

Evaluation of IPv4 and IPv6 in Testbed Performance

DAW ABDULSALAM ALI DAW

UNIVERSITI UTARA MALAYSIA

2009

KOLEJ SASTERA DAN SAINS
(College of Arts and Sciences)
Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK
(*Certificate of Project Paper*)

Saya, yang bertandatangan, memperakukan bahawa
(*I, the undersigned, certify that*)

DAW ABDULSALAM ALI DAW
(802061)

calon untuk Ijazah
(*candidate for the degree of*) **MSc. (Information Communication Technology)**

telah mengemukakan kertas projek yang bertajuk
(*has presented his/her project paper of the following title*)

EVALUATION OF IPV4 AND IPV6 IN TESTBED PERFORMANCE

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(*as it appears on the title page and front cover of project paper*)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmu dengan memuaskan.
(*that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper*).

Nama Penyelia Utama
(*Name of Main Supervisor*): **ASSOC. PROF. ABDUL NASIR ZULKIFLI**

Tandatangan
(*Signature*) : *Abd. Nasir*

Tarikh
(*Date*) : *22/11/09*

ACKNOWLEDGMENT

Many people contributed to the successful completion of my project at University Utara Malaysia. Firstly, I would like to express deep gratitude to my supervisors **Assoc. Prof .Abdul Nasir Zulkifli** for his valuable guidance and advice, which contributed substantially to completion of this study.

I am also thankful to all my colleagues and friends at UUM, especially from the applied Science Graduate Department of Computer Science who I shared pleasant times.

Finally, I express a deep sense of gratitude to my family and all my friends for their valuable and untiring moral support...

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirement for a postgraduate degree from University Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence by Dean of Research and Postgraduate studies. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and University Utara Malaysia for any scholarly use which may be made of any material from any thesis

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part should be addressed to:

Dean of Research and Postgraduate studies

College of Art and Science

University Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman

Contents

1. Introduction	1
Preamble	1
Problem Statement	2
Objectives	3
Motivation	3
Scope	4
Significance of the research	5
Report Structure	6
2. Background	8
Literature Review	8
Larger Address Space	9
Levels of Addressing Hierarchy	15
Efficient Header	16
Stateless Autoconfiguration	17
Security	18
Mobility	18
Address Types.....	19
IPv6 Testbed	20
Worldwide Testbed – The 6bone	20
IPv6 Testbed by European Academic	21
6INIT	22
6WINIT	22
JOIN	23

Bermuda 2	23
Malaysian Testbed – MANIS	23
6iNet	24
Summary	24
3. Methodology	25
Introduction	25
Design	26
Current UUM Network	27
Logical Network Design	28
Physical Network Design	29
Development	31
Configuration	34
Router Configuration	34
Enable Packet Forwarding	35
Enable Proxy ARP	35
Ethernet Interfaces and Routes Configuration	36
Ethernet Interfaces	36
Adding routing table	38
Data Collection.....	39
Data Analysis.....	40
4. Testing.....	41
Introduction	41
Connection Testing	42
Host-to-Local Router	42
Host-to-Local Host	43

Router-to-Router	44
Host-to-Remote Host	46
Performance Testing	47
Netperf Test	47
5.Discussion, Finding and Conclusion	50
Introduction	50
Discussion	50
Setup Issues	50
Testing	51
Connection	52
Performance	52
Finding	53
Conclusion	53
Future Work	54
Thank You Notes	55
References	56

List of Figures

2.1	Scope of IPv4 with the OSI Reference Model	10
2.2	Growth of Routing s	15
2.3	128-bit Address Space Enables Multiple Levels of Hierarchy	16
2.4	IPv6 Header Is Simpler and Larger Than the IPv4 Header	17
2.5	6Bone	21
3.1	Network Design for FIT-CC	27
3.2	Testbed Logical Network Design	28
3.3	Testbed Physical Network Design	30
3.4	Media Converter	31
3.5	Fiber Patch Panel	32
3.6	Faculty of IT IPv6 Workgroup	33
3.7	Hierarchy of the configuration in our testbed	34
4.1	Pinging from Host A to Local Router	42
4.2	Result from Pinging from A to Local Router	43
4.3	Pinging from Host A to Local Router	44
4.4	Result from Pinging from A to C	44
4.5	Result from Pinging from Router to Router	45
4.6	Output from ifconfig	45
4.7	Pinging from Host A to Remote Host D	46
4.8	Result from Pinging from A to D	47
4.9	Result from TCPIPV6_STREAM Test	48
4.10	Result from TCPIPV6_RRTest	48
5.1	Pinging of IPv4 and IPv6	52

List of Tables

2.1 A 128-bit address format increases substantially the number of possible address in comparison to a 32-bit one	9
3.1 Hardware and Software requirement	31
3.2 Required addresses that used in testbed	37
3.3 Commands Requirement for Configuring Ethernet Interfaces (FIT)	37
3.4 Commands Requirement for Configuring Ethernet Interfaces (CC)	38
3.5 Commands Requirement for Adding Routing table (FIT)	38
3.6 Commands Requirement for Adding Routing table (CC)	39

Abbreviations

6iNet	Sintok IPv6 Network
DES	Data Encryption Standard
DHCP	Dynamic Host Configuration Protocol
DNS	Domain Name Server
FIT	Faculty of Information Technology
ICMP	Internet Control Message Protocol
IPv4	Protocol Version 4 Internet Protocol
IPv6	Version 6
LAN	Local Area Network
MANIS	Malaysian Advance Network Integrated System
NAT	Network Address Translation
NIC	Network Interface Card
RFC	Request for Comment
UUM	Universiti Utara Malaysia

Abstract

The urgent need for IP addresses, which led to drive for IPv6 implementation, which is considered the only alternative to meet the needs of new users. There is no doubt that the change from IPv4 to IPv6 is not uncomplicated, whereas the users already feel at ease about using IPv4. Our main goal in this project is to design an experimental network testbed for the next generation network research in order to use this network in evaluating the performance of IPv4 and IPv6 towards other applications. This report explains and documents the process of implementing an IPv6 testbed using based machines running Linux Redhat. The steps taken to verify the functionality of the testbed have also been documented.

Chapter 1

Introduction

1.1 Preamble

The vital issue which IPv6 is treating is requiring for enlarged IP address: IPv4's 32-bit address space is nearly exhausted, while the number of Internet users continues to grow exponentially [1]. And as it is expected that in the early stage of the next few decades, the internet will be routinely used in ways unfathomable to us nowadays, since its usage is expected to extend to multimedia notebook computers, cellular modems and even appliances at home, such as TV, toaster and coffee maker. Virtually all the devices, with which we interact, at home, at work, and at play, will be connected to the internet.

The global need for IP addresses has forced to the drive for IPv6 implementation, which is considered the only solution that will accommodate billions of new users.

Simply stated, IPv6's ample (128-bit) address space provides an adequate number of globally unique addresses to support the anticipated growth and development of the Internet for the foreseeable future.

The new version of IP, IPv6[2], constitutes an effort to overcome the inborn limitations of IPv4, in order for the new protocol to be able to respond to the new needs as they shape today in the Internet. More than simply increasing the address space, IPv6 offers improvements like built-in security support, plug and play support, no checksum at the IP header and more flexibility and extensibility than IPv4.

The contents of
the thesis is for
internal user
only

References

- [1] K. N. Marcus Goncalves, *IPv6 Networks*, 1998.
- [2] K. Thompson, G. J. Miller, and R. Wilder, "Wide Area Internet Traffic Patterns and Characteristics," pp. 10-23, 1997.
- [3] C. Bouras, A. Gkamas, D. Primpas and K. Stamos, "Performance Evaluation of an IPv6-capable H323 Application," 2001.
- [4] R. Desmeules, *Cisco Self-Study: Implementing IPv6 Networks (IPV6)*: Cisco Press, 2003.
- [5] C. Gough, *Cisco Networking Academy Program CCNP 1: Advanced Routing Lab Companion Second Edition*: Cisco Press, 2003.
- [6] I. v. Beijnum, *Running IPv6*, 2006.
- [7] S. B. Wellington, "Firms Gain Local IPv6 Testing," tech. rep., 2004. IDSNet.
- [8] R. Glenn, J. Wack., and H. Fang, "Project: IPv6 Technology," tech. rep., National Institution of Standards and Technology, 1996
- [9] 6Bone, "Testbed for deployment of IPv6," *6bone*, March 2002.
<http://www.6bone.net>
- [10] S. Thomson and T. Narten, "IPv6 Stateless Address Autoconfiguration." Request for Comments 2462, December 1998
- [11] S. Deering and R. Hinden, "IP Version 6 Addressing Architecture." Request for Comments 2373, July 1998
- [12] A. Conta and S. Deering, "Generic Packet Tunneling in IPv6 Specification." Request for Comments 2473, December 1998.

[13] S. Deering and R.Honedn, "Internet Protocol Version 6 (IPV6) Specification." Request for Comments 2460, 1998.

[14] B. Carpenter, "IPv6 and The Future of The Internet," 2001.
<http://www.isoc.org/briefings/001>.

[15] R. Blun., *Network Performance Open Source Toolkit*. Wiley Publishing, Inc., Indianapolis, Indiana, 2003.

[16] S. Roa "IPv6: An answer to build future network for the information society". *In the proceeding of next generation networks workshop*, 2000. [Online]. Available: <http://www.6init.or/presentation.html>. [Accessed: June. 26, 2004]

[17] 6WINIT. IPv6 Wireless Internet Initiativ. *Electronic and Computer Science , University of Southampton*, 2004. [Online]. Available: <http://www.6winit.org>. [Accessed: Aug. 27 , 2004].

[18] University of Southampton, University College London, and Lancaster University. IPv6 Trials on UK Academic Networks : Bermuda 2. United Kingdom Universities os Southampton, UCL and Lancaster, 2004. [Online]. Available: <http://www.ipv6.ac.uk/bermuda2> [Accessed: Sept. 17 2004]

[19] Linux Online inc. "What is Linux?" . *Internet Web Page*, 2005. [Online]. Available: <http://www.linux.org/info/index.html>.

[20] Red Hat inc. "Red Hat". Technical report, Red Hat Inc., 2006. [Online]. Available: <http://www.redhat.com> .

[21] MIMOS, "Malaysian Advanced Network Integrated System (MANIS)," *MIMOS Bredah*, 2002. <http://www.manis.net.my>