

**Impact of MD5 Authentication in secured and non-secured traffic routing
for the case of EIGRP, RIPv2 and OSPF routing protocols**

KHALID AHMED ABU AL-SAUD

**THESIS SUBMITTED IN FULFILMENT FOR THE DEGREE OF
MASTER OF PHILOSOPHY**

**COLLEGE OF ARTS AND SCIENCE
UNIVERSITY UTARA MALAYSIA**

2009

**KOLEJ SASTERA DAN SAINS
(COLLEGE OF ARTS AND SCIENCES)
UNIVERSITI UTARA MALAYSIA**

**PERAKUAN KERJA/TESIS
(Certification of Thesis Work)**

Kami, yang bertandatangan, memperakukan bahawa
(We, the undersigned, certify that)

KHALID AHMED ABU AL-SAUD

calon untuk Ijazah
(candidate for the degree of) **SARJANA SAINS (TEKNOLOGI MAKLUMAT)**

telah mengemukakan tesis/disertasinya yang bertajuk
(has presented his/her thesis work of the following title)

**IMPACT OF MD5 AUTHENTICATION IN SECURED AND NON-SECURED TRAFFIC
ROUTING FOR THE CASE OF EIGRP, RIPV2 AND OSPF ROUTING PROTOCOLS**

seperti yang tercatat di muka surat tajuk dan kulit tesis/disertasi
(as it appears on the title page and front cover of thesis work)

bahawa tesis/disertasi tersebut boleh diterima dari segi bentuk serta kandungan, dan
liputan bidang ilmu yang memuaskan, sebagaimana yang ditunjukkan oleh calon dalam
ujian lisan yang diadakan pada : **02 Ogos 2009**

(that the thesis/dissertation is acceptable in form and content, and that a satisfactory
knowledge of the field covered by the thesis was demonstrated by the candidate through an
oral examination held on

Pengerusi Viva (Chairman for Viva)	: Dr. Fauziah Baharom	Tandatangan: (Signature)
Pemeriksa Luar (External Examiner)	: Prof. Madya Dr. Hj. Mazani Hj. Manaf	Tandatangan: (Signature)
Pemeriksa Dalaman (Internal Examiner)	: Encik Fazli Azzali	Tandatangan: (Signature)
Penyelia Utama (Principal Supervisor)	: Prof. Madya Hatim Mohamed Tahir	Tandatangan: (Signature)
Setiausaha Panel (Panel Secretariat)	: Dr. Mohd Syazwan Abdullah	Tandatangan: (Signature)
Tarikh (Date)	: <u>02 OGOS 2009</u>	

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence by the Dean of Academic, College of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to

Dean of Academic
College of Arts and Sciences
University Utara Malaysia
06010 UUm sintok
Kedah Darul Aman

Abstract

Routing is the process of forwarding data across an inter-network from a designated source to a final destination. Along the way from source to destination, at least one intermediate node is considered. Due to the major role that routing protocols play in computer network infrastructures, special cares have been given to routing protocols with built-in security constraints. In this thesis, we evaluate the impact of MD5 Authentication on routing traffic for the case of EIGRP, RIPv2 and OSPF routing protocols in case of secured and non-secured routing traffic. A network model of four Cisco routers has been employed and a traffic generation and analysis tools have been developed and used to generate traffic data and measure delay time, jitter and overhead. The results show that the average delay time and jitter in the secured MD5 case can become significantly larger when compared to the unsecured case even in steady state conditions. Also, the EIGRP protocol shows the minimum overhead even when the system is extremely overloaded.

Acknowledgments

This thesis concludes my Master's Degree in Computer Network and Security submitted to the Applied Science Division, College of Arts and Science at University Utara Malaysia.

I would like to thank my supervisor Dr. Hatim Tahir for his excellent guidance, helpful advice and deeply support, my extend thanks also for the Associate Professor Dr. Suhaidi Hassan, Associate Professor and Assistant Vice Chancellor College of Arts and Sciences, at UUM.

I would like also to thank Dr. Moutaz Saleh and Dr. Mohamed Saleh for their support and enthusiasm. Dr. Moutaz has enhanced my knowledge and understanding for the art of thesis writing. Indeed, whenever I lost the sight of my thesis objectives, he proficiently led me back on the track.

My thanks to Dr. Adel El-Zoghbi for his initial support and guidance, and also, many thanks for Prof. Qutaibah Malluhi the Head of Dept. of Computer Science & Eng., College of Engineering Qatar University for his support and help.

Finally, my sincere thanks to my wife and kids, family and friends for their patience and encouragement, for them I dedicate this thesis.

Thesis list of tables:

Table. No.	Page
2.1: EIGRP Metrics	13
2.2: Summary of Common Routing Protocol Features	22
2.3: Steps for Generating an Authenticated RIP Message	30
2.4: Steps for Retrieving MD5 Digest	30
4.1: Key Features of Cisco Routers 1721	50
4.2: Cisco Routers 1721 Front Panel LEDs Description	51
4.3: Cisco Routers 1721 Back Panel Ports Description	53
4.4: Cisco Routers 1721 Back Panel LEDs Description	53
4.5: Straight-through Ethernet Cable Pin-outs	57
4.6: Cross-over Ethernet Cable Pin-outs	57
4.7: Ethernet Cabling Guidelines	58
4.8: Console Cable and Adapter Pin-outs	59
4.9: Client / server personal computer specifications	65

Thesis list of figures

Fig. No.	Page
2.1: IGRP Protocol Structure	11
2.2: EIGRP Protocol Structure	12
2.3: RIP Protocol Structure	16
2.4: OSPF Protocol Structure	19
2.5: Plaintext Neighbor Authentication	23
2.6: MD5 Neighbor Authentication: Originating Router	24
2.7: MD5 Neighbor Authentication: Destination Router	25
2.8: EIGRP MD5 Authentications	27
2.9: RIPv2 Packet Format Using MD5 Authentication	28
2.10: RIPv2 MD5 Trailer	29
2.11: OSPF Packet Header	32
3.1: Research Method	37
3.2: Ways of Studying Systems	41
4.1: Test-bed Network Model	49
4.2: Cisco Routers 1721 Modular Access Router	50
4.3: Front panel of Router 1721	51
4.4: Back panel of Router 1721	52
4.5: WAN Serial Cable Sockets	58
4.6: One MD5 operation	61
4.7: MD5 Neighbor Authentication at the Originating Router	63
4.8: The Sequence of Events at the Destination Router	64
4.9: Client Logic	68
4.10: Client Java program after compilation	69
4.11: Server Logic	70
4.12: Server Waiting for Connections	71
4.13: Server Java program after compilation	71
4.14: Five-Step Model Traffic Pseudo Code	73
4.15: Model Traffic Pattern	74

4.16: Start Hyperterminal Connection	75
4.17: Start Hyperterminal Connection	75
4.18: EIGRP Configuration in Secured MD5 Authentication	77
4.19: Non-Secured EIGRP Configuration	78
4.20: RIPv2 Configuration in Secured MD5 Authentication	79
4.21: Non-Secured RIPv2 Configuration	80
4.22: OSPF Configuration in Secured MD5 Authentication	81
4.23: Non-Secured OSPF Configuration	82
5.1: Average Delay Time of Secured / No-secured EIGRP	85
5.2: Jitter of Secured / Non-secured EIGRP	86
5.3: EIGRP Overhead	86
5.4: Average Delay Time of Secured / Non-secured RIPv2	87
5.5: Jitter of Secured / Non-secured RIPv2	88
5.6: RIPv2 Overhead	89
5.7: Average Delay Time of Secured / Non-secured OSPF	90
5.8: Jitter of Secured / non-secured OSPF	90
5.9: OSPF Overhead	91
5.10: Average Delay Time in Non-secured mode	93
5.11: Average Delay Time in Secured MD5 Authentication	93
5.12: Jitter in Unsecured Mode	94
5.13: Jitter in Secured MD5 Authentication Mode	95
5.14: Overhead of EIGRP, RIPv2, OSPF Routing Protocols	96

List of Abbreviations

TCP	Transfer Control Protocol
MPP	Markov Poisson Process
HMM	Hidden Markov Model
DCE	Data Communication Equipment
DTE	Data Terminal Equipment
IGRP	Interior Gateways Routing Protocol
EIGRP	Enhanced Interior Gateways Routing Protocol
RIP	Routing Information Protocol.
RIPv2	Routing Information Protocol version 2
OSPF	Open Shortest Pass First
MD5	Message Digest 5
IPX	Internetwork Packet eXchange
IP	Internet Protocol
NLSP	NetWare Link State Protocol
LSA	Link State Advertisement
OSI	Open Systems Interconnection
AS	Autonomous System
DV	Distance Vector
LS	Link State routing protocols
VLSM	Variable Length Subnet Masks
IGP	Interior Gateway Protocol
EGP	Exterior Gateway Protocol
UDP	User Datagram Protocol
CIDR	Classless Inter-Domain Routing
IS-IS	Intermediate System - Intermediate System
BGP	Border Gateway Protocol.
LED	Led Emitting Diode
LAN	Local Area Network
WAN	Wide Area Network

QoS	Quality of Service
VPN	Virtual Private Networks
DSU/CSU	Channel Service Unit/Data Service Unit
SNMP	Simple Network Management Protocol
NLSP	NetWare Link Services Protocol
RSVP	Resource Reservation Protocol
UTP	Unshielded Twisted-Pair
STP	Shielded Twisted-Pair
WIC	WAN Interface Card
DUAL	Diffusing Update Algorithm
CPU	Central Processing Unit
BSize	Bulk Size
FP	First Packet
SP	Step Packet
MP	Maximum packet
S-RIP	Scured-Routing Information Protocol.

List of publications

1. *Khalid Abu Al-Saud, Hatim Mohd Tahir, Adel Elzoghabi, Mohammad Saleh*, Performance Evaluation of Secured versus Non-Secured EIGRP Routing Protocol, in **Proceedings of the 2008 International Conference on Security & Management, SAM 2008**, Las Vegas, Nevada, USA, July 14-17, 2008. CSREA Press 2008, ISBN 1-60132-085-X.
2. *Khalid Abu Al-Saud, Hatim Mohd Tahir, Moutaz Saleh and Mohammad Saleh*, Impact of MD5 Authentication on Routing Traffic for the Case of: EIGRP, RIPv2 & OSPF, In **the Journal of Computer Sciences (JCS) 2008**, 244, 5th Avenue, Number S-207, New York, NY 10001, USA, Vol. 4(9): 721-728.,
3. *Khalid Abu Al-Saud, Hatim Mohd Tahir, Moutaz Saleh and Mohammad Saleh*, A Performance Comparison of MD5 Authenticated Routing Traffic with EIGRP, RIPv2 & OSPF, submitted in **The International Arab Journal of Information Technology (IAJIT)**, accepted in January 2009 and will be publish in early 2010.

Table of Contents

PERMISSIONE TO USE	ii
ABSTRACT (ENGLISH)	iii
ACKNOWLEDGMENTS	iv
LIST OF TABLES	v
LIST OF FIGURES	vi
ABBREVIATIONS	vii
LIST OF PUBLICATIONS	x

Chapter 1

1. Introduction

1.1 Overview	1
1.2 Problem Statement	2
1.3 Research Objective	4
1.4 Research Scope	4
1.5 Thesis outline	5

Chapter 2

2. Literature Review

2.1 Introduction	7
2.2 Routing Protocols	9
2.2.1 Interior Gateways Routing Protocol (IGRP)	10
2.2.2 Enhanced Interior Gateways Routing Protocol (EIGRP)	12
2.2.3 Routing Information Protocol (RIP)	15
2.2.4 Open Shortest Pass First (OSPF)	18
2.2.5 Comparison of Routing Protocols	22
2.3 Routing Protocol Authentication	22
2.3.1 Plaintext Authentication	23
2.3.2 MD5 Authentication	24
2.4 MD5 Authentication for EIGRP	26
2.5 MD5 Authentication for RIPv2	28

2.6 MD5 Authentication for OSPF	32
2.7 Research Works on Routing Authentication	33
2.8 Conclusion	35
 Chapter 3	
3. Research Methodology	
3.1 Introduction	37
3.2 Identifying Research Problem	38
3.3 Designing the Experimental Model	40
3.4 Selecting Evaluation Technique	40
3.5 Modeling Arrival Process	45
3.6 Measuring System Performance	46
3.7 Conclusion	46
 Chapter 4	
4. Test-bed Network Model Details	
4.1 Introduction	48
4.2 Test-Bed Network Model (Cisco Routers)	48
4.2.1 Cisco Routers 1721 Modular Access Router	49
4.2.2 Cisco Router 1721 Key Feature	50
4.2.3 Front Panel LED's	51
4.2.4 Back Panel Ports and LED's	52
4.2.5 Physical Interfaces	54
4.2.6 LAN Adapter	55
4.2.7 WAN Adapters	55
4.3 Network Transmission Media	56
4.3.1 Ethernet Cable	57
4.3.2 Ethernet Network Cabling Guidelines	57
4.3.3 DCE/DTE DB60 Cable	58
4.3.4 Console Cable and Adapter	59
4.4 The Test-Bed Network Model	59

4.4.1 Message-Digest 5 (MD5) Authentication	60
4.4.2 MD5 Algorithm	60
4.4.3 MD5 Applications	61
4.4.4 MD5 hashes	62
4.4.5 End – to – End, Client / Server	64
4.4.6 The Client/Server Simulation	65
4.4.7 The Client Side	67
4.4.8 The Server Side	69
4.4.9 Model Traffic Pseudo Code	72
4.4.10 Traffic Pattern Model	74
4.4.11 Routing Protocols Configurations	75
4.5 Conclusion	82

Chapter 5

5. Results and Discussion

5.1 Introduction	84
5.2 Enhanced Interior Gateway Routing Protocol (EIGRP)	84
5.2.1 Average Delay Time of EIGRP in both Secured/Unsecured	85
5.2.2 Jitter of EIGRP in both Secured/Unsecured	85
5.2.3 Overhead of EIGRP	86
5.3 Routing Information Protocol version 2 (RIPv2)	87
5.3.1 Average Delay Time of RIPv2 in both Secured & Unsecured	87
5.3.2 Jitter of RIPv2 in both Secured/Unsecured	88
5.3.3 Overhead of RIPv2	88
5.4 Open Shortest Path First (OSPF)	89
5.4.1 Average Delay Time of OSPF in both Secured & Unsecured	89
5.4.2 Jitter of OSPF in both Secured/Unsecured	90
5.4.3 Overhead of OSPF	91
5.5 Total Analysis	92
5.5.1 Unsecured Average Delay Time	92
5.5.2 Secured MD5 Average Delay Time	93

5.5.3 Unsecured of Jitter	94
5.5.4 Secured MD5 Jitter	95
5.5.5 Overhead of EIGRP, RIPv2 and OSPF	96
5.6 Conclusions	96
Chapter 6	
6. Research Conclusions	
6.1 Conclusions	97
6.2 Additional remarks	98
6.3 Future work	98
REFERENCES	99

Chapter 1

Introduction

1.1 Overview

The past few years have witnessed an ever-growing reliance on computer networks for business transactions where routing plays an extensive role in these network communications. Routing is then an essential part in keeping networking infrastructures running. It is the method by which a router decides where to send a datagram. Routers are devices that direct traffic between hosts by collecting information about all the paths between a source and a destination. Based on this information, a router builds a routing table. A router may be able to send the datagram directly to the destination, if it is on one of the networks that are directly connected to the router. However, the interesting case is when the destination is not reachable directly. In this case, the router attempts to send the datagram to another router which is nearer to the destination. Thus, the goal of a routing protocol is to supply the information needed to do routing. [1], [3].

As our economy and massive infrastructure increasingly rely on the Internet, such routing protocols become of critical importance. Routing protocols, however, are difficult to efficiently secure; since an attacker attempt to inject forged routing messages into the system or may modify legitimate routing messages sent by other sources. Routing protocols are, thus, subject to threats and attacks that can harm individual users or the network operations as a whole. For instance, an attacker may attack messages that carry control information in a routing protocol to break a routers' neighboring relationship. This type of attack can impact the network routing behavior in the affected routers and likely the surrounding neighborhood as well. An attacker may also attack messages that carry data information in order to break a database exchange between two routers or to affect the database maintenance functionality where the information in the database must be authentic and authorized. Attackers can also send forged protocol packets to a router with the intent of changing or corrupting the contents of its routing table or other databases, which in turn could degrade the functionality of the router. [2], [4], [5].

The contents of
the thesis is for
internal user
only

References

- [1] *Jeff Doyle, Jennifer DeHaven Carroll*, Routing TCP/IP, Volume II (CCIE Professional Development), Publisher: Cisco Press, Pub Date: April 11, 2001, ISBN: 1-57870-089-2.
- [2] *Sackett, George*, Cisco Router Handbook. Blacklick, OH, USA, 1999.
- [3] *Scott M. Ballew, 1997*. Managing IP Networks with Cisco Routers. 1st Edn., O'Reilly Media, Inc., Lawrence, MA, United States, pp: 352. ISBN: 1565923200.
- [4] *Ravi Malhotra*, IP Routing, O'Reilly Online Catalog, O'Reilly & Associates Inc. January 2002 accessed 4/3/2009
- [5] *Merike Kaeo*, Designing Network Security Second Edition, Publisher: Cisco Press, Pub Date: October 30, 2003, ISBN: 1-58705-117-6
- [6] *V. Anand and K. Chakrabarty*, Cisco IP Routing Protocols: Troubleshooting Techniques, Charles River Media 2004 - ISBN: 1584503416.
- [7] *Gert De Laet, Gert Schauwers*, Network Security Fundamentals, Publisher Cisco Press, September 08, 2004 ISBN: 1-58705-167-2.
- [8] *Wendell Odom*, CCNA INTRO Exam Certification Guide, Copyright© 2004 Cisco Systems, Inc., Published by: Cisco Press ISBN: 1-58720-094-5
- [9] *Wendell Odom*, CCNA ICND Exam Certification Guide, Copyright© 2004 Cisco Systems, Inc. Published by: Cisco Press ISBN: 1-58720-083-x
- [10] *Sam Halabi and Danny McPherson*, Internet Routing Architectures, Second Edition August 23, 2000 Publisher: Cisco Press, ISBN: 1-57870-233-X.
- [11] *Jeff Doyle, Jennifer Carroll*, Publisher, CCIE Professional Development Routing TCP/IP, Volume I, Second Edition, Cisco Press, Pub Date: October 19, 2005; ISBN: 1-58705-202-4
- [12] *Ivan Pepelnjak*, EIGRP-Network-Design-Solutions, Publisher: Cisco Press, Pub. Date: Jan 15, 2000.
- [13] *Fung, K. T. (Kwok T.)*, Network Security Technologies, Second Edition, Date: 2004, ISBN 0-8493-3027-0.
- [14] *Merike Kaeo*, Designing Network Security Second Edition, Publisher: Cisco Press, Pub Date: October 30, 2003, ISBN: 1-58705-117-6
- [15] http://www.cisco.com/en/US/docs/ios/12_0/np1/configuration/guide/1crip.html accessed 22/4/2009.

- [16] <http://www.oreilly.com/catalog/iprotrouting/chapter/ch04.html> accessed 22/4/2009
- [17] <http://www2.rad.com/networks/1995/ospf/ospf.htm> accessed 22/4/2009
- [18] *B. Albrightson and J.J. Garcia-Luna-Aceves and J. Boyle*, EIGRP – A fast routing protocol based on distance-vectors, in: *Proceeding of Networld/Interop '94*, Las Vegas, NV, May 1994. accessed 11/1/2009
- [19] *Talal M. Jaafar, George F. Riley, Dheeraj Reddy and Dana Blair*, SIMULATION-BASED ROUTING PROTOCOL PERFORMANCE ANALYSIS – A CASE STUDY, in the Proceedings of the 2006 Winter Simulation Conference 2006 IEEE 1-4244-0501-7/06, USA. Accessed 11/11/08
- [20] *Ivan Pepelnjak 2000*, EIGRP network design solutions, Cisco Press ISBN 1578701651, Release Date 15 January 2000.
- [21] *Mohamed G. Gouda, and Marco Schneider*, Maximizable Routing Metrics, in the proceeding of IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 4, AUGUST 2003 663. accessed 10/4/2009.
- [22] *Nigel Houlden, Vic Grout, John McGinn and John Davies*, Extended End-to-End Cost Metrics for Improved, Dynamic Route Calculation, Proceedings of the 6th International Network Conference (INC 2006), University of Plymouth, 11-14 July 2006, pp89-96. accessed 10/3/2009.
- [23] *Franck Le, Geoffrey G. Xie, Dan Pei, JiaWang and Hui Zhang*, Shedding Light on the Glue Logic of the Internet Routing Architecture, in *proceeding of SIGCOMM'08, August 17–22, 2008, Seattle, Washington, USA*. accessed 10/3/2009
- [24] *Gary Scott Malkin*, RIP Version 2 Carrying Additional Information, Xylogics, Inc., November 1994 - RFC1723.
- [25] *Tao Wan Evangelos Kranakis P.C. van Oorschot*, “S-RIP: A Secure Distance Vector Routing Protocol,” in the *Proceedings of Applied Cryptography and Network Security (academic track)*, Yellow Mountain, China. June 8-11 2004. accessed 10/3/2009
- [26] *Dan Pei, Dan Massey and Lixia Zhang*, “Detection of Invalid Routing Announcements in RIP Protocol,” published in *GLOBECOM IEEE*, volume 3, Dec 2003. accessed 10/3/2009
- [27] *Dan Pei and Lixia Zhang, Dan Massey*, “A Framework for Resilient Internet Routing Protocols,” *IEEE Network*, March/April 2004. accessed 10/2/2009

- [28] *Abdelaziz Babakhouya, Yacine Challal, Abdelmadjid Bouabdallah, SaYd Gharout*, "S-DV: A new approach to Secure Distance Vector routing protocols",. 10.1109/SECCOMW, Aug. 28 -Sept. 1, 2006, Baltimore, MD, ISBN: 1-4244-0423-1, IEEE 2006. accessed 10/3/2009
- [29] *David A. Maltz, Geoffrey Xie, Jibin Zhan, Hui Zhang, G'isli Hj 'almt'ysson, Albert Greenberg*, Routing Design in Operational Networks: A Look from the Inside, in proceeding of SIGCOMM'04, August 30–Sept. 3, 2004, Portland, Oregon, USA. accessed 15/3/2009
- [30] *David Bauer, Murat Yuksel, Christopher Carothers and Shivkumar Kalyanaraman*, A Case Study in Understanding OSPF and BGP Interactions Using Efficient Experiment Design, in the Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06) 2006 IEEE. accessed 10/1/2009
- [31] *Bae, Sang; Henderson, Thomas R.*, Traffic Engineering with OSPF Multi-Topology Routing, in the proceedings of Military Communications Conference, 2007, MILCOM, IEEE 29-31 Oct. 2007 Page(s):1 - 7. accessed 10/2/2009
- [32] *George F. Riley, Dheeraj Reddy*, Simulating Realistic Packet Routing Without Routing Protocols, in the Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS'05) 1087-4097/05, IEEE 2005. accessed 10/3/2009
- [33] *Ching-Chuan Chiang, Chinyi. Chen, Dah-Lih Jeng, Shuenn-Jyi Wang, and Ying-Kwei Ho*, The Performance and Security Evaluations of Internet Routing Protocols, published in Journal of Informatics & Electronics, Vol.2, No.2, pp.21-27, March 2008. accessed 10/3/2009
- [34] *F. Baker and R. Atkinson*, January 1997. RIP-2: MD5 Authentication. IETF RFC2082, Cisco Systems, United States, no of Pages 12. <http://portal.acm.org/citation.cfm?id=RFC2082> accessed 10/3/2008
- [35] *John Moy*, OSPF Version 2, Ascend Communications, Inc. Network Working Group, April 1998. RFC 2328. accessed 10/5/2008
- [36] *Fred Baker*, DRAFT OSPF MD5 Authentication, Advanced Computer Communications, September October 1994, [draft-ietf-ospf-md5-01.txt](http://www.ietf.org/rfc/draft-ietf-ospf-md5-01.txt). accessed 10/4/2008

- [37] *Emanuele Jones and Olivier Le Moigne*, OSPF Security Vulnerabilities Analysis, Alcatel Company Canada, Network Working Group, June 16, 2006. (draft-jones-ospf-vuln-02.txt). accessed 10/1/2008
- [38] *Ronald L. Rivest*, Massachusetts Institute of Technology, MD5 Message-Digest Algorithm, *RFC 3121*, MIT Laboratory for Computer Science, April 1992 accessed 20/1/2008
- [39] *R. Rivest*. The MD5 Message-Digest Algorithm, *IETF RFC 1321, MIT Laboratory for Computer Science and RSA Data Security Inc., April 1992*. <http://portal.acm.org/citation.cfm?id=RFC1321> accessed 15/3/2008
- [40] *Khalid Abu Al-Saud, Hatim Mohd Tahir, Adel Elzoghabi, Mohammad Saleh*, Performance Evaluation of Secured versus Non-Secured EIGRP Routing Protocol, Proceeding of WORLDCOMP '08, Las Vegas, NV, July 14-17, 2008.
- [41] *Khalid Abu Al-Saud, Hatim Mohd Tahir, Moutaz Saleh and Mohammad Saleh*, Impact of MD5 Authentication on Routing Traffic for the Case of: EIGRP, RIPv2 & OSPF, Proceeding in Journal of Computer Science, 244, 5th Avenue, Number S-207, New York, NY 10001, November 2008.
- [42] *Ramaswamy Chandramouli, Tim Grance, Rick Kuhn, Susan Landau*, Toward Secure Routing Infrastructures, Proceedings of the IEEE SECURITY & PRIVACY 2006, pages 84-78, accessed 25/1/2008.
- [43] *Bradly R. Smith and J.J. Garcia-Luna*, “Securing the Border Gateway Routing Protocol,” Proceedings of the ISOC Symposium on Network and Distributed System Security '97, February 11, 1997. accessed 25/2/2008.
- [44] *C.-T. Huang E. N. Elnozahy M. G. Gouda*, Hop Integrity and the Security of Routing Protocols, 2002, accessed 10/12/2007.
- [45] *Deepakumara, J. H.M. Heys and R. Venkatesan*. FPGA implementation of MD5 hash algorithm. In the Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering CCECE, May 13-16, 2001, Toronto, Ontario, Canada, pp: 919-924. accessed 15/3/2008
- [46] *Dijiang Huang, Amit Sinha and Deep Medhi*, 2003. A double authentication scheme to detect impersonation attack in link state routing protocols. In the Proceedings of IEEE International Conference on Communications (ICC), pages 1723-1727, Vol. 3, May 11-15, Anchorage, Alaska 2003. accessed 10/3/2007.

- [47] *F. Baker and R. Atkinson, October 1994.* OSPF MD5 Authentication, draft-ietf-ospf-md5-02.txt, Naval Research Laboratory, no Pages 11. accessed 18/2/2008.
- [48] <http://en.wikipedia.org/wiki/MD5> last visit 22/4/09
- [49] *C. Demichelis and P. Chimento, RFC: 3393, November 2002,* IP Packet Delay Variation Metric for IP Performance Metrics (IPPM). accessed 15/3/2008
- [50] *Schmidt, J.W., and Taylor, R.E. 1970. Simulation and Analysis of Industrial Systems.* Homewood, Illinois.
- [51] *Averill, M.L. and Kelton, W.D. 2000. Simulation Modeling and Analysis.* Mc Graw Hill.
- [52] *Jain, R. 2000.* The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurements, Simulation and Modeling. John Wiley, New York.
- [53] <http://www.cisco.com/en/US/products/hw/routers/ps221/index.html> acc. 22/4/09
- [54] Cisco-1721-1720datasheet.pdf, accessed 12/12/2007.
- [55] <http://www.cisco.com/univercd/cc/td/doc/product/lan/c3550/1216ea1/3550hig/35cable.htm> last visit 22/4/2009
- [56] *Kwok T. Fung, Network Security Technologies,* CRC Press, 2nd Edition, 2005.
- [57] *Merike Kseo, Designing Network Security,* second edition, Cisco Press, October 30, 2003.
- [58] *Kevin J. Healy, Richard A. Kilgore, A JAVA-BASED PROCESS SIMULATION LANGUAGE,* Proceeding of the 1997 Winter Simulation Conference, ed. S. Andradottir, K. J. Healy, D. H. Withers, and B. L. Nelson, accessed 15/3/2008
- [59] *R. Albrightson and J.J. Garcia-Luna-Aceves and J. Boyle, EIGRP – A fast routing protocol based on distance-vectors,* in: *Proceeding of Networld/Interop '94, Las Vegas, NV, May 1994.* accessed 10/6/2007
- [60] *Reinhard Finstenvalder, A generic client/server architecture for distributed Web-based simulation experimentation,* Computer-Aided Control System Design, 2000 (CACSD2000). IEEE International Symposium on Volume, Issue, 2000 Pages: 185 – 189 Digital Object Identifier accessed 10/4/2007.
- [61] *N. Honn, N. Hohn, D. Veitch, K. Papagiannaki and C. Diot, 2004.* Bridging router performance and queuing theory. In Proceeding of the ACM SIGMETRICS/Performance'04, June 12–16, 2004, New York, NY, USA, pp:

- 355-366. <http://portal.acm.org/citation.cfm?id=1005686.1005728>. accessed 10/3/2008
- [62] *Imad Antonios, Lester Lipsky* 2002. A performance model of user delay in on/off heavy-tailed traffic. In the Proceedings of the 2002 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS 2002), San Diego, CA, July, 2002. accessed 15/4/2008
- [63] www.karjasoft.com/files/clocksync/ClockSync1.0.0.exe , last visit 22/4/09.