Versus UDP Performance In Term Of Bandwidth Usage

A thesis submitted to the Faculty of Information Technology in partial fulfilment of the requirement for the degree Master of Science (Information Technology) Universiti Utara Malaysia

By
Mostfa M. Kaytan

Copyright © Mostfa M. Kaytan, 2010. All Rights Reserved.
PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a postgraduate degree from University Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor, in his absence, by the Dean of the Faculty of Information Technology. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain should not be allowed without my written permission. It is also understood that due recognition shall be given to me and to University Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or to make use of material in this thesis, in whole or in part should be addressed to:

Dean of Research and Postgraduate Studies

College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman

Malaysia
ABSTRACT

This project is mainly about how to establish User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) connection in the same network simulation. For that, we will be using four types of TCP which are TCP Tahoe, TCP Reno, TCP NewReno and TCP Vegas. From there, we are going to differentiate them in term bandwidth usage and define how it works and describes several effect that occurred when its work together. In order to create the topology and run the protocols, we use Network Simulator 2 (NS2) to create and run the coding. To run the codes, we use command which use a few code in running the coding. Then we will get a topology, which is the flow of the packet within the source and destination, base on the coding. A graph also appears after the command.
ACKNOWLEDGMENTS

In the name of Allah, Allah says:

((Work; so Allah will see your work and (so will) His Messenger and the believers ;))

(Al-Quran: Tawba-105)

Conducting this project marks the end of an interesting and eventful journey. It could not have been achieved without the academic professional and personal support of the following people.

Firstly, I would like to extend special thanks to my supervisor, Assoc. Prof. Hatim Mohamad Tahir, of the Faculty of Information Technology, University Utara Malaysia (UUM) for tirelessly offering his encouragement, wisdom and experience, who provided me with constant guidance and constructive criticism throughout all stages of my research. I would like to thank my evaluator Mr. Rosmadi B Bakar for his suggestion and his encouragement. I would like to thank my friend Dr. Mohammed M. Kadhum for his consultation and his suggestion regard the research results. As well, thanks to the Ministry of Higher Education Iraq for the financial support awarded to me.

Secondly, I am grateful to all FTM lecturers for their guidance and unconditional support, also for all UUM staff that provided me with a warm hospitality and assistance during my time in Sintok.
Thirdly, Much appreciation to my friends, who have helped me to get accustomed to the
culture and traditions, and have showed me a magnificent meaning of friendship at every
crossroad. Their warmth and empathy will ever never be forgotten.
Finally, a very big thank must go to all my family members for their immeasurable
support. I wish to acknowledge my parents for their unwavering support and confidence
in me. There are not enough words for me to express my feelings of deep appreciation to
my parents. I would like to dedicate this thesis to my wife and daughters who lovely
encouraged and supported me through all my study. Many thanks as well as to my
brothers Bsam and Ali for their assistances and do all my business in Iraq during the time
I m doing my Master.

For those all, I would like to say

"شكرًا لتقتنكم بي ودعانكم لي ودعمكم اللا محدود"
Contents

PERMISSION TO USE .. ii
ABSTRACT .. iii
ACKNOWLEDGMENT ... iv
DEDICATION .. v
CONTENTS ... vi
LIST OF FIGURES ... ix
ABBREVIATIONS ... x

CHAPTER ONE: INTRODUCTION ... 1
1.1 Introduction ... 1
1.2 Work Background ... 4
 1.2.1 Transmission control protocol (TCP) .. 4
 1.2.2 TCP Reno ... 5
 1.2.3 User datagram protocol (UDP) ... 6
 1.2.4 Network Simulation -2 ... 7
1.3 Problem Statements ... 9
1.4 Research Questions ... 10
1.5 Research Objectives ... 10
1.6 Scope and limitation ... 11
1.7 Significant of Study ... 11
1.8 Definition of Terms ... 12
1.9 Organization of the Thesis ... 13

CHAPTER TWO: LITERATURE REVIEW ... 14
2.1 Introduction .. 14
2.2 Interaction between TCP and UDP flows in Wireless .. 15
2.3 Multi-hop UDP with TCP flow .. 16
2.4 TCP Vegas vs. TCP Reno ... 18
2.5 TCP Startup Performance in Large Bandwidth ... 19
2.6 A Comparative Analysis of TCP Tahoe, Reno, New-Reno, and Vegas 20
 2.6.1 TCP Tahoe ... 20
 2.6.2 New-Reno ... 21
 2.6.3 Vegas ... 22
 2.6.4 TCP RENO ... 22
2.7 TCP Tahoe /Reno ... 24
2.8 TCP vs. UDP Performance Evaluation for CBR Traffic on Wireless Multihop
 Network ... 24
2.9 Behavior of TCP in variable-bandwidth environments 25
2.10 Reno TCP ... 27

CHAPTER THREE: RESEARCH METHODOLOGY .. 29
3.1 Introduction ... 29
3.2 Description of experiments .. 30
3.3 Simulation steps ... 31
 3.3.1 Problem Definition .. 31
 3.3.2 Design the Simulation Model 32
 3.3.3 Configuration the Simulation Model 32
 3.3.4 Design the Experiments ... 32
 3.3.5 Conduct the Experiments ... 33
 3.3.6 Analysis & Evaluation the Results 33

CHAPTER FOUR: SIMULATION RESULTS .. 34
4.1 TCP Tahoe Simulation results: ... 34
 4.1.1 TCP Tahoe with 200Kb rate of CBR 35
 4.1.2 TCP Tahoe with 4Mb rate of CBR 36
4.2 TCP Reno Simulation results: .. 36
 4.2.1 TCP Reno with 200Kb rate of CBR 36
 4.2.2 TCP Reno with 4Mb rate of CBR 36
4.3 TCP Newreno Simulation results: 37
4.3.1 TCP Newreno with 200Kb rate of CBR ... 37
4.3.1 TCP Newreno with 4Mb rate of CBR ... 38
4.4 TCP Vegas Simulation results: ... 38
 4.4.1 TCP Vegas with 200Kb rate of CBR ... 38
 4.4.2 TCP Vegas with 4Mb rate of CBR ... 39

CHAPTER FIVE: DISCUSSION AND CONCLUSION .. 40
 5.1 Introduction ... 40
 5.2 Discussions of the finding .. 41
 5.3 Implications of the study .. 42
 5.4 Limitations of the study ... 42
 5.5 Conclusion .. 43

REFERENCES ... 44
Appendix A ... 50
Appendix B ... 51
Appendix C .. 86
LIST OF FIGURE

FIGURE 1.1 TCPIIP PROTOCOL SUITES ... 1
FIGURE 1.2 DISCREET EVENT SCHEDULER .. 8
FIGURE 1.3 THE BASIC SIMULATION OBJECTS IN NS AND THEIR INTERCONNECTIONS 9
FIGURE 2.1 THE TCP VS UDP SCENARIO .. 16
FIGURE 2.2 EXAMPLE OF UDP INTER PACKET DELIVERY TIME IN THE STATIC MULTI-HOP SCENARIO .. 17
FIGURE 3.1 SIMULATION TEST-BED MODEL .. 29
FIGURE 3.2 SIMULATION MODEL ... 32
FIGURE 4.1 THE BANDWIDTH USAGE OF TCP TAHOE WITH 200Kb OF UDP 34
FIGURE 4.2 THE BANDWIDTH USAGE OF TCP TAHOE WITH 4Mb OF UDP 35
FIGURE 4.3 THE BANDWIDTH USAGE OF TCP RENO WITH 200Kb OF UDP 36
FIGURE 4.4 THE BANDWIDTH USAGE OF TCP RENO WITH 4Mb OF UDP 36
FIGURE 4.5 THE BANDWIDTH USAGE OF TCP NEWRENO WITH 200Kb OF UDP 37
FIGURE 4.6 THE BANDWIDTH USAGE OF TCP NEWRENO WITH 4Mb OF UDP 38
FIGURE 4.7 THE BANDWIDTH USAGE OF TCP VEGAS WITH 200Kb OF UDP 38
FIGURE 4.8 THE BANDWIDTH USAGE OF TCP VEGAS WITH 4Mb OF UDP 39
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>Transport Control Protocol</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>CBR</td>
<td>Constant Bit Rate</td>
</tr>
<tr>
<td>NS</td>
<td>Network Simulation</td>
</tr>
<tr>
<td>NAM</td>
<td>Network Animator</td>
</tr>
<tr>
<td>TCL</td>
<td>Tool Command Language</td>
</tr>
<tr>
<td>OTCL</td>
<td>Object extension of TCL</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td>POP</td>
<td>Post Office Protocol</td>
</tr>
<tr>
<td>SMTP</td>
<td>Simple Mail Transfer Protocol</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>DSSS</td>
<td>Direct-Sequence Spread Spectrum</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Transmission Control Protocol/Internet Protocol (TCP/IP), the most common of all network protocol suites, used for communication on the Internet. TCP/IP is a hierarchical protocol made up of interactive layers (as shown in Figure I) each layer has a specific functionality. (Ross, 2008)

![TCPIIP Protocol Suite](image)

Figure 1.1 TCPIIP Protocol Suite

According to (Ross, 2008) application layer are placed at the top of TCP/IP stack, it defines protocols such as (FTP, HTTP, Telnet and so on) for application communication. These protocols are acting as interface for the actual application program. The transport layer follows the application layer. TCP/IP makes available two distinct transport layer protocols to the application layer: Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). The transport layer follows the application...
The contents of the thesis is for internal user only
REFERENCES

A study of the behavior of TCP in variable-bandwidth environments. from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.8428 2/8

from

http://inst.eecs.berkeley.edu/~ee122/fa05/projects/Project2/SACKRENEVEGAS.pdf

References

University.

Fall, K. and Floyd, S. 1996. Simulation-based Comparison of Taho, Reno and SSACK TCP.

Floyd, S., and Fall, K. 2001. Why we don't know how to simulate the Internet.

References

References

References

ndsia =1.

Todorovic, M. (2005). Comparative Study Of The End-To-End Compliant Tcp Protocols For Wireless Networks. Texas Tech University, USA.

References

