THE IMPACT OF MISSING VALUE METHODS AND NORMALIZATION TECHNIQUES
ON THE PERFORMANCE OF DATA MINING MODELS

MUNIRAH BINTI YAHYA

UNIVERSITI UTARA MALAYSIA
2011



THE IMPACT OF MISSING VALUE METHODS AND NORMALIZATION
TECHNIQUES ON THE PERFORMANCE OF DATA MINING MODELS

A project submitted to Dean of Research and Postgraduate Studies Office in partial
Fulfiliment of the requirement for the degree
Master of Science (Intelligent System)
Universiti Utara Malaysia

By
Munirah binti Yahya



KOLEJ SASTERA DAN SA'NS
(College of Arts and Sciences)
Universiti Utara Malaysia

PERAKUAN KERJA KERTAS PROJEK
(Certificate of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certifies that)

MUNIRAH YAHYA
(806414

calon untuk Jjazah
(candidate for the degree of) MSc. (Intelligent System)

telah mengemukakan kertas projek yang bertajuk
(has presented his/ her project of the following title)

THE IMPACT OF MISSING VALUE METHODS AND NORMALIZATION
TECHNIQUES ON THE PERFORMANCE OF DATA MINING MODELS

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmu dengan memuaskan.
(that this project is in acceptable form and content, and that a satisfactory
knowledge of the field is covered by the project).

Nama Penyelia
(Name of Supervisor) : ASSOC. PROF. FADZILAH SIRAJ

Tandatangan
(Signature) : W%: Tarikh (Date) : 9'8‘/ 2/ 20/ I]

Nama Penilai
(Name of Evaluator) : ASSOC. P . AZIZI ZAKARIA

Tandatangan
(Signature) . Tarikh (Date) : 2f {3- / Lol

A}




PERMISSION TO USE

In presenting this project in partial fulfillment of the requirements for a
postgraduate degree from Universiti Utara Malaysia, I agree that the University Library
may make it freely available for inspection. I further agree that permission for copying of
this project in any manner, in whole or in part, for scholarly purpose may be granted by my
supervisor(s) or, in their absence by the Dean of Postgraduate and Research. It is
understood that any copying or publication or use of this project or parts thereof for
financial gain shall not be allowed without my written permission. It is also understood that
due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use

which may be made of any material from my project.

‘Requests for permission to copy or to make other use of materials in this project, in

whole or in part, should be addressed to

Dean of Research and Postgraduate Studies
College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
Malaysia



ABSTRAK (BAHASA MALAYSIA)

Data yang banyak meyimpan pelbagai jenis rekod yang tidak diketahui dan ini
menyukarkan proses analisa data. Nilai tersisih bagi data yang hilang atau data yang tidak
lengkap boleh menyebabkan keputusan akhir yang diperolehi hasil daripada analisa tidak
tepat. Lazimnya, masalah ini disebabkan tiada petunjuk tertentu bagi sesetengah analisis
dalam menghasilkan keputusan akhir. Pembuatan keputusan yang berkauliti bergantung
pada data yang berkualiti. Teknik prapemprosesan data menjadi dasar penting untuk
menghasilkan data yang berkualiti terutamanya dalam perlombongan data. Jika
perlombangan data juga tidak, ini akan menghasilkan keputusan perlombongan data yang
tidak berkualiti. Lima langkah penting dalam prapemprosesan data ialah pembersihan data,
penukaran data, pendiskretan data dan pengurangan data. Model untuk perlombongan data
digunakan untuk menganalisis data secara meluas dalam penyelidikan. dan berupaya
mengenal pasti perkaitan dan kesatuan dalam analisis. Regresi logistik ialah satu kaedah
statistik yang penting bagi model perlombongan kerana kaedah ini berupaya meramal data
yang dikategorikan. Kaedah lain yang digunakan untuk perlombongan data ialah Newral
Nerwork (NN) berjaya mengaplikasikan pembelajaran yang terselia dan pembelajaran yang
tidak terselia. Kajian bertujuan untuk mengenal pasti teknik — teknik yang digunakan
dalam pemprosesan data seperti memperbaiki data yang hilang dengan menggunakan dua
teknik yang spesifik membaiki data yang hilang data iaitu Mean of Attribute dan Mean of
Each Target. Hasil daripada eksperimen yang telah dijalankan, model Regresi Logistik
menghasilkan keputusan iaitu ketepatan yang tinggi bagi proses pembelajaran model
setelah menggunakan kaedah Mean of Attribute. Namun, eksperimen model NN bagi
kedua-dua kaedah tersebut tidak memberi kesan ke atas model tersebut. Data yang
digunakan untuk menjalankan proses pembelajaran perlu ditukar ke dalam bentuk yang
boleh diterima sebagai input Multilayer Perceptron (MLP). Perbandingan beberapa teknik
penormalan untuk setiap tiga set data iaitu teknik penormalan yang digunakan dalam kajian
ini ialah kaedah penormalan Min-Max, penormalan Z-Score dan penormalan Sigmoidal.
Untuk data Wisconsin Breast Cancer, penormalan Min-Max lebih sesuai. Bagi Pima
Indians Diabetes dan Thyroid Disease, penormalan Sigmoidal lebih sesuai berbanding
penormalan Min-max. Oleh itu hasil daripada eksperimen menunujkkan kaedah
perlombongan data bukan hanya melibatkan kaedah membaiki data yang hilang dan kaedah
penormalan, malahan jumlah data yang hilang turut member kesan keseluruhan set data.

Kata Kunci: Prapemprosesan Data, Data yang Hilang, Pernormalan, Model Perlombogan
Data
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ABSTRACT (ENGLISH)

In practice, the large datasets contain various types of anomalous records that significantly
complicate the analysis problem. In particular, the prevalence of outliers, missing or
incomplete data can completely invalidate the results obtained with standard analysis
procedures, often with no indication that anything is wrong. High quality of decision
making actually rely on high quality data, therefore data preprocessing has become the
essential and important base of DM with no doubt because of no quality data, mean no
quality mining results. Data preprocessing consists of interactive step such as data cleaning,
data transformation, data reduction and data discretization. Data mining model have been
used for extensive analysis in researches or data analysis work as it able to spot subtle
relationships and associations. Logistic regression is an important statistical method for
modeling and predicting categorical data. Another technique can be used in data mining
task is neural network (NN) which have been successfully applied in a wide range of
supervised and unsupervised learning applications. This study explored on the use of data
preprocessing techniques such as missing values treatment namely Mean of Attributes and
Mean of Target. The experimental results indicate that for the Logistic Regression models,
models higher average accuracy is shown by data whose missing values were treated as
Mean of Attribute. However, for NN models both missing value treatment did not affect the
NN models. Prior to NNs training, the data needs to be transformed into form that is
acceptable as input to Multi Layer Perceptron (MLP) network. Hence, several
normalization techniques had been explored to compare which techniques suitable in each
of the three datasets. There are several normalization techniques used for the experimental
setup that is Min-Max normalization, Z-Score normalization and Sigmoidal normalization.
For Wisconsin Breast Cancer data, Min-Max is preferable. However, for Pima Indians
Diabetes and Thyroid Disease data set, Sigmoidal normalization is more preferable than the
rest of the method. Hence, the experimental results indicate that the performance of DM
models depends not only on the missing value and normalization techniques, it also
depends on the amount of missing value in the whole data set.

Keywords: Data Preprocessing, Missing Values, Normalization, Data Mining Model
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CHAPTER 1

INTRODUCTION

In this chapter, the first section describes the context of the study that presents an
introduction to data preprocessing stages in data mining (DM) approach using Logistic
Regression models and Neural Network (NN) models, followed by the problem statement,
the objectives of the study and the significance of the study. Finally, the scope of the study

that includes the limitations of the study is also discussed.

1.1 DATA PREPROCESSING

Data are known as raw information in unorganized form which is limitless and present
everywhere in the universe. These data are then stored in databases. To date, database
growing rapidly, in fact very large collections continuously gathered about individuals.
groups, government, companies and organizations which stockpiling very important
personal data. The databases aim to help organizations manage human resources, better
understand a market and customer behavior and although this information is collected will

be used even to be shared to each other. Therefore, DM and knowledge discovery in

database (KDD) are needed to deal with the flood of data.

In practice, the large datasets contain various types of anomalous records that significantly

complicate the analysis problem. In particular, the prevalence of outliers, missing or
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