PRODUCT DISASSEMBLY PLANNING USING DESIGN FOR DISASSEMBLY AND GENETIC ALGORITHM

A thesis submitted to the Graduate School in partial fulfilment of the requirements for the degree Master of Science (Intelligent System)

Universiti Utara Malaysia

By

LAU LEE LYN

(Metric No: 86421)

© LAU LEE LYN, 2006

All rights reserved
Saya, yang bertandatangan, memperakukan bahawa (I, the undersigned, certify that)

LAU LEE LYN

calon untuk ijazah (candidate for the degree of) MSc. (Int. Sys.)
telah mengemukakan kertas projek yang bertajuk (has presented his/her project paper of the following title)

PRODUCT DISASSEMBLY PLANNING USING DESIGN FOR DISASSEMBLY AND GENETIC ALGORITHM

seperti yang tercatat di muka surat tajuk dan kulit kertas projek (as it appears on the title page and front cover of project paper)
bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang ilmu dengan memuaskan. (that the project paper acceptable in form and content, and that a satisfactory knowledge of the field is covered by the project paper).

Nama Penyelia Utama (Name of Main Supervisor): MR. RUSLIZAM DAUD

Tanda tangan (Signature) : [Signature]

Tarikh (Date) : 17/5/07
PERMISSION TO USE

In presenting this thesis in partial fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman.
ABSTRAK

ABSTRACT

This paper introduces the use of an Artificial-Intelligence (AI) based technique, Genetic Algorithm (GA), to solve single model product disassembly sequence problems. The generation of disassembly sequence is modeled using Design for Assembly (DfA) working principles. In this paper, the performances of Design for Disassembly (DfD) and GA in selecting optimum disassembly sequence were tested. The problem is involves minimizing the total disassembly time by proper feeder allocation and component sequencing. The objective is to find out the optimum disassembly sequence with minimum disassembly time. The study started by manual disassembly using DfD which involves manual handling and manual insertion guideline in estimating time to search for optimum sequence. Finally, GA technique is applied to search for the optimum sequence. The results were compared between DfD and GA to show the efficiency of the proposed GA approach.
ACKNOWLEDGEMENT

Praise and glory to the Father in heaven who had interceded my prayer, guide me and gave me the courage to complete my master programme.

This project is study about disassembly process which in the engineering field that merely strange to me. I had to study how far does AI techniques would helped in such process. Mr. Ruslizam Daud, my supervisor in this project, had guided me all the way long. I would like to express my appreciation to him for his creativity encouraging guidance.

Last but not least, I wish to thank my precious and sweet family who gave me fully support during the study. Without them, I would not able to complete my project.
TABLE OF CONTENT

PERMISSION TO USE ... i
ABSTRAK ... ii
ABSTRACT ... iii
ACKNOWLEDGEMENT ... iv
TABLE OF CONTENT .. v
LIST OF TABLES ... ix
LIST OF FIGURES .. xi
LIST OF ABBREVIATIONS xii

CHAPTER 1: INTRODUCTION 1

1.1 Research Background .. 1

1.2 Problem Statement ... 3

1.3 Objective of Study ... 4

1.4 Scope of Study .. 4

1.5 Significant of Study .. 4

1.6 Organization of Report 4

1.7 Summary .. 5

CHAPTER 2: LITERATURE REVIEW 6

2.1 Design for Disassembly Integration 6

2.2 Design for Assembly Integration 8
2.3 Genetic Algorithm in Assembly Process .. 9
2.4 Applications of Genetic Algorithm .. 10
2.5 Summary .. 12

CHAPTER 3: METHODOLOGY ...13

3.1 Problem Formulation ... 13
3.2 Overview of Methodology ... 15
 3.2.1 Awareness of Problem ... 15
 3.2.2 Suggestion ... 16
 3.2.3 Development ... 16
 3.2.4 Evaluation ... 16
 3.2.5 Conclusion ... 17
3.3 DFD Methodology .. 17
 3.3.1 Generating Possible Sequences .. 18
 3.3.2 Estimate Time ... 20
 3.3.3 Choose the Best Sequence .. 20
3.4 GA Methodology Application .. 20
 3.4.1 Generate Population ... 21
 3.4.2 Selection ... 18
 3.4.3 Crossover & Mutation ... 22
 3.4.4 Output ... 22
3.5 Summary .. 22
CHAPTER 4: EXPERIMENTAL WORK

4.1 Disassembly

4.1.1 Part Name and Code

4.1.2 Generate Sequence

4.1.3 Precedence Rules

4.1.4 Generate Possible Sequences

4.1.5 Estimate Time

4.1.6 Choose the Best Sequence

4.2 Genetic Algorithm

4.2.1 Generate Population

4.2.2 Selection

4.2.3 Crossover

4.2.4 Mutation

4.2.5 Output

4.3 Summary

CHAPTER 5: RESULT & DISCUSSION

5.1 Crossover Rate

5.2 Mutation Rate

5.3 Stopping Condition

5.4 Test Result

5.5 Summary

CHAPTER 6: CONCLUSION
REFERENCES —— 54

APPENDICES

Appendix A Table Manual Handling & Manual Insertion —— 57
Appendix B Worksheet analysis for iron disassembly —— 59
Appendix C Coding —— 83
LIST OF TABLES

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Parts Name & Parts Listing</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Precedence Rules</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Worksheet analysis for iron disassembly (sequence 1)</td>
<td>26</td>
</tr>
<tr>
<td>4.2</td>
<td>Worksheet analysis for iron disassembly (sequence 2)</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Worksheet analysis for iron disassembly (sequence 3)</td>
<td>31</td>
</tr>
<tr>
<td>4.4</td>
<td>Worksheet analysis for iron disassembly (sequence 4)</td>
<td>32</td>
</tr>
<tr>
<td>4.5</td>
<td>Worksheet analysis for iron disassembly (sequence 5)</td>
<td>33</td>
</tr>
<tr>
<td>4.6</td>
<td>Worksheet analysis for iron disassembly (sequence 6)</td>
<td>34</td>
</tr>
<tr>
<td>4.7</td>
<td>Disassembly Time of each sequence</td>
<td>35</td>
</tr>
<tr>
<td>5.1</td>
<td>Crossover Rate</td>
<td>39</td>
</tr>
<tr>
<td>5.2</td>
<td>Mutation Rate</td>
<td>40</td>
</tr>
<tr>
<td>5.3</td>
<td>Results of GA Process</td>
<td>43</td>
</tr>
<tr>
<td>5.4</td>
<td>Worksheet analysis for iron disassembly (result 1)</td>
<td>44</td>
</tr>
<tr>
<td>5.5</td>
<td>Worksheet analysis for iron disassembly (result 2)</td>
<td>45</td>
</tr>
<tr>
<td>5.6</td>
<td>Worksheet analysis for iron disassembly (result 3)</td>
<td>46</td>
</tr>
<tr>
<td>5.7</td>
<td>Worksheet analysis for iron disassembly (result 4)</td>
<td>47</td>
</tr>
<tr>
<td>5.8</td>
<td>Worksheet analysis for iron disassembly (result 5)</td>
<td>48</td>
</tr>
<tr>
<td>5.9</td>
<td>Worksheet analysis for iron disassembly (result 6)</td>
<td>49</td>
</tr>
<tr>
<td>5.10</td>
<td>Worksheet analysis for iron disassembly (result 7)</td>
<td>50</td>
</tr>
<tr>
<td>5.11</td>
<td>Worksheet analysis for iron disassembly (result 8)</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Representation Problem</td>
<td>14</td>
</tr>
<tr>
<td>3.2</td>
<td>The General Methodology of Design Research</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>Development Phase</td>
<td>16</td>
</tr>
<tr>
<td>3.4</td>
<td>DFD Methodology</td>
<td>18</td>
</tr>
<tr>
<td>3.5</td>
<td>GA Methodology</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Iron (case study product)</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>Iron Parts</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Crossover Process</td>
<td>37</td>
</tr>
<tr>
<td>5.1</td>
<td>Average Fitness of GA</td>
<td>41</td>
</tr>
<tr>
<td>5.2</td>
<td>Total Fitness of GA</td>
<td>42</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial Intelligent</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>DFD</td>
<td>Design for Disassembly</td>
</tr>
<tr>
<td>DFA</td>
<td>Design for Assembly</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

This chapter briefly explains the background of the study that mainly involves the disassembly process, Genetic Algorithm as AI technique to select the optimum disassembly sequence. The problem statement, objectives, significance of the study and scopes will also be introduced.

1.1 Research Background

Environmental issues are becoming increasingly important to product manufacturers as well as to municipal and governmental authorities. This trend is most apparent when the environmental impact of worn-out products is considered. The shortage of landfill and waste burning facilities constantly remind us that our products do not simply disappear after disposal.

Increasing concern regarding the environmental effects associated with a product's life cycle has propelled the end-of-life (EOL) disassembly to prominence (Viswanathan S. et al. 2004). Disassembly is an important process affecting the product retirement. Once disassemble, the engineer or production department know which part of a product can be reuse, recycled, stored or dispose. Reuse option includes the repair, refurbish and cleaning processes. Recycling is performed in order to regain the material content of the EOL product. Storing the
The contents of the thesis is for internal user only
REFERENCES

