IA-BASED FUALT DETECTION SYSTEM

“Mohammad Jehad” Baeth “Ahmad Fawzi”

UNIVERSITI UTARA MALAYSIA
2010

5

IA-BASED FAULT DETECTION SYSTEM

This thesis submitted to the Graduate School in partial fulfillment of the
requirements for the degree Master of Science (Information Technology)
University Utara Malaysia

“Mohammad Jehad” Baeth “ Ahmad Fawzi” (802379)

Copyright © “Mohammad Jehad” Baeth “Ahmad Fawzi”, 2010. All rights reserved

1

KOLEJ SASTERA DAN SAINS
(College of Arts and Sciences)
Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK
(Certificate of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

MOHAMED JEHAD BAETH “A. FAWZI”
(802789)

calon untuk Jjazah
(candidate for the degree of) MSec. (Information Technology)

telah mengemukakan kertas projek yang bertajuk
(has presented his/ her project paper of the following title)

INTELLIGENT AGENT BASED FUALT DETECTION SYSTEM

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmu dengan memuaskan.

(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia Utama
(Name of Main Supervisor). PROF. DR. KU RUHANA KU MAHAMUD

Tandatangan aw/
(Signature) : '

Tarikh . JR ;w/ 26/0

(Date) .

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a postgraduate
degree from University Utara Malaysia, I agree that the University Library may make it
freely available for inspection. I further agree that permission for copying of this thesis in
any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s)

or, in their absence by the Dean of the Graduate School.

It is understood that any copying or publication or use of this thesis or parts thereof for
financial gain shall not be allowed without my written permission. It is also understood
that due recognition shall be given to me and to University Utara Malaysia for any

scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole

or in part should be addressed to:

Dean of Graduate School
University Utara Malaysia
06010 UUM Sintok

Kedah Darul Aman.

i

ABSTRACT

The current IP-network management systems normally utilize the centralized (client—'
server) architecture. Researchers have stated that, those systems may cause serious
efficiency defects, when the complexity and size of the network increases. Automated
network monitoring systems have some limitation. They are known of making a huge
overload on the network bandwidth due to their unnecessary message transaction
between the server and the monitored hosts. Moreover, the lack of getting appropriate
information that describes the malfunction makes it hard for the administrational team to
identify the source of reported error. An innovative distributed intelligent agent based
fault detection system that operates on Windows platform was presented, to capture
abnormal and faulty behaviors on both application and system levels. The design process
of the intelligent agent utilized the ability of reactive operating and independent decision
taking. The system has a web based graphical user interface to facilitate the accessibility
to such vital information. Several evaluation scenarios were conducted to evaluate the

trustworthiness and performance criterion of the proposed system.

1

DEDICATION

In the name nf Allah, the most merciful and compassionate.
All praise is due to Allah, the most Generous and loving, the source of all blessings.
To the symbol of wisdom, my mentor, and the source of my existence. To my father "Ahmad”.

Heaven lies under your feet along with my happiness and success in this life and the afterlife,
there are no words that can honor you enough. To my mother “Sahar”.

To Eyad, only Allah can pay off my debt to you, thank you for turning me from a JGDAF into me.
To my sisters Bara'a, Tayma, Thara'a, Yousr.
To my friends Fadi, Alla, Ahmad, Hamzeh, Dia'a, Osama, Zyad, Hussam, Faisal, Chris. Hashem, Rony.

Samer, Mohamad, Homam, Morhaf, Taha, AbdulGhani and All those | have not mentioned, thank
you for your continuous support.

iv

ACKNOWLEDGEMENT

At the beginning of my speaking, I thank Allah for helping me in my study and guiding me
fo continue what I have started in my educational life. I thank Allah in every day for
giving me the ability and motivation to continue this work...

After thanking Allah, I would like to convey my regards to my supervisor Prof. Dr. Ku
Ruhana for the benefit and precious information that she gave me as one of her students.
I thank and honor her for helping me to complete my study in a good way ...

Finally, I would like to say thankfulness word for the lecturers in the Information

Technology Department at University Utara Malaysia (UUM)...

Thank you UUM...

“Mohammad Jehad” Baeth “Ahmad Fawai”’

2010

TABLE OF CONTENTS

PERMISSION TO USEooiiiiriieirerinieciniteeseiestess e eseetess s essssessssssssssosssssessessssssssesssessoses ii
ABSTRACT ...ttt ettt ettt et te e st eereasseaserentsesssnestseseeneessessaenen iii
DEDICATION ...ttt ettt et e e et et s e teeetsenaeeete et s esbeesaesneesnessseenaesans iv
ACKNOWLEDGEMENTccocotiiiitiiiitniieie ettt sttt ve et vt s e eaensnsere st ensensesesaesbensense v
TABLE OF CONTENTS ...ttt stte et te st s e e st esaaete e s e s saesaeasassessessaeseessonssen vi
LIST OF TABLE.....cu oottt et ente st s s staessa e e st et e staassessastessessassassesasessessensessnee ix
LIST OF FIGURESooirtieiictnieetnteesetetete s sttt stasses s seestassasassessasaseesassassensesssnsssansrnss X
CHAPTER ONE
INTRODUCTION.......covteiirririeneeenesrenieesiassereestesessessasmessensessessessessessessesssssesssessssestasssssesessensesenes 1
1.1 Problem Statement..........cccceevirrerinreniinneeneneniesieeesreesesiesseesssssessessssessessssaesseens 5
1.2 ReSEarch ODJECHIVES.....coviivirieieieierienieeiesresie et este et e st e steste s et ras e s et essenes 6
1.3 Significance of the Study......cccveiiiieiiiiiieieieeeeeceeeseee e 6
1.4 Scope and Limitationsccceccvuereimineniiieinieirrcieeeieee s sesesessenssnnenennes 6
1.5 Organization Of REPOTT.......ccocveriiiiriiiiiiiieie e e 8
CHAPTER TWO
LITERATURE REVIEW ..ottt ettt n e st st ss et e e sa et ssaessenaessessnssassensns 9
2.1 INtelligent AGENtS......ccceriieierierierireieetereeste b st et e ebe s b ie et saesaeeanee 9
2.1.1 Distributed Intelligent AZENtscccveveveeverreirirerriernieneereeserssrsnsesesisessens 10
2.1.2 MUILI=AZENES c.veeuiivtecreieereeeeeeeeneesreesesase e et e saseesessnessssessnessansaesesssasarens 11
2.1.3 MODILE AQENLS...uiiierriiirieerirtnecterese et ettt as e st en b es 12
2.2 Fault Detection and DiagnosiS.........cceverrereererenerieriersersesncrneserressessessesessssssssases 14
2.2.1 Hardware/Software Based Fault Detectioncoccoveeeenvninnnnninnnninns 15
2.2.2 Detection Scheme Based Fault Detectionc..ceecvveveirivrcenncincnninninnnane 16
2.3 Applications of [A-based Fault detection and diagnosis..........cccevvvvverivicncnnes 17
2.4 SUIMMATY ceeverieereiiiereeereereseeteue et resaesae sttt e s et n et e e s st st sn e s ssssasaesrsnessssses 24
CHAPTER THREE
METHODOLOGY .icioieieeie e eeieciiietereresesessiieirertastaeesasseesstsesiesiississsisstssssnessiossssianssasessnasssrannas 25
3.1 ReESEArCh PRASES.....cccveiieiriiieeti ettt et sar e sar et beens 25
3.2 Concept DESIZN...covicrereerieieiiinicinenitit e 26
3.3 DeVElOPMENLt...cccuiiiieeriirereeerreercnie sttt n 27
3.3.1 Designing Agent Modelccoovrvieviiriiniinniiiiie e 28
3.3.2 Server DESig ..coiicicinierericenicenre e e 32
333 Implementation........ccccecereniennininieiinini e 33

vi

304 EVAIUALION c.uutiieeiieeeeetee et eeteesereeeeevaeeseeseeeeeseeeasessseesssseesesasssessesssssessseesssnes 35

3.5 SUMMMAIY ..ottt bess s b sb st e et s s se s sestasesesenenens 35
CHAPTER FOUR
SYSTEM ANALYSIS AND DESIGNoooiiiioiiitieiieeiete ettt eaeseens s evesnssnnens
4.1 System REQUITEIMENESc..cviuiriiiiiiiiierieieicsieie ettt ae e seese b esesressesnenees 36
4.1.1 Functional REQUIEMENLS...........ccoeevuierieriiiieericiie e cve e srresveeneens 36
4.1.2 Non-Functional REQUIrEMENLSc.cecevrirrieiirrierieeiee et seeeneens 37
4.2 Use Case Diagram & SpecifiCationcc.cecevcererierieresierienieresenienensesessessscseens 38
4.2.1 View Latest EITOTS......cccccviveriinieniieiiseeiessseeseeiesreecsessessessseseessessessensenes 39
422 View Network Error Statistics ...coceviveeeecieriieieiiienenrcreeeereeveeesesessesenne 40
4.2.3 View HoSt Error StatiStiCS......ccevveeruerrrereeieeiesieenenieseeeesreseereessessersesesnenes 41
4.2.4 Organize and Collect dataccceeereeveerierirereienireeeecreese e esvecreseeesessseens 42
4.2.5 Collect and Identifyceccereerieririiirinenieeniesrieseseesestesesessaesssesesensassenes 43
4.3 ACHIVILY DIQGIAIMecveiveeerereiveeee et sereentesirees et esveeesrecseesseesseesseesvesssessesssenseens 44
4.3.1 VIEW Latest EITOIS...c.uicvieiiiieciereeciiscese et estte e cseeieeceesrneesaseessesneseeens 44
4.3.2 View Network Error StatiSticsccecvverreenrieiiniieieeienie et eae e 45
4.3.3 View Host Error StatiStiCS.......cccveruiiiriiiiriireiieeeriessiee st eeeeasreeesseesnessnes 46
4.3.4 Organize Collected Dataccceeieriirieeniennecccte e 47
4.3.5 Collect & Identify.....cccceeeeeireririeiiiiiieeecetecre et see s sese s 48
4.4 Sequence DIagram........ccooeveveiierireenieininentenereenr et eaas 49
44,1 View Latest EITOIS.....ccccciiveiieniieririenieseestese st sne s snesvessesnessssessassnesnenes 49
442 View NetWork EITOTSccccvviriieveniiieniensienenirenensieseestesseesesseessssesssessesseses 50
443 VIieW HOSt EITOIS ..couiiiirreieiresieinrenieiecenresie et cressenssssssssesssssones 51
444 Collect System Metrics and Identify Eventscocceeverviiivceviinscincennnene 52
4.4.5 Collect and Identify EVENLS........ccceverieveriiniienieniinrccteseenienieescessnessnesnsneens 53
4.5 Collaboration Diagramc.ccveevviierveeniiniienieiiecect e 54
4.5.1 VIEW LateSt EITOIS.....ccueiiieeiieireeciieieeirresiie e e et siaseneesressnaesnaessnis 54
4.5.2 View Network EITOTS ..c..ooveiiiiiiriiiieie et ssnianire s 55
4.5.3 VIew HOSt EITOIS.....coiiuiiiiieiiericecciie et e 56
4.54 Organize ReportS.......coceciirioreiiniiiiiiiiiniiccie e 57
4.5.5 Collect and Identify EVENtSc.ccecceeveiviniiineiiiiciccinectnrcnceeesnesae 58
4.6 Class Diagramsccovvvueerieneereserinienierseesiniiienessieseesisssnsesesssssssesiessssssssssasss 59
4.7 SUINIMATY ...coeeiereriieerretiirieiintsessesiiteisse st ssstsstessessessssbssbessesnesessessssesassansessas 60

vii

CHAPTER FIVE

SYSTEM EVALUATION & RESULTSoooioititererteecrecttereerseeeveeveaesssvesreeseesesanesaens
5.1 Experimental Setup and Dataccceceeiniiirininiiinieenenceererseeneseereeneeas 61
5.2 Trustworthiness and Validation for Fault Typesc.c.cccvvvervrniivininneenenreecnnnnns 63
5.3 Performance Validation for Testing Data..........cccceeovvreiivvreiveeeiieecieeenrreene s 64
S SUIMHMIATY c.uuvtieecie ettt ettt ettt e st e e e reae e s s tre e seatb e e e e s neabeeseasneaassssaeesaneesnnneennssesanns 67

CHAPTER SIX

CONCLUSION & FUTURE WORKcoootiiiiiiiienieniteiteiee ettt seeesseseesessseseassessasnesanonses
6.1 Research CONCIUSIONcc.cevieeiviiieiiiriinienieente s eiecse e eree s esres st esseennesanessens 68
6.2 FULUIE WOTK....ooviiiiieiiieieiier ettt st sr e sbe e sne e b beesaesnessaasssssesen 69

viii

Table 3.1 :
Table 4.1 :
Table 4.2 :
Table 5.1 :
Table 5.2 :

LIST OF TABLES

List of Design Pattern to be used with their respective Agent Layercc.ccevvenee. 32
list of Functional REqUITEMENtSccceoverceeriirieiiirieiirreneree e seeseseseesseseessesessns 36
List of Non-Functional REQUIr€mMEnts.cccccevcvieiirneiniciiinireneesessveseesieessessnens 37
List of Selected faults used in the TeSting ProCesscccoovureriirreeriveericresreesceeseeensne 62
Number of injected faults on their respective hosts..........cocevcieiincvnnncniiinnen 63

ix

LIST OF FIGURES

Figure 1. 1 : Conventional Network Monitoring SYSteImccceeueerirrrererrerenresnersssssssassssesenesesenes 2
Figure 3. 1 : Research Design Methodology Adopted from (Vaishnavi & kuechler, 2004)......... 26
Figure 3. 2 : Rapid Application Methodology Life Cycleooovvieieieiviiiciccereeeeereereens 27
Figure 3. 3 : Intelligent agent-based fault detection SYStEM.........c.ccevvvreveereveernrererrerisireeerereeesennes 28
Figure 3.4 : Aent MOdEl........cuieriiirieiiriiieisesieietcceee ettt see v be e ae s e s sessesnensenees 30
FIgUIe 3. 5 SeIVEr SIde...cuciveiiiiiriiiiteiccter ettt ettt r e s e sb s e rerebeeresbonboneen 33
Figure 4. 1: Use Case DIAZIAMcccouvereereiereiireenseeeteneee e creseese e eseesesessesesesessssessssessssensasenes 38
Figure 4. 2: View Latest Errors USe Case.........cccvveevrccrvnienieinieinennieseisieresessesessessessessssssseses 39
Figure 4. 3: View Network Error Statistics Use Case..........ccoveivvrieiinininienienricccesesieneesesienees 40
Figure 4. 4: View Host Error Statistics Use Caseccoevervriiriiiiiiniiinenierseseeevsseeeveevesvennes 41
Figure 4. 5: Organize and Collect data Use Case.........c..coviviriiiciiinicrniiceeeneceeecseesennes 42
Figure 4. 6: Collect and Identify Events Use Case.......cccccevviriiriiriiiiininiciiisescneneeseensecrenaens 43
Figure 4. 7: View Latest Errors Activity DIagram.........ccccoveevirmieiiiirienininieneeeenieenesasseeesessenaene 44
Figure 4. 8: View Network Error Statistics Activity Diagram............cccccevveerevenenceernessveenesennens 45
Figure 4. 9: View Host Error Statistics Activity Diagramccoceevecvveeerevcnnnnveninrensenesenaens 46

Figure 4. 10:
Figure 4. 11:
Figure 4. 12:
Figure 4. 13:
Figure 4. 14:
Figure 4. 15:
Figure 4. 16:
Figure 4. 17:
Figure 4. 18:
Figure 4. 19:

Organize Collected Data Activity Diagram...........cccoecuevverrereereeresieerenresserseessesananns 47
Collect & Identify Events Activity Diagramcccccccvvveverveerrereneniersneveneressensnsnns 48
View Latest Errors Sequence Diagram............ccecvveecviniinnninienvenncninninnnrinenininene 49
View Network Errors Sequence Diagramcccceecininccnannnenennineaee 50
View Host Errors Sequence Diagram.........ccocceceverveeneeeeneeneeineecesesiensssnissesssnenes 51
Check Results Sequence Diagram.......c.cceeeveeeeniericineciecineninenemresesesineessennes 52
Collect & Identify Events Sequence Diagram........occoevveeveeeevirensesrerseeseeseessesnecns 53
View Latest Errors Collaboration Diagram...........cccoevierveirvinncnircrnnennnnnencnneenns 54
VieW NetWOTK EITOTS......covvvteviireniiniieiiie ettt srsnsssaens 55
View Host Errors Collaboration Diagramcc.cccveeiviieniniinnnininciniinnnnnns 56

Figure 4. 20: Organize Reports Collaboration Diagramccceceevivvvinincinninnincniiennnens 57
Figure 4. 21: Collect & Identify Events Collaboration Diagramccccoceevvvencniincnniiiicniinnnen. 58
Figure 4. 22: Packages DIiagrami..........cccooirirerieiiniinicicniiin e s 59
Figure 4. 23: Agent Package Class Diagram..........cccoccceviiveniincniiniiiniiiiiineneiienneessnenes 59
Figure 4. 24: Server Package Class Diagram........c.ccocevivvcniivininnininininiinninisneiessenaens 60
Figure 5. 1 : Number of detected faults on the sample network hostscovevviienniinnninnnnns 64
Figure 5. 2 : network activity when transmitting a single report from one host...........cceccovrvennnee 65
Figure 5. 3 : network activity when transmitting multiple reports from one host.........ccc.ccceveuene. 66
Figure 5. 4 : network activity transmitting multiple reports from all the network hosts............... 67

xi

CHAPTER ONE

INTRODUCTION

The development and growth of computer networks concepts and technology have paved
the way for developing new applications in this field of study. Considering the high
demand of business organizations for improvements in network management, the wave of
development was directed towards creating more advanced network management systems
this is to simplify and speed up administrational responsibilities as well as observing
network hosts in a real-time basis in order to protect the network from faults. Generally,
network management system can handle problems concerning network configuration,
tune reliability and efficiency issues, even more increase security standards (Cisco
Systems, 2004). In other words, network management system is concerned with
monitoring, analyzing and controlling a network, serving the purpose of smoother

operation.

Network monitoring is the portion of network management, which is concerned with
detecting symptoms of failure and analyzing the status and behavior of the managed
network devices. It is getting vital for computer networks to perform in the best manner
(Boutaba and Xiao, 2002). A typical network management system consists of two parts

as shown in Figurel.1.

MNOOs pPryvgent

MManagement Station

MNode Agenit MNode Agenk

Figure 1. 1 : Conventional Network Monitoring System

One is the agent, a server process operating on every existing node in the network. The
task of these agents is to gather and store data related to the status of the monitored
device. Collected data is stored in the Management Information Bases. The other part of a
network management system is the management station. It has graphical user interface to
aid administrators to perform monitoring functions. Managers reclaim data acquired from
network hosts agents by sending requests to every single entity. This process is either
done on demand or depending on a periodic basis (Boutaba and Xiao, 2002). Depending
on this architecture, many advanced network management application and development
packages have been developed. The aim of this advancement was to introduce more
sophisticated management systems, ones that can handle larger scale networks. However,
the majority of these systems have some drawbacks and limitation that can affect the
network performance (Gavalas, Greenwood, Ghanbari, and O'Mahony, 2000). These
issues have been illustrated in chapter two in details. As a result, the idea of automating
portions of administrational tasks by planting intelligence into these monitoring systems

began to appear as the needed solutions. Consequently, intelligent agent was the suitable

2

choice to fulfill the requirements of intelligence (Liotta & Pavlou, 2002).The agent is a
part of software system that interacts and cooperates with other agents (including both
people and software). The agent interacts with other agents to hold the responsibility of
taking actions and deciding if the action is appropriate or not. Agents do not invoke
themselves during execution, instead they activate themselves automatically. An agent is
an entity which is able to solve the problems automatically using the main features of the
agent. These features are independence, social ability and reactivity. The independence is
one of the most important characteristics of the agent, in other words, the agent work
independently with no interaction with the human or external actors. Moreover agents
have the ability to manipulate their status. The second important characteristic of agent
software is the social ability, which means agents are considered to be interrelating with
other agents (and possibly humans). However, the agent’s communicate together using
special protocols. Moreover, the reactivity of the agent system is the ability to observe
their surrounding environment, and take actions considering the time factor of affecting
their environment (Franklin and Graesser, 1996). Agents are classified generally
according to their mobility, functionality, skills and location. However an agent if
classified under one criterion, does not mean that it may not belong to another criteria

(Wooldridge, 2002).

According to Zambonelli, Jennings and Wooldridge (2003) intelligent agents systems are
“application software that are intended and developed in terms of self-directed software
entities (agents) that can swiftly achieve their goals”. An intelligent agent can provide the

user with information helps with the decision making process. In order to achieve the

agent tasks, it has to be placed in a compatible environment, where an agent was
developed to interact with. However, an agent is affected by the surrounding environment
events, which these events may affect the time and nature of its actions. Furthermore,
whenever an agent has performed a certain task to achieve a specified goal, a new

objective will be set and pursued by the agent.

A distributed agent interacts between modules such as software, hardware or agent and
concrete functionality to achieve the complex objectives. These agents are implemented
in different machines to communicate together through a network to allow a distributed
scheme.

Multi-agent system (MAS) is a system consists of multiple interacting intelligent agents.
They can be used to solve problems which are difficult or impossible for an individual
agent or monolithic system to handle (Collinot and Drogoul, 2007). Another type of
agent is a Mobile agent. The main idea of a Mobile agent is to perform a client server
tasks by transmitting an executable program on demand. They are described to hold
dynamic services, in which they have the ability to transmit themselves over the networks
in order to perform specific tasks. Moreover, they are programmed using scripting
languages. However, A mobile agent can be dispatched from a client computer and
proceed to a remote server computer for execution (Collinot & Drogoul, 2007). In order
for a mobile agent to emigrate over a network, the server has to allow such autonomous
actions. Mobile agents can interact with each other in both synchronous and
asynchronous ways, according to the server roaming and messaging support (Harvey,

Tosif, Julian and Charles, 2001).

1.1 Problem Statement

According to Stallings (1999) the current IP-network management systems normally
utilize the centralized (client-server) architecture. Researchers have stated that, those
systems may cause serious efficiency defects, when the complexity and size of the

network increases (Liotta, Pavlou & Knight, 2002).

Numerous studies have been conducted in the area of automated network monitoring. As
a result, many systems that can handle such heterogeneous systems in a rapid change of
the network structure have been introduced. However, those systems have some
limitation. They are known of making a huge overload on the network due to their
unnecessary message transaction between the server and the monitored hosts (Gavalas,
Greenwood, Ghanbari, and O'Mahony, 2000). Moreover, as the malfunction reports are
being given by users who may lack the experience of knowing exactly what is wrong,
makes it hard for the maintenance team to identify what exactly went wrong and how
serious it is (Bianchini, 2003). The lack of getting appropriate information describing the
malfunction when an error is reported makes it hard for the maintenance team to make a
correct assessment of the potential risk. Nevertheless, the delay of fixing some problems
or errors may have catastrophic effects, if not handled immediately. Therefore, an
efficient model, especially an automated monitoring to perform on heterogeneous

networks is needed.

1.2 Research Objectives

The purpose of this study is to:
o Identify the suitable agent taxonomy for the network monitoring and fault
detection model.
e Construct a model of an automated fault diagnosis and reporting system.

o Design the diagnosis agent for the system.

1.3 Significance of the Study

The IA fault detection system saves time, cost and effort of the extensive maintenance
operation tasks, as well as the prototype ensures a more secured and more functional
network. This prototype leads into an improved quality of the network service, and
getting better security standards over the network from outsiders’ intrusion attempts as

well.

1.4 Scope and Limitations

The scope of this study focuses on supporting the task of the UUM maintenance
operational team, to get more efficient information of the malfunction of over the intranet,

even without human involvement,

The prototype was developed by using JAVA programming language, which is
considered to be an independent platform language that can be executed under any

operating system, as well as JAVA support for multithreading in distributed
6

programming is one more advantage to be taken into consideration. The security

provided by JAVA for developing networking application is needed in such systems.

Another programming language that is used in developing the prototype is C language. It
will hold responsibility of extracting diagnosis information from the operating system by
utilizing an existing API “windows.h”. The C subsystem will be integrated with JAVA
using JAVA NATIVE INTERFACE “INI”, which is a programming framework that
allows JAVA code running in a Java Virtual Machine to call and to be called by native
applications and libraries written in other languages, such as C, C++.

The prototype can diagnose and report a sample of errors and malfunctions, such as
programs halts, compatibility issues, system unplanned restarts and hardware drivers

related issues.

The process itself however will have some challenges and limitations concerning the
heterogeneous architecture of network in which workstation maybe running under
different platforms, operating systems, and even a different set of hardware, moreover the
rapidly increasing number of bugs and errors requires a huge effort to classify each one

of them.

1.5 Organization of Report

This section provides a general overview for each chapter. This study falls into six
chapters; Introduction, Literature Review, Methodology, System Analysis and Design,

Results and Discussion and Conclusion.

Starting with the introduction, an overall idea of this study will be gathered in the
readers’ mind. Explaining some terminologies that have been used in this study will make

it easy to understand this work.

From the literature chapter two, the main concept of network management and
monitoring, and their applications have been clarified. As well as showing the different
agent models that has been utilized in the network monitoring systems. Chapter three
presents the methodology that has been applied in this study, which has been adopted
from the Rapid Application Development approach.

Chapter four includes the system analysis and design to clarify the system specification.
The experiments applied in this study can be found in Chapter five, there are two main
experiments; one is measuring the system impact on the network efficiency, and the other
one is to measure the system impact on the host performance. A conclusion and future

work are presented in Chapter six.

CHAPTER TWO

LITERATURE REVIEW

This chapter presents an inspection of the different approaches used for fault detection
and analysis. It also shows intelligent agent different taxonomies and characteristics
along with the applications of intelligent agent technology and the contribution of

intelligent agent technology in the Fault Detection systems as well.

2.1 Intelligent Agents

The agent is a part of software system that interacts and cooperates with other agents
(including both people and software). The agent interacts with other agents to hold the
responsibility of taking actions and deciding if the action is appropriate or not. Agents do
not invoke themselves during execution, instead they activate themselves automatically.
An agent is an entity which is able to solve the problems automatically using the main
features of the agent; these features are independence, social ability and reactivity. The
independence is one of the most important characteristics of the agent, in other words, the
agent work independently with no interaction with the human or external actors and may
the agents have the ability to manipulate their status. The second important characteristic
of agent software is the social ability, which means agents are considered to be

interrelating with other agents (and possibly humans). However, the agent’s communicate

with each other using special protocols. Moreover, the reactivity of the agent system is
the ability to observe their surrounding environment, and take actions considering the

time factor of affecting their environment (Franklin and Graesser, 1996).

Agents are classified generally according to their mobility, functionality, skills and
location. However an agent if classified under one criterion, does not mean that it may
not belong to another criteria as well, depending on the agent anatomy (Wooldridge,

2002).

2.1.1 Distributed Intelligent Agents

A distributed agent interacts between modules such as software, hardware or agent and
concrete functionality to achieve the complex objectives. These agents are implemented
in different machines to communicate through a network to allow a distributed scheme.
According to Zambonelli, Jennings and Wooldridge (2003), Intelligent Agents Systems
are “application software that are intended and developed in terms of self-directed
software entities (agents) that can swiftly achieve their goals”. An intelligent agent can
provide the user with information helps about the decision making process. In order to
achieve the agent tasks, it has to be placed in a suitable environment, where an agent was
developed to interact with. However, an agent is affected by the surrounding environment
events, which these events may affect the time and nature of its actions. Furthermore,
whenever an agent has performed a certain task to achieve a specified goal, a new

objective will be set and pursued by the agent.

10

A distributed IA-based network monitoring tool was proposed by Wu, Zhaol (2008) In
their research they used the cross-platform language Python to develop the system, the
significance of the system is that it uses both of the automatic and manual monitoring
modes, the combination of the monitoring modes were used to improve the efficiency of
the system, so it wouldn’t have recognizable effect on the network reliability. After
evaluating the system they found that methods applied in their system can be used in
different network topologies. Moreover, they found that the more the anticipated
condition close to the original state, the smaller the communication failure probability
gets, and the higher the communication are reliable. However they have stated that the
experiment subject was a network that consists of 16 nodes, which means that in large
scale networks their results would be different and the system may cause an overflow on
the network. They suggested utilizing of Multi-IA in order to improve the monitoring

capabilities for more complex networks.

2.1.2 Multi-Agents
Multi-agent system (MAS) is a system consists of multiple interacted intelligent agents.
They can be used to solve problems which are difficult or impossible for an individual

agent or monolithic system to handle (Collinot and Drogoul, 2007).

Gavalas et al. (2000) have presented a research project studying a new a strategy to
monitor devices and a tool, called “MoDPAI”, which uses computation and intelligent
software agents. The strategy divided the network’s management into well-defined steps,

encompassing stages from the survey of the devices’ requirements to the generation of

11

standardized network monitoring reports. The main characteristic of the tool presented
herein is the use of software agents that help the administrator’s decision-making
activities, speeding up the monitoring and control of the monitored devices. The
administrator and agents can exchange information directly through the tool or through
pervasive devices connected to the Internet, allowing queries and responses for guidance
of the monitoring activities to be carried out at any point. The advantages of using mobile
agent technology is that it facilitate the network management tasks, by getting more
efficient information faster than the traditional way of diagnosing and management which
leads to a more efficient use of computational resources. Moreover agents if given a
perceive knowledge, the overload on the network will not be large, and will not affect the
network performance. However such agents will not perform efficiently under networks
with large diversity of heterogeneously. Empirical results confirmed a significant
improvement on traffic overhead when testing their proposed application in realistic

management scenarios.

2.1.3 Mobile Agents

According to Gavalas, Tsekouras and Anagnostopoulos (2009) Mobile agents (MAs) are
programs that can be dispatched by a client for execution on a remote server. Mobile
agents are not an implementation or protocol. It is an infrastructure or framework. To
implement mobile agents you can use any protocol and any programming language, the
choice is up to the programmer. There are a couple of implementations of the mobile
agents framework, the framework consists of four major components. The manager

application has a user interface of some kind that shows the status of different network

12

devices. It can monitor the progress of any MA and can dispatch another. From this
application the user has control over the whole network management process .On every
managed device there is a Mobile Agent Server. The MAS takes care of MAs it receives
from the network and executes them. The framework does not depend on security and
can do without it. If security is to be used, the MAS should have the biggest
responsibility, because it executes programs (MAs) that can come from anyone. For MA
framework to be secure, the MAS need to be able to authenticate users and decide
whether the code should be executed or not. The MAS can itself collect management data,
but a better idea is to let the MAS only deal with security and execution of the MA and
let the real data collection to another protocol like SNMP. There must be someone or
something that creates these MAs. MAs can be written by users that are interested in
monitoring some important status or they can be generated by other programs. These
MAs are stored in a repository where the application can use the one it needs. Because of
this flexibility MA have the ability of running new programs on any network device, and
the functionality to accomplish management tasks of a constantly changing network
environment can by dynamically extended. Mobile Agents are programs, but they also
contain their state. When an MA gets back to the manager, after being on the network,
the manager wants the information that the MA retrieved and the MA therefore needs
state information. An MA can do one half of its work on one device and do the other half
on another device. Probably it wants to save the state from the first half to be able to
know where to begin the work on the other device. This is another reason for MAs to also

contain state.

13

2.2 Fault Detection and Diagnosis

According to Sakai, Matsuba and Ishikawa (2007) a failure is an incident that arise when
the pitched service turn from the flow of an acceptable behavior. Where, an error happen
when an element provides the ability or a service does not supply an anticipated reaction.
And a fault is the reason that an error arises. Faults lead into errors. Errors lead to
succeeding errors, and then a failure take place. Fault detection techniques for network
systems observe the condition of procedures and hardware components running on the
operating system platform periodically. In these fault detection system, associations
among monitoring processes and monitored entities are set via the system configuration.
The fault detection system will monitor the defined target using these relationships, and

consequently finds the faults.

Fault management is part of network management term, whenever a service or network
device fails, the management system shall detect the fault, find the cause and report the
failure. In some cases the management system can also restore the service automatically,
but most often a network operator has to fix the fault manually. The goal of fault
management is to increase the network reliability, discover failures as quickly as possible
so a network operator can fix the problem, hopefully even before the network’s users

notices there is a problem .

There has been many researched conducted in the area of Fault detection and analysis in

distributed systems and applications. Fault detection techniques are classified based on

14

their criteria such as hardware and software techniques and the type of detection schemes

such as statistical methods, distance-based .

2.2.1 Hardware/Software Based Fault Detection

Hardware replication and lockstepping to detect hardware faults in microprocessors is
very commonly used. However, this fixed division of hardware resources among
replicated components has a high expectancy of causing efficiency related problems .
They proposed using concurrent and Redundant Threading approach to provide
momentary fault reporting, they utilized multiple hardware frameworks of Simultaneous
Multithreading. This approach provides better efficiency by using active scheduling of its
hardware. Their proposed approach had an improved ability to detect faults. To achieve
that first they initiated the field of replication, in order to get an abstraction of both the
physical redundancy of a lockstepped system and the logical redundancy of an SRT
processor. This helps in discovering the scale of fault exposure and the output and input

which requires handling.

Another framework that an employs new technique to enhance fault detection proposed
by Ray, Hoe and Falsafi (2001). They proposed a random superscalar data approach by
adjusting recursively verifying the outputs of the active paralleled execution threads.
Furthermore, they suggested using a branch rewind mechanism for recovery. Their
proposed technique called PROFIT, Their proposed approach mainly depended on three

key processes. Firstly, they embedded a dynamic instruction injection, which can produce

15

redundant execution threads. Secondly, they utilized value synchronization to examine
the generated instruction results to discover faults. Finally, they periodically saved the
state of execution that is identified to be fault free in order to be used as recovery points.
This approach finds out faults and performance points of strength and weakness of every
running application, and then determines when to activate redundant execution using its

profile.

2.2.2 Detection Scheme Based Fault Detection

Fault detection and analysis has been classified into several categories, statistical
approach, profiling, and distance-based methods. Statistical approach works by tracing
the behavior of the system through approximating a set of defined varying objects
periodically. Like tracking the messages transactions of events among components, the
system metrics and sessions log. It keeps statistical averages of these variables, and by
comparing the standard deviation obtained from the previous reading with the ongoing
reading coming from the monitored target it can detect abnormal behavior by identifying

if the thresholds have outmatched their limits or not (Kim et al., 2008).

Distance-based methods solve this inadequacy. It has the ability of identifying outliers
according to the computing distances between nodes (Cohen, Zhang, Goldszmidt,
Symons, Kelly & Fox, 2005). Instead of constantly storing the readings of the system
metrics, which gives a fixed way of indexing and retrieving faults diagnosis data, they

proposed a better method to generate and store fault reports. Their selective data

16

collection approach recorded the provenance and significance of these metrics. Their
technique has shown how clustering and retrieval techniques assist the diagnosis entity to
enhance the outcome of previous work and classify similar frequent problem occurrences.
Moreover, their proposed technique has shown improvements in correcting misdiagnosis,

even in distributed environments.

2.3 Applications of IA-based Fault detection and diagnosis

Network management systems are characterized by distributed data processing and
decision making, which would create a bottleneck if brought to be managed centrally.
However, distributed intelligent agents can be delegated the task of network management
to perform administrative tasks such as applying network policy, monitor quality of
service, etc. In addition to the flexibility, intelligent agents offer considerable advantages
by conserving network bandwidth, decentralizing computation load, quickly responding
and scaling easily (Boutaba, 2002).

Utton and Scharf (2004) have proposed a system for diagnosing errors over a network of
home convenience accessories, such as network links, nodes, devices, and software’s
Systems. The systems suppose to observe devices, diagnose automatically for faults and
errors and then generate reports describes the error which has happened or it may occur.
Their article shows a model of the application, and the observations taken after
deployment. The experiment shows how the technology of distributed intelligent
multiagent can help us solve problems in such heterogeneous distributed environment,

where different set of hardware’s and software’s are the environment of the intelligent

17

multiagent. The idea of the model utilized the partial maintenance approach where when
a fault is diagnosed and reported the agent will diagnose the cause of the problem and
then will locate the smallest part in the device, in which if replaced it can solve the
problem. However because of the great diversity of the network devices, the multiagents
were embedded with different sets of intelligence. In other words the system efficiency
and reliability worked fine according to the aimed standards but the computational load
of the system was very expensive.

According to Dong-Liang and Sheng-Yuan. (2009) there has been lots of network
management application, which effectively can assist with the task of managing and
monitoring a network. However, those application shows lack for flexibility in the
mechanisms of monitoring a network, and the diagnosis of network status. Consequently,
they proposed a new approach that supports the network monitoring, and utilizing the
multi distributed intelligent agents along with the SNMP protocol. They developed a
prototype the implement their proposed approach using JAVA along with Knowledge
query manipulation Language to handle the communication among the agents. They used
a MySQL database to save data being collected by the agents. The system was deployed
in centralized network architecture. Their prototype has shown an increased robustness
due to the usage of only open source code. Moreover, the prototype showed reeducation
of both computational workload and network workload. However, the system needed

further expansion regarding the report generation methods.

The development of Mobile Agent-based applications is fraught with risks. Due to the

mobile agent ability of immigrating across network nodes and perform different task on

18

different hosts efficiently, security problems may occur. These problems become more
serious when mobile agent is used for network management purpose. Satoh (2002) have
addressed these problems along with other defect that may occur when developing a
mobile agent-based network management system. As a response they proposed a new
approach for developing such applications. His model consisted of two types of mobile
agents. One is the task agent, which has a specific knowledge that enables it to handle a
specific type of tasks. The other one is the navigator agent which is more familiar with
the topology of its target sub network, by that it enables the navigator agent to handle
issues that is related to a certain domain in the network. This dual mobile agent
mechanism was called Agent pool. It explicitly selects the appropriate agent for the
different sub networks located in the managed networks domain. He has designed and
implemented a prototype based on His proposed approach. The designed prototype was
implemented using Mobile spaces, taking in consideration the value can be added by
using Mobile spaces, which resembles with the strengthening the conservation of the
mobile agents state. Moreover mobile spaces being developed under JAVA infrastructure,
it holds the same values of JAVA programming. The agents used a TCP-based agent
migration protocol to perform their movement on the network environment. The
prototype showed great improvements regarding the reusability and performance.
Moreover agents were more network independent, in other words agents were able to
detect changes in the network topology, and preserve to be used during their next
dispatch in a heuristic manner. However the prototype showed quite a limitation when

dealing with their migration routes.

19

According to Bianchini (2003), the needs for decentralize and heterogeneous system
management and the rapid decentralization of computational resources have involved the
development of strategies and tools to assist the network administrator in great part of the
tasks through artificial management system. The MoDPAI come as a result of the
strategy to monitor devices and tool, Intelligent system agent and pervasive computation
was the mainly used to produce the prototype. Based on the prototype developed, the
system for monitoring network devices using computing and intelligent software agent
(MoDPAI), modeled based on the catalysis method techniques and programmed with
JAVA programming. The layers that had been used in this prototype are offers the
Graphical User interface or Wireless User Interface, shows the communication through
the SNMP protocol and the function of the ISA, the third layer is the file system and the
Database to storage the all information related to the monitoring such as knowledge bases
of the agents, devices information properties, and configuration; that for increase the
reusability and reduce the code redundancy and facilitating maintenance. The results of
their prototype are allowed for more accurate analysis and detection of problems in the
network. However, the developed prototype had one disadvantage, which is the need for

end users to be familiar with the syntax of KB language.

Ibrahim (2006) have stated in his article that Mobile agent based Network Monitoring
applications are still facing a lot of defects and major problems, especially considering
the miss coordination among multiple mobile agents when visiting the same location on a
network. Moreover, he mentioned the arising problems in coding the mobile agents when

dealing with security issues, where security bleaches may change the agent code. He

20

proposed a new architecture that addresses the risks of code mobility. The key idea was
to provide a graphical user interface to view information of managed nodes visiting plan,
and then obtain input from users. In other words users had the credentials to request
creating mobile agents. The architecture proposed a server agent in which plays the role
of providing resources and communication support to the mobile agents. He implemented
a prototype based on the proposed architecture using both Java and Aglets. Agents used
Aglet transfer protocol to perform migrations over the network. The model shows better
security standards especially regarding the agent migrations, and better protection against
malicious agents’ attacks. However, due the huge load of information the agent collect in
every visited node the impact on the network bandwidth was impeccable. He

recommended the integration of mobile agents with SNMP architecture.

Pugazendi and Duraiswamy (2009) have acknowledged the role of mobile agents to
reduce network traffic and providing more effective approach of network monitoring.
They have utilized the asynchronous operating, independent execution of a mobile agent
to develop a monitoring system. Their aim was to develop a robust and fault tolerance
system that can perform the tasks of network monitoring. They developed their tool using
the extreme programming approach by identifying objective of the system and applying
them immediately in programming code. The system contained the both static and mobile
agent. The mobile agent, when generated will hold a list that contains names of the node
which the agent will migrate to, using Agent Transfer Protocol for dispatching. They
migrate to the specified node to collect required data, and then returns to the manager

agent to dump these data for processing and analyzing operation. The static agent part

21

was meant to be located on every monitored node on the network. Their basic mission is
to wait for the arrival of mobile agents, and hand over the required data to the mobile
agent, after filtering these data. The manager agent mission is to dispatch mobile agents
to collect data, and process data collected by these agents. After processing data the
manager could present two types of views. A graphical and tabular view, and an event
record for every node as well. By using this architecture they were able to avoid several
problems that were faced in previous agent based-monitoring system. Problems like
agents return wrong results of the agent call, and the incorrect execution of the migrated

code. The architecture highly improved the security standards.

The direction of developing computer system is driven into the development of more
dependable and fault tolerance applications. However, the mechanisms used to detect
failures in those applications are not capable of detecting faults caused by factors from
outside their specified area on both of the hardware and software levels. In which, such
undetectable faults can have catastrophic effect in critical computer-driven systems
(Baldini, Benso, Chiusano & Prinetto, 2000). They have stated in their paper that, there
have been many studies conducted for the purpose of investigating the dependability
validation under the UNIX operating system, not many have been conducted in the same
field under windows operating system. Considering these reasons, they have proposed a
fault diagnosis tool capable of operating under WIN32 platform, the tool called BOND.
The objective of the proposed tool was to measure the flexibility and stability of a
computer application by performing fault tolerant validation procedure after injecting the

application with artificial errors. The tool design consisted of two major components.

22

One is the logger agent which is responsible of detecting faults caused by debugging,
APIs calls or wrong memory access. The logger agent is responsible of synchronizing the
fault injection towards the targeted application and then observing the behavior of this
application. The other major component of BOND is the fault injection agent, which is
responsible of injecting faults into the target application, according to the location of the
fault, fault type and fault duration criteria’s. The diagnosis reports results were classified
into no effect, an application crash or a silent failure. They have preformed a simulation
to evaluate the functionality of the program. The results have demonstrated the power of
the tool by injecting faults on different application contexts and evaluating the immunity

of the targeted application.

Large scale networks diversity of hardware and software component can make the
detection of a failure source a very complicated task. In such distributed environments
errors can propagate, where an error can cause consequent errors over the other
connected hosts on the network, a fault monitoring system then will detect a numerous
number of errors all over the network, where all of these report are considered to be
worthless since it does not specify the origin of the fault. Moreover, the existing fault
detection systems reconfiguration to handle such issues is hard work (Sakai, Matsuba and
Ishikawa, 2007). They proposed a fault detection system that addresses these issues.
Their proposed system is able to identify the source of an error using the relations
mapping the sets of reported propagated errors using the error relationship tree. The error
relationship tree was introduced to link propagated errors with the source error and the

type of hardware reported with the fault. The system is connected to a database that

23

contains information about connected entities and software’s, the network topology as
well. The system terminology consisted of a database adapter responsible executing SQL
queries to obtain information of the reported faulting entity, a simple command executer
which lunches a tool that diagnose the fault and generate error reports. Lastly, results
manager which handles the task of generating graphical reports. The prototype was
implanted to perform under LINUX platform. The detection engine was implemented in
C language, while the detection tools are implanted using Linux shell commands. The
proposed system had the advantage of identifying the source of errors, and the
reconfiguration of the error relation tree is far more simple task than conventional fault
detection system reconfiguration, in which supports the system flexibility in handling a

wide set of errors.

2.4 Summary
Based on the traditional diagnosis systems approaches, combined with the intelligent
Agent technology, a distributed intellectualized have proven to add important new
abilities to the fault detection approaches. Although many of the proposed system have
shown enhanced effectiveness and flexibility, the trade-off between performance and

precision is still an issue facing such systems.

24

CHAPTER THREE

METHODOLOGY

This chapter shows the process phases which are followed to obtain the intended results
of the project. It describes the step by step methodology that we have followed starting
from getting the tentative design followed by the development process of the system and

the evaluation procedures conducted.

3.1 Research Phases

The research design methodology used in this thesis has been adopted from the general
methodology for design and research proposed by Vaishnavi and Kuechler (2004). Figure
3.1 shows steps of the adopted framework, the output of each step, and how the flow of

the framework achieves the project objectives.

Awareness of Problem is conducted during the preparation of the research proposal.
Concept Design phase follows immediately behind the proposal. It outputs a tentative
design. Tentative design is likely to make the key role player in affecting the performance
of the prototype based on that design would be an integral part of the Proposal.
Development phase takes the tentative design and implement it. The techniques for
implementation will of course vary depending on the artifact to be that is being
constructed to fulfill the requirement specified. Evaluation phase is conducted once the
system is constructed. The system is evaluated according to a criterion that is commonly
applied to fault detection systems. The evaluation phase contains an analytic sub-phase in

which hypotheses are made about the behavior of the proposed system. Conclusion phase

25

is the finale of a specific research effort. Typically, it is the result of contribution made

based on the obtained results.

Process Step Output Objective Achieved

Awareness
of The
Problem

Proposal

~ Identify the suitable

agent taxonomy for

the Fault monitoring
model

Concept Tentative

| Design ' Design

i Development ===z Model
| ' I S, |
! : i 1 5> Constructand |
L_ e L e S l evaluate a model of |

«' an automated fault
) diagnosis and \
G reporting
. Performance ="
Evaluation =

Measures Lk‘F“J

Conclusion Em===j Results

Figure 3. 1 : Research Design Methodology Adopted from (Vaishnavi & kuechler, 2004)

3.2 Concept Design
After conducting literature review a clear formulation of the aspects of the problem has
been acquired, and the suitable design of the agent architecture as well. Moreover,

addressing the operating system and the application running under Microsoft platform

26

faults, Microsoft support center “Microsoft TechNet” contains information that helps

identifying the aspects and symptoms of each error and the risk an error may hold.

3.3 Development

Like most of the OO-SDLCs RAD works in sequential order, Rapid Application
Development consists of only three phases in which are running sequentially, the phase
of Planning Requirements, Design Workshop phase and the Implementation phase.
Figure 3.2 shows the Methodology steps. The choice of Rapid application development

was due to its simplicity, less time consumption, speed of execution and quality results .

& p ::/x g N
’ | Design .
ﬂ/{plementation Qsting Work 5?1 op Analysis |
W\ S
N " /
N

Figure 3. 2 : Rapid Application Methodology Life Cycle

The proposed model consists of a diagnosis intelligent agent and the server side. The
diagnosis IA resides on every connected node on the network. It collects fault reports
caused by different sources and transmit over to the server side. The server side listen to a
specified port on the network, classify the hazard of the fault and store reports in a

database for further future diagnosis of hosts state. It has a user interface connected on a

27

web server to insure accessibility over the network. Figure 3.3 shows the architecture of

the system.

User Interface

Diagnosis - 1A Host # n

Database

Figure 3. 3 : Intelligent agent-based fault detection system

3.3.1 Designing Agent Model

In order to get an optimal design of the agent model, a definition of the agent role model

has to be set. Agent role model describes the characteristics of the agent functions and

capabilities.

Defining the agent role model is done by the recognition of four aspects:

28

%

o Responsibilities of the agent: Which are translated into function during the
implementation phase

<> Permissions: Specifies the limitation on the resource that the agent can

> Activities: It defines the tasks that can be performed by the agent without
outsiders involvement

<o Protocol: This defines the interaction method among agents

Furthermore, a definition of the interaction model has to be set also. Interaction model
shows the protocol agents have to follow during the execution of their process. It is
derived from the initial role model by giving a clear description of how an agent responds

to an event, lunch a role or deal with captured information.

According to Buschmann (1996) Agents should be deconstructed into layers because of
their higher level of behavior depends on their lower level capabilities, and because of
their messaging architecture in which There is two way information stream between each

two related levels.

As in their research they have shown the basic layered architecture of the distributed

intelligent agent structure.

29

e Mobility Layer: responsible for bringing in the messages
coming from distant agents

e Translation Layer: translate incoming transmissions.

e Collaboration Layer: determines whether an incoming
message should be processed or not.

e Actions Layer: responsible for taking in pending action

e Reasoning Layer responsible for reading the selected action

e Beliefs Layer: responsible for updating beliefs according to

reasoning

e Sensory Layer: responsible for gathering regular sensor

updates

The suggested methodology of development refers that different prototypes will be
produced by the end of every cycle according to the feedback of the administrators.

However, the model of our diagnosis agent will be fixed as shown in Figure 3.4.

. Decision .
E@fa‘%‘> Sensor J Diagnoser >‘ Maker S Transmitter :@Eﬁ >

\ Y

Figure 3. 4 : Agent Model

The model shows that the predictive agent will be divided into four sub agents to each its
own specific task, in which the task of the other agents depends on its results. The Sensor

sub Agent, responsible of observing the status of the computer the agent running on,

30

reading the computer performance meters and collecting information about errors rising,
notifications coming from the system, in which may be reported to the user or only
preserved in the system log. Diagnosis agent responsible of reading information coming
from the sensor agent, its task is to translate these data, classify and purify it. Decision
making Agent , responsible of taking hold of data coming the diagnosis agent for further
analysis in order to either generate a report or wait for more information. Transmitting
Agent which is holds the responsibility of communicating with the server agent. It will be
activated in two cases either to report to the system that the agent is alive or to send

reports coming from Decision making Agent.

Kendall, Krishna, Suresh and Pathak (2000) recommended a new framework that utilizes
the of OOP methodologies in the development of an agent based system for network
management, with an object oriented representation. The results of the research shows
that it is possible to use an object oriented methodology for developing models and
application such as Distributed Intelligent agent systems, by applying the following
Design patterns through the Design phase of the development process each to its

respected layer:

31

Table 3. 1 : List of Design Pattern to be used with their respective Agent Layer (Kendall et al.,

2000)
Layer Design Pattern
SENSORY -Adapter pattern
Beliefs -Composite pattern
REASONING -The Interpreter and Strategy patterns
- Command is used to make a plan into a command.
- Abstract Factory creates a plan object based on a given class library.
- Factory Method creates intention thread objects dynamically.
ACTION - Decorator implements the Prioritizer.
- Future with Observer
- Synchronized Singleton is used to manage the collaboration threads.
COLLABORATION | - Decorator changes the behavior of the thread dynamically

3.3.2 Server Design

Figure 3.5 shows the design of the server side model, it consist of four major components,

the listener opens a port on the network interface and listen on that network in order to

collect incoming fault reports transmitted from the distributed diagnosis agents. Where

the organizer takes charge of classifying incoming faults reports according to the report

host source and the criticality of the report, it is also in charge of handling SQL queries

performed on the reports database. The reports database is a repository of the previous

reports, where every fault report will be stored in the database for the purpose of

preserving these reports, using it for user requests. The final part of the server side is the

32

JSP user interface, which is a graphical user interface, implemented using JAVA
SERVER PAGES and located on a web server for remote access, it displays information
regarding the status of every connected host on the network and that’s where the final

form of the report is shown.

S VA N

{ " Listener “

L Organizer j

!

RepO(ts DB

ASP lirar Intarfara

Figure 3. 5 : Server Side

3.3.3 Implementation
Conducting the implementation is based on the results gained from the design phase
where every model is realized into a working prototype. However, the implementation of

such system requires a programming language that can adapt with different operating

33

systems platform, a wide support of networking and the ability for a concurrent execution.
Moreover, realizing the need for a fully object oriented support to facilitate the
implementation of design patterns specified under the design of agent model section.
JAVA programming language can fulfill all of these requirements and so is appropriate
choice for implementing such system.

Since WIN32 is the agent environment of operation, the agent is required to fully interact
with the operating system components in order to collect the needed data for diagnosis.

However, JAVA does not have a direct support of WIN32 application.

The Java Native Interface (JNI) permits the combination of code written in the Java
programming language with code written in other languages such as C and C++. It allows
programmers to take full advantage of the Java platform and enabling JAVA of

interacting with WINDOWS components.

JNI allows one to write native methods to handle situations when an application cannot
be written entirely in the Java programming language. This allows all Java applications to
access this functionality in a safe and platform-independent manner. Before resorting to
using JNI, developers should make sure the functionality is not already provided in the
standard libraries. The JNI framework lets a native method utilize Java objects in the
same way that Java code uses these objects. A native method can create Java objects and
then inspect and use these objects to perform its tasks. A native method can also inspect

and use objects created by Java application code.

34

Considering these features, the sensory layer of the agent has been implemented using
JNI. The native part of the sensory is implemented using C language utilizing the
windows.h API for the purpose of reading the operating system indicators, and then

transforming these data into a JAVA integrated form to carry out the diagnosis tasks.

3.4 Evaluation

In this section, we illustrate various scenarios and evaluate the anomaly detection
capabilities of the system using fault injection into the experiment subject. Faults
selection was made on both application and system levels. Moreover, faults selection was
extracted from real life situations. After conducting fault injection into the experiment
subject, we will observe the proposed system response to these artificial errors, and the

system effect on the network performance.

3.5 Summary

The agent based fault detection system architecture has been discussed in details in this
chapter, the system consist of two parts formulating a client-server architecture, where
the agent is embedded with intelligence in order to operate the operating system metrics
collection and the identification of faulty events. The agent was designed under several
desing patterns in order to divide it into reusable components which makes it easier to
update its set of beliefs. The server had a web based graphical user interface connected to

a database to store faults reports coming from agents distributed across the intranet.

35

CHAPTER FOUR

SYSTEM ANALYSIS AND DESIGN

The system analysis and design chapter contains Logical Design and Physical Designing.
Logical designing describes the structure and characteristics or features. The physical

design shows the actual software and a working system.

4.1 System Requirements

Listed below are the functional requirements and non-functional requirement of the
system. In the priority column, the following short hands are used:

* M - mandatory requirements (something the system must do)

= D — desirable requirements (something the system preferably should do)

= O - optional requirements (something the system may do)

4.1.1 Functional Requirements

Table 4. | : list of Functional Requirements

IMS 01 View Latest Error

1. IMS 01 01 | Admin can view the latest error for all the Hosts. M

2. IMS 01 02 | Admin can view the latest error for each Host. M

IMS 02 View Network Error Statistics

3. IMS 02 01 | Admin can view the host’s errors.
4. IMS 02 02 | Admin can view the number of error in all hosts.
IMS 03 View Host Error Statistics
6. IMS 03 01 | Admin can view each host error. M
7. IMS 03 02 | Admin can view the number of errors in each host. M

36

8. IMS 03_03 | Admin can view the risk type for each error in each D
host.
9. IMS 04 Collect and send Host Status
10. IMS _04_01 | Agent will move between the hosts.
11. IMS _04_02 | Agent will collect the data about each host status. M
12. IMS 04 03 | Agent will send the status for each host to the server. D
IMS 05 Identify Event
13. IMS 05_01 | Agent can identify the source and problem for each M
error.
14. IMS 05_02 | Agent can determine the risk type for each error. D
IMS 06 Organize Collected Data
15. IMS 06 01 | Agent will arrange the errors. M
16. IMS 06 02 | Agent will organize the handled process. M
4.1.2 Non-Functional Requirements
Table 4. 2 : List of Non-Functional Requirements
No. | Requirement Requirement Description Priority
1D
IMS 07 SECURITY
17. IMS 07 01 | Only the Admin can see hosts records. M
IMS 8 PERFORMANCE
18. IMS 8 02 | The system should be available all the time. 0
IMS 9 OPERATION
19. IMS 9 01 The system will operate in Windows environment. D
IMS 10 RELIABILITY ISSUES
20. | IMS 10_01 If the systems crash, it should behave perfectly M

normal when reloaded again.

37

4.2 Use Case Diagram & Specification

Figure 4.1 shows the use case diagram presenting a graphical overview of the

functionality provided by the [A-based fault detection system.

- ~— \\F/ \
/. Collect and sfend Ho%a@s

| <include> \ .
|
-t
’//\\. ;/\\\ / [\
y . Agent
g View Network Emor Stafistics IdentifyEvent / :
Administrator
////
N e
— //—\\ / s \
)
\\J,/ N4

View HostError Statistics ~ Organize Collected Data

Figure 4. 1: Use Case Diagram

38

4.2.1 View Latest Errors

i i
N,

N o/

N e e

s

Administrator View Latest Emors

Figure 4. 2: View Latest Errors Use Case

Description:
o This use case allows Admin to view the latest errors for all the hosts order by the
risk held in it.

Actor:
¢ Admin.

Requirements:
¢ IMS 01

Pre-Conditions:-
e Not Applicable.

Post-Conditions: -
e Not Applicable.

Flow of events -
Basic flow: -
o The Use case will begin work. When the Admin press host button.
o System shall display the host page.
o System will display the list of latest error for all the hosts.
e System will order the list of errors, according to the error risk.
Alternate flow:
e Not Applicable.

Exception flow:
e Not Applicable.

Rules:
e Not Applicable

39

4.2.2 View Network Error Statistics

Administrator View Network Error Statistics

Figure 4. 3: View Network Error Statistics Use Case

BRIEF DESCRIPTION
o This use case is initiated by the administrator; this use case will enable the
administrator to view all the hosts’ errors, and the number of these errors.

ACTORS:
e Admin

REQUERMENTS:
o IMS 02

PRE-CONDITIONS
e Not Applicable.

FLOW OF EVENTS

Basic Flow (CBE_02_01)

o The Use case will begin work. When the Admin press chart button.
e System will display the list of error for all the hosts.

e System will order the list of errors, according to the host address.

e System will display statistical chart, for all the hosts.

Exceptional Flow
e Not Applicable.
POST-CONDITIONS
= Not Applicable.

RULES
» Not Applicable.

CONSTRAINT(S)
= Not Applicable.

40

4.2.3 View Host Error Statistics

AN
4 N

Administrator View Host Error Statistics

Figure 4. 4: View Host Error Statistics Use Case

BRIEF DESCRIPTION

This use case is initiated by the Admin. This use case will enable Admin to view
the list of errors for each host.

ACTORS:

e Admin.
REQUERMENTS:

o IMS 03

PRE-CONDITIONS
Admin has to access the host page by click the host button on the homepage,
before start this process.

FLOW OF EVENTS

Basic Flow (CBE_02_01)
o The Use case will begin work, when the Admin select one of the host’s
addresses.
¢ System shall display the list of errors for the host.
o System will order the list of errors, according to the risk error.
e System will display statistical chart, for the hosts.

Alternative Flow
e Not Applicable.
Exceptional Flow
e Not Applicable.
POST-CONDITIONS
s Not Applicable.

RULES(S)
= Not Applicable.

41

PR

4.2.4 Organize and Collect data

(‘) e
Agent Organize Collected Data
Figure 4. 5: Organize and Collect data Use Case.
BRIEF DESCRIPTION

» This use case is initiated by the Agent. This use case will enable Agent to

collect the data from all hosts, and send it to the server.

ACTORS:

e Admin.
REQUERMENTS:

e IMS 04

PRE-CONDITIONS
= Not Applicable
FLOW OF EVENTS

Basic Flow (CBE_02_01)

e The Use case will begin work, when the system begin run.
e Agent will collect data from each host.

e Agent will organize collected data in the host report.

e Agent will send the collected data to the server.

Alternative Flow
= Not Applicable.

Exceptional Flow
= Not Applicable.

POST-CONDITIONS
= Not Applicable.

RULES(S)
= Not Applicable.

42

4.2.5 Collect and Identify

Q T N <<include>> T
o1 = ¥ s)
/\ TN o TN o
E - ~ T s
Agent Collect and send Host Status Identify Event

Figure 4. 6: Collect and Identify Events Use Case

BRIEF DESCRIPTION
This use case is initiated by the Agent. This use case will enable Agent to manage
the host event, check if there is an error or not, and identify each error.
ACTORS:

e Agent
REQUERMENTS:
e IMS 05

PRE-CONDITIONS
» Not Applicable.
FLOW OF EVENTS
Basic Flow (CBE_02_01)

e The Use case will begin work, when the system begin run.
e Agent will manage all the events on the host.

e Agent will check if there is error or not.

e Agent will identify and determine the error source and risk.

Alternative Flow
= Not Applicable.

Exceptional Flow
» Not Applicable.

POST-CONDITIONS
* Not Applicable.

RULES(S)
= Not Applicable.

CONSTRAINT(S)
» Not Applicable.

43

4.3 Activity Diagram

4.3.1 View Latest Errors

Figure 4.7 shows activity diagrams describing the behavioral overall flow of control of
the system when requesting latest errors.

. Start

v/
\/

 Regeust Latest \
(Error List /

/ Obtain the List
\ oferors

/ Order According to
' the emor Risk

/ Display Ordered \
Q erors List /

NV
\|/

</‘\ End

Nl

Figure 4. 7: View Latest Errors Activity Diagram

44

4.3.2 View Network Error Statistics

Figure 4.8 shows activity diagrams describing the behavioral overall flow of control of
the system when requesting network errors statistical view.

. Start

/ Reqeust Latest }
’ Error List ~ /

\
y

/'Obtain the List ‘\'
ofemors /

“ Order According to
\ theemorRisk /

i

,/”5}5’5159"6;&6@&"
i ermors List

i
{

Figure 4. 8: View Network Error Statisties Activity Diagram

45

4.3.3 View Host Error Statistics

Figure 4.9 shows activity diagrams describing the behavioral overall flow of control of
the system when requesting a specific host errors statistical view.

Start

/” Request Host Error Statistics by
_ specifying address of the Host

\,
N

/ Order According to
\ theEmorRisk /

Ve

Display
. Statistical Chart .

\/
("\'} End
W/

Figure 4. 9: View Host Error Statistics Activity Diagram

46

4.3.4 Organize Collected Data

Figure 4.10 shows activity diagrams describing the behavioral overall flow of control of
the system when requesting organization of transferred reports and the methods of
collecting information for the purpose of detecting errors.

;/ Start Lestinin
. to Specified

N

{_ While (True)
N

S U

~\\//, ~. ‘—i

Yes No ‘

N |

/ H

_—~_IfAconnection |

<. _-hasteermade——-
Yes

/ Obtain Report
L. Stuture

/ Store Events

Repot /

/" Update Host
___Sta

Status

Figure 4. 10: Organize Collected Data Activity Diagram

47

4.3.5 Collect & Identify

Figure 4.11 shows activity diagrams describing the behavioral overall flow of control of
the system when requesting identification of collected operating system metrics and the
methods of collecting information for the purpose of detecting errors.

@ stert
) Y
/ Initiate Monitoring "
i Process /

~

I

P While(Timer <
1; lunch -1)

NS
/ Check For

- JF there [s new
.~ Eventls

N/
[\dentify Event
Y. Risk o/

IF Risk = Error

Identify' Error
Source

{

¢ Identify Potential
v Problem/s J

/7 Start New 3
__ Connection /

S SO
/7 Send Eror ‘\)_7
___Report

v

(.\ End
N /

Figure 4. 11: Collect & Identify Events Activity Diagram

48

4.4 Sequence Diagram

4.4.1 View Latest Errors

Figure 4.12 show the sequence diagram that illustrates the specification of runtime
interaction in a graphical manner of the view latest errors procedure.

Admin : User Interface : HomePage Control : System System : database

Admin Click Host Button
}"‘x """ i >‘

I

} Required Page ‘ ‘

H g |

| J Get Latest Error List]
|
|
|

|

Display Latest Error List ’ |

: H /

|
|
|
|
|
|
Figure 4. 12: View Latest Errors Sequence Diagram

49

4.4.2 View Network Errors

Figure 4.13 show the sequence diagram that illustrates the specification of runtime
interaction in a graphical manner of the view network errors procedure.

(} ; ‘,// B \
/// \'\ ‘ \\\ /” R n /
User : Admin Interface : HomePage control : Chart entity : Fauls

| Admin Click Chart Bution | |

Send Request Page

|

Get The list of error and chart i

[o D
|

H ,
| L
|
i

] I

l

|
|
|
| |
|
|
|

|
DispJaythe List of error and chart for all Losts
|

Figure 4. 13: View Network Errors Sequence Diagram

50

4.4.3 View Host Errors

Figure 4.14 show the sequence diagram that illustrates the specification of runtime
interaction in a graphical manner of the view host errors procedure.

User ; Admin Interface : Host Controle : Hosts entity: Faults

l Select one host address j }

T

! : Send Request
‘ | :
| [

i
L

T
|
|

|
|

| |

| |

: i/ Display Erors List and Chart
|

|

|

Figure 4. 14: View Host Errors Sequence Diagram

51

4.4.4 Collect System Metrics and Identify Events

Figure 4.15 show the sequence diagram that illustrates the specification of runtime
interaction in a graphical manner of the reports identification and organization procedure.

g Agent : Controler Entity: Faults
User * Agent Interface : System

| | |

|
CcLIIect and Organize dala for the thst f ’
|
|
|

o |

[7

J !
i [

Send Report

Update host Report

Figure 4. 15: Check Results Sequence Diagram

52

4.4.5 Collect and Identify Events

Figure 4.16 show the sequence diagram that illustrates the specification of runtime

interaction in a graphical manner of system metrics collection and identification of faults

procedure.

If no emor
there, agent
will continue

Manage the
-host event,

: without send
- any report

j

ser: Agent interface : Host controler : agent Entity : Faults

(Agenl Mange Host Events (}
; L

‘ Send Request { ’
} T J Get the Measuring Criteria J
| | g

T
|

J Display Measuring Criteria ‘

" Agent Check host Event
>

Agent Find Eror .
J | S

1
I r (/
Agent Determine error Source anci Risk ‘ |

|
i ‘
Send Report |
| T |
T I Sawe Report 1
| | Lo Seeren o
Pend Host Report To Sener ‘
>! i ‘
? T J
’ i Send Report : |

Save Host Report On the Senver

Figure 4. 16: Collect & Identify Events Sequence Diagram

53

i

i

nti

; tem Faul

4.5 Collaboration Diagram

4.5.1 View Latest Errors

Figure 4.17 illustrates the relationship and interaction between the systems objects when

performing a view latest errors procedure.

1: Admin Click Host Button

T l j
Admin ;: User o
~” Interface : HomePage
' 4 ’
4: Display Lates%Errot List
)
v
e 2 Rémired Page
//
/
7
/
e
s
7
P 3: Get Latest Error List .
S Ve ~
—>
.\\\‘4//// . —_/’
Control : System System : database

Figure 4. 17: View Latest Errors Collaboration Diagram

54

F?

4.5.2 View Network Errors

Figure 4.18 illustrates the relationship and interaction between the systems objects when

performing a view network errors procedure.

1: Admin Click Chart Button

Interface : HomePage

C —> .
b L

J 2\\

User : Admin ,,
4: Displaythe List of error yd cﬂan’for all hosts
Zéem{%questPage
- 3: Get The list of error and chart
control ; Chart

Figure 4. 18: View Network Errors

55

entity: Faults

4.5.3 View Host Errors

Figure 4.19 illustrates the relationship and interaction between the systems objects when

performing a view a specific host errors procedure.

1: Select one host address

D w% :
»»fjﬁitf'\ .
User : Admin /,/'
" Interface : Host
yd
S
. _ e
4: Display Errors L/;tagiﬁhart
v yd
s
S
//2: Séﬁd Request
Ve
e
7
p
,// 3; Get Host Error List
:v' A / __%
Controle : Hosts entity: Faults

Figure 4. 19: View Host Errors Collaboration Diagram

56

4.5.4 Organize Reports

Figure 4.20 illustrates the relationship and interaction between the systems objects when

performing a organization and identification of transferred reports procedure.

1: Collect and Organiz data for the host

i
User: Agent //‘/ Interface : System
e
// ///
7
v ///
// g
// //,/ -
' S%nd Report
//
, 7 i 3: Update host Report
. \‘;// ‘%
Agent: Controler Entity: Faults

Figure 4. 20: Organize Reports Collaboration Diagram

57

4.5.5 Collect and Identify Events

Figure 4.21 illustrates the relationship and interaction between the systems objects when

performing a collection of system metrics and identification of fault events procedure.

1: Agenl Mange Host Evens
5:Agent Check host Event
§: Agent Find Ermor
7. Agent Detesmine emor Source and Risk
10: Send Host Report To Serer
LooJ
-
user:Agnt s
7 inlerface :Host
J ,,/' D
// Enély:Fauls
/// e -
N o0 SGetbeMessuingCieis
4.D|sp|ayveas%ng§mma ek
/ // 7 ///,
7 @:Sﬁd Request
§ Send Repot
11: Send Repor
////’/ 12: Save HostRepor Onthe Seer
,<:—:'//’// %
contuler: agent

Enlity: Sslem Faults

Figure 4. 21: Collect & Identify Events Collaboration Diagram

58

4.6 Class Diagrams

Figure 4.22 shows the existing packages in the system which are divided into two
packages server and agent package.

]

Sener

Agent

Figure 4. 22: Packages Diagram

Figure 4.23 shows the inter-relationships, and the operations and attributes of the classes

existing in the agent package.

Beliefs
(from Logical View)

&Events |
®searchBeliefs(Event)() : Event
SEwentExsts (Event) ; Boolean

SprintBeliefsContent() : void
, SgetBeliefs() : Beliefs

™,

Event ‘
(from Logical View)
&id
&source
& problem
&risk

SgetEventData() : Event

e

AN
Ay

Diagnoser
(from Logical View)
| &Monitor
& Belifes

. %ldentifyEvent(EventRecord) : Event
i ¥subtractDublicates() : wid

‘ EventsVect
i (from Logica! View)

| @& Vector Events

£

| SgetEventvect()
| %addEvent(

i

\
|

Monitor
(from Logical View)

N\,

ok

EventRecord
(from Logical View)
&id
Seon
source
fQ;description

9getEventRecordData() : EventRecord

A ae_r;t:rrar;sporter
(from Logical VM

®SerializeEvents()
| ®TransmittData()

Figure 4. 23: Agent Package Class Diagram

59

Figure 4.24 shows the inter-relationships, and the operations and attributes of the classes

existing in the server package.

NetwoChater HosfChater NetworkViewer EventReader
: . (from Logical View)
 $gelNetworData) . $getHostData(DisplayNetworkRepresentaion()
- WDisplaetworkStaCharl) |~ #DisplayHostStaChart) WreadEients\ect)
é _. WPrioratizeEsents()
e
p |
HostsViewer , S
j / :
 WDisplayNebworkData) | “ y |
h N
\\ Manager - Ewnt R
(fom Logical View) - {from LogicalView EventsVect
SenerListener ?%id (iom Logal View)
(rom Logical View) | $AddNewEvent(source @\Vector Events
getosiEvents() &problem —
Misten{por) WgetetworkLatestEvents) &yisk $getEvenivect) |
481 dXMLNetworkRepresentation() S %addEent)
. ®BuildXMLHos Representation) $etEventDalal)

Figure 4. 24: Server Package Class Diagram

4.7 Summary

In this chapter an illustration of the system components , its relationships , and its
interaction with each other has been presented. UML diagrams has specified the all of the
activity diagrams, sequence diagrams, collaboration diagrams and class diagrams along

with the specification of the system use cases.

60

CHAPTER FIVE

SYSTEM EVALUATION & RESULTS

In this chapter an explanation of the nature of the experiment conducted to evaluate the
implemented system, describing the setup process of the experiment and discussing the

obtained results.

S.1 Experimental Setup and Data

In order to test the system, a network sample consist of 9 PCs one of them was designated
to be the server computer which hosts the web interface was prepared, the system
database and the server agent. Agent were distributed over the network and were given
“10.8.3.133” as the reporting address destination to transmit reports to it, which is the IP

address of the server designated computer.

The sample network computers were cleaned from any symptoms of error existence, to
insure correctness in the calculation of the experiment results. Then we created a list of
faults to be injected over the network samples randomly, in order to cover different

scenarios and situations. Table 5.1 shows the list of injected error.

61

Table 5. 1 : List of Selected faults used in the Testing process

Fault Description
Time provider NtpClient were not able to
perform time synchronization due to sources
W32Time
connectivity problems
Failed to capture network representation
Browser

(Microsoft Network Browsing services)

User environment

Due to faulty registration the operating system
were not able to query DIIName registry entry

(False Registry)

Hanging Application

Faulty program execution or compatibility

issues

Avira AntiVir

Avira Antivirus failed to update.

In this experiment, five different types of faults explained in Table 5.1 were injected. The
selection of these faults was made to simulate the errors and faults on both application
and system levels. W32Time error is time synchronization related failure such as host
unable to connect to any of the reliable time synch sources. User environment errors are
about Internet browser or other network browser services errors (Internet Explorer)
related failure such as failures during update or installation operations which may cause
application failures. Hanging Application are introduces to report faults for corrupted
application which hangs during execution too often, this may happen due to several
reasons such as software incompatibility with the operating system, Avira AntiVir errors

are related to the antivirus used in the UUM network, it reports faults generated from the

62

antivirus itself such as failure of update the viruses signature database. Browser errors are
related to the Microsoft Network Browsing services, such failures can produce an
inconsistent network representation to the faulting host which may cause connectivity

problems over the network. We inject the faults and observe the effect of injected faults.

5.2 Trustworthiness and Validation for Fault Types

In this experiment, we have five different fault scenarios explained in table 1 and section
5.1. We categorize and inject faults by building two different scenarios .first scenario is
by injecting faults on every PC separately in random numbers. The second scenario
includes all faults explained and they are randomly injected stimulusly. Table 5.2 shows

the total number of injected faults during both of the two scenarios.

Table 5. 2 : Number of injected faults on their respective hosts

Computer Error Injected Number of Faults
/10.8.3.178 W32Time 2
/10.8.3.216 Browser 1
/10.8.3.218 Userenv 2
/10.8.3.246 Hanging Application 5

Userenv , Hanging

/10.8.3.247 Application , W32Time , 20
W32Time2

/10.8.3.251 Avira AntiVir 1

/10.8.3.254 Hanging Application 7

63

For the scenarios explained, we evaluate the system ability to detect abnormal and faulty
behavior. The system was able to detect all of the injected faults at the time of
occurrences. Figure 5.1 shows number of detected faults on their respective hosts taken

from the system statistical report.

Fault Ratio

Faults Reported

Host IP Address

Figure 5. 1 : Number of detected faults on the sample network hosts

The scenario had very good results considering the detection criteria. The system was

able to detect all of the injected faults.

5.3 Performance Validation for Testing Data

In order to estimate the system impact on the network bandwidth, we have recorded
network usage on the server node because a bottleneck is more likely to happen there.
Recording of network usage was made on a one second intervals to insure more accurate

results. Results reading consider that there is a current network noise estimated of 2000

bit per second.

64

As explained before the evaluation was based on two different scenarios. In the first
scenario faults were injected separately. Figure 5.2 shows a diagram representing the
network activity when transmitting a report from host with IP address 10.8.3.216. The
diagram shows that it took approximately one second to transmit the reports with a

maximum 10000 b/sec network usage, which is considered to be trivial.

12000

10000

—

8000

6000

4000

2000

(0 T e —— , . S ———— SN —. V.
123456 7 8 910111213141516171819202122232425262728293031

Figure 5. 2 : Network activity when transmitting a single report from one host

Figure 5.3 shows a diagram representing the network activity when transmitting reports
from host with IP address 10.8.3.216 which was injected with four faults. The diagram
shows that it took approximately one second to transmit the reports with a maximum
25000 b/sec network usage, which is considered to be trivial. Comparing these results
with the ones taken from reporting a single report we can see that the difference is rather

trivial and there is still no considerable overload on the network bandwidth.

65

30000
25000
20000 //4
15000 l

l

I

10000

O ‘J“ A A ¥ WI

T T H H ¥ ¥ T H 3 1 H 1 H T T H i T L

123456 7 8 910111213141516171819202122232425262728293031

Figure S. 3 : Network activity when transmitting multiple reports from one host

The previous results have shown that increasing the number of reports transmitted over
the network does not have a noticeable effect taking in consideration that LAN network
have high speed.

Although the previous scenario have shown the effectiveness of the system when
transmitting single or multiple faults reports, but another scenario had to tested
simulating the case of bottleneck. In the second scenario we have injected all the faults
shown in Table 5.2 in an approximate one second period. Figure 5.4 shows the network
usage readings. The diagram shows that it took approximately two seconds to transmit
the reports with a maximum 140000 b/sec network usage, forming a 2% network
utilization ratio. These results show that the system does not affect the network

bandwidth even when a large number of reports are being transmitted and there is no

bottleneck situation created.

66

160000

140000
120000
100000 \

80000

BO000 Ao

40000 i \

20000

0 i ¥ H ¥ 4 T ¥ i i i i H H ¥ H ¥ T i i ¥ i H H H T H 1 H ¥ 1

1234567 8 9101112131415161718192021222324252627282930

Figure 5. 4 : network activity when transmitting multiple reports from all the network hosts

5.4 Summary
In this chapter a fault injection test has been conducted to evaluate the system ability to
detect faults that simulates real life situations. The injected faults were selected on both
application and system levels. Testing the system was made to measure two criteria’s,
trustworthiness of the system and performance. The system has shown a good fault

detection ratio when, and has shown low impact on the network bandwidth in different

transmission scenarios.

67

CHAPTER SIX

CONCLUSION & FUTURE WORK

This chapter shows an overall conclusion of the project, the process of conduction and
the results of the project. It also shows suggestions for improving the system by adding

new characteristics.

6.1 Research Conclusion

In this thesis, an innovative distributed intelligent agent based fault detection system that
operates on Windows platform was presented, to capture abnormal and faulty behaviors
on both application and system levels, by constantly reading the operating system
metrics. The system architecture had two parts. One is the agent which is distributed on
the network connected hosts and performs the metrics collection. The other part is the
server, which takes responsibility of collecting fault reports transmitted over then
network from running agents. We have also developed a web based user graphical
interface, to facilitate accessibility to the system. We have evaluated the system
trustworthiness to detect faults by injecting real life situation faults into the operating
system. During the experiment we recorded the network activity to determine the system
impact on the network bandwidth. The experiment results proved the system ability to
detect different types of faults injected in different scenarios. Moreover, the results
showed that the system a trivial impact on the network bandwidth. Overall, the system

showed ability not only to detect faults but also to identify the root cause of the fault.

68

6.2 Future Work

The IA-based fault detection system developed in this project can be future improved.
Some features can be added to the agent abilities such as prediction of faults occurrence.
Currently the agent detects and report faults by the time of occurrence. However, if the
agent is embedded with knowledge base with the ability to update its beliefs the I1A-based
system that can analyze the possibility of fault occurrence.

Also improvements in the faults representation in the system graphical user interface by
including better statistical views of the network status, which gives a better assessment of
the network in general and helps network administrators to isolate contagious faults
before spreading.

Lastly, if the agent is embedded with a fault recovery schema in order to perform
automated maintenance and recovery, such addition to the system can take such systems

into a new level which contains a great value for both academic and commercial fields.

69

REFERENCES

Anne, C., & Alexis, D. (1998). USING THE CASSIOPEIA METHOD TO DESIGN A
ROBOT SOCCER TEAM. dpplied Artificial Intelligence, 12(2/3), 127.

Baldini, A., Benso, A., Chiusano, S., & Prinetto, P. (2000, 2000). BOND: An
interposition agents based fault injector for Windows NT. Paper presented at the
Proceedings. IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, 2000, Yamanashi, 387-395.

Bianchini, C. d. P. (2003). Intelligent management of network devices aided by a strategy
and a tool. Paper presented at the Proceedings of the 2003 IFIP/ACM Latin
America conference on Towards a Latin American agenda for network research,
La Paz, Bolivia,141-151.

Boutaba .R and Xiao. J. (2002). Network Management: State of the Art, IFIP, 220, 127
146.Cooperative Network Management Architecture. JEEE Network, 10 April, 1-

3.

Buschmann, F. (1998). pattern-oriented software architecture a system of patterns.
Chichester: Wiley.

Cisco Systems, I. (2004). Internetworking technologies handbook. Indianapolis, IN:
Cisco Press.

Dong-Liang, L., Sheng-Yuan, Y., & Yi-Jen, C. (2009, 3-5 Dec. 2009). Developing an
active mode of network management system with intelligent multi-agent
techniques. Paper presented at the Joint Conferences on Pervasive Computing
(JCPC) 2009, 77- 82, Tamsui, Taipei.

Franklin, S., & Graesser, A. (1997). Is it an Agent, or Just a Program?: A Taxonomy for
Autonomous Agents. Paper presented at the Proceedings of the Workshop on
Intelligent Agents III, Agent Theories, Architectures, and Languages, Verlag, 21-
35.

Gavalas, D., Greenwood, D., Ghanbari, M., & O'Mahony, M. (2000). Advanced network
monitoring applications based on mobile/intelligent agent technology. Computer
communications., 23(8), 720.

Gavalas, D., Tsekouras, G. E., & Anagnostopoulos, C. (2009). A mobile agent platform
for distributed network and systems management. J. Syst. Softw., 82(2), 355-371.

70

Ibrahim, M. A. M. (2006). Distributed Network Management with Secured Mobile Agent
Support. Paper presented at the Proceedings of the 2006 International Conference
on Hybrid Information Technology,Cheju Island, 244-251.

Kendall, E. A., Krishna, P. V. M,, Suresh, C. B., & Pathak, C. V. (2000). An application
framework for intelligent and mobile agents. ACM Comput. Surv., 32(1es), 20.

Kim, B. U., Al-Nashif, Y., Fayssal, S., Hariri, S., & Yousif, M. (2008). Anomaly-based
Jault detection in pervasive computing system. Paper presented at the Proceedings
of the 5th international conference on Pervasive services, Sorrento, Italy, 147-156.

Kuechler, W., Vaishnavi, V., & Kuechler, W. L. (2007). Design [Science] Research in IS:
A Work in Progress. Paper presented at the 2nd International Conference on
Design Science Research in Information Systems and Technology, USA,
California, 234-239.

Liotta, A., Pavlou, G., & Knight, G. (2002). Exploiting Agent Mobility for Large-Scale
Network Monitoring. IEEE NETWORK, 16, 7-15.

Pugazendi, R., & Duraiswamy, K. (2009, 27-28 Oct. 2009). Mobile Agents - A Solution
Sfor Network Monitoring. Paper presented at the ARTCom '09. International
Conference on Advances in Recent Technologies in Communication and
Computing, 2009, Kottayam, Kerala, 579-584.

Ray, J., Hoe, J. C., & Falsafi, B. (2001). Dual use of superscalar datapath for transient-
Sfault detection and recovery. Paper presented at the Proceedings of the 34th
annual ACM/IEEE international symposium on Microarchitecture, Austin, Texas,
214-224,

Reinhardt, S. K., & Mukherjee, S. S. (2000). Transient fault detection via simultaneous
multithreading. SIGARCH Comput. Archit. News, 28(2), 25-36.

Sakai, M., Matsuba, H., & Ishikawa, Y. (2007, 17-19 Dec. 2007). Fault Detection System
Activated by Failure Information. Paper presented at the 13th Pacific Rim
International Symposium on Dependable Computing, 2007. PRDC 2007.,

Melbourne, Qld, 19-26.

Satoh, I. (2002, 2002). 4 framework for building reusable mobile agents for network
management. Paper presented at the Network Operations and Management
Symposium, 2002. NOMS 2002. 2002 IEEE/IFIP, Tokyo, Japan, 51-64.

Staff, M. C. (1992). The Basics Book of OSI and Network Management: Addison-Wesley
Longman Publishing Co., Inc.

Stallings, W. (1999). SNMP, SNMPv2, SNMPv3, and RMON [and 2. Reading, Mass.:
Addison-Wesley.

71

Utton, P., & Scharf, E. (2004). A fault diagnosis system for the connected home.
Communications Magazine, IEEE, 42(11), 128-134.

Vaishnavi, V. and Kuechler, W. (2004). “Design Research in Information Systems”
January 20, 2004, last updated January 18, 2006. URL:
http://www.isworld.org/Researchdesign/drisISworld.htm

Wooldridge, M. (2002). An introduction to multiagent systems. Chichester: Wiley.

Wu, F., Zhao, Z., & Ye, X. (2008, 20-22 Dec. 2008). A New Dynamic Network
Monitoring Based on IA. Paper presented at the International Symposium on
Computer Science and Computational Technology, 2008. ISCSCT '08,, Shanghai,

637-640.

Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2003). Developing Multiagent
Systems: The Gaia Methodology. ACM transactions on software engineering and

methodology., 12(3), 317.

Zhang, S., Cohen, 1., Symons, J., & Fox, A. (2005). Ensembles of Models for Automated
Diagnosis of System Performance Problems. Paper presented at the Proceedings
of the 2005 International Conference on Dependable Systems and Networks, CA,

USA, 644-653.

72

