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ABSTRAK

Perkhidmatan unit hematologi amat diperlukan dadam mengendpasti  penyakit
pesskit meldui kgian dari sampel darah. Pelbaga jenis penyakit dapat dikendpasti oleh
seorang pakar hematologi meldui bebergpa andisa terhadgp kandungan darah pesakit.
Namun rausan kes yang diterima dan pelbaga fektor yang perlu diambilkira telah
melambatkan proses sesuatu  keputusan dibuat.  Hal ini boleh diatasi dengan
menggunakan rangkaian neurd sekiranya dilatih dengan sgumlah data yang mencukupi,
merangkumi  semua faktor yang diperlukan untuk mengkelaskan sesuatu penyakit meaui
pengecaman corak. Kgian tesis ini telah menggunakan mode “multilayer perceptron”
dengan pembelg aran rambatan-baik untuk pengkelasan anemia Di samping itu,
bebergpa pembolehubah yang mempengaruhi prestas modd juga telah dikendpedti.
Moded yang dihaslkan dinila prestasnya dan tdah bejaya mengkdaskan anemia
dengan 72.78% bagi data latihan dan 71.56% bagi data ujian. Mode yang dihasilkan
sterusnya dibandingkan dengan model “Radid Bass Function” dan “Regresson” dan

telah menunjukkan prestas yang terbak.



ABSTRACT

Hundreds of haematology forms are directed to Haematology unit every day from
vaious departments from physcians that need the right diagnogs in patient’s blood. The
processng may teke severd days depending on the workload and available resources. A
combination of various factors has to be consdered before a haematologist can diagnose
clases of anaemia and is normdly performed in severa stages. The process can actudly
be peformed usng neurd network agpproach, as it is capable in pattern recognition.
Knowing the rdevatt factors that influence anaemia classfication, a modd of neurd
network can be produced if it is traned with sufficient data sets. Hence, this thess
presents the neurd network model for anaemia classfication and identifies parameter that
affects its performance using backpropagation. The modd is then implemented and the
performance of the neural network is assessed. The model was able to diagnose classes
of anaemia with 7 1.5 6% generdization. Findly, the modd was compared with Radid
Basis Function and Regresson modd to show that Multilayer Perceptron outperforms the

other two modes.
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CHAPTER 1
INTRODUCTION

In this chapter, the first section describes the context of the study that gives an
introduction to neural networks and its application. The second section presents
statement of purpose, while the third section presents the objectives of the study
followed by study significance. Finally, the scope of the study that includes the

limitations of the study is presented.

1.1  The Context of The Study

The development of computers has been very fast and computers have become
important tools in this Information Communication Technology’s (ICT) world.
Nevertheless, it still lack the flexibility of processing in some areas as what the
human brain does especially in the area of pattern recognition, prediction or

forecasting in business, modelling and diagnosing in medical, and others.

Artificial Neural Network or neural network is relatively recent development in the
information science that has the ability to model human like computing strategies to
improve the performance of computers. They differ from the usual computer
programs in that they “learn” from a set of examples rather than being programmed to
get the right answer. Neural networks have been applied in many areas, ranging
from business, engineering, medical and others. This study will focus the application

of neural networks in haematology, an area in medicine.
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