INTERACTED MULTIPLE ANT COLONIES FOR
SEARCH STAGNATION PROBLEM

By
ALAA ISMAEL ALJANABI

Thesis Submitted to College of Arts and Sciences, Universiti Utara Malaysia,
in Fulfillment of the Requirement for the Degree of Doctor of Philosophy
To my dearly loved wife Sana
and
my beloved kids Fatima, Hussein, Mohammed and Abdullah
Abstract

Ant Colony Optimization (ACO) is a successful application of swarm intelligence. ACO algorithms generate a good solution at the early stages of the algorithm execution but unfortunately let all ants speedily converge to an unimproved solution. This thesis addresses the issues associated with search stagnation problem that ACO algorithms suffer from. In particular, it proposes the use of multiple interacted ant colonies as a new algorithmic framework. The proposed framework is incorporated with necessary mechanisms that coordinate the work of these colonies to avoid stagnation situations and therefore achieve a better performance compared to one colony ant algorithm.

The proposed algorithmic framework has been experimentally tested on two different NP-hard combinatorial optimization problems, namely the travelling salesman problem and the single machine total weighted tardiness problem. The experimental results show the superiority of the proposed approach than existing one colony ant algorithms like the ant colony system and max-min ant system. An analysis study of the stagnation behaviour shows that the proposed algorithmic framework suffers less from stagnation than other ACO algorithmic frameworks.
Acknowledgement

I would like to express my profound gratitude to ALLAH, the most merciful, compassionate, who has created me and made me complete this work. I make a humble effort to thank Allah for his endless blessings on me, as his infinite blessings cannot be thanked for. Then, I pray to ALLAH to grant peace on his last prophet Muhammad (SAAW) and on all his righteous followers till the Day of Judgment.

I would like to pay heartily thanks to my first supervisor Prof. Dr. Ku Ruhana Ku Mahamud, without whom this thesis would not have been possible. Prof. Ku Ruhana does not only supervise me in research but also sets a high standard of professorship for me to follow. Thank you very much Prof. Ku Ruhana for everything. In addition, I would like to express my deepest gratitude to my second supervisor Associate Prof. Dr. Norita Md. Norwawi for her guidance and help during my PhD study. Her critical comments and useful suggestions on my work and thesis help me to furnish my thesis.

My thanks are due to the management of University of Nizwa-Oman for the special leave granted to me to finalize this thesis. I am extremely indebted to my dearest friend Mr. Alaa Al-Obaidi for the unlimited support he has offered me during my frequent travel and visits to KL. I am deeply thankful to
all units of UUM for their kind help and endless support especially the
members of the graduate studies unit of CAS, international students unit, and
May-Bank residential hall unit.

I owe everything to my wife Sana Jabbar Mohammed. Without her
endless love and support I wouldn't have finished this work. I am grateful to my
beloved children Fatima, Hussein, Mohammed and Abdullah for their love,
understanding and patience. Finally, My thanks to all people who offered me
any kind of help during this study, May Allah bless all of them.
DECLARATION

I declare that all the works described in this thesis was undertaken by myself (unless otherwise acknowledged in the text) and that none of the work has been previously submitted for any academic degree. All sources of quoted information have been acknowledged through references.

Alaa Aljanaby

January, 2010
PERMISSION TO USE

In presenting this thesis in fulfillment of the requirements for the Doctor of Philosophy degree from the Universiti Utara Malaysia, I agree that the Universiti Library may take it freely available for inspection. I further agree that the permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor or, in her absence, by the Academic Dean College of Arts and Sciences. It is understood that any copy or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or make other use of material in this thesis in whole or in part should be addressed to:

Dean (Academic) College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
Malaysia
Table of Contents

Dedication ... ii
Abstract .. iii
Acknowledgement ... iv
Declaration .. vi
Permission to Use .. vii
Table of Contents ... viii
List of Tables .. xii
List of Figures ... xv
List of Abbreviations ... xix

Chapter 1: Introduction ... 1
1.1 Problem statement .. 7
1.2 Research objectives ... 10
1.3 Significance of the research .. 10
1.4 Scope and limitation of the research .. 11
1.5 Structure of the thesis .. 12

Chapter 2: Literature Review .. 14
2.1 Combinatorial optimization problems ... 14
 2.1.1 Exact methods ... 15
 2.1.2 Approximate methods .. 17
 2.1.3 Meta-heuristic methods ... 19
2.2 Ant colony optimization meta-heuristic ... 24
2.3 Single ant colony optimization framework and algorithms 26
 2.3.1 Ant system .. 28
 2.3.2 Ant colony system .. 32
 2.3.3 Max-min ant system .. 34
2.3.4 Other single ant colony optimization algorithms36
2.4 Multiple ant Colonies optimization framework and algorithms38
2.5 Search stagnation control approaches43
2.6 Summary ...45

Chapter 3: Research Methodology and Proposed Framework47
 3.1 Methodology of the research ...47
 3.1.1 Analyzing the research problem49
 3.1.2 Developing the new algorithmic framework50
 3.1.3 Constructing the simulation environment52
 3.1.4 Conducting the experiments ...53
 3.1.5 Evaluating the results ..56
 3.2 The proposed framework ...58
 3.2.1 Pheromone evaluation mechanism61
 3.2.2 Exploration/exploitation control mechanism64
 3.2.3 Pheromone updating mechanism67
 3.2.4 Comparison of IMACO framework with other existing ACO frameworks ..70
 3.2.4 Computational complexity ..71
 3.3 Summary ...72

Chapter 4: Interacted Multiple Ant Colonies Optimization74
 4.1 The test problem ..74
 4.1.1 Traveling salesman problem74
 4.1.2 Single machine total weighted tardiness problem77
 4.2 Interacted multiple ant colonies optimization
 for traveling salesman problem82
 4.3 Interacted multiple ant colonies optimization
for single machine total weighted tardiness problem91
4.4 Summary ..104

Chapter 5: Mechanism of Interacted Multiple Ant Colonies

Optimization ...106
5.1 Pheromone evaluation mechanism106
5.1.1 Experiment with traveling salesman problem107
5.1.2 Experiment with single machine total weighted
tardiness problem ...111
5.2 Exploration / exploitation mechanism114
5.2.1 Experiment with traveling salesman problem116
5.2.2 Experiment with single machine total weighted
tardiness problem ...121
5.3 Pheromone updating mechanism ...125
5.3.1 Experiment with traveling salesman problem126
5.3.2 Experiment with single machine total weighted
tardiness problem ...131
5.4 Summary ..135

Chapter 6: Interacted Multiple Ant Colonies Optimization Result and

Stagnation Analysis ...137
6.1 Interacted multiple ant colonies optimization for different
traveling salesman problem instances137
6.2 Interacted multiple ant colonies optimization for different
single machine total weighted tardiness problem instances139
6.3 Stagnation Analysis ..142
6.4 Comparison with similar approaches147
6.5 Summary ..149
List of Tables

Table 1.1 Examples of combinatorial optimization problems........2
Table 3.1 Steps of experimental research methodology48
Table 3.2 Experiments Design55
Table 3.3 QCF example ..67
Table 3.4 Comparison of ACO frameworks70
Table 4.1 Some TSP instances ..77
Table 4.2 kroA100 ACS results83
Table 4.3 lin318 ACS results ..83
Table 4.4 kroA100 IMACO-AVG results84
Table 4.5 lin318 IMACO-AVG results84
Table 4.6 kroA100 IMACO-MAX results85
Table 4.7 lin318 IMACO-MAX results85
Table 4.8 Best overall average of ACS, IMACO-AVG and IMACO-MAX ...91
Table 4.9 ACS with EDD ...94
Table 4.10 IMACO-AVG with EDD94
Table 4.11 IMACO-MAX with EDD94
Table 4.12 ACS with MDD ...96
Table 4.13 IMACO-AVG with MDD97
Table 4.14 IMACO-MAX with MDD97
Table 4.15 ACS with AU ...99
Table 4.16 IMACO-AVG with AU ..99
Table 4.17 IMACO-MAX with AU ..99
Table 4.18 Best overall average of ACS, IMACO-AVG and
IMACO-MAX ..102
Table 4.19 Best overall average of ACS, IMACO-AVG and
IMACO-MAX ..103
Table 5.1 lin318 IMACO-AVG with different pheromone
evaluation rates ...108
Table 5.2 lin318 IMACO-MAX with different pheromone
evaluation rates ...108
Table 5.3 IMACO-AVG and IMACO-MAX best overall
Average ..110
Table 5.4 IMACO-AVG with MDD using different pheromone
evaluation rates ..112
Table 5.5 lin318 IMACO-MAX with MDD using different
pheromone evaluation rates112
Table 5.6 IMACO-AVG and IMACO-MAX best overall
Average ..114
Table 5.7 IMACO_AVG with different QCF values116
Table 5.8 IMACO-MAX with different QCF values118
Table 5.9 IMACO-AVG and IMACO-MAX best overall
Average ..119
Table 5.10 IMACO-AVG with different QCF values121
Table 5.11 IMACO-MAX with different QCF values123
Table 5.12 IMACO-AVG and IMACO-MAX best overall
 Average ...124
Table 5.13 different pheromone updating with IMACO-AVG126
Table 5.14 different pheromone updating with IMACO-MAX128
Table 5.15 IMACO-AVG and IMACO-MAX best overall
 Average ...130
Table 5.16 different pheromone updating with IMACO-AVG131
Table 5.17 different pheromone updating with IMACO-MAX133
Table 5.18 IMACO-AVG and IMACO-MAX best overall
 Average ...134
Table 6.1 Results for symmetric TSP instances139
Table 6.2 Results for asymmetric TSP instances139
Table 6.3 Results for 40, 50 and 100 job instances140
Table 6.4 One trial typical run on lin318 143
Table 6.5 stagnation situations in 100 trials typical run
 on lin38 ..145
Table 6.6 One trial typical run on one instance145
Table 6.7 stagnation situations in 100 trials typical run on one
 Instance ...147
Table 6.8 Comparisons of IMACO results with results of
 MACO and other algorithms148
List of Figures

Figure 2.1 ACO meta-heuristic ...25
Figure 2.2 General single colony ACO framework27
Figure 2.3 General multiple colonies ACO framework39
Figure 3.1 The proposed framework51
Figure 3.2 IMACO high level specification60
Figure 4.1a pcb422 TSP instance76
Figure 4.1b att532 TSP instance76
Figure 4.2 A 3-job example of an SMTWTP graphical
representation ..80
Figure 4.3 kroA100 ACS, IMACO-AVG and IMACO-MAX
performance comparison ...86
Figure 4.4 Lin318 ACS, IMACO-AVG and IMACO-MAX
performance comparison ...86
Figure 4.5 kroA100 ACS, IMACO-AVG and IMACO-MAX best
solution performance comparison88
Figure 4.6 lin318 ACS, IMACO-AVG and IMACO-MAX best
solution performance comparison89
Figure 4.7 kroA100 ACS, IMACO-AVG and IMACO-MAX trial
average time comparison ..90
Figure 4.8 lin318 ACS, IMACO-AVG and IMACO-MAX trial
average time comparison ...90

Figure 4.9 Overall average performance of ACS, IMACO-AVG
and IMACO-MAX all with EDD95

Figure 4.10 Best solution performance of ACS, IMACO-AVG and
IMACO-MAX all with EDD ...95

Figure 4.11 Trial average time comparison of ACS, IMACO-AVG
and IMACO-MAX all with EDD96

Figure 4.12 Overall average performance of ACS, IMACO-AVG
and IMACO-MAX all with MDD97

Figure 4.13 Best solution performance of ACS, IMACO-AVG and
IMACO-MAX all with MDD98

Figure 4.14 Trial average time comparison of ACS, IMACO-AVG
and IMACO-MAX all with MDD98

Figure 4.15 Overall average performance of ACS, IMACO-AVG
and IMACO-MAX all with AU100

Figure 4.16 Best solution performance of ACS, IMACO-AVG and
IMACO-MAX all with AU ...100

Figure 4.17 Trial average time comparison of ACS, IMACO-AVG
and IMACO-MAX all with AU101

Figure 5.1 lin318 IMACO-AVG 7-10 colonies with different
pheromone evaluation rates ..109

Figure 5.2 lin318 IMACO-MAX 7-10 colonies with different
pheromone evaluation rates ..109

xvi
Figure 5.3 IMACO-AVG 7-10 colonies with MDD using different evaluation rates113

Figure 5.4 IMACO-MAX 7-10 colonies with MDD using different evaluation rates113

Figure 5.5 IMACO-AVG with different QCF values117

Figure 5.6 IMACO-AVG 9 colonies $\lambda=0.3-0.5$ with different QCF values ..117

Figure 5.7 IMACO-MAX with different QCF values118

Figure 5.8 IMACO-MAX 7 colonies $\lambda=0.3-0.5$ with different QCF values ..119

Figure 5.9 IMACO-AVG with MDD using different QCF Values ...122

Figure 5.10 IMACO-AVG 8 colonies with MDD $\lambda=0.3-0.5$ with different QCF values ..122

Figure 5.11 IMACO-MAX with MDD using different QCF Values ...123

Figure 5.12 IMACO-MAX 8 colonies with MDD $\lambda=0.3-0.5$ with different QCF values ..124

Figure 5.13 IMACO-AVG with different pheromone updating Techniques ...127

Figure 5.14 IMACO-AVG 9 colonies $\lambda=0.3-0.5$ with different pheromone updating techniques ..127

Figure 5.15 IMACO-MAX with different pheromone updating
Figure 5.16 IMACO-AVG 7 colonies $\lambda=0.3-0.5$ with different pheromone updating techniques ... 129

Figure 5.17 IMACO-AVG with MDD using different pheromone updating technique .. 132

Figure 5.18 IMACO-AVG 8 colonies $\lambda=0.3-0.5$ with MDD using different evaluation rates ... 132

Figure 5.19 IMACO-MAX with MDD using different pheromone updating technique .. 133

Figure 5.20 IMACO-MAX 8 colonies $\lambda=0.3-0.5$ with MDD using different pheromone ... 134

Figure 6.1 One trial typical run on lin318 .. 144

Figure 6.2 One trial typical run on 100-job SMTWTP instance 146
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACO</td>
<td>Ant Colony Optimization</td>
</tr>
<tr>
<td>ACS</td>
<td>Ant Colony System</td>
</tr>
<tr>
<td>AS</td>
<td>Ant System</td>
</tr>
<tr>
<td>AS_{rank}</td>
<td>Ranked Ant System</td>
</tr>
<tr>
<td>ATSP</td>
<td>Asymmetric Traveling Salesman Problem</td>
</tr>
<tr>
<td>BWAS</td>
<td>Best-Worst Ant System</td>
</tr>
<tr>
<td>IMACO</td>
<td>Interacted Multiple Ant Colonies Opti-</td>
</tr>
<tr>
<td></td>
<td>mization</td>
</tr>
<tr>
<td>JSP</td>
<td>Job Scheduling Problem</td>
</tr>
<tr>
<td>LBTAS</td>
<td>Local Best Tour Ant System</td>
</tr>
<tr>
<td>MACO</td>
<td>Multiple Ant Colonies Optimization</td>
</tr>
<tr>
<td>MACS</td>
<td>Multiple Ant Colony System</td>
</tr>
<tr>
<td>MMAS</td>
<td>Max-Min Ant System</td>
</tr>
<tr>
<td>QAP</td>
<td>Quadratic Assignment problem</td>
</tr>
<tr>
<td>SMTWTP</td>
<td>Single Machine Total Weighted Tardines-</td>
</tr>
<tr>
<td></td>
<td>ss Problem</td>
</tr>
<tr>
<td>SOP</td>
<td>Sequential Ordering Problem</td>
</tr>
<tr>
<td>TSP</td>
<td>Traveling Salesman problem</td>
</tr>
<tr>
<td>VRP</td>
<td>Vehicle Routing Problem</td>
</tr>
<tr>
<td>VRPTW</td>
<td>Vehicle Routing Problem with Time Win-</td>
</tr>
<tr>
<td></td>
<td>dow</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Optimization is the process of finding the best element from a set of available alternatives. An optimization problem consists of an objective function to be minimized or maximized, set of variables that affect the value of the objective function and set of constraints on the value of the variables (Chong & Zak, 2008).

Combinatorial optimization problems are the class of hard optimization problems that have great importance in research and development. These problems have a discrete set of feasible solutions and the goal is to find the optimal solution (the best solution from the feasible solutions). These problems are theoretically proven as Non-deterministic Polynomial (NP) hard problems, which mean that there is no exact algorithm that can solve them in a polynomial time (Blum & Roli, 2003). Table 1.1 shows some of these problems grouped according to type of problem. The only way to tackle these problems is to use approximate (heuristic) algorithms such as tabu search, evolutionary computation, simulated annealing, genetic algorithms and recently Ant Colony Optimization (ACO).
The contents of the thesis is for internal user only
Bibliography

Dynamic Programming and Reinforcement Learning (ADPRL 2007) (pp. 92-95), 1-5 April 2007, Honolulu, HI, USA.

proceedings of Annual Meeting of the North American Fuzzy Information Processing Society, (NAFIPS 2008) (pp. 1-6), May 19-22, 2008, Rockefeller University, New York, USA.

Science and Software Engineering (pp. 390-394), December 12-14, 2008, Wuhan, China.

proceedings of Congress Evolutionary Computation (CEC) (pp. 1809-1816), Washington DC, USA.

