Tasks and User Performance Improvement for UUM Online Payment Using Key Stroke Level Model

A Thesis submitted to college Arts & Sciences in partial

Fulfillment of the requirement for the degree master

(Information Technology)

University Utara Malaysia

By

Manal ata altawalbeh

Manal ata altawalbeh ,2009,All Rights Reserved

PERMISSION TO USE

In presenting this thesis of the requirements for a Master of Science in Information Technology (MSc. IT) from Universiti Utara Malaysia, I agree that the University library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or in their absence, by the Dean of Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Graduate School Universiti Utara Malaysia 06010 Sintok Kedah Darul Aman

ABSTRACT

Online payment is one of the components in postgraduate website in University Utara Malaysia (UUM). Not a lot of Student prefers to use this task, this research will focus a weakness points in the current payment model interface and strength points in proposed new online payment model by using Keystroke-Level Model (KLM) technique and improve weakness points in the current payment model interface.. The study will be guided by a research question which was formulated as Follows. What is the efficiency problem of online payment that effect user to use the system? .How can the recommended online payment Model achieve efficiency of system and user aim? What is the user performance of current online payment Model to achieve the tasks? The population for this study will be the (undergraduate and postgraduate) students and staff in the University Utara Malaysia (UUM), The quantitative research approach was used since the researcher aimed to explore the important of(KLM) technique to enhance the current online payment model, and increases the acceptance level of the system

ACKNOWLEDGEMENT

"In The Name Of Allah The Most Gracious And Most Merciful"

My gratefulness to my supportive and helpful supervisor, Dr. Haslina Mohd for assisting and guiding me in the completion of this research. With all truthfulness, without her, the project would not have been a complete one. Dr. Haslina Mohd has always been my source of motivation and guidance. I am truly grateful for her continual support and cooperation in assisting me all the way through the semester.

I would like to present my special thanks to my husband "sultan" and to my father, my mother and all my family who has always been with me . Finally, I would like to express my appreciations to all my friends, colleagues, other staff, and everyone who has helped me in this journey.

TABLE OF CONTENTS

Permission Of Use Abstract Acknowledgments Table Of Content	5
	5i
	iv
	V
List Of Tables	viii
List Of Figure	ix

CHAPTER ONE

Page Num

INTRODUCTION

1.1 Introduction	1
1.2Payment Online	3
1.3 Problem Statement	5
1.4 Research Questions	6
1.5 Research Objective	6
1.6 Scope Of Research	7
1.7 Significance Of Research	7
1.8 Structure Of Thesis	8
1.9Conclusion	9

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction	11
2.2 User Performance	11
2.3 Online Payment	12
2.4 Human Computer Interaction(HCI) and User Interface (UI) Design	13
2.5 Task analysis (TA)	14
2.6 Hierarchical Task Analysis (HTA)	15
2.7 GOMS Task Analysis Techniques	16
2.8 Keystroke-Level Model (KLM)	18
2.9 Usability	20
2.10 Usability Testing	22
2.11 Conclusion	23

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction	24
3.2 Research Methodology Explanation	24
3.2.1 Theoretical Study	25
3.2.2 Empirical Study	25
a) Research Procedure	26
1. Questionnaire	26
2.Observation	26
b) Identify Observation Functionality	26
3.2.3. Framework Development	27
a. Analysis Task	27
b. Simplify Task	27
3.2.4. Design and development	27
a. User Interface Design	27
b. Evaluation by using keystroke level model (KLM)	28
3.3 Conclusion	28

CHAPTER FOUR

ANALYSIS ONLINE PAYMENT MODEL BY USING KEYSTROKE LEVEL MODEL (KLM)

4.1 Introduction	29
4.2 Payment Online	30
4.2.1 User Interface Design	30
4.2.2 Hierarchical Task Analysis (HTA)	33
4.2.3 Evaluate And Result	35
4.2.4 Problems Of Online Payment Process	38
4.3 Conclusion	39

CHAPTER FIVE

ONLINE PAYMENT AND PROTOTYPE

5.1 Introduction	40
5.2 Proposed Online Payment Model	40
5.2.1 User Interface Design	40
5.2.2 Hierarchical Task Analysis (HTA)	44
5.2.3 Prototype Evaluate And Result	46
5.3 Conclusion	49

CHAPTER SIX

DISCUSSION AND EVALUATION

6.1 Introduction	50
6.2 Conclusion	53
CHAPTER SEVEN	N

CONCLUSION

7.1 Introduction	54
7.2 Discussion	54
7.3 Contribution	55
7.4 Limitations	56
7.5 Future Work Recommendations	57
7.6 Conclusion	58

REFERENCES APPENDIX

LIST OF TABLES

	Page Num
Table 1.1:Total of students and staff in University Utara Malaysia (UUM)	5
Table 2.1: Operators And Estimated Times Used In KLM	18
Table 4.1 Standard Operator And Time Estimation Of The Keystrokes	29
Table 4.2 : Keystroke Estimation Time For The current Online Payment	34
process	
Table 5.1 : Keystroke Estimation Time For The new Online Payment Process	45
Table 5.2 : Comparison Between Current And New Online Payment Model	48
Table 6.1: Descriptive Statistic for new online payment model in UUM	50

LIST OF FIGURE

	Page
	Num
Figure 1.1:Simple Internet payment scenario	4
Figure 1.2: Online Payment process	4
Figure 1.3: percentage of payment model in year 2009	6
Figure 2.1: Human-Computer Interaction	12
Figure 3.1 : Description Research Methodology	24
Figure 4.1(a): Choose Student Account	30
Figure 4.1(b): Choose Student Account Statement	30
Figure 4.1(c): UUM E-Com Button	31
Figure 4.1(d): Choose Payment Mode	31
Figure 4.1(e): Fill The Information's	31
Figure 4.1(f): Confirmation Information Which Entered	32
Figure 4.1(g): Select Preferred Payment Method(VISA	32
/ MasterCard)	
Figure 4.1(h): Insert Card Details	32
Figure 4.2: Online Payment HTA	33
Figure 5.1(a): Choose Student Account	40
Figure 5.1(b): Choose Student Account Statement	40
Figure 5.1(c): UUM E-Com Button	41
Figure 5.1(d) :Select Preferred Payment Method	41
Figure 5.1(e): Fill The Information	42
Figure 5.1(f) :Confirmation And Fill The Credit Card Details	42
Figure 5.1(g) : Successfully Process	43
Figure 5.2: New Online Payment Model HTA	44
Figure 5.2 : Comparison Between Current And New Online	48
Payment Model	
Figure 6.1: Question Five Analysis Diagram	51
Figure 6.2: Question Seven Analysis Diagram	51
Figure 6.3: Question Eight Analysis Diagram	51

CHAPTER ONE

INTRODUCTION

1.1. Introduction

This chapter provides a general idea about the background of the study, problem statement, objectives, expected scope, significance of the study, and structure of thesis.

Performance analysis of large-scale scientific applications poses the challenge of significant interpretation of a large amount of performance data, A glut of factors influence the performance of a parallel application, like the hardware platform, the system software, and the programming model. Poor performance will generally be suitable to a complex interaction of many components. This requires that many different metrics are calculated, attributed to different components and compared to each other. The type of metrics and components will depend on the compute system, the programming paradigm and even the type of application. This requires a high degree of flexibility within a performance analysis system to gather performance data, calculate metrics, and permit for mapping of these metrics onto specific entities, such as subroutine calls or program counters (Jost, Mazurov and Mey, 2008)

The contents of the thesis is for internal user only

REFERENCES:

Aaron Marcus. (2002), Return on Investment for Usable User-Interface Design: Examples and Statistics

Abe Crystal and Beth Ellington.(2004) ,Task analysis and human-computer interaction: approaches, techniques, and levels of analysis Proceedings of the Tenth Americas Conference on Information Systems, New York, New York, August 2004

Alan Dix, J.F., Gregory D. Abowd .(2004), Russell Beale. Human-Computer Interaction. in Hall, P.P. ed.,

Annett, J. and Duncan, K. (1967), Task Analysis and Training Design. *Occupational Psychology* 41, 211-221.

Annett, J., Duncan, K., Stammers, R. and Gray, M. .(1971), *Task analysis*. London: HMSO

Annett, J., and Stanton, N., eds. (2000), Task analysis. London: Taylor & Francis.

Bailey, R.W. (1982), Human performance engineering : A guide for system designers. Englewood Cliffs, NJ:Prentice-Hall.

Blerim Rexha . (2005), Increasing User Privacy in Online Transactions with X.509 v3 Certificate Private Extensions and Smartcards Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC'05) 1530-1354/05 \$20.00 © 2005 IEE

Bonebright, T.L., Nees, M.A., Connerley, T.T. and McCain, G.R. (2001), *Testing TheEffectiveness of Sonified Graphs For Education: A Programmatic Research Project*. Proceeding of the 2001 International Conference on Auditory Display, Finland

Bonnie E. John & David E. Kieras .(1996), The GOMS Family of User Interface Analysis Techniques: Comparison and Contrast

Cairns, P. HCI... not as it should be: inferential statistics in HCI research. In Proc. of HCI 2007, vol 1 BCS (2007), 195-201

Card, S.K., Moran, T.P., and Newell, A.(1980), The Keystroke-Level Model for User Performance Time with Interactive Systems. *Communications of the ACM archive*, 396-410

Card, S.K., Moran, T. P., Newell, A .(1983), *The Psychology of Human-Computer Interaction* Lawrence Erlbaum Associate, Publishers, London,.

Constance M. Johnson, Todd Johnson, and Jiajie Zhang .(1999), Increasing Productivity and Reducing Errors through Usability Analysis: A Case Study and Recommendations

Dave Bockus and, Ryan Wilson . (2008) , Visual Hierarchical Task Analysis Software with Imbedded KLM

David Kieras .(2001), Using the Keystroke-Level Model to Estimate Execution Times

David M. Hilbert And David F. Redmiles.(2001), Extracting Usability Information From User Interface Events

Grigori Goldman.(2007), Periodical Payment Model using Restricted Proxy Certificates Australian Computer Society, Inc. *Thirtieth Australasian Computer Science Conference (ACSC2007)*, Ballarat, Australia. Conferences in Research and Practice in Information Technology (CRIPT)

Hartson, H.R.(1998), Human-computer interaction: Interdisciplinary roots and trends, *The Journal ofSystems and Software*, vol 43, pp.103-118

Haslina Mohd, & Sharifah-Masture Syed –Mohamad. (2006), Electronic Medical Record Evaluation Using Task Analysis Technique *Proceeding Of The 11th International Symposium On Health Information Management Research* ' ISHIMR 2006 Halifax, Canada

Hollan, J., Hutchins, E. and Kirsh, D. (2000), Distributed cognition: Toward a new foundation for human--computer interaction research. *ACM Transactions on Computer-Human Interaction*, 7(2), 174-196

John, B.E. & Vera,(1992), A.H., A GOMS Analysis of a Graphic, Machine-Paced, Highly Interactive Task. In *Proceedings of ACM CHI'92 Conference on Human Factors in Computing Systems*, 1992, pp. 251-258

Jonassen, D H., Tessmer, M., & Hannum, W.H. (1999). *Task analysis methods for instructional design*. Mahwah, NJ: Lawrence Erlbaum Associates.

Julie Schiller and Paul Cairns(2008) There's always one! Modeling outlying user performance

Kieras, D (2001). Using the Keystroke-Level Model to Estimate Execution Times,

KIERAS, D. E.(1996), A Guide to GOMS model usability evaluation using NGOMSL. In *The Handbook of Human-Computer Interaction*. 2nd ed. North-Holland, Amsterdam. To be Published

Lewis, R. And Stone, M., Ed,(1999), *Mac OS in a Nutshell*. O'Reilly and Associates

Liu, f.(2008). usability evaluation on websites.

Lu Luo and Bonnie E. John (2005). Predicting Task Execution Time on Handheld Devices Using the Keystroke-Level Model International Conference on Human Factors in Computing Systems

Martijn van Welie, Gerrit C. van der Veer and Anton Eliëns ,(1999), Breaking down Usability

McCormic, E.J. (1976). *Job and task analysis*. In M.D. Dunnette (Ed.). Handbook of Industrial and Organizational Psychology. Chicago, IL: Rand McNally Publishing, pp. 651-696

N. Asokan, P. Janson, M. Steiner and M. Waidner, (1997), The State of the Art in

Electronic Payment Systems, IEEE Computer, volume 30, number 9, pp.28.

Nielson (2000). "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology," International Jouranl of Human-Computer Interaction, vol. 7, pp. 57-70

Nielsen, J. (1993). Usability Engineering. New Jersey: Academic Press.

Nielsen, J. (1998). International Standard, Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs). Switzerland: Int. Organization for Standardization Geneva

Preece, J. (1993). A Guide to Usability: human factors in computing. Addison Wesley, the Open University

Preece, J. (1994). *Human-computer interaction*. Harlow - UK, Addison-Wesley

Richard C. Thomas, Amela Karahasanovic and Gregor E.,2005, Kennedy Australasian Computing Education Conference 2005An Investigation into Keystroke Latency Metrics as an Indicator of Programming Performance

Rubin, J. (1994). *Handbook of Usability Testing*. New York: John Wiley and Sons.

Schulz S., Mau G., and Silberer G. (2007) "The Catalog Usability Questionnaire – Adoption and Validation of a Usability Scale for Print-Catalogs." *The Electronic Journal of Business Research Methods* Volume 5 Issue 2, pp 93 - 104, available online at www.ejbrm.com Shepherd, A. (2001). Hierarchical task analysis. New York: Taylor & Francis

Smith, C. & T. Mayes (1996). *Telematics Applications for Education and Training: Usability Guide*. Comission of the European Communities, DGXIII Project

Van Cott, H.P. and Kinkade, R.G. (1972). Human engineering guide to equipment design. Washington: Government Printing Office.

Woodson, W.E. and Conover, E.W. (1966). Human engineering guide for equipment designers. Berkeley: University of California Press.

•