Tasks and User Performance Improvement for UUM

Online Payment Using Key Stroke Level Model

A Thesis submitted to college Arts & Sciences in partial
Fulfillment of the requirement for the degree master
(Information Technology)
University Utara Malaysia

By

Manal ata altawalbeh

Manal ata altawalbeh ,2009,All Rights Reserved
PERMISSION TO USE

In presenting this thesis of the requirements for a Master of Science in Information Technology (MSc. IT) from Universiti Utara Malaysia, I agree that the University library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or in their absence, by the Dean of Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Graduate School
Universiti Utara Malaysia
06010 Sintok
Kedah Darul Aman
Online payment is one of the components in postgraduate website in University Utara Malaysia (UUM). Not a lot of Student prefers to use this task, this research will focus a weakness points in the current payment model interface and strength points in proposed new online payment model by using Keystroke-Level Model (KLM) technique and improve weakness points in the current payment model interface. The study will be guided by a research question which was formulated as follows. What is the efficiency problem of online payment that effect user to use the system? How can the recommended online payment Model achieve efficiency of system and user aim? What is the user performance of current online payment Model to achieve the tasks? The population for this study will be the (undergraduate and postgraduate) students and staff in the University Utara Malaysia (UUM), The quantitative research approach was used since the researcher aimed to explore the important of (KLM) technique to enhance the current online payment model, and increases the acceptance level of the system.
ACKNOWLEDGEMENT

"In The Name Of Allah The Most Gracious And Most Merciful"

My gratefulness to my supportive and helpful supervisor, Dr. Haslina Mohd for assisting and guiding me in the completion of this research. With all truthfulness, without her, the project would not have been a complete one. Dr. Haslina Mohd has always been my source of motivation and guidance. I am truly grateful for her continual support and cooperation in assisting me all the way through the semester.

I would like to present my special thanks to my husband "sultan" and to my father, my mother and all my family who has always been with me. Finally, I would like to express my appreciations to all my friends, colleagues, other staff, and everyone who has helped me in this journey.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Permission Of Use</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>v</td>
</tr>
<tr>
<td>Table Of Content</td>
<td>vi</td>
</tr>
<tr>
<td>List Of Tables</td>
<td>viii</td>
</tr>
<tr>
<td>List Of Figure</td>
<td>ix</td>
</tr>
</tbody>
</table>

CHAPTER ONE

INTRODUCTION

1.1 Introduction 1
1.2 Payment Online 3
1.3 Problem Statement 5
1.4 Research Questions 6
1.5 Research Objective 6
1.6 Scope Of Research 7
1.7 Significance Of Research 7
1.8 Structure Of Thesis 8
1.9 Conclusion 9

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction 11
2.2 User Performance 11
2.3 Online Payment 12
2.4 Human Computer Interaction (HCI) and User Interface (UI) Design 13
2.5 Task analysis (TA) 14
2.6 Hierarchical Task Analysis (HTA) 15
2.7 GOMS Task Analysis Techniques 16
2.8 Keystroke-Level Model (KLM) 18
2.9 Usability 20
2.10 Usability Testing 22
2.11 Conclusion 23
CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction 24
3.2 Research Methodology Explanation 24
 3.2.1 Theoretical Study 25
 3.2.2 Empirical Study 25
 a) Research Procedure 26
 1. Questionnaire 26
 2. Observation 26
 b) Identify Observation Functionality 26
 3.2.3 Framework Development 27
 a. Analysis Task 27
 b. Simplify Task 27
 3.2.4 Design and development 27
 a. User Interface Design 27
 b. Evaluation by using keystroke level model (KLM) 28
3.3 Conclusion 28

CHAPTER FOUR

ANALYSIS ONLINE PAYMENT MODEL BY USING KEYSTROKE LEVEL MODEL (KLM)

4.1 Introduction 29
4.2 Payment Online 30
 4.2.1 User Interface Design 30
 4.2.2 Hierarchical Task Analysis (HTA) 33
 4.2.3 Evaluate And Result 35
 4.2.4 Problems Of Online Payment Process 38
4.3 Conclusion 39

CHAPTER FIVE

ONLINE PAYMENT AND PROTOTYPE

5.1 Introduction 40
5.2 Proposed Online Payment Model 40
 5.2.1 User Interface Design 40
 5.2.2 Hierarchical Task Analysis (HTA) 44
 5.2.3 Prototype Evaluate And Result 46
5.3 Conclusion 49
CHAPTER SIX
DISCUSSION AND EVALUATION

6.1 Introduction 50
6.2 Conclusion 53

CHAPTER SEVEN
CONCLUSION

7.1 Introduction 54
7.2 Discussion 54
7.3 Contribution 55
7.4 Limitations 56
7.5 Future Work Recommendations 57
7.6 Conclusion 58

REFERENCES
APPENDIX
LIST OF TABLES

Table 1.1: Total of students and staff in University Utara Malaysia (UUM) 5
Table 2.1: Operators And Estimated Times Used In KLM ... 18
Table 4.1 Standard Operator And Time Estimation Of The Keystrokes 29
Table 4.2: Keystroke Estimation Time For The current Online Payment process 34
Table 5.1: Keystroke Estimation Time For The new Online Payment Process 45
Table 5.2: Comparison Between Current And New Online Payment Model 48
Table 6.1: Descriptive Statistic for new online payment model in UUM 50
LIST OF FIGURE

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Simple Internet payment scenario</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Online Payment process</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Percentage of payment model in year 2009</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Human-Computer Interaction</td>
<td>12</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Description Research Methodology</td>
<td>24</td>
</tr>
<tr>
<td>Figure 4.1(a)</td>
<td>Choose Student Account</td>
<td>30</td>
</tr>
<tr>
<td>Figure 4.1(b)</td>
<td>Choose Student Account Statement</td>
<td>30</td>
</tr>
<tr>
<td>Figure 4.1(c)</td>
<td>UUM E-Com Button</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.1(d)</td>
<td>Choose Payment Mode</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.1(e)</td>
<td>Fill The Information's</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.1(f)</td>
<td>Confirmation Information Which Entered</td>
<td>32</td>
</tr>
<tr>
<td>Figure 4.1(g)</td>
<td>Select Preferred Payment Method(VISA / MasterCard)</td>
<td>32</td>
</tr>
<tr>
<td>Figure 4.1(h)</td>
<td>Insert Card Details</td>
<td>32</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Online Payment HTA</td>
<td>33</td>
</tr>
<tr>
<td>Figure 5.1(a)</td>
<td>Choose Student Account</td>
<td>40</td>
</tr>
<tr>
<td>Figure 5.1(b)</td>
<td>Choose Student Account Statement</td>
<td>40</td>
</tr>
<tr>
<td>Figure 5.1(c)</td>
<td>UUM E-Com Button</td>
<td>41</td>
</tr>
<tr>
<td>Figure 5.1(d)</td>
<td>Select Preferred Payment Method</td>
<td>41</td>
</tr>
<tr>
<td>Figure 5.1(e)</td>
<td>Fill The Information</td>
<td>42</td>
</tr>
<tr>
<td>Figure 5.1(f)</td>
<td>Confirmation And Fill The Credit Card Details</td>
<td>42</td>
</tr>
<tr>
<td>Figure 5.1(g)</td>
<td>Successfully Process</td>
<td>43</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>New Online Payment Model HTA</td>
<td>44</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Comparison Between Current And New Online Payment Model</td>
<td>48</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Question Five Analysis Diagram</td>
<td>51</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Question Seven Analysis Diagram</td>
<td>51</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Question Eight Analysis Diagram</td>
<td>51</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

1.1. Introduction

This chapter provides a general idea about the background of the study, problem statement, objectives, expected scope, significance of the study, and structure of thesis.

Performance analysis of large-scale scientific applications poses the challenge of significant interpretation of a large amount of performance data. A glut of factors influence the performance of a parallel application, like the hardware platform, the system software, and the programming model. Poor performance will generally be suitable to a complex interaction of many components. This requires that many different metrics are calculated, attributed to different components and compared to each other. The type of metrics and components will depend on the compute system, the programming paradigm and even the type of application. This requires a high degree of flexibility within a performance analysis system to gather performance data, calculate metrics, and permit for mapping of these metrics onto specific entities, such as subroutine calls or program counters (Jost, Mazurov and Mey, 2008)
The contents of the thesis is for internal user only
REFERENCES:

Bonnie E. John & David E. Kieras. (1996), The GOMS Family of User Interface Analysis Techniques: Comparison and Contrast

Constance M. Johnson, Todd Johnson, and Jiajie Zhang (1999), Increasing Productivity and Reducing Errors through Usability Analysis: A Case Study and Recommendations

Dave Bockus and, Ryan Wilson (2008), Visual Hierarchical Task Analysis Software with Imbedded KLM

David Kieras (2001), Using the Keystroke-Level Model to Estimate Execution Times

David M. Hilbert and David F. Redmiles (2001), Extracting Usability Information From User Interface Events

Julie Schiller and Paul Cairns (2008) There’s always one! Modeling outlying user performance

Lewis, R. And Stone, M., Ed,(1999), *Mac OS in a Nutshell*. O'Reilly and Associates

Martijn van Welie, Gerrit C. van der Veer and Anton Eliëns,(1999), Breaking down Usability

