

**FAST CONGESTION NOTIFICATION MECHANISM
FOR NEXT GENERATION ROUTERS**

**A Thesis submitted to the College of Arts and Sciences in full
fulfillment of the requirements for the degree of
Doctor of Philosophy
Universiti Utara Malaysia**

**by
Mohammed M. Kadhum**

© 2010, Kadhum

Kolej Sastera dan Sains
(UUM College of Arts and Sciences)
Universiti Utara Malaysia

PERAKUAN KERJA TESIS / DISERTASI
(*Certification of thesis / dissertation*)

Kami, yang bertandatangan, memperakukan bahawa
(*We, the undersigned, certify that*)

MOHAMMED M. KADHUM

calon untuk Ijazah **PhD**
(*candidate for the degree of*)

telah mengemukakan tesis / disertasi yang bertajuk:
(*has presented his/her thesis / dissertation of the following title*):

"FAST CONGESTION NOTIFICATION MECHANISM FOR NEXT GENERATION ROUTERS"

seperti yang tercatat di muka surat tajuk dan kulit tesis / disertasi.
(*as it appears on the title page and front cover of the thesis / dissertation*).

Bahawa tesis/disertasi tersebut boleh diterima dari segi bentuk serta kandungan dan meliputi bidang ilmu dengan memuaskan, sebagaimana yang ditunjukkan oleh calon dalam ujian lisan yang diadakan pada : **14 Jun 2010**.

*That the said thesis/dissertation is acceptable in form and content and displays a satisfactory knowledge of the field of study as demonstrated by the candidate through an oral examination held on:
June 14, 2010.*

Pengerusi Viva:
(Chairman for Viva)

**Assoc. Prof. Dr. Engku Muhammad Nazri
Engku Abu Bakar**

Tandatangan
(Signature)

Pemeriksa Luar:
(External Examiner)

Assoc. Prof. Dr. Rahmat Budiarto

Tandatangan
(Signature)

Pemeriksa Dalam:
(Internal Examiner)

Dr. Massudi Mahmuddin

Tandatangan
(Signature)

Nama Penyelia/Penyelia-pen�elia: **Assoc. Prof. Dr. Suhaidi Hassan**
(Name of Supervisor/Supervisors)

Tandatangan
(Signature)

Tarikh:

(Date) **June 14, 2010**

PERMISSION TO USE

In presenting this thesis in fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence by the Dean of Research and Graduate Studies. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to

Dean of Research and Graduate Studies
College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman

ABSTRAK (BAHASA MALAYSIA)

Matlamat utama tesis ini adalah untuk mengemukakan mekanisma baru kawalan kesesakan proaktif yang dinamakan “Notifikasi Pantas Kesesakan (FN)” untuk penghala TCP/IP berkemampuan ECN. FN telah dibangunkan dan dilaksanakan menggunakan Network Simulator versi 2 (ns-2). Ia menggunakan panjang baris gilir serta merta (semasa) dan kadar purata ketibaan bingkisan untuk membuat keputusan. FN menggugurkan bingkisan yang sampai (jika bukan ECN) dan menandakan bingkisan (jika ECN) pada permulaan baris gilir sebelum limpahan penimbal berlaku. Ini dilakukan bagi mengawal panjang baris gilir semasa (Q_{cur}) agar berada di bawah keperluan panjang baris gilir optimum (Q_{opt}) bagi mengurangkan lengah dan menghindari limpahan penimbal. Ianya juga digunakan untuk mengekalkan kadar purata ketibaan bingkisan (R) sekitar keupayaan kesesakan dan panjang baris gilir. Pada masa ini, mekanisma pengesanan awal rawak (RED) digunakan dalam Internet. RED menggunakan purata panjang baris gilir untuk membuat keputusan kawalan. Penggunaan purata panjang baris gilir membuatkan RED lambat bertindak balas terhadap kesesakan mengakibatkan kelainan dalam saiz baris gilir yang besar serta pengesanan dan pemberitahuan kesesakan yang tidak kena pada masanya menyebabkan penurunan prestasi akibat dari pada lengah baris gilir serta merta (semasa) dan kadar purata ketibaan bingkisan yang tinggi. Kombinasi panjang baris gilir serta merta (semasa) dan kadar purata ketibaan bingkisan yang digunakan oleh FN menunjukkan prestasi yang lebih tinggi berbanding RED dalam pengesanan dan pemberitahuan kesesakan yang pantas. Kekangan FN adalah ianya berkesan hanya dengan perhubungan responsif yang memainkan peranan yang besar dalam menghindari dan mengawal kesesakan. Sumbangan utama tesis ini adalah memperkenalkan mekanisma baru pengurusan baris gilir proaktif yang responsif pada kesesakan dengan lebih pantas, memberikan pemberitahuan tepat pada waktinya, dan mengawal panjang baris gilir secara terus yang secara langsung meminimumkan kelainan panjang baris gilir. Kesemua ini dapat membantu meningkatkan prestasi Internet.

ABSTRACT (ENGLISH)

The aim of this thesis is to present a new proactive congestion control mechanism, namely “Fast Congestion Notification (FN)” for TCP/IP ECN-capable routers. FN has been developed and implemented in Network Simulator 2 (ns-2). It uses the instantaneous (current) queue length and the average packet arrival rate to make its control decisions. The new mechanism drops the arriving packets (if non-ECN) and marks packets (if ECN) at the head of the queue before the buffer overflows, to effectively control the current queue length (Q_{cur}) below the required optimal queue length (Q_{opt}) in order to reduce the queuing delay and avoid the buffer overflows; and to maintain the average packet arrival rate (R) about the outgoing transmission link capacity (μ) in order to enable the congestion and queue length control. Currently, Random Early Detection (RED) mechanism is used in the Internet. RED uses the average queue length for making the control decisions. The use of average queue length makes RED reacts to congestion slowly. This results in large queue length variation and untimely congestion detection and notification which would cause performance degradation due to high queuing delays and high packet loss. The combination of the instantaneous (current) queue length and the average packet arrival rate used by FN showed superior performance to that of RED in term of fast congestion detection and notification. The limitation of the new mechanism is that it works only with responsive connections which play a big role in avoiding and controlling the congestion. Since this thesis considers the necessity for modern queue management mechanisms that can control the Internet traffic efficiently and improve the Internet performance, the major contribution of this thesis is to provide a new pro-active queue management mechanism that responds to congestion more quickly, delivers congestion notification timely, and controls queue length directly to congestion which results in minimizing queue length variation. All these would help improve the Internet performance.

DECLARATION

Some of the work presented in this thesis have been published as listed below.

- [1] M. M. Kadhum and S. Hassan, "The Effect of ECN on Short TCP Sessions," in *IEEE International Conference on Telecommunications and Malaysia International Conference on Communications (ICT-MICC)*, Malaysia, pp. 708-712, 2007.
- [2] M. M. Kadhum and S. Hassan, "A Study of ECN Effects on Long-lived TCP Connections using RED and Drop tail Gateway Mechanisms," in *International Symposium on Information Technology (ITSim)*, Malaysia, pp. 2283-2294, 2008.
- [3] M. M. Kadhum and S. Hassan, "TCP ECN-capable Performance in a Differentiated Services Network," in *International Conference on Information Technology and Multimedia 2008 (ICIMU 2008)*, Malaysia, Track 10:CSN, pp. 345-350, 18-19 Nov. 2008.
- [4] M. M. Kadhum and S. Hassan, "Fast Congestion Notification Mechanism for ECN-capable Routers," in *International Symposium on Information Technology (ITSim)*, Malaysia, pp. 2295-2300, 2008.
- [5] M. M. Kadhum and S. Hassan, "A New Congestion Management Mechanism for Next Generation Routers," *Journal of Engineering Science and Technology*, vol. 3, pp. 265-271, 2008.
- [6] M. M. Kadhum and S. Hassan, "The Design Motivation and Objectives for Fast Congestion Notification (FN)," in the *28th APAN Network Research Workshop*, Malaysia, pp. 25-30, 2009.
- [7] M. M. Kadhum and S. Hassan, "A Linear Packet Marking Probability Function for Fast Congestion Notification (FN)," *International Journal of Computer Science and Network Security*, vol. 9, pp. 45-50, 2009.
- [8] M. M. Kadhum and S. Hassan, "The Impact of the Average Arrival Rate on the FN Drop/Mark Probability," submitted to *Journal of Advanced Computing and Applications*, 2009.

[9] M. M. Kadhum and S. Hassan, "FN Packet Marking/Dropping Probability as a Function of Required/Allowed Changes in Queue Level," in *First International Conference on Future Information Networks (ICFIN2009)*, Beijing, China, pp. 61-65, 2009.

[10] M. M. Kadhum and S. Hassan, "A Demonstration of the FN Packet Marking Probability " in the *9th International Symposium on Communications and Information Technologies (ISCIT 2009)*, Incheon, Korea, pp. 1540-1543, 2009.

[11] M. M. Kadhum and S. Hassan, "On the Linear FN Performance in a Heterogeneous Network," submitted to the *Journal of Universal Computer Science (J.UCS)*, 2009.

[12] M. M. Kadhum and S. Hassan, "The FN Quadratic Marking-Dropping Probability Function," in *The First International Conference on Networks & Communications (NetCoM-2009)*, Chennai, India, pp. 135-140, 2009.

[13] M. M. Kadhum and S. Hassan, "The Uniformization of the Fast Congestion Notification (FN)," *International Journal of Computer Science and Information Security (IJCSIS)*, vol. 4, Paper 31070968, pp. 166-170, Aug. 2009.

[14] M. M. Kadhum and S. Hassan, "A Quantitative Analysis and Performance Study of Fast Congestion Notification (FN) Mechanism," in *The 15th Asia-Pacific Conference on Communications (APCC2009)*, Shanghai, China, pp. 816-820, 2009.

[15] M. M. Kadhum and S. Hassan, "The Mark-Drop Activation Function of the Fast Congestion Notification (FN) Mechanism," *International Journal of Communication Networks and Information Security (IJCNIS)*, vol. 1, pp. 46-51, Dec. 2009.

[16] M. M. Kadhum and S. Hassan, "A Quadratic Version of Fast Congestion Notification (FN) Algorithm," submitted to the *International Journal of Computer Networks & Communications (IJCNC)*, 2009.

[17] M. M. Kadhum and S. Hassan, "Performance Study of Quadratic FN Algorithm on Heterogeneous Internet Sources," submitted to *Journal of Computer Science and Engineering*, 2010.

[18] M. M. Kadhum and S. Hassan, " The Effect of the Packet Sliding Window Size on FN Drop/Mark Probability," submitted to *The Global Journal of Computer Science and Technology (GJCST)*, 2010.

[19] M. M. Kadhum and S. Hassan, "On the Optimal Settings for Fast Congestion Notification Mechanism (FN)," submitted to *World Applied Sciences Journal (WASJ)*, 2010.

ACKNOWLEDGEMENT

In the name of ALLAH, Most Gracious, Most Merciful.

I would like to express my deep and sincere gratitude to my supervisor, Associate Professor Dr. Suhaidi Hassan, Assistant Vice Chancellor and Head of the UUM College of Arts and Sciences. His wide knowledge and his logical way of thinking have been of great value for me. His understanding, encouragement and personal guidance have provided a good basis for this thesis.

I would also like to express my warm and sincere thanks to Dr. Mahmood Ahmad, Senior Lecturer at School of Computer Sciences, University of Montreal who introduced me to the field of Internet Congestion Control and Dr. Athear Abaas, Senior Lecturer at Faculty of Computer Engineering , University of Auckland, whose letters gave me useful guidance during my first steps in researching Congestion Control.

I owe my most sincere gratitude to UUM InterNetWorks Research Group, USM Network Research Group, who gave me the opportunity to work for them which helped me to overcome the difficulties.

I would also like to thank Mr. Ghayth Al-Shaibani, for editing this manuscript. Dr. Akram M. Zeki, Dr. Normaziah, Mr. Sayid M. Abdulle, Dr. Mohuddin Ahmad, Ms. Noor Mohammed, Mr. Salah Darwesh, Dr. Wan Tat Chee, Mr Mustafa Safa'a are all thanked for their excellent and moral support and during my research.

I owe my loving thanks to my wife, Intidhar, my daughter, Al-Huraa, my sons, Thu-Alfikar and Mohammed Al-Mujtaba, who has lost a lot due to my research abroad. Without their encouragement and understanding it would have been impossible for me to finish this work.

TABLE OF CONTENTS

PERMISSION TO USE	i
ABSTRAK (BAHASA MALAYSIA)	ii
ABSTRACT (ENGLISH)	iii
DECLARATION	iv
ACKNOWLEDGEMENT	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xv
LIST OF FIGURES	xvi
ABBREVIATIONS	xx
CHAPTER ONE: INTRODUCTION	
1.1 Congestion Issues in Computer Networks	1
1.2 Queue Management and Congestion Control	2
1.2.1 Passive Queue Management Mechanisms (PQM)	4
1.2.2 Active Queue Management (AQM)	5
1.3 Congestion Information	6
1.4 Research Problem	7
1.5 Research Motivation	7
1.6 Scope of Research	9
1.7 Research Objectives	10
1.8 Key Research Steps	11
1.9 Key Contributions	11

1.9.1	Design of Fast Congestion Notification (FN) Algorithm	11
1.9.2	Implementation of Fast Congestion Notification (FN) Mechanism	12
1.9.3	Comparison of FN to Random Early Detection (RED) Mechanism	12
1.9.4	Performance Study of Linear FN	12
1.9.5	Study of Linear FN Drop/Mark Probability Dynamics	13
1.9.6	Performance Study of Quadratic FN to Random Early Detection (RED) Mechanism	13
1.10	Organization of the Thesis	13

CHAPTER TWO: LITERATURE REVIEW

2.1	Congestion in TCP-Based Networks	16
2.2	Router Buffer	17
2.3	The Function of Queue Management Mechanisms	18
2.4	Algorithmic Structure of Queue Management Mechanism	19
2.4.1	Connection Aggregation	19
2.4.2	Drop/Mark Position	21
2.4.3	Drop/Mark Activation	22
2.4.4	Drop/Mark Probability	23
2.5	Classification of Queue Management Mechanisms	23
2.5.1	Re-active vs. Pro-active	23
2.5.2	Global-State vs. Flow-State	24
2.5.2.1	Global-State (Global Aggregation) Mechanisms	24
2.5.2.2	Perflow-State (Perflow-Aggregation) Mechanisms	25
2.5.2.3	Limited-State (Limited-Aggregation) Mechanisms	25
2.5.3	Deterministic vs Probabilistic	25
2.6	Re-active (Passive) Queue Management Mechanisms	26
2.6.1	Tail-Drop (TD)	27
2.6.1.1	Congestion Detection	28
2.6.1.2	Congestion Notification	28
2.6.1.3	Buffer Overflow Events	29
2.6.1.4	Dropping Multiple Packets	29
2.6.1.5	TCP Recovery	29
2.6.1.6	Throughput Proportional Drop Fairness	30
2.6.1.7	High Packet Loss	30

2.6.1.8	Global Synchronization Phenomenon	30
2.6.1.9	Low Link Utilization	30
2.6.1.10	Large Queuing Delay	30
2.6.1.11	Large End-to-End Delay	31
2.6.2	Random-Drop (RD)	31
2.6.3	Front-Drop (FD)	33
2.7	Pro-active (Active) Queue Management Mechanisms	36
2.7.1	Congestion Detection	38
2.7.2	Congestion Notification	38
2.7.3	Queue Length Control	38
2.7.4	Data Stream Modification	39
2.7.5	Tradeoffs	39
2.7.6	Popular Pro-active Queue Management Mechanisms	40
2.7.6.1	Early Random-Drop (ERD)	41
2.7.6.2	BLUE	42
2.7.6.3	Stochastic Fair Blue (SFB)	43
2.7.6.4	CHOKe	45
2.7.6.5	Random Early Marking (REM)	46
2.7.6.6	Random Early Detection (RED)	47
2.8	Improving Random Early Detection	58
2.8.1	Stabilized RED (SRED)	59
2.8.2	Adaptive RED	60
2.8.3	Double-Slope RED (DSRED)	61
2.8.4	Multilevel RED (MRED)	63
2.8.5	Hyperbola RED (HRED)	63
2.8.6	ARED	64
2.9	Network Feedback	64
2.9.1	Explicit Congestion Notification (ECN)	65
2.10	Summary	68

CHAPTER THREE: RESEARCH METHODOLOGY

3.1	Evaluating Network System Techniques	71
3.1.1	Analytical Modeling	72
3.1.2	Measurement	73
3.1.3	Simulation	74
3.2	Computer Network Simulator	77

3.2.1	REAL	78
3.2.2	GloMoSim	79
3.2.3	J-Sim	79
3.2.4	ns-2	79
3.3	Experiments Setup	81
3.3.1	Client-server models	82
3.3.2	Router model	82
3.3.3	Simulation Topology	83
3.3.4	Traffic Generation	85
3.3.5	Common FN/RED Router Setting	86
3.3.6	RED Experiments	87
3.3.7	FN Experiments	88
3.4	Performance Metrics	88
3.4.1	Outgoing transmission Link Utilization	88
3.4.2	Packet loss	89
3.4.3	Queue Length	89
3.4.4	Throughput	89
3.4.5	Average Packet Arrival Rate	90
3.5	Validation and Verification	91
3.5.1	Validation of Network Simulators	92
3.5.2	Validation of FN implementation on ns-2	92
3.5.3	Simulation Runs and Confidence Interval	92
3.6	Summary	97

CHAPTER FOUR: DESIGN OF FAST CONGESTION NOTIFICATION (FN) MECHANISM

4.1	Design Motivation of Fast Congestion Notification (FN)	100
4.1.1	Instantaneous & Average Queue Length	101
4.1.2	Average Queue Speed	102
4.2	Design Objectives of Fast Congestion Notification (FN)	105
4.3	Fast Congestion Notification Algorithm (FN) Algorithm	106
4.3.1	General Description	106
4.3.2	Behavior of a FN Router	108
4.3.3	Connection Aggregation	109
4.3.4	Drop/Mark Position	110
4.3.5	Decision Criterion	110

4.3.6	Control Decisions	111
4.3.7	Control Update Frequency	113
4.3.8	Drop/Mark Probability Function	113
4.4	FN Linear Packet Dropping/Marking Probability Function	116
4.4.1	Queue Variables	116
4.4.2	The Derivation of FN Linear Probability Function	118
4.4.3	Instance of the Use of FN Linear Probability Function	120
4.4.4	FN Packet Probability as a Function of Average Arrival Rate .	123
4.4.5	FN Packet Probability as a Function of Required/Allowed Changes in Queue Length	125
4.4.6	Uniformization of Packet Drops/Marks	126
4.5	FN Quadratic Packet Dropping/Marking Probability Function	131
4.5.1	Queue Variables	131
4.5.2	The Derivation of FN Quadratic Packet Dropping/Marking Probability Function	133
4.6	FN Drop/Mark Activation Function	135
4.7	Summary	143

CHAPTER FIVE: FN IMPLEMENTATION

5.1	Average Packet Arrival Estimation	147
5.2	Computation of Average Packet Arrival Rate Acceleration	147
5.3	FN Algorithm	148
5.4	The Computational Complexity of FN	151
5.5	FN State Storage Space	151
5.6	FN Process Model	152
5.7	FN Parameter Settings	153
5.8	Verification and Validation of the FN Implementation	154
5.8.1	Verification of FN Mechanism	155
5.8.2	Validation of FN Mechanism	156
5.9	Summary	157

CHAPTER SIX: RESULTS AND DISCUSSIONS

6.1	Linear FN - RED Comparison	160
6.1.1	Average Queue Length - Packet Loss - Link Utilization	160
6.1.2	Queue length Control	163
6.1.3	Packet Arrival Rate Control	168
6.1.4	Throughput Proportional Drop Fairness	175

6.2	Performance Study of Linear FN Algorithm	177
6.2.1	Average Queue Length	178
6.2.1.1	Effect of Time (T) Settings	178
6.2.1.2	Effect of Window Size (W_s) Settings	179
6.2.2	Average Packet Arrival Rate	179
6.2.2.1	Effect of Time (T) Settings	180
6.2.2.2	Effect of Window Size (W_s) Settings	181
6.2.3	Average Link Utilization	181
6.2.3.1	Effect of Time (T) Settings	182
6.2.3.2	Effect of Window Size (W_s) Settings	185
6.3	Study of FN Drop/Mark Probability Dynamics	187
6.3.1	The Effect of the Uniformization Process	188
6.3.2	The Effect of the Time Constant (T)	194
6.3.2.1	Dynamics of FN Dropping/Marking Probability . .	194
6.3.2.2	System Dynamics	198
6.3.3	The Effect of the Packet Sliding Window Size (W_s)	205
6.3.3.1	Dynamics of FN Drop/Mark Probability	206
6.3.3.2	The Effect of the Packet Sliding Window on Average Packet Arrival Rate	206
6.3.3.3	The Effect of Packet Arrival Rate on Packet Drop/Mark Probability	207
6.3.3.4	The Effect of Packet Sliding Window on Packet Drop/Mark Probability	209
6.3.3.5	System Dynamics	212
6.4	Optimal (T, W_s) settings for Linear FN Algorithm	218
6.5	Linear FN - RED Complexity Comparison	220
6.5.1	Comparison of Computational complexity	220
6.5.2	Comparison of State Storage Space	221
6.6	Quadratic FN - RED Comparison	222
6.7	Summary	225

CHAPTER SEVEN: CONCLUSION AND FUTURE RESEARCH WORK

7.1	Conclusion	228
7.2	Contributions of the Thesis	234
7.2.1	Design of Fast Congestion Notification (FN) Mechanism . .	235

7.2.2	Implementation of Fast Congestion Notification (FN) Mechanism	235
7.2.3	Comparison of FN to RED Mechanism	235
7.2.4	Performance Study of Linear FN	236
7.2.5	Study of Linear FN Drop/Mark Probability Dynamics	237
7.2.6	Performance Study of Quadratic FN to RED	237
7.3	Suggestions for Future Work	238
	REFERENCES	240

LIST OF TABLES

3.1	Criteria for Selecting an Evolution Technique (Adapted from [134])	76
3.2	Common FN/RED Router Setting	86
4.1	Expected & Allowed/Required Queue Length Changes	136
6.1	Linear FN - RED Comparison - Packet Loss, Queue Length, Utilization	162
6.2	Linear FN – RED Average Packet Arrival Rate Comparison	174
6.3	Linear FN – Effect of T on Link Utilization - $W_s = 256$	183
6.4	Linear FN – Effect of W_s on Link Utilization - $T = 0.343$ seconds	187
6.5	Effect of Dropping/Marking Probability Uniformization on Utilization	193
6.6	The Effect of W_s Settings on the Average Packet Arrival Rate – $T = 0.125$ seconds	216
6.7	Effect of W_s on Queue Length – $T = 0.125$ seconds	217
6.8	Quadratic FN – RED Comparison: Utilization, Packet Loss, Queue Length	223

LIST OF FIGURES

1.1	The Effects of Congestion Collapse (Adapted from [2])	2
1.2	End-Host Congestion Control - Queue Management Interaction	3
1.3	Scope of the Research - Shaded Area	10
2.1	Tail-Drop Mechanism (Adapted from [12])	28
2.2	Random-Drop Mechanism (Adapted from [12])	32
2.3	Front-Drop Mechanism (Adapted from [12])	34
2.4	The BLUE Algorithm (Adopted from [44])	42
2.5	The SFB Algorithm (Adopted from [79])	43
2.6	Example of SFB Algorithm (Adopted from [79])	44
2.7	CHOKe Algorithm (Adopted from [80])	45
2.8	Packet Dropping/Marking Probability Function of REM (Adapted from [85])	47
2.9	RED Router Buffer (Adopted from [12])	49
2.10	RED Algorithm (Adapted from [17])	54
2.11	RED Packet Drop/Mark Function (Adapted from [12])	54
2.12	Gentle RED Algorithm (Adapted from [95])	56
2.13	Gentle RED Packet Drop/Mark Probability Function (Adapted from [86])	57
2.14	SRED Drop Function (Adapted from [87])	60
2.15	DSRED Router Model (Adapted from [6])	61
2.16	DSRED Dropping/Marking Function (Adapted from [12])	62
2.17	Definitions of Some Fields in the IP and TCP Headers (Adapted from [122])	66
2.18	ECN in Action (Adapted from [100])	67
3.1	Performance Evaluation Techniques (Adapted from [136])	71
3.2	FN Router Node Model	83

3.3	The Network Topology	84
3.4	Implementation of Confidence Interval with Terminating Simulation (Adapted from [12])	95
3.5	<i>awk</i> Script for Computing the Sample Variance and Confidence Interval	96
3.6	Flowchart of FN Methodology	97
4.1	Pseudo Code of General FN Algorithm	108
4.2	Pseudo Code of the Behavior of FN Router	109
4.3	FN Queuing Model	116
4.4	Queue Directing Control Dynamics	119
4.5	Family of FN Packet Dropping/Marking Probability Functions - $C = 105,000$ bytes, $T = 0.064$ seconds, $\mu = 10$ Mbps	121
4.6	Packet Dropping/Marking Probability Function - $Q_{opt} = 13,125$ bytes, $C = 105,000$ bytes, $T = 0.064$ seconds, $\mu = 10$ Mbps	122
4.7	FN Dropping/Marking Probability as a Function of Rate - $C = 105,000$ bytes, $T = 0.064$ seconds, $\mu = 10$ Mbps	124
4.8	FN Dropping/Marking Probability as a Function of Required/Allowed Changes in Queue Length - $C = 105,000$ bytes, $T = 0.064$ seconds, $\mu = 10$ Mbps	125
4.9	FN Uniformization Function - $P_{fin} = \frac{P_{ini}}{2 - \text{count}.P_{ini}}$	128
4.10	Expected Packet Dropping/Marking Intervals - Uniform Distribution: $(1/P_{ini}) + (1/2)$, Geometric Distribution: $1/P_{ini}$	130
4.11	$(\Delta Q_\mu, \Delta Q_d)$ Plane Partitioning by FN Dropping/Marking Probability Function	139
4.12	FN Dropping/Marking Activation Function in $(\Delta Q_\mu, Q_d)$ Plane	141
4.13	FN Dropping/Marking Activation Function in (R_i, Q_{cur}) Plane	142
5.1	Pseudo Code of Linear FN Algorithm	149
5.2	Pseudo Code of Quadratic FN Algorithm	149
5.3	FN's Finite State Machine Model	152
6.1	Linear FN – RED Instantaneous Queue Length - RED: $(Max_{th}, Min_{th}) = (5, 15)$, FN: $(W_s, T) = (32, 0.512), (64, 0.216), (128, 0.215), (256, 0.064), (512, 0.064)$	164
6.2	Linear FN – RED Instantaneous Queue Length - FN: $(W_s, T) = (1024, 0.027), (2048, 0.027), (4096, 0.027)$	165

6.3	Linear FN – RED Instantaneous Queue Length Cumulative Density Functions - FN: $W_s = (32, 64, 128, 256, 512, 1024)$, RED: $Min_{th}, Max_{th} = (5, 15)$, $Q_{opt} = 105$ Kbits	166
6.4	Linear FN – RED Instantaneous Queue Length Cumulative Density Functions - FN: $W_s = (2048, 4096)$, RED: $Min_{th}, Max_{th} = (5, 15)$, $Q_{opt} = 105$ Kbits	167
6.5	Linear FN – RED Average Packet Arrival Rates - $W_s = (32, 64, 128, 256)$	170
6.6	Linear FN – RED Average Packet Arrival Rates - $W_s = (512, 1024, 2048, 4096)$	171
6.7	Linear FN – RED Average Packet Arrival Rate Cumulative Density Functions	173
6.8	Linear FN – RED Throughput Proportional Drop Fairness - FN: $(W_s, T) = (32, 0.512), (64, 0.216), (128, 0.125), (256, 0.064), (512, 0.064)$, RED: $(Min, Max) = (5, 15)$	176
6.9	Linear FN – RED Throughput Proportional Drop Fairness, FN: $(W_s, T) = (1024, 0.027), (2048, 0.027), (4096, 0.027)$, RED: $(Min, Max) = (5, 15)$	177
6.10	Linear FN – Average Queue Length (\bar{Q})	178
6.11	Linear FN – Average Packet Arrival Rate (\bar{R})	180
6.12	Linear FN – Outgoing Transmission Link Utilization (\bar{U})	182
6.13	Linear FN – Queue Length Cumulative Density Functions - $W_s = 256$	183
6.14	Linear FN – Queue Length Cumulative Density Functions - $T = 0.343$ seconds	186
6.15	Effect of FN Uniformization - $W_s = 256, T = 0.064$ seconds – Uniformized Case (Initial, Final FN Dropping/Marking Probability, and Rate of Dropping/Marking Packets)	189
6.16	Effect of FN Uniformization - $W_s = 256, T = 0.064$ seconds – Uniformized Case (Current Queue Length and Average Packet Arrival Rate)	190
6.17	Effect of FN Uniformization - $W_s = 256, T = 0.064$ seconds – Non-Uniformized Case (Initial, Final FN Dropping/Marking Probability, and Rate of Dropping/Marking Packets)	191
6.18	Effect of FN Uniformization - $W_s = 256, T = 0.064$ seconds – Non-Uniformized Case (Current Queue Length and Average Packet Arrival Rate)	192
6.19	Effect of Small T Settings on FN Packet Dropping/Marking Probability Function - $W_s = 256, T = 0.001$ seconds	196
6.20	Effect of Large T Settings on FN Packet Dropping/Marking Probability Function - $W_s = 512, T = 10.000$ seconds	197

6.21 Initial FN Packet Dropping/Marking Probability - $W_s = 256$, $T = \{0.001, 0.008, 0.027, 0.064, 0.125, 0.216, 0.343, 0.512\}$ seconds	199
6.22 Initial FN Packet Dropping/Marking Probability - $W_s = 256$, $T = \{0.279, 1.000, 1.331, 1.728\}$ seconds	200
6.23 Average Packet Arrival Rate - $W_s = 256$, $T = \{0.001, 0.008, 0.027, 0.064, 0.125, 0.216, 0.343, 0.512\}$ seconds	201
6.24 Average Packet Arrival Rate - $W_s = 256$, $T = \{0.729, 1.000, 1.331, 1.728\}$ seconds	202
6.25 Current Queue Length - $W_s = 256$, $T = \{0.001, 0.008, 0.027, 0.064, 0.125, 0.216, 0.343, 0.512\}$ seconds	203
6.26 Current Queue Length - $W_s = 256$, $T = \{0.729, 1.000, 1.331, 1.728\}$ seconds	204
6.27 FN Packet Dropping/Marking Probability as a Function of Average Packet Arrival Rate (R) and Current Queue Length (Q_{cur}) - $T = 0.125$ seconds, $\mu = 10$ Mbps, $Q_{opt} = 13,125$ bytes	208
6.28 Effect of Small W_s Settings on Packet Dropping/Marking Probability Function - $W_s = 128$, $T = 0.125$ seconds	210
6.29 Effect of Large W_s settings on Packet Dropping/Marking Probability Function - $W_s = 4096$, $T = 1.728$ seconds	211
6.30 Initial Packet Dropping/Marking Probability - $T = 0.125$ seconds	213
6.31 Average Packet Arrival Rate - $T = 0.125$ seconds	214
6.32 Current Queue Length - $T = 0.125$ seconds	215
6.33 Optimal (T, W_s) Settings	218
6.34 FN Adjusting Procedure	220

ABBREVIATIONS

ACKs	Acknowledgements
AQM	Active Queue Management
<i>avg</i>	Average Queue Length
AVQ	Adaptive Virtual Queue
B_c	Physical Buffer Capacity
BDP	Bandwidth Delay Product
CBR	Continuous Bit Rate
<i>cwnd</i>	Congestion Window Size
DRED	Dynamic Random Early Detection
$E(X)$	Expected Average of n Numbers
ECN	Explicit Congestion Notification
ERD	Early Random Drop
EWMA	Exponentially Weighted Moving Average
FD	Front-Drop
FN	Fast Congestion Notification
FRED	Flow Random Early Detection
FTP	File Transfer Protocol
IETF	Internet Engineering Task Force
IP	Internet Protocol
ISP	Internet Service Provider
J-Sim	Java-Based Simulation
L	Packet Loss
LPF	Low Pass Filter
LPF/ODA	Low Pass Filter/Over Drop Avoidance

LSE	Least Square Error
Max_{drop}	Maximum Packet Drop Probability
Max_{th}	Maximum Threshold
Min_{th}	Minimum Threshold
MSS	Maximum Segment Size
ns-2	Network Simulator 2
P_f	Final Dropping/Marking Probability
PQM	Passive Queue Management
P_{ini}	Initial Packet Drop/Mark Probability
Q_{cur}	Current Queue Length
Q_{opt}	Optimal Queue Length
QoS	Quality Of Service
\bar{Q}	Expected Average Queue Length
R	Average Packet Arrival Rate
RARED	Refined Adaptive RED
RD	Random Drop
REAL	REalistic And Large Network Simulator
RED	Random Early Detection
\bar{R}	Mean of Average Packet Arrival Rate
SFB	Stochastic Fair Blue
SMTP	Simple Mail Transfer Protocol
SRED	Stabilize Random Early Detection
T	Time Constant
TCP/IP	Transmission Control Protocol / Internet Protocol
TD	Tail-Drop
thr	Throughput
U	Transmission Link Utilization
\bar{U}	Average Transmission Link Utilization
UDP	User Datagram Protocol
VBR	Variable Bit Rate
W	Weight Parameter
W_s	Packet Sliding Window Size
WWW	World Wide Web

CHAPTER ONE

INTRODUCTION

This thesis is about creating a new congestion management mechanism for TCP/IP networks' routers to help control and avoid congestion. The aim of this chapter is to place the thesis in its context. In this chapter, an introduction to computer network congestion issues, the importance of congestion management, and signalling the congestion information are provided in Sections 1.1, 1.2, and 1.3, respectively. Sections 1.4, 1.5, and 1.6 of this chapter, respectively, include the motivation, scope, and objectives of the research presented in this thesis. The contributions of the work done in this thesis are stated in Section 1.7 while the thesis organization is presented in Section 1.8 of this chapter.

1.1 Congestion Issues in Computer Networks

A computer network is a collection of resources which has a finite capacity that causes users to compete for the network resources such as buffers, transmission bandwidth and processing time. As stated by Agnew [1], the limitation of capacity can result in a degradation of performance of the system to the point that the throughput of the system goes to zero. If the network is overloaded, the throughput degradation becomes unavoidable. Networks cannot afford to accept all the traffic that is offered, unless there

The contents of
the thesis is for
internal user
only

REFERENCES

- [1] C. E. Agnew, “National Networks Including Satellite Service,” in *International Congress on Transportation Electronics*, pp. 237-243, 1988.
- [2] M. Gerla, L. Kleinrock, “Flow Control: A Comparative Survey,” *IEEE Transactions on Communications*, vol. 28, pp. 553-574, 1980.
- [3] Majithia, J. C., M. Irland, J. L. Grange, N. Cohen, C. O’Donnell, “Experiments in Congestion Control Techniques,” in *Proceedings of International Symposium Flow Control Computer Networks Symposium*, Versailles, France, pp. 211-234, Feb. 1979.
- [4] F. Sally and F. Kevin, “Promoting the Use of End-to-End Congestion Control in the Internet,” *IEEE/ACM Transactions on Networking*, vol. 7, pp. 458-472, Aug. 1999.
- [5] S. Ha, I. Rhee, and L. Xu, “Cubic: A New TCP-friendly High-speed TCP Variant,” in *SIGOPS Operating System Review*, vol. 42, pp. 64-74, 2008.
- [6] S. Ryu, C. Rump, and C. Qiao, “Advances in Active Queue Management (AQM) Based TCP Congestion Control,” *Telecommunication Systems*, vol. 25, pp. 317-351, 2004.
- [7] W. Michael, *Network Congestion Control: Managing Internet Traffic*, John Wiley & Sons, 2005.
- [8] M. M. Kadhum and S. Hassan, “A New Congestion Management Mechanism for Next Generation Routers,” *Journal of Engineering Science and Technology*, vol. 3, pp. 265-271, 2008.
- [9] Widmer, C. Boutremans, J.-Y. Le Boudec, “End-to-end Congestion Control for TCP-friendly Flows with Variable Packet Size,” *SIGCOMM Computer Communication Review*, vol. 34, pp. 137-151, Apr. 2004.
- [10] D. Harrison, S. Kalyanaraman, S. Ramakrishnan, “Congestion Control as a Building Block for QoS,” *SIGCOMM Computer Communication Review*, Student Poster, vol. 32, Aug. 2001.
- [11] Ramesh Johari, David Kim Hong Tan, “End-to-End Congestion Control for the Internet: Delays and Stability,” *IEEE/ACM Transactions on Networking*, vol. 9, pp. 818-832, Dec. 2001.

- [12] H. Mahbub and J. Raj, *High Performance TCP/IP Networking: Concepts, Issues, and Solutions*, U.S ed., Prentice-Hall, 2003.
- [13] M. M. Kadhum and S. Hassan, “A Study of ECN Effects on Long-lived TCP Connections using RED and Drop Tail Gateway Mechanisms,” in *International Symposium on Information Technology (ITSim)*, Malaysia, pp. 1-12, 2008.
- [14] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang, *Recommendations on Queue Management and Congestion Avoidance in the Internet*, RFC Editor, 1998.
- [15] M. Welzl, M. Muhlhauser, “Scalability and Quality of Service: A Trade-off?,” *IEEE Communications Magazine*, vol. 41, pp. 32-36, 2003.
- [16] S. Leonardo, P. Adriano, and M. Wagner, Jr., “Reactivity-based Scheduling Approaches For Internet Services,” in *Proceedings of the Fourth Latin American Web Congress*, IEEE Computer Society, 2006.
- [17] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,” *IEEE/ACM Transactions on Networking*, vol.1, pp. 397-413, 1993.
- [18] M. Ratul, M. B. Steven, F. Sally, I. John, P. Vern, and S. Scott, “Controlling High Bandwidth Aggregates in the Network,” *ACM SIGCOMM Computer Communication Review*, vol. 32, pp. 62-73, 2002.
- [19] F. Sally, “TCP and Explicit Congestion Notification,” *SIGCOMM Computer Communication Review*, vol. 24, pp. 8-23, 1994.
- [20] M. M. Kadhum and S. Hassan, “The Effect of ECN on Short TCP Sessions,” in *IEEE International Conference on Telecommunications and Malaysia International Conference on Communications (ICT-MICC)*, Malaysia, pp. 708-712, 2007.
- [21] A. Durresi, M. Sridharan, R. Jain, Liu, and Goyal, “Traffic Management using Multilevel Explicit Congestion Notification,” in *5th World MultiConference on Systemics, Cybernetics and Informatics (SCI2001)*, pp. 12-17, July 2001.
- [22] M. P. Barcellos and A. Detsch, “Congestion Control with ECN Support in Poll-based Multicast Protocols,” in *Proceedings of the 10th IEEE Symposium on Computers and Communications (ISCC)*, pp. 724-729, 2005.
- [23] R. Jain, “Congestion Control in Computer Networks: Issues and Trends,” *IEEE Network*, vol. 4, pp. 24-30, 1990.
- [24] L. Rizzo, “PGMCC: A TCP-friendly Single-Rate Multicast Congestion Control Scheme,” in *Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication*, New York, USA, vol. 30, pp. 17-28, Oct. 2000.

- [25] Matrawy, A., Lambadaris I., “A Survey of Congestion Control Schemes for Multicast Video Applications,” *IEEE Communications Surveys & Tutorials*, pp. 22-31, 2004.
- [26] P. Molinero-Fernandez and N. McKeown, “TCP switching: Exposing Circuits to IP,” in *Hot Interconnects 9*, pp. 43-48, 2001.
- [27] G. Liang and I. Matta, “The War between Mice and Elephants,” in *Ninth International Conference on Network Protocols*, pp. 180-188, 2001.
- [28] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Control in the Internet,” *IEEE/ACM Transactions on Networking*, vol. 7, pp. 458-472, 1999.
- [29] M. Tarmizi, A. Albagul, O. O. Khalifa, and Wahyudi, “QoS Evaluation of Different TCPs Congestion Control Algorithm using NS2,” in *2nd Information and Communication Technologies (ICTTA '06)*, pp. 3222-3227, 2006.
- [30] R. Ramani and A. Karandikar, “Explicit Congestion Notification (ECN) in TCP over Wireless Network,” in *International Conference on Personal Wireless Communications*, IEEE, pp. 495-499, 2000.
- [31] L. Massoulie, “Stability of Distributed Congestion Control with Heterogeneous Feedback Delays,” Microsoft Research, Cambridge, UK, Technical Report, pp. 895-902, 2000.
- [32] Jitendra Pahdye, Sally Floyd, “On Inferring TCP Behavior,” in *Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications*, San Diego, California, United States, vol. 31, pp. 287-298, Aug. 2001.
- [33] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Control in the Internet,” *IEEE/ACM Transactions on Networking*, vol. 7, pp. 458-472, 1999.
- [34] V. Srihari, “Economics of Buffer Space Provisioning in Data-Communication Systems,” in *Proceedings of the 26th Annual IEEE Conference on Local Computer Networks*, IEEE Computer Society, 2001.
- [35] G. Xiaojie, J. Kamal, and J. S. Leonard, “Fair and Efficient Router Congestion Control,” in *Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms*, Society for Industrial and Applied Mathematics, New Orleans, Louisiana, 2004.
- [36] S. Keshav, *An Engineering Approach to Computer Networking: ATM networks, the Internet, and the Telephone Network*, Addison-Wesley Longman Publishing Co., 1997.

- [37] S. Shriram, R. Rudolf, and B. Richard, "Connection-level Analysis and Modeling of Network Traffic," in *Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement*, San Francisco, California, USA, 2001.
- [38] L. Rodr, L. Guez De, A. E. Garc, and K. Hackbarth, "Influence of the Traffic Engineering Scheme and QoS in the Dimensioning of Broadband Access Networks," in *Proceedings of the 8th WSEAS International Conference on Distance learning and Web Engineering* Santander, World Scientific and Engineering Academy and Society (WSEAS), Cantabria, Spain, 2008.
- [39] B. Herbert, "Open Extensible Network Control," *Journal of Network and Systems Management*, vol. 8, pp. 73-97, 2000.
- [40] Y. Jui-Pin, "Self-Configured Fair Queueing," *Simulation*, vol. 83, pp. 189-198, 2007.
- [41] G. Kinshuk, T. Dan, H. Yongqiang, and R. Mendel, "Cellular Disco: Resource Management using Virtual Clusters on Shared-Memory Multiprocessors," *ACM Transactions on Computer Systems*, vol. 18, pp. 229-262, 2000.
- [42] K. Mark, S. J. Golestani, and L. David, "Prevention of Deadlocks and Livelocks in Lossless Backpressured Packet Networks," *IEEE/ACM Transactions on Networking*, vol. 11, pp. 923-934, 2003.
- [43] J. Y. Boudec, "Rate Adaptation, Congestion Control and Fairness: A Tutorial," [Online]. Available: <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3326>. [Accessed: Aug. 17, 2008].
- [44] F. Wu-chang, G. S. Kang, D. K. Dilip, and S. Debanjan, "The BLUE Active Queue Management Algorithms," *IEEE/ACM Transactions on Networking*, vol. 10, pp. 513-528, 2002.
- [45] H. Yi-Hung, L. Kuan-Cheng, K. Chao-Yu, C. Chin-Hsing, and C. Yen-Ping, "Enhancement of Fairness in a DiffServ Network using a Novel Queuing Algorithm," *Computer Standards & Interfaces*, vol. 30, pp. 52-61, 2008.
- [46] S. Jagannathan, "End to End Congestion Control in High-speed Networks," in *Proceedings of the 27th Annual IEEE Conference on Local Computer Networks*, IEEE Computer Society, 2002.
- [47] T. Henderson, J. Crowcroft, and S. Bhatti, "Congestion Pricing, Paying Your Way in Communication Networks," in *IEEE Proceedings of Internet Computing*, vol. 5, pp. 85-89, 2001.
- [48] P. Erich and Z. Thomas, "A RED Function Design Targeting Link Utilization and Stable Queue Size Behavior," *Computer Networks: The International Journal of Computer and Telecommunications Networking*, vol. 44, pp. 383-410, 2004.

- [49] Z. Mingyu and G. Guanqun, “Achieving Fair Bandwidth Allocation without Per-Flow State,” in *Proceedings of the 2001 International Conference on Computer Networks and Mobile Computing (ICCNMC'01)*, IEEE Computer Society, 2001.
- [50] D. Katabi, “Decoupling Congestion Control and Bandwidth Allocation Policy with Application to High Bandwidth-delay Product Networks,” Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2003.
- [51] Zheng Wang, *Internet QoS: Architectures and Mechanisms for Quality of Service (1st ed.)*, Morgan Kaufmann Publishers Inc., 2001.
- [52] K. Aditya and K. Anurag, “Performance of TCP Congestion Control with Explicit Rate Feedback,” *IEEE/ACM Transactions on Networking*, vol. 13, pp. 108-120, 2005.
- [53] T. V. Lakshman, M. Upamanyu, and S. Bernhard, “TCP/IP Performance with Random Loss and Bidirectional Congestion,” *IEEE/ACM Transactions on Networking*, vol. 8, pp. 541-555, 2000.
- [54] E. C. Douglas, *Internetworking with TCP/IP (5th ed.)*, vol. 1, Prentice-Hall, 2005.
- [55] K. Jong-hwan and Y. Ikjun, “Reducing Queue Oscillation at a Congested Link,” *IEEE Transactions on Parallel and Distributed Systems*, vol. 19, pp. 394-407, 2008.
- [56] A. Mankin, “Random Drop Congestion Control,” in *Proceedings of the ACM Symposium on Communications Architectures and Protocols*, Philadelphia, Pennsylvania, United States, ACM, 1990.
- [57] Srinivasan Keshav, “Congestion Control in Computer Networks,” Ph.D Thesis, University of California at Berkeley, Berkeley, USA, 1992
- [58] M. Archan, “Dynamics of TCP Congestion Avoidance with Random Drop and Random Marking Queues,” Ph.D. Thesis, University of Maryland at College Park, pp. 194, 2000.
- [59] S. Low, F. Paganini, J. Wang, S. Adlakha, J. C. Doyle, “Dynamics of TCP/RED and a Scalable Control,” in *Proceedings of IEEE Infocom*, New York, USA, pp. 239-248, 2002.
- [60] D. Parijat, A.-H. Omar, and A. Eitan, “On Loss Probabilities in Presence of Redundant Packets with Random Drop,” in *Proceedings of the Second International IFIP-TC6 Networking Conference on Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks and Mobile and Wireless Communications*, vol. 53, pp. 147-167, 2003.

- [61] H. Yaqing, G. Roch, and Rin, "A Simple FIFO-based Scheme for Differentiated Loss Guarantees," *Computer Networks: The International Journal of Computer and Telecommunications Networking*, vol. 51, pp. 1133-1150, 2007.
- [62] T. V. Lakshman, A. Neidhardt, and T. J. Ott, "The Drop from Front Strategy in TCP and in TCP over ATM," in *IEEE Proceedings on Fifteenth Annual Joint Conference of the IEEE Computer Societies*, vol. 3, pp. 1242-1250, 1996.
- [63] Courcoubetis C, Weber R, *Pricing Communication Networks: Economics, Technology, and Modelling*, John Wiley & Sons Ltd, 2003.
- [64] E. S. Hashem, "Analysis of Random Drop for Gateway Congestion Control," Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, Technical Report, Nov. 1989.
- [65] Jae Chung Claypool, "Analysis of Active Queue Management," in *Proceedings of the 2nd IEEE International Symposium on Network Computing and Applications*, USA, pp. 359-366, Apr. 2003.
- [66] Z. Heying, L. Baohong, D. Wenhua, "Design of a Robust Active Queue Management Algorithm Based on Feedback Compensation," in *Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications*, New York, USA, pp. 277-285, 2003.
- [67] Gorry Fairhurst, Aaron Falk, Dan Grossman, Reiner Ludwig, Jamshid Mahdavi, Saverio Mascolo, Marie-jose Montpetit, Lloyd Wood, *Advice for Internet Subnetwork Designers*, RFC 3819, 2004.
- [68] M. Hassan and R. Jain, *High Performance TCP/IP Networking: Concepts, Issues, and Solutions*, Pearson Prentice Hall, 2004.
- [69] M. Welzl, "Scalable Router Aided Congestion Avoidance for Bulk Data Transfer in High Speed Networks," in *Proceedings of the Third International Workshop on Protocols for Fast Long-Distance Networks*, pp. 1-6, Feb. 2005.
- [70] L. Xue and H. Wenbo, "Active Queue Management Design using Discrete-Event Control," in *46th IEEE Conference on Decision and Control*, pp. 3806-3811, 2007.
- [71] K. Francine, "Self-aware Management of IP Networks with QoS Guarantees," *International Journal of Network Management*, vol. 14, pp. 351-364, 2004.
- [72] K. Aleksandar, "The Power of Explicit Congestion Notification," in *Proceedings of the 2005 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications*, Philadelphia, Pennsylvania, USA, pp. 61-72, 2005.

- [73] Guido Appenzeller, Isaac Keslasy, Nick McKeown, “Sizing Router Buffers,” in *Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications*, Portland, Oregon, USA, pp. 281-292, Aug. 2004.
- [74] A. Mankin and K. Ramakrishnan, *Gateway Congestion Control Survey*, RFC Editor, 1991.
- [75] V. Jacobson, “Congestion Avoidance and Control,” in *Symposium Proceedings on Communications Architectures and Protocols*, Stanford, California, United States, 1988.
- [76] L. Long, A. Jay, J. Kevin, and F. D. Smith, “The Effects of Active Queue Management on Web Performance,” in *Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications*, Karlsruhe, Germany, 2003.
- [77] G. Thiruchelvi, J. Raja, “A Survey on Active Queue Management Mechanisms,” *International Journal of Computer Science and Network Security*, vol. 8, no. 12, pp. 130-145, Dec. 2008.
- [78] S. Ling, Z. Rong, and J. C. Hou, “An Active Queue Management Scheme for Internet Congestion Control and its Application to Differentiated Services,” in *Proceedings of the Ninth International Conference on Computer Communications and Networks*, pp. 62-68, 2000.
- [79] F. Wu-Chang, D. D. Kandlur, D. Saha, and K. G. Shin, “Stochastic Fair Blue: A Queue Management Algorithm for Enforcing Fairness,” in *IEEE Proceedings Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies*, vol. 3, pp. 1520-1529, 2001.
- [80] P. Rong, B. Prabhakar, and K. Psounis, “CHOKe - A Stateless Active Queue Management Scheme for Approximating Fair Bandwidth Allocation,” in *Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM)*, vol. 2, pp. 942-95, 2000.
- [81] G. Chatranon, M. A. Labrador, and S. Banerjee, “A Survey of TCP-Friendly Router-based AQM Schemes,” *Computer Communications*, vol. 27, no. 15, pp. 1424–1440, 2004.
- [82] A. Tang, J. Wang, and S. H. Low, “Understanding CHOKe: Throughput and Spatial Characteristics,” *IEEE/ACM Transactions on Networking*, vol. 12, no. 4, pp. 694-707, 2004.
- [83] H. Yan and Z. Guangzhao, “A Stateless Active Queue Management Scheme for Approximating Fair Bandwidth Allocation and Stabilized Buffer Occupation,” in *Proceedings of the Second IEEE Pacific Rim Conference on Multimedia: Advances in Multimedia Information Processing*, Springer-Verlag, 2001.

- [84] G. Chatranon, M. A. Labrador, and S. Banerjee, “A Credit-Based Active Queue Management (AQM) Mechanism to Achieve Fairness in the Internet,” in *4th International IFIP-TC6 Networking Conference*, Waterloo, Canada, pp. 930-942, May 2-6, 2005.
- [85] S. Athuraliya, S. H. Low, V. H. Li, and Y. Qinghe, “REM: Active Queue Management,” *IEEE Network*, vol. 15, pp. 48-53, 2001.
- [86] M. Welzl, *Network Congestion Control: Managing Internet Traffic*, John Wiley & Sons, 2005.
- [87] J. H. C. Nga, H. H. C. Iu, S. H. Ling, and H. K. Lam, “Comparative Study of Stability in Different TCP/RED Models,” *Chaos, Solitons & Fractals*, vol. 37, pp. 977-987, 2008.
- [88] V. Firoiu and M. Borden, “A Study of Active Queue Management for Congestion Control,” in *IEEE Proceedings on Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies*, vol.3, pp. 1435-1444, 2000.
- [89] M. May, C. Diot, B. Lyles, and J. Bolot, “Influence of Active Queue Management Parameters on Aggregate Traffic Performance,” Institut National De Recherche En Informatique Et En Automatique, INRIA.RR3995, 2000.
- [90] F. Wu-Chang and D. K. Dilip, “Adaptive Packet Marking for Maintaining End-to-End Throughput in a Differentiated-Services Internet,” *IEEE/ACM Transactions on Networking*, vol. 7, pp. 685-697, 1999.
- [91] S. Floyd, “RED: Discussion of Setting Parameters,” [Online]. Available: <http://www.icir.org/floyd/REDparameters.txt>. [Accessed: Nov. 14, 2007].
- [92] Z. Bing and A. Mohammed, “A Framework to Determine Bounds of Maximum Loss Rate Parameter of RED Queue for Next Generation Routers,” *Journal of Network and Computer Applications*, vol. 31, pp. 429-445, 2008.
- [93] M. Parris, K. Jeffay, and F. D. Smith, “Lightweight Active Router-Queue Management for Multimedia Networking,” in *Multimedia Computing and Networking (MMCN)*, San Jose, CA, pp. 162-174, Jan. 1999.
- [94] W. C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A Self-configuring RED Gateway,” in *IEEE Proceedings of the Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies*, vol. 3, pp. 1320-1328, 21-25 Mar. 1999.
- [95] S. Floyd, “Recommendation on Using the “Gentle” Variant of RED,” [Online]. Available: <http://www.icir.org/floyd/red/gentle.html>. [Accessed: Nov. 22, 2007].

- [96] S. Kunniyur, R. Srikant, "Analysis and Design of an Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management," in *Proceedings of SIGCOMM*, San Diego, USA, pp. 123-134, Aug. 2001.
- [97] C. Wang, B. Li, Y. Hou, K. Sohraby, Y. Lin, "LRED: A Robust Active Queue Management Scheme Based on Packet Loss Rate," in *Proceedings of the IEEE International Conference on Computer Communications*, Hong Kong, pp. 1-12, 2004.
- [98] T. J. Ott, T. V. Lakshman, and L. H. Wong, "SRED: Stabilized RED," in *IEEE Proceedings of the Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies*, vol. 3, pp. 1346-1355, 1999.
- [99] L. Dong and M. Robert, "Dynamics of Random Early Detection," in *Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication*, Cannes, France, 1997.
- [100] S. Floyd, R. Gummadi, and S. Shenker, "Adaptive RED: An Algorithm for Increasing the Robustness of RED's Active Queue Management," Berkely, USA, [Online]. Available: <http://www.icir.org/floyd/red.html>. [Accessed: Oct. 24, 2007].
- [101] B. Zheng and M. Atiquzzaman, "DSRED: Improving Performance of Active Queue Management over Heterogeneous Networks," in *International Conference on Communications*, IEEE, vol. 8, pp. 2375-2379, 2008.
- [102] Z. Bing and A. Mohammed, "Study of Active Queue Management Using OPNET," [Online]. Available: <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.2330>. [Accessed: Oct. 27, 2007].
- [103] S. N. K. and S. T. R., "Triple Queue Management Based Fuzzy Distributed Admission Control for High Performance Internet Routers," *International Journal of Information Technology*, vol. 11, pp. 38-51, 2005.
- [104] K. Jahon, S. Byunghun, C. Kwangsue, L. Hyukjoon, and K. Hyunkook, "MRED: A New Approach to Random Early Detection," in *Proceedings of the 15th International Conference on Information Networking*, pp. 347-352, 2001.
- [105] L. Hu. and K. D., "HRED: A Simple and Efficient Active Queue Management Algorithm," in *13th International Conference on Computer Communications and Networks (ICCCN)*, Chicago, IL, pp. 387-393, 11-13 Oct. 2004.
- [106] X. Yue-Dong, W. Zhen-Yu, and W. Hua, "ARED: A Novel Adaptive Congestion Controller," in *Proceedings of the International Conference on Machine Learning and Cybernetics*, vol. 2, pp. 708-714, 2005.

- [107] T.-H. Kim and K.-H. Lee, "Refined Adaptive RED in TCP/IP Networks," in *International Joint Conference SICE-ICASE*, Busan, pp. 3722-3725, 18-21 Oct. 2006.
- [108] K. K. Ramakrishnan , R. Jain, "A Binary Feedback Scheme for Congestion Avoidance in Computer Networks with a Connectionless Network Layer," *Symposium Proceedings on Communications Architectures and Protocols*, Stanford, California, United States, pp 303-313, 1988.
- [109] Y. Yaw, H. Modaressi, W. D. Ju, and P. A. Ng, "Credit Management and Source Quenching for the Subscriber Network Interface of Switched Multi-megabits Data Services," in *Proceedings of the First International Conference on Systems Integration*, pp. 150-157, 1990.
- [110] Majithia, J. C., M. Irland, J. L. Grange, N. Cohen and C. O'Donnell, "Experiments in Congestion Control Techniques," in *Proceedings of the International Symposium on Flow Control in Computer Networks*, Versailles, France, pp. 211-234, Feb. 1979.
- [111] B. T. Doshi, P. K. Johri, A. N. Netravali, and K. K. Sabnani, "Error and Flow Control Performance of a High Speed Protocol," *Transactions on Communications*, IEEE, vol. 41, pp. 707-720, 1993.
- [112] K. Keng-Tai, P. M. Partho, and K. T. Satish, "Predictive Congestion Control in High-speed Wide-Area Networks," University of Maryland at College Park, Computer Science Technical Report Series, 1990.
- [113] L. W. Carey and R. C. David, "Loss-load Curves: Support for Rate-based Congestion Control in High-speed Datagram Networks," in *Proceedings of the Conference on Communications Architecture and Protocols*, Zurich, Switzerland, vol. 21, pp. 17-28, 3-6 Sept. 1991.
- [114] F. Kamoun, "A Drop and Throttle Flow Control Policy for Computer Networks," *Transactions on Communications*, IEEE , vol. 29, pp. 444-452, 1981.
- [115] F. A. Ian, Zg, Akan O. B., and M. Giacomo, "A Rate Control Scheme for Adaptive Real-time Applications in IP Networks with Lossy Links and Long Round Trip Times," *IEEE/ACM Transactions on Networking*, vol. 13, pp. 554-567, 2005.
- [116] L. Zhang, "Why TCP Timers Don't Work Well," in *Proceedings of the ACM SIGCOMM Conference on Communications Architectures and Protocols*, Stowe, Vermont, United States, pp. 397-405, 1986.
- [117] H. V. Nitin, "De-randomizing" Congestion Losses to Improve TCP Performance over Wired-wireless Networks," *IEEE/ACM Transactions on Networking*, vol. 13, pp. 596-608, 2005.

- [118] R. Jain, "A Delay-based Approach for Congestion Avoidance in Interconnected Heterogeneous Computer Networks," *ACM SIGCOMM Computer Communication Review*, vol. 19, pp. 56-71, 1989.
- [119] K. Ramakrishnan and S. Floyd, A Proposal to add Explicit Congestion Notification (ECN) to IP: RFC 2481 (Experimental). Obsoleted by RFC 3168, 1999.
- [120] K. Ramakrishnan, S. Floyd, and D. Black, *The Addition of Explicit Congestion Notification (ECN) to IP*, RFC 3168, 2001.
- [121] J. H. Salim and U. Ahmed, Performance Evaluation of Explicit Congestion Notification (ECN) in IP Networks, RFC Editor, 2000.
- [122] M. Malowidzki, "Simulation-based Study of ECN Performance in RED Networks," *SIMULATION SERIES*, vol. 35, pp. 447-451, 2003.
- [123] L. Chunlei and J. Raj, "Improving Explicit Congestion Notification with the Mark-front Strategy," *Computer Networks: The International Journal of Computer and Telecommunications Networking*, vol. 35, pp. 185-201, 2001.
- [124] Kunniyur, S. Srikant, R., "A Time Scale Decomposition Approach to Adaptive ECN Marking," *IEEE Transactions on Automatic Control*, vol. 47, pp. 882-894, 2002.
- [125] T. Kelly, "An ECN Probe-Based Connection Acceptance Control," *ACM Computer Communication Review*, pp. 14-25, 2001.
- [126] M. Kwon and S. Fahmy, "TCP Increase/Decrease Behavior for Explicit Congestion Notification (ECN)," in *Proceedings of the IEEE International Conference on Communications*, vol. 4, pp. 2335-2340, Apr. 2002.
- [127] Peerapol Tinnakornsrisuphap, Armand M. Makowski, "Limit Behavior of ECN/RED Gateways Under a Large Number of TCP Flows," in *Proceedings of IEEE INFOCOM*, San Francisco, USA, pp. 873-883, 2003.
- [128] M. M. Kadhum and S. Hassan, "TCP ECN-Capable Performance in a Differentiated Services Network," in *International Conference on Information Technology and Multimedia 2008 (ICIMU 2008)*, Malaysia, Track 10:CSN, pp. 345-350, 18-19 Nov. 2008.
- [129] M. M. Kadhum and S. Hassan, "A Study of ECN Effects on Long-lived TCP Connections using RED and Drop Tail Gateway Mechanisms," in *International Symposium on Information Technology (ITSim)*, Malaysia, vol.4, pp. 1-12, 2008.
- [130] K. Minseok and F. Sonia, "On TCP Reaction to Explicit Congestion Notification," *Journal of High Speed Networks*, vol. 13, pp. 123-138, 2004.
- [131] C. Liu and R. Jain, "Delivering Faster Congestion Feedback with the Mark-FrontStrategy," in *Proceedings of the International Conference on Communication Technology*, Beijing, vol.1, pp.665-672, 2000.

- [132] F. Akujobi, I. Lambadaris, R. Makkar, N. Seddigh, B. Nandy, "BECN for Congestion Control in TCP/IP Networks: Study and Comparative Evaluation," *IEEE Global Telecommunications Conference*, Taipei, Taiwan, vol. 3, pp.2588-2593, Nov. 2002.
- [133] K. Byung-Chul and C. You-Ze, "Mark-relay Strategy for Explicit Congestion Notification in the Internet," *Electronics Letters*, vol. 38, pp. 612-614, 2002.
- [134] R. K. Jain, *The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling*, Wiley 1991.
- [135] O. Ghazali, "Scaleable and Smooth TCP-friendly Receiver-based Layered Multicast Protocol," Ph.D. Thesis, Universiti Utara Malaysia, Malaysia, 2008.
- [136] S. Hassan, "Simulation-based Performance Evaluation of TCP-friendly Protocols for Supporting Multimedia Applications in the Internet," Ph.D. Thesis, University of Leeds, 2002.
- [137] A. Law and W. D. Kelton, *Simulation Modeling and Analysis (3rd ed.)*, McGraw-Hill Science, 2000.
- [138] K. Srinivasan, "Congestion Control in Computer Networks," Ph.D. Thesis, University of California at Berkeley, USA, 1991.
- [139] E. Eide, L. Stoller, T. Stack, J. Freire, and J. Lepreau, "Integrated Scientific Workflow Management for the Emulab Network Testbed," in *2006 USENIX Annual Technical Conference*, Boston, MA, pp. 363–368, 2006.
- [140] L. Rizzo, "Dummynet," [Online]. Available: <http://info.iet.unipi.it/~luigi/dummynet/>. [Accessed: Apr. 14, 2008].
- [141] P. Communications, "The PacketStorm IP Network Emulators," [Online]. Available: <http://www.packetstorm.com/psc/psc.nsf/site/index>. [Accessed: Jan. 14, 2008].
- [142] B. Lee, E. Deborah, F. Kevin, F. Sally, H. John, H. Ahmed, H. Polly, M. Steven, V. Kannan, X. Ya, and Y. Haobo, "Advances in Network Simulation," *Computer*, vol. 33, pp. 59-67, 2000.
- [143] W. D. Kelton, R. P. Sadowski, and D. T. Sturrock, *Simulation with Arena*, McGraw-Hill Science, 2003.
- [144] B. Jerry, *Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice*, John Wiley & Sons, 1998.
- [145] K. Pawlikowski, H. D. J. Jeong, and J. S. R. Lee, "On Credibility of Simulation Studies of Telecommunication Networks," *IEEE Communications Magazine*, vol. 40, pp. 132-139, 2002.

- [146] C. F. Michael, "Simulation Optimization," in *Proceedings of the 33rd Conference on Winter Simulation* Arlington, Virginia, IEEE Computer Society, pp. 53-61, 2001.
- [147] F. Sally and P. Vern, "Difficulties in Simulating the Internet," *IEEE/ACM Transactions on Networking*, vol. 9, pp. 392-403, 2001.
- [148] S. B. John, "Simulation of Large Networks: Modeling and Simulation of Telecommunication Networks for Control and Management," in *Proceedings of the 35th Conference on Winter Simulation: Driving Innovation*, New Orleans, Louisiana, pp. 431-440, 2003.
- [149] S. Keshav, "REAL Simulator," [Online]. Available: <http://www.cs.cornell.edu/skeshav/real/overview.html>. [Accessed: Jan. 22, 2008].
- [150] X. Zeng, R. Bagrodia, and M. Gerla, "GloMoSim: A Library for Parallel Simulation of Large-scale Wireless Networks," in *Proceedings of the Twelfth Workshop on Parallel and Distributed Simulation*, pp. 154-161, 1998.
- [151] B. Rajive, M. Richard, T. Mineo, C. Yu-an, Z. Xiang, M. Jay, and S. Ha Yoon, "Parsec: A Parallel Simulation Environment for Complex Systems," *Computer*, vol. 31, pp. 77-85, 1998.
- [152] E. Butterworth, "JSim," [Online]. Available: <http://nsr.bioeng.washington.edu/jsim/>. [Accessed: May. 29, 2008].
- [153] S. Ahmed, C. Wei-Peng, C. H. Jennifer, K. Lu-Chuan, L. Ning, L. Hyuk, T. Hung-Ying, and Z. Honghai, "J-Sim: A Simulation Environment for Wireless Sensor Networks," in *Proceedings of the 38th Annual Symposium on Simulation*, IEEE Computer Society, pp. 175-187, 2005.
- [154] T. Issariyakul and E. Hossain, *Introduction to Network Simulator NS2*, Springer US, 2009.
- [155] P. Meeneghan and D. Delaney, "An Introduction to NS, Nam and OTcl Scripting," [Online]. Available: <http://www.cs.nuim.ie/research/reports/2004/nuim-cs-tr-2004-05.pdf>. [Accessed: Jan. 9, 2008].
- [156] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Handley, A. Helmy, J. Heidemann, P. Huang, S. Kumar, S. Mccanne, R. Rejaie, P. Sharma, K. Varadhan, H. Y. Ya Xu, and D. Zappala, "Improving Simulation for Network Research," [Online]. Available: <http://www.citeulike.org/user/p2p-sec/article/1637936>. [Accessed: Jan. 9, 2008].
- [157] J. Heidemann, K. Mills, and S. Kumar, "Expanding Confidence in Network Simulations," *IEEE Network*, vol. 15, pp. 58-63, 2001.

- [158] S. Floyd, *The New Reno Modification to TCP's Fast Recovery Algorithm*, RFC 2582, 1999.
- [159] F. Hirose, M. Fukuhara, T. Hatano, H. Shigeno, and K. Okada, “A Two-level ECN Marking for Fair Bandwidth Allocation between HSTCP and TCP Reno,” in *25th IEEE International Conference on Distributed Computing Systems Workshops*, pp. 763-769, 2005.
- [160] P. Fei, C. Shiduan, and M. Jian, “An Effective Way to Improve TCP Performance in Wireless/Mobile Networks,” in *Information Systems for Enhanced Public Safety and Security (IEEE/AFCEA)*, pp. 250-255, 2000.
- [161] T. Hamann and J. Walrand, “A New Fair Window Algorithm for ECN Capable TCP (new-ECN),” in *Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies*, vol.3, pp. 1528-1536, 2000.
- [162] E. C. Mark and B. Azer, “Self-similarity in World Wide Web Traffic: Evidence and Possible Causes,” *IEEE/ACM Transactions on Networking*, vol. 5, pp. 835-846, 1997.
- [163] S. Biplab, S. Kalyanaraman, and S. V. Kenneth, “An Integrated Model for the Latency and Steady-state Throughput of TCP Connections,” *Performance Evaluation*, vol. 46, pp. 139-154, 2001.
- [164] G. Schay, *Introduction to Probability with Statistical Applications*, Birkhäuser, Boston, 2007.
- [165] J. Li and S. Kalyanaraman, “MCA: An End-to-End Multicast Congestion Avoidance Scheme with Feedback Suppression,” *Computer Communications*, vol. 27, pp. 1264-1277, 2004.
- [166] W. Richard Stevens, *TCP/IP Illustrated, Volume 1: The Protocols*, Addison-Wesley Professional Computing Series, 1994.
- [167] D. Imadud and S. Nazar Abbas, “Passive Packet Loss Detection and its Effect on Web Traffic Characteristics,” in *Proceedings of the 2008 International Conference on Computer and Electrical Engineering*, IEEE Computer Society, pp. 729-733, 2008.
- [168] M. Charles and L. Swee, “The Expanding Role of Simulation in Future Manufacturing,” in *Proceedings of the 33rd Conference on Winter Simulation* Arlington, Virginia, IEEE Computer Society, pp. 1478-1486, 2001.
- [169] C. F. Michael, W. G. Fred, and A. Jay, “Simulation Optimization: A Review, New Developments, and Applications,” in *Proceedings of the 37th Conference on Winter Simulation* Orlando, Florida, Winter Simulation Conference, pp. 83-95, 2005.

[170] J. Kiefer, “Conditional Confidence Statements and Confidence Estimators,” *Journal of the American Statistical Association*, vol. 72, pp. 789–827, 1977.

[171] Wikipedia, “Confidence Interval,” [Online]. Available: http://en.wikipedia.org/wiki/Confidence_interval. [Accessed: June. 14, 2008].

[172] S. M. Ross, *Simulation, Third Edition*, Academic Press, 2001.

[173] M. M. Kadhum and S. Hassan, “The Design Motivation and Objectives for Fast Congestion Notification (FN),” in *28th APAN Network Research Workshop*, Malaysia, pp. 25-30, 2009.

[174] T. Bonald, M. May, and J. C. Bolot, “Analytic Evaluation of RED Performance,” in *IEEE Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies*, vol.3, pp. 1415-1424, 2000.

[175] M. M. Kadhum and S. Hassan, “Fast Congestion Notification Mechanism for ECN-capable Routers,” in *International Symposium on Information Technology (ITSIM)*, Malaysia, vol.4, pp. 2295-2300, 2008.

[176] M. M. Kadhum and S. Hassan, “The Uniformization of the Fast Congestion Notification (FN),” *International Journal of Computer Science and Information Security (IJCSIS)*, vol. 4, Paper 31070968, pp. 166-170, Aug. 2009.

[177] S. Srinivas and R. Srikant, “Network Optimization and Control,” *Foundations and Trends in Networking*, vol. 2, pp. 271-379, 2007.

[178] M. M. Kadhum and S. Hassan, “A Linear Packet Marking Probability Function for Fast Congestion Notification (FN),” *International Journal of Computer Science and Network Security*, vol. 9, pp. 45-50, 2009.

[179] S. T. D. TAN, *Applied Mathematics, (3rd ed.)*, Thomson Brooks/Cole, 2004.

[180] M. M. Kadhum and S. Hassan, “A Demonstration of the FN Packet Marking Probability,” in *9th International Symposium on Communications and Information Technologies (ISCIT 2009)*, Incheon, Korea, pp. 1540 - 1543, 2009.

[181] M. M. Kadhum and S. Hassan, “The Impact of the Average Arrival Rate on the FN Drop/Mark Probability,” submitted to *Journal of Advanced Computing and Applications*, 2009.

[182] M. M. Kadhum and S. Hassan, “FN Packet Marking/Dropping Probability as a Function of Required/Allowed Changes in Queue Level,” in *First International Conference on Future Information Networks (ICFIN2009)*, Beijing, China, pp. 61-65, 2009.

[183] S. De Cnodder, O. Elloumi, and K. Pauwels, “RED Behavior with Different Packet Sizes,” in *Proceedings of the Fifth IEEE Symposium on Computers and Communications (ISCC)*, pp. 793-799, 2000.

[184] M. M. Kadhum and S. Hassan, “The FN Quadratic Marking-Dropping Probability Function,” in *The First International Conference on Networks & Communications (NetCoM-2009)*, Chennai, India, pp. 135-140, 2009.

[185] M. M. Kadhum and S. Hassan, “The Mark-Drop Activation Function of the Fast Congestion Notification (FN) Mechanism,” *International Journal of Communication Networks and Information Security (IJCNIS)*, vol. 1, pp. 46-51, Dec. 2009.

[186] I. J. Khor, J. Thomas, and I. Jonyer, “Sliding Window Protocol for Secure Group Communication in Ad-Hoc Networks,” *Journal for Universal Computer Science (J-JUCS)*, vol. 11, pp. 37-55, 2005.

[187] A. P. Bovo, E. C. Rizzi, L. A. Martello, R. P. d. G. Tittoto, M. N. P. Bertocco, C. M. Narduzzi, and A. M. Biasutto, “Non-invasive Estimation of Round Trip Time a Packet-oriented Acknowledge-based Transmission System,” vol. 7289454, FreePatentsOnline, 2007.

[188] M. M. Kadhum and S. Hassan, “A Quadratic Version of Fast Congestion Notification (FN) Algorithm” submitted to *International Journal of Computer Networks & Communications (IJCNC)*, 2009.

[189] S. Floyd, “Setting Parameters,” [Online]. Available: <http://www.icir.org/floyd/red.html#parameters>. [Accessed: July, 15, 2008].

[190] A. Haider, H. Sirisena, V. Sreeram, and R. Harris, “Stability Conditions For Scalable TCP-RED Based AQM,” in *International Conference on Mechatronics and Automation (ICMA)*, pp. 576-581, 2007.

[191] Q. Dashun, C. Zhixiang, and C. Bi, “An Improvement Algorithm Based on RED and its Performance Analysis,” in *9th International Conference on Signal Processing (ICSP9)*, pp. 2005-2008, 2008.

[192] C. V. Hollot, V. Misra, D. Towsley, and G. Wei-Bo, “A Control Theoretic Analysis of RED,” in *Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM)*, vol.3, pp. 1510-1519, 2001.

[193] C. Xi, W. Siu-Chung, C. K. Tse, and L. Trajkovic, “Stability Analysis of RED Gateway with Multiple TCP Reno Connections,” in *IEEE International Symposium on Circuits and Systems (ISCAS)*, pp. 1429-1432, 2007.

[194] S. Miskovic, G. Petrovic, and L. Trajkovic, “Implementation and Performance Analysis of Active Queue Management Mechanisms,” in *7th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services*, vol.2, pp. 317-326, 2005.

- [195] B. Osman and G. S. Robert, "Some Examples of Simulation Model Validation using Hypothesis Testing," in *Proceedings of the 14th Conference on Winter Simulation*, San Diego, California, vol. 2, pp. 621-629 1982.
- [196] M. M. Kadhum and S. Hassan, "A Quantitative Analysis and Performance Study of Fast Congestion Notification (FN) Mechanism," in *15th Asia-Pacific Conference on Communications (APCC2009)*, Shanghai, China, pp. 816-820, 2009.
- [197] M. M. Kadhum and S. Hassan, "On the Linear FN Performance in a Heterogeneous Network," submitted to *Journal of Universal Computer Science (J.UCS)*, 2009.
- [198] M. M. Kadhum and S. Hassan, "Performance Study of Quadratic FN Algorithm on Heterogeneous Internet Sources," submitted to *Journal of Computer Science and Engineering*, 2010.
- [199] M. M. Kadhum and S. Hassan, "The Effect of the Packet Sliding Window Size on FN Drop/Mark Probability," submitted to *Global Journal of Computer Science and Technology (GJCST)*, 2010.
- [200] M. M. Kadhum and S. Hassan, "On the Optimal Settings for Fast Congestion Notification Mechanism (FN)," submitted to *World Applied Sciences Journal (WASJ)*, 2010.