MINING STUDENT'S PERFORMANCE IN SPM USING STATISTICS AND NEURAL NETWORKS FOR TECHNICAL SUBJECT

A thesis submitted to college Arts & Sciences in partial fulfillment of requirements for the degree Master of Science (Intelligent Systems) University of Utara Malaysia

> By Mohamed Ridzuan Bin Abdul Latiff

KOLEJ SASTERA DAN SAINS (College of Arts and Sciences) Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK (Certificate of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa (I, the undersigned, certify that)

MOHAMED RIDZUAN ABDUL LATIFF (88167)

calon untuk Ijazah (candidate for the degree of) **MSc. (Intelligent System)**

telah mengemukakan kertas projek yang bertajuk (has presented his/her project paper of the following title)

MINING STUDENT'S PERFORMANCE IN SPM USING STATISTICS AND **NEURAL NETWORKS FOR TECHNICAL SUBJECT**

seperti yang tercatat di muka surat tajuk dan kulit kertas projek (as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang ilmu dengan memuaskan.

(that the project paper acceptable in form and content, and that a satisfactory knowledge of the field is covered by the project paper).

Nama Penyelia Utama

(Name of Main Supervisor): ASSOC. PROF. FADZILAH SIRAJ

Tandatangan (Signature)

Tarikh (Date)

PERMISSON TO USE

In presenting this thesis in partial fulfillment of the requirements for a Master of Science in IT degree from Universiti Utara Malaysia, I agree that the University Library may make it feely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor, or in their absence by Academic Dean College of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or to make other use of materials in this project, in whole or in part should be addressed to:

Dean (Academic) College of Art and Sciences Universiti Utara Malaysia 06010 UUM Sintok Kedah Darul Aman

ABSTRAK (BAHASA MELEYU)

Pencapaian pelajar di dalam peperiksaan menjadi penanda aras yang penting dalam menentukan kualiti pendidikan di Malaysia. Data-data peperiksaan telah dikumpul mulai ujian-ujian bulanan yang telah dijalankan sehingga ke percubaan SPM untuk diuji dengan peperiksaan SPM yang sebenar. Ini juga melibatkan data-data lain yang berkaitan seperti latar belakang keluarga dan maklumat berkenaan persekolahan pelajar. Data mentah diproses serta dianalisa menggunakan kaedah Statistik. Kaedah Statistik memberikan analisis yang bernilai kepada model pencapaian. Kemudian, kombinasi unit input, unit tersembunyi dan unit output diuji untuk meramal pencapaian sebenar pelajar. 7 model diuji berdasarkan 7 matapelajaran teras untuk mengaitkannya dengan faktor-faktor lain menggunakan analisis diskriptif. Justeru, hubungan itu dikaji dengan teliti untuk mengukuhkan model jangkaan. Keputusan yang telah diperolehi menunjukkan Rangkaian Neural mempunyai potensi yang tinggi untuk meramal pencapaian pelajar di masa hadapan.

ABSTRACT (ENGLISH)

Academic performance has become an important evidence of determining the quality in Malaysia's education system. The examination data is collected on the previous students' examinations yet to be tested for their coming SPM. The other related data such as family background and schooling information are also involved. The raw data is preprocessed and analyzed using statistical method. The results from the statistical analysis indicate the significant contribution of these attributes to the achievement model. The combinations of input variables, hidden layer and output nodes are explored to predict the students' performance. Seven models are constructed based on seven subjects to relate them with other factors for the purpose of descriptive analysis. The relationship between examination results and other factors are investigated thoroughly to enhance the prediction model. The result indicates that Neural Networks has high potential to be used in predicting students' performance.

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful, Peace upon the prophet, Muhammad s.a.w. Alhamdulillah, a foremost praise and thankful to Allah for His blessing, giving me the strength in completing this study.

My sincere appreciation goes to both of my respective supervisors, Associate Professor Fadzilah Siraj for the guidance, patience, encouragement, advice and flourish of knowledge during completing the course. I'll always be thankful to you

Special thanks to all my lecturers of College Arts and Science, UUM such as Dr Yuhanis Yusof, Dr Shaidah Jusoh, Dr Haslina Mohd, Dr Nor Laily Hashim, Mr Azizi Ab Aziz, Mrs Nooraini Yusof, Mrs Nur Azzah Abu Bakar and other UUM staff.

A warm thanks to my colleagues; SMK Sama Gagah, Pulau Pinang, SMK Kuala Ketil, Kedah, SMK Kepala Batas, Kedah, SMK Marang, Terengganu, SMK Tengku Idris Shah, Selangor, SMK Belaga, Sarawak and SMK Inderapura, Pahang for allowing me to use their schooling dataset as experimental tool.

This acknowledgment won't be complete without my family. Profound gratitude goes to my parents Abdul Latiff and Jainamboo who always give me the best in life. To my loved wife Zubaidah, you never stopped in encouraging me special thanks and appreciation to my children Basyirah, Muhammad Arif and Muhammad Amran. My family, you will be always in my heart, love you all.

DEDICATION

To my parents Abdul Latiff and Jainamboo, my wife Zubaidah, and to my children Basyirah, Muhammad Arif and Muhammad Amran.

CHAPTER 2: LITERATURE REVIEW

2.1	Data Mining	15
2.2	Statistical Analysis in Educations	22
	2.2.1 Regression Analysis	28
2.3	Neural Network and its application in Education	32
2.4	Application of NNs and Statistical in forecasting	38
2.5	Students' Performance	40
2.6	Conclusion	43

CHAPTER 3: METHODOLOGY

3.1	Methodology		44
	3.1.1 Data	Collection	46
	3.1.2 Data	Propressing	48
	3.1.3 Logis	tic Regression	50
	3.1.4 Neura	al Network	58
	3.1.4.1	Data Trensformation	68
	3.1.4.2	Training, Validation and Test Sets	70
	3.1.4.3	Define Networks Structure	71
	3.1.4.4	Select Learning Algoritthm	72
	3.1.4.5	Set Parameter Value	74
	3.1.4.6	Transform Data to Network Inputs	75
	3.1.4.7	Start Training and Revise Weights Stop Point	76
	3.1.10	Stop and Test	78

CHAPTER 4: RESULTS AND DISCUSSION

4.1	First I	Dimension Analysis	79
4.2	Logist	Logistic Regression	
	4.2.1	Examining the Variables	130
4.3	Neura	l Network	160
4.4	4.3.1	Neural Network Tool	161
	4.3.2	The Experiments	167
4.5	Conclusio	on	238

78

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion	240
5.2 Recommendations	241

REFERENCES

References	242
------------	-----

LIST OF TABLES

Figure 1.1	Interface of SMM	9
Figure 1.2	Interface of BMM	9
Figure 1.3	Interface of Hamparan Markah Murid	10
Figure 3.1	Flow diagram of the experimental study	45
Figure 3.2	Interface of SMM	46
Figure 3.3	Interface of BMM	47
Figure 3.4	Interface of Hamparan Markah Murid	47
Figure 3.5	The raw diargam	48
Figure 3.6	Logistic Regression Process	53
Figure 3.7	Multinomial Logistic Regression Process	55
Figure 3.8	Setting up Multinomial Logistic Regression	56
Figure 3.9	Final Process for Producing the Output View	56
Figure 3.10	A single layer architecture	59
Figure 3.11	Multilayer architecture	59
Figure 3.12	A recurrent networks architecture	60
Figure 3.13	A backpropagation network with three layers	63
Figure 3.14	The numeric coding	68
Figure 3.15	The dataset variable	69
Figure 3.16	Data allocation	70
Figure 3.17	The architecture of multilayer perceptron	71
Figure 3.18	MLP algorithm	73

Figure 3.19	Learning rate, momentum rate and epoch	73
Figure 3.20	Training and test process	76
Figure 3.21	Flow diagram process for multilayer in Neural Connection	77
Figure 3.22	The main SPSS window	77
Figure 4.1	Frequency results	80
Figure 4.2	Racial Distribution data	80
Figure 4.3	Gender distribution	81
Figure 4.4	Distribution of students by gender and BM subject	83
Figure 4.5	Distribution of students by gender and BI subject	84
Figure 4.6	Distribution of students by gender and MAT subject	85
Figure 4.7	Distribution of students by gender and SCI subject	86
Figure 4.8	Distribution of students by gender and PI subject	87
Figure 4.9	Distribution of students by gender and SEJ subject	88
Figure 4.10	Distribution of students by gender and PENDO subject	89
Figure 4.11	Position in family distribution	91
Figure 4.12	Relationship between number of family member and BM	93
Figure 4.13	Relationship between number of family member and BI	94
Figure 4.14	Relationship between number of family member and MAT	96
Figure 4.15	Relationship between number of family member and SCI	97
Figure 4.16	Relationship between number of family member and SEJ	99
Figure 4.17	Relationship between number of family member and PI	100
Figure 4.18	Relationship between number of family member and PENDO	102
Figure 4.19	Number of sibling staying in hostel distribution (Bar chart)	105
Figure 4.20	Number of sibling staying in hostel distribution(Pie chart)	106
Figure 4.21	Relationship between number of sibling staying in hostel	

	and BM	107
Figure 4.22	Relationship between number of siblings staying in hostel	
	and BI	108
Figure 4.23	Relationship between number of siblings staying in hostel	
	and MAT	110
Figure 4.24	Relationship between number of sibling staying in hostel	
	and SCI	111
Figure 4.25	Relationship between number of siblings staying in hostel	
	and SEJ	113
Figure 4.26	Relationship between number of siblings staying in hostel	
	and PI	114
Figure 4.27	Relationship between number of siblings staying in hostel	
	and PENDO	116
Figure 4.28	Total income distribution	117
Figure 4.29	Relationship between total income and BM	119
Figure 4.30	Relationship between total income percapita and BI	120
Figure 4.31	Relationship between total income percapita and MAT	122
Figure 4.32	Relationship between total income and SCI	123
Figure 4.33	Relationship between total income and SEJ	125
Figure 4.34	Relationship between total income and PI	126
Figure 4.35	Relationship between total income and PENDO	128
Figure 4.36	Logistic Regression using SPSS	132
Figure 4.37	Dialog Box of Logistic Regression	132
Figure 4.38	The scatterplot diagram for BM Model	133
Figure 4 39	Pseudo R-Square for BM Model	133

Figure 4.40	The scatterplot diagram for BI Model	137
Figure 4.41	Pseudo R-Square for BI Model	137
Figure 4.42	The scatterplot digram for PI Model	141
Figure 4.43	Pseudo R-Square for PI Model	141
Figure 4.44	The scatterplot digram for SEJ Model	145
Figure 4.45	Pseudo R-Square for SEJ Model	145
Figure 4.46	The scatterplot digram for SCI Model	149
Figure 4.47	Pseudo R-Square for SCI Model	149
Figure 4.48	The scatterplot digram for MAT Model	153
Figure 4.49	Pseudo R-Square for MAT Model	153
Figure 4.50	The scatterplot digram for PENDO Model	157
Figure 4.51	Pseudo R-Square for PENDO Model	157
Figure 4.52	Snap shot of Neural Connection	161
Figure 4.53	Data Viewer	162
Figure 4.54	Data Allocation	163
Figure 4.55	Denoted of Data Allocation	164
Figure 4.56	Multilayer Perceptron Network (MLP)	164
Figure 4.57	MLP Training Stages	166

LIST OF FIGURES

PAGE

Table 3.1	The parameter value descriptions	74
Table 3.2	The attributes descriptions	75
Table 4.1	Frequency data	79
Table 4.2	Gender frequency data	82
Table 4.3	Gender and BM crosstabulation	83
Table 4.4	Gender and BI crosstabulation	84
Table 4.5	Gender and MAT crosstabulation	85
Table 4.6	Gender and SCI crosstabulation	86
Table 4.7	Gender and PI crosstabulation	87
Table 4.8	Gender and SEJ crosstabulation	88
Table 4.9	Gender and PENDO crosstabulation	89
Table 4.10	Number of family member frequency table	90
Table 4.11	Number of Family Member by Bahasa Melayu subject	92
Table 4.12	Number of Family Member by English subject	94
Table 4.13	Number of Family Member by Mathematics subject	95
Table 4.14	Number of Family Member by Science subject	97
Table 4.15	Number of Family Member by Sejarah subject	98
Table 4.16	Number of Family Member by Pendidikan Islam subject	100
Table 4.17	Number of Family Member by Pendawaian Domestik subject	102
Table 4.18	Number of siblings staying in hostel frequency table	104
Table 4.19	Number of siblings staying in hostel and BM crosstabulation	106

Table 4.20	Number of siblings staying in hostel and BI crosstabulation	108
Table 4.21	Number of siblings staying in hostel and MAT crosstabulation	109
Table 4.22	Number of siblings staying in hostel and SCI crosstabulation	111
Table 4.23	Number of siblings staying in hostel and SEJ crosstabulation	112
Table 4.25	Number of siblings staying in hostel and PI crosstabulation	114
Table 4.26	Number of siblings staying in hostel and PENDO crosstabulation	115
Table 4.27	Family income percapita frequency table	117
Table 4.28	Total income and BM crosstabulation	118
Table 4.29	Total income and BI crosstabulation	120
Table 4.30	Total income and MAT crosstabulation	121
Table 4.31	Total income and SCI crosstabulation	123
Table 4.32	Total income and SEJ crosstabulation	124
Table 4.33	Total income and PI crosstabulation	126
Table 4.34	Total income and PENDO crosstabulation	128
Table 4.35	Case Processing Summary For BM(SPM)	134
Table 4.36	Likelihood Ratio Test For BM (SPM)	134
Table 4.37	Model Fitting Information For BM (SPM)	135
Table 4.38	Variables in the Equation For BM (SPM)	135
Table 4.39	Case Processing Summary For BI(SPM)	138
Table 4.40	Likelihood Ratio Test For BI(SPM)	138
Table 4.41	Model Fitting Information For BI(SPM)	139
Table 4.42	Variables in the Equation For BI(SPM)	139
Table 4.43	Case Processing Summary ForPI(SPM)	142
Table 4.44	Likelihood Ratio Test For PI(SPM)	142
Table 4.46	Model Fitting Information For PI(SPM)	143

Table 4.47	Variables in the Equation For PI(SPM)	143
Table 4.48	Case Processing Summary For SEJ(SPM)	
Table 4.49	49 Likelihood Ratio Test For SEJ(SPM)	
Table 4.50	4.50 Model Fitting Information For SEJ(SPM)	
Table 4.51	Variables in the Equation For SEJ(SPM)	
Table 4.52	Case Processing Summary For SCI(SPM)	
Table 4.53	Likelihood Ratio Test For SCI(SPM)	
Table 4.54	Model Fitting Information For SCI(SPM)	151
Table 4. 55	Variables in the Equation For SCI(SPM)	151
Table 4.56	Case Processing Summary For MAT(SPM)	154
Table 4.57	Likelihood Ratio Test For MAT(SPM)	154
Table 4.58	Model Fitting Information For MAT(SPM)	155
Table 4.59	Variables in the Equation For MAT(SPM)	155
Table 4.60	Case Processing Summary For PENDO(SPM)	158
Table 4.61	Likelihood Ratio Test For PENDO(SPM)	158
Table 4.62	Model Fitting Information For PENDO(SPM)	159
Table 4.63	Variables in the Equation For PENDO(SPM)	159
Table 4.64	The training, validation and test results using various	
	number of hidden units	169
Table 4.65	The Weight seed using various number of hidden units	1 7 0
Table 4.66	The number of hidden units using various number of epoch	171
Table 4.67	The weight seed using various number of hidden units	172
Table 4.68	The training and test results using various number of	
	learning rate	173
Table 4.69	The weight seed using various number of learning rate	174

Table 4.70	The training and test results using various momentum rate	175
Table 4.71	The weight seed using various number of momentum rate	
Table 4.72	Result to determine the best Activation Function	178
Table 4.73	The training, validation and test results using various	
	number of hidden units	179
Table 4.74	The Weight seed using various number of hidden units	180
Table 4.75	The number of hidden units using various number of epoch	181
Table 4.76	The weight seed using various number of hidden units	181
Table 4.77	The training and test results using various number of	
	learning rate	183
Table 4.78	The weight seed using various number of learning rate	184
Table 4.79	The training and test results using various momentum rate	185
Table 4.80	The weight seed using various number of momentum rate	186
Table 4.81	Result to determine the best Activation Function	187
Table 4.82	The training, validation and test results using various	
	number of hidden units	188
Table 4.83	The Weight seed using various number of hidden units	189
Table 4.84	The number of hidden units using various number of epoch	190
Table 4.85	The weight seed using various number of hidden units	191
Table 4.86	The training and test results using various number of	
	learning rate	192
Table 4.87	The weight seed using various number of learning rate	193
Table 4.88	The training and test results using various momentum rate	194
Table 4.89	The weight seed using various number of momentum rate	195
Table 4 90	Result to determine the best Activation Function	196

Table 4.91	The training, validation and test results using various	
	number of hidden units	198
Table 4.92	The Weight seed using various number of hidden units	199
Table 4.93	The number of hidden units using various number of epoch	200
Table 4.94	The weight seed using various number of hidden units	201
Table 4.95	The training and test results using various number of	
	learning rate	202
Table 4.96	The weight seed using various number of learning rate	203
Table 4.97	The training and test results using various momentum rate	204
Table 4.98	The weight seed using various number of momentum rate	205
Table 4.99	Result to determine the best Activation Function	207
Table 4.100	The training, validation and test results using various	
	number of hidden units	208
Table 4.101	The Weight seed using various number of hidden units	209
Table 4.102	The number of hidden units using various number of epoch	210
Table 4.103	The weight seed using various number of hidden units	211
Table 4.104	The training and test results using various number of	
	learning rate	212
Table 4,105	The weight seed using various number of learning rate	213
Table 4.106	The training and test results using various momentum rate	214
Table 4.107	The weight seed using various number of momentum rate	215
Table 4.108	Result to determine the best Activation Function	217
Table 4.109	The training, validation and test results using various	
	number of hidden units	218
Table 4.110	The Weight seed using various number of hidden units	219

LIST OF ABBREVIATIONS

AI	Artificial Intelligence
ANN	Artificial Neural Networks
BP	Backpropagation Algorithm
FF	Feed Forward Algorithm
MLP	Multilayer Perceptrons
NC	Neural Connection
NN	Neural Networks
SPM	Sijil Pelajaran Malaysia
BM	Bahasa Melayu
BI	Bahasa Inggeris
MAT	Mathematics
SCI	Science
SEJ	Sejarah
PI	Pendidikan Islam
PENDO	Pendawaian Domestik
SMK	Sekolah Menengah Kebangsaan
SMM	Sistem Maklumat Murid
BMM	Borang Maklumat Murid
НММ	Hamparan Markah Murid

CHAPTER 1

INTRODUCTION

This section discusses the background of the study that consists of general overview on data mining techniques, which have been used in this study. A brief description on selected domain, education domain is also reviewed. The section also consists of the problem statement, list of project objectives, significance of the study conducted and the study scope. Finally, this section presents the thesis organization that describing the structure of this report.

1.1 Background

The word mining has been used to describe the activity of digging coal or other essential substances out of the ground. The Cambridge Advanced Learner's Dictionary defines the word mining in several ways. As an information technology jargon, mining commonly implies data mining, and is defined as applying a specific algorithm for the discovery of hidden knowledge, unexpected patterns and new rules in large databases, (Dunham, 2003). Fayyad et al. (1996) defined data mining as "the use of algorithms to

The contents of the thesis is for internal user only

REFERENCES

Larose D., (2006). Data Mining Methods and Models. New Jersey: John Wiley & Sons Inc, 93-149.

Hand D., Mannila H., Smyth P., (2001). Principles of Data Mining. Cambridge: MIT Press.

- Haykin S., (2007). Neural Networks: A Comprehensive Foundation. New York: Macmillan Publishing, 156-175.
- Khoa N., Sakakibara K., Nishikawa I., (2006). Stock Price Forecasting Using Back Propagation Neural Networks with Time and Profit Based Adjusted Weight Factors. *Electronics & Communication Engineering Journal*, 5484 – 5488.
- Fung C., Iyer V., Brown W., Wong K., (2005). Comparing The Performance of Different Neural Networks Architectures for The Prediction of Mineral Prospectivity. *Electronics & Communication Engineering Journal*, vol. 1, 394 – 398.
- Wang T., Mitrovic A., (2002). Using Neural Networks to Predict Student's Performance. Electronics & Communication Engineering Journal, 969 – 973.
- Huisken G., Coffa A., (2000). Short-term Congestion Prediction: Comparing Time Series with Neural Networks. *Electronics & Communication Engineering Journal*, 66-69.
- Cripps A., (1996). Using Artificial Neural Nets to Predict Academic Performance. American Psychological Association Journal, 33 – 37.
- Hostetler T., (1996). Predicting Student Success in An Introductory Programming Course. American Psychological Association Journal, pp. 40-49.
- Butcher D., Muth W., (1985). Predicting Performance in An Introductory Computer Science Course. American Psychological Association Journal, 263 268.
- Bae, Yupin, Smith, Thomas M., (1997). Women in Mathematics and Science. *Education Resources Information Center Journal.*
- Gibson, Margaret A., (2003). Improving Graduation Outcomes for Migrant Students. Education Resources Information Center Journal.
- Terry E., Spradlin, Kirk R., Walcott C., Kloosterman P., Zaman K., McNabb S., Zapf J. & associates, (2005). Is The Achievement Gap in Indiana Narrowing. *Education Resources Information Center Journal*.

- Hayek, John C., Kuh, George D., (1999). College Activities and Environmental Factors Associated with The Development of Life Long Learning Competencies of College Seniors. *Education Resources Information Center Journal*.
- Erbe, Mach B., (2000). Correlates of School Achievement in Chicago Elementary Schools. *Education Resources Information Center Journal*.
- Henchey, Norman, (2002). Schools That Make A Difference : Final Report. Twelve Canadian Secondary Schools in Low Income Settings. *Education Resources Information Center Journal.*
- Dai, Huang, (2006). Data Mining Used in Rule Design for Active Database Systems. Electronics & Communication Engineering Journal.
- Young, Ho, Il., Ok, Suk, (2003). The Reliability of Pollution with Regression Analysis and The Possibility of Dispersion and Receptor Models. *Electronics & Communication Engineering Journal.*
- Yusof & Syed Hassan, (2000). Regression Analysis of Consonant Frequency over Number of Turn of Normal Mode Helical Antenna. *Electronics & Communication Engineering Journal*.
- Bon, Ogier, Razali, (2007). Modelling in Manufacturing Industry : Parameters Selection Using Regression Analysis. *Electronics & Communication Engineering Journal*.
- Perez, Gonzalez, Salinas, (2000). Neural versus Difference Equation Modeling for 2D Pattern Recognition Problems. *Electronics & Communication Engineering Journal.*
- Fausett, Elwasif, (1994). Predicting Performance From Test Scores Using Backpropagation and Counterpropagation . *Electronics & Communication Engineering Journal*.
- Burtner, (2004). Critical-To-Quality Factors Associated with Engineering Student Persistence: The Influence of Freshman Attitudes. *Electronics & Communication Engineering Journal.*
- Han, Cheng, Meng, (2003). Application of Four-layer Neural Network on Information Extraction. *Electronics & Communication Engineering Journal.*
- Walczak, (1994). Categorizing University Student Applicants with Neural Networks. *Electronics & Communication Engineering Journal.*

Mahmoud E., (2004). Accuracy in Forecasting: A Survey. Journal of Forecasting.

- Friedman D., Montgomery D., (1985). Evaluation of The Predictive Performance of Biased Regression Estimators. *Journal of Forecasting*.
- Tsukamoto Y., Namatame A., (1996) Evolving Neural Network Models. *Electronics & Communication Engineering Journal*.
- Phua C., Alahakoon D., Lee V. (2000). Minority Report in Fraud Detection: Classification of Skewed Data. *Sigkdd Explorations*.
- Schultz R., (1984). The Implementation of Forecasting Models. Journal of Forecasting.
- Klein L., (1984). The Importance of The Forecast. Journal of Forecasting.
- Huss W., (1985). The Teachers/Practitioners Corner Comparative Analysis of Load Forecasting Techniques at a Southern Utility. *Journal of Forecasting*.
- Gruca T., Klemz B., Petersen E., (1999). Mining Sales Data Using A Neural Network Model of Market Response. *SIGKDD Explorations*.
- Lu C., Brabanter J., Huffel S., Vergote I., Timmeman D. (2001). Using Artificial Neural Networks To Predict Malignancy of Ovarian Tumors. *Proceedings of the 23rd Annual EMBS International Conference*.
- Atiya A., El-Shoura S., Shaheen S., El-Sherif M. (1999). "A Comparison Between Neural-Network Forecasting Techniques – Case Study: River Flow Forecasting" *Electronics & Communication Engineering Journal.*
- Ringwood J., Galvin G. (2002). Computer-Aided Learning in Artificial Neural Networks. *Electronics & Communication Engineering Journal*.
- Burke H., Rosen D., Goodman P., (1994). Comparing Artificial Neural Networks To The Other Statistical Methods For Medical Outcome Prediction. *Electronics & Communication Engineering Journal.*
- Sitte R., Sitte J. (2000). Analysis Of The Predictive Ability Of Time Delay Neural Networks Applied To The S&P 500 Time Series. *Electronics & Communication Engineering Journal.*
- Jiuzhen L., Jiaqing Z., (2002). Procedure Neural Networks With Supervised Learning. Proceeding of the 9th International Conference on Neural Information Processing.
- Ritschel, Pfeifer W., Grob (1994). Rating of Pattern Classifications in Multi-layer Perceptrons: Theoretical Background And Practical Results. ACM.

- Mahamud K., Bakar A., Norwawi N. (1998). Neural Network Modelling To Predict House Prices Performance. *Research Report.*
- Roy A., (2000). Artificial Neural Networks A Science in Trouble. SIGKDD Explorations, 33.
- Chamillard A., (2006). Using Student Performance Predictions in A Computer Science Curriculum. ACM.
- Spradlin T., Kirk R., Walcott C., Kloosterman P., Zaman K., McNabb S., Zapf J., (2005). Is The Achievement Gap in Indiana Narrowing? *Center for Evaluation & Education Policy*.
- Sweet J., Rasher S., Abromitis B., Johnson E., (2004). Case Studies of High-Performing, High-Technology Schools. North Central Regional Educational Laboratory.
- Williams, Bugg D., (1998). Parent Involvement Gender Effects On Preadolescent Student Performance. American Educational Research Association.
- Verna, Ann M., Spina, Maria, (2002). Parental Processes and Self-Concepts Effect The Academic Achievement of Italian Students. American Educational Research Association.
- Sengupta S., (1995). A Comparative Study of Neural Network and Regression Analysis As Modelling Tools. *Electronics & Communication Engineering Journal*.
- Li Y., (1994). A General Linear-Regression Analysis Applied To The 3-Parameter Weibull Distribution. *Electronics & Communication Engineering Journal.*
- Itsuki R., Yajima H., Mizuno H., Kinukawa H. (1996). Application and Verification of Using Statistical Analysis Tool and Expert System Together in Multiple Regression Analysis. *Electronics & Communication Engineering Journal*.
- Fukuda T., Shibata T., Tokita M., Mitsuoka T. Neural Network Application for Robotic Motion Control. Research Report
- Wong K., (1993). Artificial Intelligence and Neural Network Applications In Power Systems. *Electronics & Communication Engineering Journal.*
- Means R., (1994). High Speed Parallel Hardware Performance Issues for Neural Network Applications. *Electronics & Communication Engineering Journal.*
- El-Sharkawi M., Huang S., (1994). Ancillary Techniques for Neural Network Applications. *Electronics & Communication Engineering Journal*.

- Vonk E., Jain L., Veelenturf L., (1995). Neural Network Applications. *Electronics & Communication Engineering Journal*.
- Sugiyama S, A Neural Network Application To Semantic and Logistic Recognition. Electronics & Communication Engineering Journal, 1995.
- Bershad N., Ibnkahla M., Castanie F., (1997). Statistical Analysis of A Two-Layer Backpropagation Algorithm Used For Modelling Nonlinear Memoryless Channels: The Sigle Neuron Case. *Electronics & Communication Engineering Journal*.
- Hansen J., Nelson R., (1997). Neural Networks and Traditional Time Series Methods: A Synergistic Combination in State Economic Forecasts. *Electronics & Communication Engineering Journal*.
- Ye Q., Liang B., Li Y., (2005). Amnestic Neural Network for Classification: Application on Stock Trend Prediction. *Electronics & Communication Engineering Journal.*
- Lisboa P., Taylor M., (1993). Workshop on Neural Network Applications and Tools. Electronics & Communication Engineering Journal.
- Tal B., (2003). Background Information On Our Neural Network Based System of Leading Indicators. CIBC World Markets.
- Bojkovic Z., Milovanovic D., Mastorakis N., (2000). Neural Networks Applications For Multimedia Processing. *Electronics & Communication Engineering Journal*.
- Chowdhury F., Wahi P., Raina R., Kaminedi S., (2001). A Survey of Neural Networks Applications in Automatic Control. *Electronics & Communication Engineering Journal*.
- Rajagopalan R., Rajagopalan P., (1996). Applications of Neural Network in Manufacturing. *Electronics & Communication Engineering Journal*.
- Bose B., (2007). Neural Network Applications in Power Electronics and Motor Drives - An Introduction and Perspective. *Electronics & Communication Engineering Journal*.

Wikipedia, (2008). Statistics. http://.en.wikipedia.org/wiki/Statistics.

Deberard, M. S. Spielmans, (2004). Predictus of Academic Achievement and Retention Among College Freshman: A Longitudinal Study. Colege student journal 38 (1), 66 – 80.

Golding, P. & Donaldson, (2006). Predicting Academic Performance. 36 th asee/ieee frontiers in education conference, October 28-31, 2006, San Diego

Golding, P. & Mcnamarah, (2005). Predicting Academic Performance in the school of computing & information technology (scit). 35 th asee/ieee frontiersi n education conference, October 19-22, Indianapolis

Hendrich, (2007). The prediction of first year academic achievement at a south african university of technology: the important of english language proficiency. Unpublished paper