

TRIPLE-STAGE BLACK BOX TESTING MANUAL

MOHD HAMDAN HASBULLAH

UNIVERSITI UTARA MALAYSIA 2011

TRIPLE-STAGE BLACK BOX TESTING MANUAL

A project submitted to Dean of Awang Had Salleh Graduate School
in partial fulfillment of the requirement for the degree
Master of Science of Information Technology
Universiti Utara Malaysia

By
MOHD HAMDAN HASBULLAH

**KOLEJ SASTERA DAN SAINS
(College of Arts and Sciences)
Universiti Utara Malaysia**

**PERAKUAN KERJA KERTAS PROJEK
(Certificate of Project Paper)**

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certifies that)

**MOHD HAMDAN HASBULLAH
(806313)**

calon untuk Ijazah
(candidate for the degree of) **MSc. (Information Technology)**

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project of the following title)

TRIPLE - STAGE BLACK BOX TESTING MANUAL

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmu dengan memuaskan.
(that this project is in acceptable form and content, and that a satisfactory
knowledge of the field is covered by the project).

Nama Penyelia
(Name of Supervisor) : **PROF. DR. NORSHUHADA SHIRATUDDIN**

Tandatangan
(Signature) : Tarikh (Date) : 7/3/2011

Nama Penilai
(Name of Evaluator) : **MADAM ADZIRA HUSAIN**

Tandatangan
(Signature) : Tarikh (Date) : 7/3/2011

PERMISSION TO USE

In presenting this project in partial fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence by the Dean of Postgraduate Awang Had Salleh Graduate School. It is understood that any copying or publication or use of this project or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project.

Requests for permission to copy or to make other use of materials in this project, in whole or in part, should be addressed to

Dean of Awang Had Salleh Graduate School
College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
Malaysia

ABSTRAK

Pengujian perisian merupakan satu proses yang amat penting di dalam proses pembangunan perisian. Namun, untuk menghasilkan perisian yang berkualiti, pengujian perlu dijalankan dengan teknik-teknik yang betul. Pembangun perisian yang tidak mempunyai banyak pengalaman didapati mempunyai masalah untuk menjalankan proses ini. Kekurangan sumber serta panduan merupakan di antara masalah yang mereka hadapi. Sehubungan itu, matlamat kajian adalah untuk membangunkan sebuah manual iaitu Manual Prosidur: Pengujian Kotak Hitam Tiga Fasa yang boleh digunakan oleh pembangun perisian untuk menjalankan pengujian perisian dengan cara yang berkesan. Manual dihasilkan dengan mengikuti metodologi pembangunan manual ADDIE. Secara amnya, prosidur manual ini mengandungi 3 fasa yang perlu dijalankan secara berperingkat-peringkat dan selari dengan kitaran proses pembangunan perisian. Pra-pengesahan telah dilakukan ke atas manual untuk menguji tahap kemudah bacaan dan didapati 60% daripada responden bersetuju manual tersebut adalah mudah dibaca dan difahami. Walau bagaimanapun, manual tersebut perlu penambahbaikan dengan mengambil kira pengujian tambahan jenis kotak hitam dan kotak putih.

ABSTRACT

In software development life cycle process, software testing phase is the most important process. However, in producing a good software, software testing should be conducted in a proper way by using the right techniques. Normally, novice developers who are lacking in experiences in conducting software testing encountered problems. Among the issues that they encountered are lack of resources and guidelines. Therefore, the objective of this study is to develop a procedure manual called as Triple-Stage Black Box Testing Manual in helping novice developers how to conduct software testing. The manual was developed by adopting the ADDIE manual development model. Basically, this manual consists of 3 stages, which have to be executed stage by stage in synchronized with software development life cycle process. Pre-validation was conducted to test ease of read and ease of understand by potential developers. Only 60% of the participants agreed that the manual is easy to read and easy to understand. However, all of them agreed that the procedures for each technique are clearly explained. All of them also agreed that the manual is a good step in providing assistance to young developers to conduct software testing. However, the proposed manual only focuses on 3 black box testing strategies. Some modifications could be done to expand the testing strategies by adding more black box and white box testing strategies. Thus, users can be guided in conducting a white box testing strategies as well.

ACKNOWLEDGEMENT

Allhamdulillah

My thankfulness to ALLAH S.W.T. in giving me the opportunity to complete this study and grant me good health while conducting this study. Without the strength given to me by ALLAH S.W.T, this study might be incomplete.

Firstly, I would like to express my deepest appreciation to Prof Dr Norshuhada Shiratuddin for supervising me in completing this study. Special thanks to her for guidance and advice throughout this period.

Secondly, my thanks also go to my family as my backbone in giving me moral support in completing this study. Furthermore, my love to my father Hj Hasbullah Datuk Hj Rauddah, my mother Puan Juslin Elahan and all family members who have been supporting me throughout my Msc.IT study.

Lastly, thanks to all fellow friends involved in providing me potential sources for this study directly or indirectly. Your supports are most appreciated.

TABLE OF CONTENTS

PERMISSION TO USE	i
ABSTRAK	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATION	x

CHAPTER 1: INTRODUCTION

1.0	Background Of Study	1
1.1	Problem Statement	2
1.2	Research Objective	2
1.3	Research Question	3
1.4	Scope	3
1.5	Theoretical Framework	3
1.6	Research Framework	5
1.7	Contribution of Study	6
1.8	Summary	6

CHAPTER 2: LITERATURE REVIEW

2.0	Introduction	8
2.2	Software Testing Philosophy	8
2.2	Considerations For Software Testing	10
2.2.1	Component To Be Tested	10
2.2.2	Phase To Be Tested	11
2.2.3	Testing Procedure	11
2.2.4	Testing Environment	12
2.3	Black Box Testing Strategy	12

2.3.1	Usability Technique	15
2.2.2	Boundary Value Technique	18
2.3.3	Stress Technique	20
2.4	Experiential Learning Theory	22
2.5	Elaboration Theory	24
2.6	Implications of Boundary Technique, Usability Technique, And Stress Technique	25
2.7	Summary	28

CHAPTER 3: METHODOLOGY

3.0	Introduction	29
3.1	Comparative Analysis of All 3 Techniques (Phase 1)	30
3.2	Produce Procedure Manual (Phase 2)	30
3.2.1	Analysis	30
3.2.2	Design	31
3.2.3	Development	32
3.2.4	Implementation	32
3.2.5	Evaluation	32
3.3	Validate Procedure Manual (Phase 3)	33
3.4	Analyze and Report Finding (Phase 4)	34
3.5	Summary	34

CHAPTER 4: DEVELOPMENT OF TRIPLE-STAGE DOCUMENT

4.0	Introduction	35
4.1	First Stage Procedure	35
4.2	Second Stage Procedure	38
4.3	Third Stage Procedure	43
4.4	Summary	45

VALIDATION OF TRIPLE-STAGE BLACK BOX TESTING MANUAL

5.0	Introduction	47
-----	--------------	----

5.1	Results of Pre-Validation	47
5.2	Summary	49
CHAPTER 6: CONCLUSION		
6.0	Discussion	50
6.1	Limitation of Study	51
6.2	Future Work	51
6.3	Summary	52
REFERENCES		53
APPENDICES		
Appendix A	Manual Prosidur: Pengujian Kotak Hitam Tiga Fasa	59
Appendix B	Pre-Validation	79
Appendix C	Overview Of Study	81

LIST OF TABLES

Table 2.1:	Test Case Based on Software Specification	13
Table 2.2:	Comparative Study	28
Table 4.1:	Functional Requirement	36
Table 4.2:	Check List Table	38
Table 4.3:	Testing Objective	39
Table 4.4:	Extreme Input	41
Table 4.5:	Test Case	41
Table 4.6:	Priority List	42
Table 4.7:	Stress Technique Test Case 1	44
Table 4.8:	Stress Technique Test Case 2	44

LIST OF FIGURES

Figure 1.1:	Theoretical Framework	4
Figure 1.2:	Research Framework	6
Figure 2.1:	Software Testing Lifecycle	9
Figure 2.2:	Software Testing Cost throughout Software Lifecycle	11
Figure 2.3:	Black Box Technique Testing Structure	12
Figure 2.4:	Eliciting Requirement Process	14
Figure 2.5:	Process of Derive Test Case	14
Figure 2.6:	Paper Prototype	18
Figure 2.7:	Next Date Function	19
Figure 2.8:	Kolb's Experiential Learning Cycle	23
Figure 2.9:	Experiential Learning	24
Figure 3.1:	Research Framework	29
Figure 3.2:	Stage of Manual Development based on ADDIE Model	33
Figure 4.1:	Example of Sketch for Manage Topic	37
Figure 4.2:	Sequence Diagram	40
Figure 5.1:	Pie Chart of Easy to Read	48
Figure 5.2:	Pie Chart of Easy to Understand	48

LIST OF ABBREVIATION

SDLC Software Development Lifecycle

CHAPTER 1

INTRODUCTION

1.0 BACKGROUND OF STUDY

Software testing has grown rapidly in this age due to the implementation of software validation. Basically, software testing consumes around 40%-50% efforts and costs in software development (Luo, 2005; Chakrabarti & Godefroid, 2006; Kettunen, Kasurinen, Taipale & Smolander, 2010) and this reveals how important software testing in software development. Before the developed system is delivered to the user environment, it must be tested first to validate all the functional and non-functional requirements work as expected. There are always needs to test the developed system to conform it to the entire requirements in achieving user satisfaction. Indeed, software testing assists developers to identify the errors that arise, thus providing better software quality.

Software testing is a crucial process that needs to be performed correctly. In performing the software testing, software tester must select the most suitable testing approach that will satisfy the software testing process. The selected approach, will guide the software tester for what should be done and it will produce the results based on what has been tested.

In a preliminary study conducted in UUM, 40 randomly selected final year BIT students were asked about:

- purpose of black box testing
- how to conduct black box testing
- how to conduct Usability evaluation, Boundary Value, Decision Table, State Transition and Stress Technique black box testing approaches

The contents of
the thesis is for
internal user
only

REFERENCES:

Aitken, R.C. (2002). Test Generation and Fault Modeling for Stress Testing. *Proceedings of the International Symposium on Quality Electronic Design (ISQED'02)*. IEEE. (pp.95-99).

Alshamari, M. & Mayhew, P. (2008). Task Design: Its Impact on Usability Testing. *International Conference on Internet and Web Applications and Services*. IEEE. (pp.583-601).

Barnum, C.M. (2002). *Usability Testing and Research*. Longman: New York.

Bayan, M. & Cangussu, J.W. (2008). Automatic Feedback, Control-Based, Stress and Load Testing. *SAC'08*. ACM: Fortaleza. (pp. 661-666).

Begel, A. & Simon, B. (2008). Novice Software Developers, All Over Again. *ICER '08*. Sydney: ACM. (pp. 3-14)

Beizer, B. (1995). *Black-Box Testing: Techniques for Functional Testing of Software and Systems*, Canada: John Wiley and Sons.

Bently, E.J., Bank, W. & Charlotte, NC. (2005). *Software Testing Fundamentals- Concepts, Roles, and Terminology*. Accessed on 13thDec 2010 from: <http://www2.sas.comproceedingssugi30141-30.pdf>

Bennet, McRobb, and Farmer. (2002). *Object Oriented Systems Analysis and Design using UML*, 2nd Edition. McGraw-Hill: New York.

Bertolini, C., Peres, G., Amorim, M. & Mota, A. (2009). An Empirical Evaluation of Automated Black-Box Testing Techniques for Crashing GUIs. *International Conference on Software Testing Verification and Validation*. IEEE: . (pp.21-31).

Bertolino, A. (2001). The (Im) maturity Level of Software Testing. *WERST Proceedings*. Pisa:ACM. (pp. 1-4).

Bertolino, A. (2007). Software Testing Researcrh: Achievements, Challenges, Dreams. *Future of Software Engineering (FOSE'07)*. (pp.1-19). Crotia: IEEE.

Bhat, V.D. (2008). *Experiential Learning Theory*. Mysore Regional Institute of Education. Accessed on 28thDec 2010 from: http://wikieducator.org/images/b/b5/EXPERIENTIAL_LEARNING.pdf

Blake, N. (2010). Boundary Value Analysis. Univeristy of Wales Swansea. Accessed on 28th Nov 2010 from <http://www.cs.swan.ac.uk/~csmarkus/CS339/dissertations/NeateB.pdf>

Boling, E. & Frick, T. (1997). "Holistic Rapid Prototyping for Web Design: Early Usability Testing is Essential". *Web Based Instruction*. Educational Technology Publications: NJ. (pp.319-328).

Burnett, G.E. & Ditsikas, D. (2006). Personality As A Criterion for Selecting Usability Testing Participants. *IEEE conference on Information and Communications Technologies (ICICT)*. Egypt: IEEE. (pp.487-498)

Chakravarty, A. (2010). Stress Testing an AI Based Web Service: A Case Study. *International Conference on Information Technology*. Las Vegas: IEEE. (pp. 1004-1008).

Chan, H.A. (2004). Accelerated Stress Testing for Both Hardware and Software. *Proceedings-Annual Reliability and Maintainability Symposium (RAMS'04)*. Los Angeles: IEEE. (pp.346-351)

Coulouris, G. (2009). *Distributed Systems Concepts and Design*. Addison:Wesley.

Dick, W., & Carey, L. (1996). *The Systematic Design of Instruction* (4th Ed.). New York: Haper Collins College Publishers.

Donovan, J., Lol, S.V. & Punch, J. (2003). Graphical Analysis and Guidelines for Step-Stress Testing. *Proceedings Annual Reliability and Maintainability, 2003 Symposium-RAMS*. Florida: IEEE. (pp.528-533).

Feng, W. (2010). A Generalization of Boundary Value Analysis for Input Parameters. *9th IEEE/ACIS International Conference on Computer and Information Science with Functional Dependency*. Tokyo: IEEE. (pp. 779-781).

Garousi, V. (2008). Traffic Aware Stress Testing of Distributed Real Time Systems based on UML Models in the presence of Time Uncertainty. *International Conference on Software Testing, Verification, and Validation (ICST)*. Lillehammer: IEEE. (pp. 92-102).

Goodnight, N., Woolley, C., Lewin, G., Luebke, D. & Humphreys, G. (2003). A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware. *Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware*. ACM: San Diego. (pp. 1-11).

Grady, H.M. (2000). Web Site Design: A Case Study in Usability Testing Using Paper Prototypes. *In Proceedings of IEEE Professional Communication Society International Professional Communication Conference and Proceedings of the 18th Annual ACM International Conference on Computer Documentation: Technology & Teamwork*. New York: IEEE. (pp.39-45).

Graham, D., Veenendaal, E.V., Evans, I. & Black,R. (2008). *Foundations of Software Testing*. UK: Thomson.

Hornbaek, K. (2006). Current Practice in Measuring Usability: Challenges to Usability Studies and Research. *International Journal of Human-Computer Studies*. 64 (2). 79-86.

Jovanovic & Irena. (2009). *Software Testing Method and Technique*. Accessed on 10thDec 2010 from:
<http://internetjournals.netjournalstir2009JanuaryPaper%2006.pdf>

Kaner, C. (2002). *Paradigms of Black Box Software Testing*. Accessed on 11thDec 2010 from <http://www.kaner.com/pdfs/swparadigm.pdf>

Kantamneni, H.V., Pillai, S.R. & Malaiya, Y.K. (2000). *Structurally Guided Black Box Testing*. Accessed on 09th Dec 2010 from: <http://www.cs.colostate.edu/~malaiyastructbbox2.pdf>

Kettunen, V., Kasurinen, J. Taipale, O. & Smolander, K. (2010). A Study on Agility and Testing Processes in Software Organizations. *ISSTA'10*. Trento: ACM. (pp. 231-241).

Kolb, D. A. (1984). *Experiential Learning: Experience as the Source of Learning and Development*. N.J: Prentice-Hall, Inc.

Kolb,D.A., Boyatzis, R.E. & Mainemelis, C. (1999). *Experiential Learning Theory: Previous Research and New Direction*. Accessed on 28th Dec 2010 from: <http://www.d.umn.edu/~kgilbert/educ5165-731/Readings/experiential-learning-theory.pdf>

Lai, C.Y. & Liou, W.C. (2007). Rapid ADDIE Curriculums Design Model Based on the Heterogeneous Multimedia Information Integration. *IEEE International Symposium on Multimedia Workshops (ISMW 2007)*. Taichung: IEEE. (pp. 485-490).

Lamari, M. (2007). Towards an Automated Test Generation for the Verification of Model Transformations. *The 22nd Annual ACM Symposium on Applied Computing (SAC'07)*. ACM: Seoul. (pp.998-1005).

Leshin, C. B., Pollock, J., & Reigeluth, C. M. (1992). *Instructional Design Strategies and Tactics*. Englewood Cliffs, NJ: Education Technology Publications.

Lindstrom, L. & Jeffries, R. (2003). *Extreme Programming and Agile Software Development Methodologies*. Accessed on 13th Dec 2010 from: <http://www.oobeyagroup.com/images/ExtremeProgrammingAgileSoftwareDevelopmentLindstromJeffries.pdf>

Lodhi, A. (2010). Usability Heuristics as an Assessment Parameter: for performing Usability Testing. *International Conference on Software Technology and Engineering (ICSTE)*. Puerto Rico: IEEE. (pp.256-259).

Luo, L. (2005). *Software Testing Technique Technology Maturation and Research Strategies*. Carnegie Mellon University. Accessed on 29th Nov 2010 from <http://www.cs.cmu.edu/~luluo/Courses/17939Report.pdf>

Lv, M., Hou, W. & Zhao, C. (2008). Research of Usability Test Mode Based on the Implicit User Behavior Lib. *Computer-Aided Industrial Design and Conceptual Design (CAID/CD 2008)*. Kunming: IEEE. (pp.157-161).

Mao, C., Lu, Y. & Zhang, J. (2007). Regression Testing for Component-based Software via Built-in Test Design. *The 22nd Annual ACM Symposium on Applied Computing (SAC'07)*. Seoul: ACM. (pp. 1416-1421).

Marijan, D., Teslic, N., Temerinac, M. & Pekovic, V. (2009). On the aEffectiveness of the Black Box Testing Methodology. *IEEE Circuits and Systems International Conference on Testing and Diagnosis,(ICTD 2009)*. Chengdu: IEEE. (pp.1-4).

Mattson, K. (2008). Usability Testing in the Introductory Technical Communication Course: Centering Student Practice on Internationalization/Localization. *IEEE International Professional Communication Conference (IPCC'2008)*. Montreal: IEEE. (pp.1-8).

McBreen, P. (2005). *Quality Assurance and Testing in Agile Projects*. Accessed on 13th from: <http://www.mcgreen.ab.ca/talks/CAMUG.pdf>

Miller, J.R. (2006). Usability Testing: A Journey, Not a Destination. *IEEE Internet Computing*. 10 (6). 80-8.

Mohammad, M.G. & Saluja, K.K. (2003). Stress Test for Disturb in Non-Volatile Memories. *Proceedings of the Asian Test Symposium (ATS'03)*. Xian: IEEE. (pp.384-387).

Mueller, C.J., Tamir, D., Komogortsev, O.V. & Feldman, L. (2009). An Economical Approach to Usability Testing. *Annual IEEE International Computer Software and Applications Conference (COMPSAC 2009)*. Washington: IEEE. (pp.124-129).

Murnane, T., Reed, K. & Hall, R. (2006). Tailoring of Black-Box Testing Methods. *Proceedings of the Australian Software Engineering Conference (ASWEC'06)*. IEEE: Sydney. (pp.1-8).

Myers, G.J. (2004). *The Art of Software Testing, Second Edition*. New Jersey: John Wiley & Sons, Inc.

Nicole, G. & Moldoveanu, F. (2004). A Distance Coverage Measure for Bit Boundary Value Analysis. *IEEE International Conference on System, Man and Cybernetics*. Hauge: IEEE. (pp. 973-977).

Nielsen, J. (1993). *Usability Engineering*. Academic Press: Boston.

Niemenen, M., Raty, T. & Palokangas, J. (2009). Stress Testing the Logical Decision Making Server of a Surveillance System. *First International Conference on Advance in System Testing and Validation Lifecycle*. Porto: IEEE. (pp.98-104).

Norizan, M.D., Marina, I., Suzana, A. & Khairulnizam, M.D. (2010). Usability Testing for Educational Computer Game Using Observation Method. *Conference on Information Retrieval and Knowledge Management (CAMP'10)*. Shah Alam: IEEE. (pp. 157-161).

Parekh, N. (2011). *Software Testing-Black Box Strategy*. Access on 26th Feb 2011 from: <http://www.buzzle.com/editorials/4-10-2005-68349.asp>

Prakash, P & Stevetuf. (2009). *Software Testing Process*. Access on 26th Feb 2011 from: http://it.toolbox.com/wiki/index.php/Software_Testing_Process

Pressman, R.S. (2009). *Software Engineering: A Practitioner's Approach 7th Ed.* McGraw-Hill: New York.

Ramachandran, M. (2003). Testing Software Components Using Boundary Value Analysis. *EUROMICRO Conference "New Waves in System Architecture (EUROMICRO' 03)"*. Belek-Antalya :IEEE. (pp.94-98).

Reigeluth, C. (1992). Elaborating the elaboration theory. *Educational Technology Research & Development*, 40(3), 80-86.

Rosenbaum, S. & Kantner, L. (2007). Field Usability Testing: Method, Not Compromise. *IPC'07*. Seattle: IEEE. (pp.)

Rose, A. (2010). *Designing and developing user guide*. Accessed on 29th Nov 2010 from
<http://www.thewritesquad.co.za/TipsandTricks/DesigningandDevelopingaUserGuide/tabid/68/Default.aspx>

Rosi, M., Maccari, L. & Fantacci, R. (2007). S.T.R.E.S.S. : Stress Testing and Reverse Engineering for System Security. *IEEE International Conference on Communications (ICC'07)*. Glasgow: IEEE. (pp. 1429-1434).

Schecner. B. (2010). *Software Testing Technique*. Accessed on 10th Dec 2010 from:
<http://www.elementool.com/softwaretestingmethods.pdf>

Shelly, C.C. & Barta, M. (2010). Application of Traditional Software Testing Methodologies to Web Accessibility. *International World Wide Web Conference*. ACM: Raleigh. (pp. 1-4).

Seo, K.I. & Choi, M.E. (2006). Comparison of Five Black-box Testing Methods for Object-Oriented Software. *Proceedings of International Conference on Software Engineering Research, Management and Applications (SERA '06)*. IEEE: Seoul. (pp.1-8).

Subramaniam, V. (2005). *Agile Methodologies*. Accessed on 13th Dec 2010 from:
<http://www.agiledeveloper.com/presentations/AgileMethodologies.pdf>

Synder, C. (2001). *Paper Prototyping*. IBM. Accessed on 25th Dec 2010 from:
<http://www.snyderconsulting.net/us-paper.pdf>

Tomic, B. & Vlajic, S. (2008). Functional Testing for Students: A Practical Approach. *SIGCSE Bulletin*. 40 (4). 58-62.

Turpe, S. (2008). When it comes to Testing, is Usability the Closet Analogy to Security. *IEEE International Conference on Software Testing Verification and Validation Workshop (ICSTW'08)*. Lillehammer: IEEE. (pp.302-304).

Wahl, N.J. (2000). Student Run Usability Testing. *Conference of Software Engineering Education & Training (CSEE&T'00)*. Austin: IEEE. (pp.123-131).

Williams, L. (2006). *Testing Overview and Black-Box Testing Techniques*. Accessed on 29th Nov 2010 from <http://agile.csc.ncsu.edu/SEMMaterials/BlackBox.pdf>

Yu, Y.T., Ng, S.P., Poon, P.K. & Chen, T.Y. (2003). On the Use of the Classification-Tree Method by Beginning Software Testers. *Proceedings of*

the ACM Symposium on Applied Computing (SAC'03). Melbourne:ACM. (pp.1123-1127).

Zhao, R. & Li, Z. (2009). Boundary Value Testing Using Integrated Circuit Fault Detection Rule. *Academic and Industrial Conference – Practice and Research Techniques.* IEEE: Windsor. (pp. 3-12).

Zimmermann, M.A. & Collins, R. (2010). A practical Approach To Accelerated Stress Testing for Avionics Products. *Proceedings-Annual Reliability and Maintainability Symposium (RAMS'10).* IEEE: San Jose. (pp.1-6).