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ABSTRAK

Congkak ialah permainan tradisional Malaysia dan ia  terdedah kepada 

risiko untuk dilupakan jika kewujudannya tidak diambil serius, tetapi setakat 

kini  tinjuan  teks-teks  rujukan  tidak  menjumpai  sebarang  publikasi  yang 

menyatakan  penggunan  algoritma  neural-network  (NN)  ke  atas  permainan 

Congkak. Oleh itu projek ini ingin untuk menangani isu ini dengan membina 

satu sistem Congkak dengan NN dan juga cuba untuk menjawab persoalan-

persoalan  formal  berikut:  “Apakah  fungsi  penilaian  Congkak  yang  sesuai 

untuk melatih NN bagi permainan Congkak?” (contohnya: adakah penilaian 

Congkak melalui mengiraan buah terkumpul lebih baik dari penilaian melalui 

pengiraan 'rumah-terbakar'?) dan “Bolehkah prestasi bagi algoritma Min-Max 

& Alpha-Beta cut-off (MM) ditingkatkan  jika NN digunakan sebagai sejenis 

teknik 'forward-pruning' untuk MM?”. Permasalahan ini diselesaikan dengan 

membina  satu  sistem  Congkak  berdasarkan  kerja-kerja  terdahulu  yang 

berkaitan dengan sistem Mancala dan sistem NN, dan kemudiannya merekod 

prestasi algoritma yang terlibat untuk membuat kesimpulan. Hasilnya: projek 

ini  berjaya  mencipta  satu  sistem Congkak  dengan  3  jenis  ajen  kecerdasan 

buatan (AI agent), dan mendapati bahawa gabungan NN dan MM adalah lebih 

perlahan daripada MM semata-mata.
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ABSTRACT

Congkak is the nation's traditional game which could soon be forgotten 

if no serious attention is given to it, but literature survey has not yet found any 

research publication that mentioned the use of neural network algorithm (NN) 

on Congkak. Therefore the project want to try to rectify this issue by trying to 

develop an Intelligent  Congkak System that  also implemented NN and try 

answer research question such as this: “What is the best Congkak evaluation 

function for training NN for game playing?” and “Can Min-Max algorithm 

(MM) be speeded up by using NN as a forward-pruning method?”. This issues 

can solved by programming the Congkak system based on previous work on 

Mancala and NN system, and then recording the performance of the related 

algorithm.  As a result: the project had created a Congkak system that had 

featured  3  Artificial  Intelligence  (AI)  agent,  and  discovered  that  the 

combination of NN and MM is slower than MM alone.  
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Chapter 1

 1. INTRODUCTION

This  project  is  focussed on implementing Artificial  Intelligence (AI) 

technique in Congkak game playing. An AI agent was created as a player that 

could be configured to play with a human or with itself. The agent used Neural 

Network  algorithm  (NN),  Min-Max  algorithm  with  Alpha-Beta  function 

(MM), and Random-moves-generator to play the game.  

AI is an exciting field of research. The goal of AI field is to develop a 

system that can solve real world problems: such as Chess game, predicting 

stock market and facial recognition. Most recent and exciting development is 

an AI agent named Watson developed by IBM; it can answer question posed in 

natural  language  and  has  won  a  game  in  an  American  quiz  show  called 

“Jeopardy” (IBM  (2011)). Another AI field is visual recognition; which also 

has  become  ubiquitous  nowadays  in  form  of  facial  recognition  software 

installed  on  our  laptop,  and  other  exciting  development   is  in   computer 

gaming;  where an AI agent named Milo can recognize player's emotion and 

interact with the player (Gibson. E (2009)).     

The project will use AI on a small scale. Several AI technique was used 

on the game Congkak; Congkak has simpler rule and simpler mechanics than 
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the real world problem so it is an ideal place to test any AI algorithm. The AI 

will acted as an artificial player that will try to defeat its opponent by moving 

pebbles or marbles into specific hole.    

 1.1. Problem Statement

Based on current literature survey there doesn't appear to be a Congkak 

system mentioned that  implemented NN.  However there was a  Congkak 

system mentioned by Alifia et. al. (2006) that uses greedy search algorithm 

(similar to MM) to find for optimal move, and there are also a Dakon system 

mentioned  by  Donker,  J.  et.  al.  (2000)  which  has  almost  similar  rule  to 

Congkak. However, all known intelligent system appears to be focussed on 

non-Congkak variant of Mancala game  (Bylander, T. (2008); Wee-Chong,O. 

et. al. (2003); H. Jaap van den Herik et. al. (2001); Donkers, J.  et. al. (2000); 

Cofer, A. (2003); Irving,G. et.al. (2000); Davis, J.E. et. al. (2002); Pickhard, A. 

(2007); Ahlschwede, J. (2000); Kronenburg,T. (2008);  Alifia et. al. (2006); 

Mohammed Daoud et. al. (nd); Romein, J. W. et. al. (2003))  . Congkak is a 

local  Malaysian  traditional  game  but  the  literature  survey  only  found  few 

research paper that mentioned AI research on Congkak system (and none was 

from Malaysia).

Awari, Kalah and Dakon is a type of Mancala game and it is the most 

popular Mancala game among computer scientist (H. Jaap van den Herik et. al. 

(2001)). Awari, Kalah and Dakon is played by a larger community (thus more 

popular) and its solution is not trivial; which justify the use of AI method on 
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these game. Dakon is the most similar game to Congkak but Dakon doesn't 

represent a Congkak game because there was no simultaneous start rule like in 

Congkak. 

Davis,  J. E. et.  al.  (2002) and Wee-Chong,O. et.  al.  (2003) has both 

demonstrated the use of NN on Mancala game specifically in Awari and Kalah 

respectively.  Both  researchers  has  produced  a  very  good  master  level  NN 

agent. This shows that NN can be used as an agent to play games similar to 

Congkak.

MM is the most common AI algorithm for games and it is known to 

have been applied on Mancala (Cofer, A.(2003); Bylander, T. (2008)), but MM 

alone was long recognized to be a slow algorithm (greedy algorithm). If the 

state-space is too big it will takes hours to completely explore it (depending on 

CPU speed and cut-off depth), but an addition of forward-pruning algorithm 

(such  as  Alpha-Beta  algorithm)  has  significantly  improve  its  performance 

(Lim,Y.  J.  (2007)).  The project's  aim is  to  try  to  use  NN as an additional 

forward-pruning method and  see  if  it  has  a positive effect  on MM's speed 

performance.  

 1.2. Research Question

The research question are:

• Can MM be speeded up if using NN as a forward-pruning method? 

• What is the best evaluation function to train NN for Congkak game 
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playing? 

In the effort to answer those questions, a complete Congkak system must be 

constructed. The development of a Congkak system will provide the platform 

for testing the algorithms that could answer the research questions. 

 1.3. Goal and Objective of the Project

 The goal of the project  is  to develop a system that  can answer the 

research  questions  and  can  resolves  the  issues  mentioned  in  problem 

statements.  The  deliverable  for  the  project  will  be  a  system that  could  be 

useful for future research and will add to the body of knowledge regarding the 

“know-how”  for  developing  future  Congkak  system  and  its  AI  agent. 

Therefore he project's objectives are:

• to develop an AI agent based on NN and MM that which can be tested 

to play a Congkak game.

• to develop a Congkak system that can simulate a real Congkak game 

and which can collect data about the performance of the AI agents.

• to develop a Congkak system that can interact with users and allow 

users to play Congkak virtually.

• to make a conclusion that can answer the research question.

 1.4. The Significance of the Project

This project can be useful to other future project because it contain a 
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working  example  of  a  Congkak  intelligent  system  implementation.  This 

project can demonstrate- 

• a working example of how a NN was used as an agent, and;

• a working example of how Congkak rule was simulated,

• a working example of how the interface was done, and;

• a working example of how data collection was made. 

With this problem solved, other more complex system can be built on top of 

the project. 

 1.5. Scope, Assumption and Limitation of the Project

 1.5.1. Scope

 The scope of the programming is limited to within the subject touched 

by an introductory Java course, however some concept may exceed that scope: 

such as multi-threading, dynamic array, recursive programming, and NN. But 

it  was implemented by the help of external package such as Neuroph, and 

from other people's work on Mancala intelligence system, and from NetBean 

IDE's  auto-correct  function,  and  some  are  from  online  search  and  from 

Javadoc.  The  programming  scope  of  the  project  is  within  the  introductory 

courses  and  the  AI  courses,  but  also  uses  some  external  resources  (which 

could add to the size of scope). 

5



 1.5.2. Assumption Made Prior to Project Execution

The project assumes Congkak intelligence system is a unique project, 

and  no  resource  (research  paper  or  open-source  code)  of  whatsoever  was 

publicly available for such  system of similar title or of same goal,  and is 

therefore  worth  pursuing  based  on  this  uniqueness.  It  is  assumed  that  a 

creation  of  Congkak  system  is  desired  because  it  will  preserve  national 

identity (Noraziah Che Pa, master proposal discussion, March 13, 2011).  

 1.5.3.    Limitation

 Due  to  time  limitation:  the  project  was  not  able  to  test  multiple 

configuration of the applied algorithm (the code is not guaranteed as the most 

efficient  alternatives)  and  is  not  aiming  to  find  a  better  alternative  to  the 

current applied algorithm (the project could test other NN package but not 

done so. Eg: Encog is reportedly faster than Neuroph).  Some algorithm, ideas 

and NN configuration were  derived from other  people's  work;  such as  the 

concept of NN from GNU-Backgammon (Gerald Tesauro's system) and MM 

from Mancala intelligent system (Adam Cofer's system)  (Cofer, A. (2003); 

Nyugen, D. et. al. (1989), Goldberg, C. (2005); JuMpErFLY (April 24th 2004); 

Deitel, P. J. et. al. (2006); Eck, D. J (2006); “5up3rJ” (aka. SuperJ) (Jan 4 th, 

2006);  Tesauro,  G.  et.  al.  (1989);  Tesauro,  G.  (1992);  Tesauro,  G.  (1995); 

Tesauro, G. (2002)), but some algorithm must be designed within the project 

because no resource is available; eg: Congkak algorithm. Time was allocated 

mostly  on  training/test  NN  and  other  sub-system  (for  few  hours  and  is 
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repeated if correction need to be done), then devising a working algorithm, 

and correcting logic error , which then leave less time for risky exploration of 

new alternative algorithm.

The Congkak system has expanded its initial requirement from just a 

system for testing NN into a system that also feature a functional Graphical-

User-Interface  (GUI)  for  user  interaction.  The  development  on  GUI  had 

reduced the testing done on the NN subsystem. Therefore the data on NN 

agent was not complete and the NN agent did not perform to high expectation 

due to lack of tuning, and more time is needed if to improve the performance 

for NN agent.  

The implementation of the GUI is not the most visually appealing, but it 

is sufficiently functional. More advanced process (such as: smooth animation) 

is  possible  but  require  more  literature  review  and  development  time.  The 

scope of the project is limited only to AI field (eg: is not involved with Human 

Interaction Design) .

 1.6. Definition of Terms

In this section the term “Mancala” and “MM” was mentioned several 

times. Mancala is a traditional game originating from Africa that has similar 

rule and board shape to Congkak but is much simpler than Congkak, and MM 

is an algorithm that uses state searching to find the best possible move. Many 

board games (such as Mancala) uses MM as an artificial agent and act as a 

benchmark  to  other  artificial  agent  because  of  its  completeness  in  finding 
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solution. 

“Java” is a programming language with similar syntax to C++ but with 

simpler object model and fewer low-level programming function. Java has an 

automatic memory management and doesn't need and doesn't allow pointers 

and other direct memory manipulation to to be used, thus it is simpler than C+

+. 

 1.7. Organization of Report

This  report  is  divided into  6  chapter:  Chapter  1  is  the  introduction, 

Chapter 2 is Literature Review, Chapter 3 is project methodology, Chapter 4 is 

the  result,  Chapter  5  is  the  discussion,  and  finally  Chapter  6  is  project 

conclusion and recommendation. Chapter 2 discusses the ideas and knowledge 

obtained  from  literature  review.  Chapter  3  discusses  how  the  system  is 

developed  and  discusses  its  implementation.  Chapter  4  presents  the  data 

(collected  from  the  system).  Chapter  5  discusses  any  system  bug  and 

weaknesses  revealed  by  the  data.  Chapter  6  discusses  conclusion  on  the 

project and recommendation for future work.  
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Chapter 2

 2. LITERATURE REVIEW

 2.1. Introduction

This project is conceptually based on Gerald Tesauro's paper (Tesauro, 

G. (1989); Tesauro, G. (1992); Tesauro, G. (1995); Tesauro, G. (2002)) on NN 

Backgammon  player,  and  also  programmatically  based  on  Mancala 

intelligence system written by Cofer, A. (2003). Gerald Tesauro developed the 

backgammon's NN system under IBM company research and the software was 

released  publicly  under  GNU  licence  as  “GNU-Backgammon”  and  was 

available  online  as  C++  source-code.  While  the  Mancala  system  was 

developed by Adam Cofer for his Master Thesis and it utilized MM (Min-Max 

with Alpha-Beta cut-off function) and also released under GNU licence and 

available online as Java source-code in the Appendix of his Thesis paper. This 

Congkak project  is  based on Adam Cofer's  work since his  project  is  more 

closely related to Congkak.

 2.2. Brief Review on Artificial Intelligence Literature

Gerald  Tesauro  implement  a  NN  is  called  TD-Lambda.  'TD'  is  an 
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abbreviation  for  “Temporal-difference-learning”,  and  temporal-difference-

learning is a theory of how reinforcement-learning is conducted for NN to 

allow a  system to make  a  better  prediction  in  time after  time (Wikipedia: 

“Temporal difference learning” (2011), Sutton, R. S. et. al. (2005)) . In TD-

lambda: the network was configured to train with a time-series data,  and the 

goal  was  to  minimize  the  prediction  error  (such  that  predictions  follows 

closely to the actual outcome). By default the 'actual outcome' is the winning 

move from the winning player, and the goal is to make a better predictor for 

the winning move: which consequently lead to a better player. (Sutton, R. S. 

et. al. (2005))

In Gerald Tesauro's work (1995) the network reached the level of world 

champion player after 300,000 games training with self-play. The purpose of 

training is to allow the network to improve its approximation of the game's 

rule such that  it  became a better  player.  Simple rule is  approximated by a 

linear  function,  while  complex  rule  can  be  approximated  by  non-linear 

function;  NN  can  discover  both  and  approximate  both  function  through 

training (StatSoft Inc. (2011)). 

For example: logic function such as “number1 --> number2” (number 1 

imply number 2)  can be approximated by “number2 = constant * number1” (a 

mathematical  function),  and  logic  function  “(number1   ^   -number1)   --> 

number2” (number  1 or  a  negative  of  number 1:  imply number 2)  can be 

approximated by “number2 = number1 * number1” (number 2 is equal to the 

square of number 1). The former is a linear function and the latter is non-linear 
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function  (specifically: the later is a polynomial function of order 2). NN can 

approximate both function, but if over-fitting occur: NN will then approximate 

a simple function (such as a polynomial function of order 1) with an over 

complicated non-linear function (such as a polynomial function of order 3) 

(StatSoft Inc. (2011); Lawrence, S.  et. al.(1997)).

Big NN (NN with large amount of neurons or perceptron) is able to 

generalize problem better (Lawrence, S. et. al.(1997)) but it is also susceptible 

to over-fitting (StatSoft Inc. (2011)). 

For  Mancala:  Cofer,  Adam (2003)  implement  Min-Max with  Alpha-

Beta forward pruning function (MM). The MM does its work by searching the 

game-state  for  a  state  that  contain  the  largest  amount  of  pebbles  in  its 

storehouse, and Alpha-Beta works by excluding game-state that do not lead to 

such state (thus lessening the size of  the state search) (Bylander, T. (2007)). 

MM in  Adam Cofer's  work  is  fully  compatible  with  Congkak and it  only 

require small/minimal change for it to be functional with Congkak.

 2.3. Overall Literature Review

The following is  a  review of  all  literature  and tools  relevant  to  the 

project.   The  literature  review  has  revealed  many  solution  to  the  many 

development  questions  of  this  project,  such as:  how the  project  should  be 

conducted and what tool it need to make the system work. Many important 

concept about neural network system can be learn from Gerald Tesauro's paper 

(Tesauro,  G.  (1989);  Tesauro,  G.  (1992);  Tesauro,  G.  (1995);  Tesauro,  G. 
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(2002)), and several month of work has been cut out from this project when 

Adam Cofer's system (Cofer, A. (2003) is used as a template, and the use of 

Neuroph  (Sevarac,  Z.,  et  al.  (2008))  & the  use  of  Java  and Netbean  IDE 

(Oracle, (2011)) had transformed a very complicated/daunting programming 

problem into a tractable (solvable) problem. The only biggest challenge left 

was to make sure that the idea is implemented successfully.

 2.3.1. Neural Network (NN)

The input for the NN must be as a time-series data. This is based on the 

article written by Carter-Greaves, L.E.  (2009) and Steinhauer,V. (2009) from 

Neuroph project: a time-series data is a set of data point that can be plotted 

over time axis. For input: each data point will have similar (temporal) distance 

between each other and is feed into the NN's input neurons in a serial manner,  

while the latest data point is also feed into the output neuron.  

The NN will be trained in the above said configuration, but when a new 

data point arrive: the old data point is shifted backward in time and the new 

data  point  is  feed into the  output  neuron and similar  pattern will  continue 

(Steinhauer, V. (2009)). The goal is to make NN learn the behaviour/pattern of 

the  data  point(s)  in  those time-series.  The NN will  learn  faster  if  the  data 

points had showed a discernible pattern (Carter-Greaves, L. E. (2009)).

 For Congkak system: both the board state and the move state is those 

data points, and this data points is separated from each other by the player's 

turn, and the player's turn was interleaved with the opponent's turn to form a 
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long series of input (which is visually similar to the work by Nyugen, D. et. al 

(1989)). Only the winning player's turn is feed into the output neurons, but the 

trailing turn (winner and loser) is all assigned to the input neuron (view Figure 

3.3 (page 31)). The training aim to detect a patterns in the trailing input that 

can lead to a winning state in the output neuron. 

In Gerald Tesauro's system (1995): the data point near the endgame is 

flagged as more significant for NN training than the one further away from the 

endgame.  This  is  based  on  the  assumption  that  not  all  data  point  was  a 

contributor to the winning state,  some may just be a noise. Gerald Tesauro 

refer to this problem as “temporal credit distribution problem” and was solved 

by assuming the initial move (for Backgammon) was less significant to the 

winning outcome than the final move. 

 In this project the data point is flagged as 'significant' or 'insignificant' 

by reducing or increasing the NN's “max_training_error”.  This mean that the 

training  will  be  performed  with  either  more  iteration  to  achieve  a  desired 

minimum-error  or  is  interrupted  early  to  allow  deviations  (“StatSoft  Inc. 

(2011)). For Congkak: when a player reclaimed their burnt_pit (gained a lost 

hole) or caused the opponent to loose hole (induce more burnt_pit), or when a 

move increased the storehouse count by more than 1 and also prolonged the 

turn: then those moves was considered 'significant'.

 2.3.2. Congkak Game

  Congkak game is  similar  to a Mancala game which originated from 
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Africa  (Voogt,  A.  de  (2001)).  Mancala  game  did  not  featured  a  multi-lap 

move, and no multi-stage game and no burnt_house concept. Mancala player 

start playing the game by picking up pebbles from the holes on the player's 

side and then move counter clockwise while deposited a pebble on each hole 

each  time  the  player  passes  a  hole  or  storehouse  (except  the  opponent's 

storehouse). If the player emptied the pebbles from his hand on a empty hole 

then he will lose the current turn, and if this hole was on his own side then he 

could capture pebble from the opposite hole and put them (and the last pebble 

that he had deposited) into his storehouse. However if this empty hole is in his 

opponent's side then he must left the pebble there. Mancala player can deposit 

pebbles in any hole except in his opponent storehouse which he must skip. 

(Cofer, A.(2003))

 In Congkak: each time a player emptied the pebbles from his hand on 

any non-empty hole, then the player must continue moving using the content 

from that last hole (the player must pick-up the content and continue move) or 

if the hole was empty: his turn will end just like in Mancala (mentioned in 

previous paragraph). For new game: both player must start simultaneously and 

perform the Congkak's move rule until they ended their turn, if they had ended 

their turn: then they must wait for their opponent to finish first, the player who 

ended his  turn last  will  go first  in  the  next  phase (Yaakub Rashid (1981); 

“How To Play Congkak” (2010)), in next phase: the player will play in turn 

like  normal  (simultaneous  start  only  apply  to  the  first  game,  not  on  the 

consequent  round).  This  rules  made  Congkak  different  from  Mancala.  In 
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Congkak: a single move can be prolonged considerably and the first game will 

start like a race track. 

The endgame is reached whenever a player had all the hole on his side 

empty. When this happen, all pebbles from the remaining hole will be sent to 

his  opponent's  storehouse  and  both  players  will  count  the  total  pebbles 

collected in their storehouse. Player with the highest number of pebbles will 

wins, and player who lose this game will start first in the next round. (“How 

To Play Congkak” (2010))

To start  a  new round: the player must fill-in their  empty holes with 

pebbles from their storehouse, the players must do this from left to the right 

hole (holes from their own side), and each hole must be filled with exactly 

seven pebbles and the remainder can be stored in the storehouse, a non-filled 

hole  is  considered a “burnt_hole”  and will  be  ignored during  play (this  is 

called burnt_house rule).  The burnt_house rule  allow the loosing player  to 

reclaim  pebbles  from  their  opponent  in  next  round  (Yaakub  Rashid 

(1981);“How To Play Congkak” (2010)). Player with 1 or 2 burnt_hole seems 

to have a certain advantage; because random play suggest that it is easier to 

win the round when you have about 1 or 2 burnt_hole.

The  project  is  built  upon  the  code  written  by  Cofer,  A.  (2003):  it 

integrated Congkak rule into a pre-existing Mancala system, and has included 

NN, Random-move and Neural-Min-Max hybrid (NMM) as 3 new artificial 

intelligence agent in addition to the original MM.  Adam Cofer's system is a 

complete system in which Congkak rules and new AI agent can be applied and 
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tested  fairly  quick.  Adam  Cofer's  Mancala  system  already  had  a  robust 

framework such as a main class, a working MM class, and working text-based 

interface class: which allowed new codes to be build on top of existing one 

and tested quickly.

 2.3.3. Min-Max Algorithm with Alpha-Beta function (MM)

MM algorithm is the most effective algorithm for creating an artificial 

agent for board game. It works by creating a secondary copies of the present 

game  during  play  and  exhaustively  test  moves  on  this  copies  to  get  the 

outcome,  and  when  the  desired  outcome  was  found:  it  retrieve  the 

corresponding move (that is responsible for this outcome) and send it to the 

present game. MM can work on any board game as long as the game's instance 

is copyable and it can make a perfect copy, and as long as its game-state is 

easily evaluated by a mere calculation or algorithms.

The MM's evaluation-function for Congkak system is “the amount of 

pebble contained in the agent's storehouse minus the pebbles contained in the 

opponent's storehouse” (the difference of stored pebbles).  This is similar to 

MM's evaluation-function for Mancala.  

MM  is  actually  similar  to  greedy-search  algorithm,  thus  it  can  be 

imagined in term of search-tree. Cofer, A. (2003) MM algorithm performed a 

depth-first-search (DFS) with Alpha-Beta cut-off function (as mentioned in the 

code description).These algorithm starts by opening a child nodes and then 

evaluate it, and then it open another node and then evaluate it along the way 

16



until it reaches the endgame node (or until it reach a cut-off depth), when it 

reach the end: it passes the endgame's evaluation value to its parent node, and 

then the parent will select the highest evaluation value (which was received 

from many of its child node) to be passed on up to the grandparent node and 

so on until it reaches the original board state (original node/grand-grandparent 

node), then the original node will select the highest evaluation value (received 

from many of its child node) as the next move.     

 The Alpha-Beta cut-off function works by immediately returning a best 

move value whenever a specific condition was meet. This skips the entire MM 

search-space and saves processing time. MM can still return a same value if 

without Alpha-Beta cut-off: but will require more time to completely search 

the  entire  search-space  (depending  on  the  cut-off  depth).  (Samuel,  A.  L. 

(1967); Lim,Y. J. (2007).)

 2.4. Extra Definition and Term

The term 'plies' or 'ply' means “turn”. Therefore “self-ply” mean “self-

turn”. This  means that an agent will  play with itself.  This  term is  used by 

Gerald Tesauro's paper to indicate his NN training strategy. 

Congkak uses alternative terms like 'village' for storehouse and 'house' 

for holes or pits.   Both terms has similar meaning. Storehouse is preferred 

because it is more descriptive. 

A “training evaluation function” is a function that will determine the 

value  of  “max_training_error”.  It  is  mentioned in  the  research  question  in 
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Chapter  1.  There  are  a  total  of  4  different  training  evaluation  function 

mentioned in the project.    

 2.5. Summary

 Only relevant literature was reviewed in this  chapter.  Concepts like 

over-fitting, time-series configuration, MM, and Congkak rule is essential to 

understand the following chapters. 
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Chapter 3

 3.  PROJECT METHODOLOGY

 3.1. Introduction

The  project  methodology  contain  4  phases  and  9  activities.  Such 

methodology is loosely based on the book written by Kothari (2004). Table 3.1 

(next page) summarize this 4 phases and 9 activities, and the following section 

will described in more detail on each of the activities in this methodology.
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Table 3.1: Project's Methodology. There were 3 phases and 9 activities conducted in  
period of 3 month.

 3.2. Project Methodologies

The project methodology consist of 4 phases: (1) Project Identification 

&  Initiation,  (2)  System  Design  &  Development,  (3)  Data  Collection  & 

Analysis, and finally (4) Project Documentation. Each phase contain several 

activities  and  each  phase  summarize  the  type  of  activity  performed.  For 

example:  phase (1) is involved with activity that determine the goal of the 

project,  and phase (2) is involved with activities that deal with the technical 

aspect of the project, while phase (3) is involved with activities that deal with 

data  collection,  and  finally  phase  (4)  is  involved  with  activities  that  is 

conducted for report writing. 
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Phase Activity Method Deliverable
-Project identification & -Identify the problems. -Discussion with supervisor. -Project's topic.
 initiation. -Quick literature survey.

-Perform an extensive -Review the literature. -Method & technique
 literature review.  for system design.
-Create a valid -Analyse the literature. -Research question.
 research question.

-System design & -Design system that -Identify system's requirement. -Congkak prototype.
 development.  answers research -Perform XP Programming.

 questions. -Debug the system.
-Data collection & -Identify the data -Identify Data.Collection- -Data type.
 analysis.  to be collected  sub-system's requirement.

 from the system.
-Perform the data -Program Data.Collection- -Raw data.
 collection.  sub-system.

-Evaluate/Run prototype
-Process the data -Sort data. -Graphs & aggregate
 & analyse the -Analyse data with  values.
 data.  SPSS.
-Interpret the data -Review the literature. -Discussion &
 & answer research -Answer research  Conclusion.
 question.  question.

-Project documentation. -Prepare a report. -Identify APA guideline. -Report.
-Get correction from
 supervisor.
-Review Report-writing-
 guideline.



 3.2.1. Project Identification & Initiation

“Project Identification & Initiation” consist of 3 activities: (a) Identify the 

Problems, (b) Perform and Extensive Literature Review, and finally (c) Create 

a Valid Research Question. Such activities was aimed to identify the project's 

goal and to gather any resources that can help with system programming: such 

as software-tools and algorithms. The output for this phase is the “Research 

Question”,  the  “Project's  goal”,  and  the  “Method  &  Technique”  that  is 

essential for performing the next phase: “System Design & Development”.

 a. Identify the Problems

The project was started with a discussion with the project supervisor: 

Ms. Aniza and Ms. Noraziah, regarding the issues that can be solved by the 

project. The project supervisors have more qualification in making suggestion 

for  a  new  project  title  because  they  have  more  experience  in  the  related 

research field (AI field). As a result: “Designing and Developing an Intelligent 

Congkak” is chosen as the project title because such project will have some 

value to the nation and 'Jabatan Warisan Negara' also had requested a Congkak 

system to be developed.  

Then a quick literature survey is conducted to determine the present 

level  of  research  that  has  been  done  (by  other  researcher)  for  a  Congkak 

system. This helps the project to identify useful tool from previous research, 

and to identify unresolved problem that could be the focus of the project. As a 

result: the survey discovered a number of AI research already been conducted 
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for  Mancala  game  (which  is  a  very  similar  game  to  Congkak),  one  for 

Congkak (Alifia  et.  al.  (2006)),  but  none had used Congkak and NN, and 

therefore the implementation of Congkak & NN has became the goal of the 

project.  

 b. Perform Literature Review

The  second  process  involved  doing  an  extensive  reading  on  all  AI 

literature and Congkak literature (gathered during the previous activity). These 

literature contain solutions & techniques that could help to develop the actual 

Congkak system. For example the literature review has found many resources 

that had helped the development process; such as a Mancala source-code, a 

'blueprint'  for  developing  a  NN  agent  (the  concepts/design),  and  several 

algorithms and codes that has allowed other function such as data-collection 

and GUI to be available for the Congkak system.

 c. Create a Valid Research Question

The  research  questions  is  the  questions  that  naturally  arise  from  a 

literature reading but wasn't answered by the literature itself. It is akin to a 

knowledge  gap  that  exist  because  of  an  incomplete/not  self-contained 

literature; which demanded another literature or an experiment for an answer. 

Thus, based on the idea that Congkak has a billions of state space (Donker 

(2000))  and  MM  must  slowly   searches  through  all  those  state-space 

(Newborn (2003)) and NN is an algorithm that can learn/remember any sort of 
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problem and solution (StatSoft Inc. (2011)), then could the speed of MM be 

increased by combining it with NN? this question was not answered explicitly 

by  any  of  the  reviewed  literature.  The  literature  also  didn't  reveal  what 

evaluation  function  will  work  best  for  training  Congkak's  NN.  So  the  2 

question became the project's research question. 

 3.2.2. System Design & Development

The “System Design & Development” phase contain one continuous long 

activity: (a) Design a System that Answer the Research Question. This activity 

consist of 3 basic programming process: (1) translate system-requirement into 

low-level  requirement  (this  requirement  is  basically  the  system's 

design/specification), (2) write the code, and finally (3) debug the code, which 

was  performed  iteratively  (repeatedly  in  small  portion)  until  a  complete 

system is  build.  The  output  of  this  phases  is  a  stable  Congkak  prototype 

system (not a throwaway version or a beta version).   

 a. Design a System that Answers Research Question

The project's goal was to create an intelligent Congkak system; which 

can be fulfilled by programming the system in Java language. Java language is 

more intuitive to use than C++ and has many resources written as an open-

source software. The user interface can be programmed using Java-Swing, the 

NN  agent  can  be  programmed  using  Neuroph,  and  the  MM  agent  and 

Congkak  system  can  be  programmed  by  modifying  Adam  Cofer's  (2003) 
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Mancala intelligent system written by (all written in Java).

The design process for the system is started by first visualizing about 

the desired output (eg: the system design and programming flow. However XP 

programming did not need such activity to be documented: therefore it was not 

included here) and then to try to achieve that output using a clever usage of 

these following 3 programming components: (1) a control-statement (eg: “if-

else”), (2) a loop-statement (eg: “while”), and (3) a call-in to several useful 

packages  (eg:  “Java  Swing”  or/and  “Neuroph”).  This  is  because  basic 

programming  is  entirely  consist  of  such  components:  such  as  a  looping-

statement,  a  control-statement,  a  mathematical-statement  (eg:  multiplication 

and addition), and a call-in to other function/method/classes/package (Deitel 

(2006)).  The Congkak system  appears complex because of its code length 

and flow control but it was entirely based on those simple rules, however other 

Java specific/special function such as 'variable-localization' (eg: the “private”, 

“public”  and  “static”  syntax)  and  the  function  'override'  function  (eg: 

“extend”,  “override”  syntax)  is  also  implemented  for  increasing  the  code's 

efficiency (eg: to allow complex behaviour to manifest without using a great 

code  length)  and was  usually  inserted  automatically  by  NetBean IDE (eg: 

during Java GUI implementation) and was also present in the original Mancala 

source-code (eg: the “static”). 

The design and development phases did not follow a rigid “waterfall 

model” but follow a “XP programming” style (Dennis (2010)). The coding is 

started  as  soon as the  system-requirement/design is  received (eg:  in other 
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project   the  stakeholder  usually  work  alongside  programmer  to  reiterate/ 

communicate the system requirement to the programmer and the programmer 

will  usually  try  to  programs the  design)  and there  was no lengthy system 

documentation  needed;  the  only  documentation  was  the  source-code.  This 

allow a small systems to be developed faster than anything that is possible 

with  other  software  development  cycle  (SDLC)   (Dennis  (2010)).  The 

following sub-section describe the design of a Congkak NN sub-system, but 

other sub-system is left out because of time constraint: 

 i.  Neural Network (NN) Sub-system: Intro

This section focusses on NN sub-system. Other sub-system also exist, 

but  is  skipped:  such  as  Graphical-User-Interface  (GUI),  text-based  user 

interface, logging system, MM agent, Random-Move agent, and NMM hybrid 

agent.  The  NN  system  cover  5  Java  class:  CongkakNNMove.java, 

CongkakServer.java,  CongkakDataKnitter.java,  CongkakBoard.java,  and 

CongkakTrainer.java, and uses Neuroph as an external library. 

Neuroph is the Java package that contain NN method. The project uses 

Neuroph for creating and training NN, and it  is treated as a blackbox. The 

project didn't deal with the complexity of NN formula & coding, and therefore 

is not in control of the NN's performance. 

 ii. Neural Network (NN) Sub-system: Classes

The CongkakServer.java  class  is  where  the  main  method is  located. 
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Another main method is in CongkakGUI.java (which display Graphical User 

Interface), but CongkakServer.java is where the NN is trained because it  is 

much  simpler  to  reprogram the  CongkakServer.java  than  to  reprogram the 

GUI.  CongkakServer.java  is  a  modified  version  of  the  original 

MancalaServer.java written by Adam Cofer.

CongkakDataKnitter.java is where the data transformation and storing 

was done. It store the game history for later training, and it also transform 

present  board  state  into  a  compatible  neural  network  input.  Basically  it 

normalized the  pebble count into the range of 0 to 1, and then stored all these 

values into a very long array for later training purposes.   

CongkakBoard,java class is where the Congkak game was simulated. It 

is  a  modification  of  MancalaBoard.java class  written  by  Adam Cofer.  The 

CongkakBoard.java is  different  from MancalaBoard.java because it  contain 

algorithm for simultaneous start, multi-lap move, and burnt_house rule. 

CongkakNNMove class is where the neural network make its move. It 

contain an algorithm which selects move from the NNs output. NN doesn't 

always make a valid move; so an algorithm in this class will select the valid 

move from the one offered by the network. 

 CongkakTrainer  class  is  where  NN  is  trained.  It  uses  Application 

Programming Interface (API) from Neuroph to create a training element and to 

set learning rules. It is also responsible for creating new NN, and the training-

evaluation-function for NN training is configured here. 
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 iii. Neural Network (NN) Sub-system: Design Intro

The  rest  of  this  section  discusses  the  concept  used  to  develop  the 

Congkak system (but focussed primarily on NN sub-system). These concept is 

important because it explains why the system behave the way it is as displayed 

in  the  results  (Chapter  4).  For  example:  the  speed  of  the  Neural-Network 

training and the effectiveness of the training depended largely on the choice of 

the  network's  size  and  the  way  the  Congkak  board  is  represented  to  the 

network  (there  are  many  ways  to  represent  the  Congkak  board,  and  the 

network size can be set arbitrarily). 

 iv. Neural Network (NN) Sub-system: Design

The first design and development phase started with a broad literature 

review on all subject related to Mancala intelligent system, which then ended 

with a review on Gerald Tesauro's paper and Adam Cofer's Mancala system. 

The literature review suggest that building a NN agent is not a complicated 

problem and is possible. The next step was to understand how Neuroph work 

and to test an initial NN system on Adam Cofer's Mancala system, the whole 

process took several days. 

 For Mancala system: the NN agent works. The agent can beat MM (of 

depth cut-off value of 4) and Random-Move all the time. One of the important 

idea tested at this time was the board representation; the original idea was to 

represent the entire Mancala board as a binary representation but it  require 

1000 neural input and the system throws stackOverflow error (indicating that 
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Java Virtual Machine's (JVM) working memory is full), the second idea was to 

normalize the pebble count into range 1-to-0 and this reduced the number of 

input  neuron  to  14  (for  network  1),  and  39  (for  network  2),  and  64  (for 

network 3). The project uses 3 NN in parallel for the reason to be discussed 

next.

The Mancala board was represented using an array, this is located in 

MancalaBoard.java.  The  array  store  the  amount  of  pebbles  for  each  hole 

followed  by  a  series  of  zeros-or-one  that  represent  the  turn's  move.  For 

example: the initial board state is represented as 4,4,4,4,4,4, 0, 4,4,4,4,4,4, 0, 

(end pebble amount) 0,0,0,0,0,1, 0,0,0,0,0,0 (end move state indicator. With 

move at hole 5), this is an array of size 14, plus 12 for move state .

The  Congkak  board  is  similar  to  Mancala  board  but  with  more 

information, this is located in CongkakBoard.java. It  included the burnt_pit 

and the amount of pebbles on the player's hand. For example: the initial board 

state  is  represented  as  7,0,0,7,0,0,7,0,0,7,0,0,7,0,0,7,0,0,7,0,0,  0,0,0, 

7,0,0,7,0,0,7,0,0,7,0,0,7,0,0,7,0,0,7,0,0,  0,0,0,  (end  pebble  amount) 

0,0,0,0,0,0,1,  0,0,0,0,0,0,0,  (end  move  state.  With  move  at  hole  6),  this  is 

represented as an array of size 49, plus 14 for move state. Figure 3.1 (next 

page) shows the board representation, Figure 3.2 (next page) shows the move 

state representation.
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 Figure 3.1: Congkak board representation for Neural Network (NN). An array of 49  
input. 

Figure 3.2: One move state representation for NN input. An array of 14 input.
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For training: The pebble portion of the board state (the first part) is feed 

into the input neurons and the move-state portion (the second part) is assigned 

to the output neurons. Then, NN was trained to match the output of its neurons 

with the value assigned to it. This mean that the NN will try to association the 

board state with its corresponding move state .

 For larger NN: the input is a 2 complete board state followed by 1 

latest board state truncated at it's pebble portion, and the truncated move state 

portion was assigned to the output neuron. This mean that the network will be 

training to associate the history of the game board with its resultant move. A 

network such as this require at least 166 input neuron for Congkak and 64 for 

Mancala. Figure 3.3 (next page) shows a NN with 2 complete board state and 

1 truncated board state as input. 
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Figure 3.3: A typical NN training configuration. 2 complete board state + 1  
truncated board state is feed into the NN, and only the winning move was selected as  

output (in this case only the dark shaded move-state was trained as output).

To overcome stackOverFlow error: Java Virtual Machine (JVM) was 

configured to use 1 Megabyte of stack memory. StackOverFlow error occurs 

in  this  project  because Neuroph (version 2.5b)  is  using to much of JVM's 

working memory (due to large size of the NN). The stack size can be changed 

by adding “-Xss1024k” to Java.exe during its execution. 

  The idea of using 3 different network at once is to make the system 

utilize output from multiple neural network in parallel. Which is to create 3 

network with different size: which learn with different size of input and deliver 

its own set of output all at once. In that way: one network will train with one 

board size game history, another with 2 board size game history, and the third 

with 3 board size game history.  This  aim to allow larger network to learn 
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larger context of  the game history  (such as  a multiple turn move) and the 

smaller  network to learn only the simple move. 

The move is selected from the networks by selecting the neurons that 

output the largest value. Large value imply a winning move; but the definition 

of  'winning'  depends  on  the  training-evaluation-function  (which  will  be 

discussed next). So, if neuron number 2 outputted a 0.99 then this mean the 

move should be on hole 2. Figure 3.4 (below) shows how move was selected 

from NN output.

Figure 3.4: Method for selecting move from 2 parallel NN output. Only the highest  
value is selected, and if the first selection is invalid: the second highest value is  

selected instead. 

A precursor to large value selection scheme is the “difference/contrast” 

selection scheme. Such scheme select move based on whether an output is 

distinctly higher & different/contrasting from the other outputs (this is inspired 
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by Gerald Tesauro's idea on NN's certainty: where larger 'contrast' imply more 

certainty). In this scheme: a neuron with output of 0.65 will not be selected as 

move if there exist another 2 more neuron with similar value, so a random 

value will be used instead. The motive was to prevent the NN from making a 

move that it wasn't sure.    

 Only the winner's move is trained as NN output, loser's move will just 

become a trailing input for the network. This is to ensure that the network will 

only be trained to produce a winning move.  The winner's move is selected 

during the training session using a “whose turn” information embedded in the 

game history, only the winner's turn is selected for training.

 All board state used for training is treated as if  it  was player 1 (or 

player 0; depending on context), if the board state belong to player 2 then its 

contents would be flipped 180 degree (mimicking player 1). This is to make 

sure that the network didn't learn the game as a 'third person', but rather: the 

game was reflected back to the network as though it was all of his own move, 

and only winning moves were selected for training. The flipping is possible 

because the Congkak board is symmetrical on both side.  

A  set  of  winning  moves  is  determined  as  “significant  moves”  or 

“insignificant  moves”  based  on  these  2  evaluation  method  (called  “game 

evaluation” method): the first one is by calculating the absolute difference in 

storehouse count (between 2 player), and  the second one is by calculating the 

increase  in  storehouse  count  (between  the  current  round  and  the  previous 

round).  The  first  scheme was designed to allow learning of   the  “winning 
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moves” (moves that lead to current winning status regardless of the previous 

game), and the second scheme was designed to allow learning of “defensive 

moves”  (moves  that  allow  player  to  reclaim  burnt_house;  depends  upon 

previous game). Only one scheme is used for each game, and its evaluation 

will effects the global-minimum-training-error.

Each  single  move  can  also  be  evaluated  as  “significant  moves”  or 

“insignificant  moves”  using  these  2  evaluation  method  (called  “move 

evaluation” method): the first one is by increasing the local-minimum-error 

based on the distance from endgame (initial  move is more significant),  the 

second one is to define the condition when to increase or decrease the local-

minimum-error  (eg:  double  turn  is  more  significant).  The  first  scheme  is 

originated  from  Tesauro's  idea  of   “distant  move  is  insignificant  to  the 

endgame” (for Backgammon), and the second scheme is based on “custom 

game strategy” inspired by observing the game. This method will  apply to 

each training elements/each move,  its  evaluation will  effect  only the local-

minimum-training-error (current instance of training; there are multiple move 

to train). The floor value of local-minimum-training-error is set to equal to the 

value  of  global-minimum-training-error  (mentioned in  previous  paragraph). 

Figure 3.5 (next page) illustrate 2 of the “move evaluation” method.
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Figure 3.5: Illustration of the 2 “move evaluation” method. A max-training-error  
based on move type (good or bad move), or based on distance-from-endgame.

The “significance” of a move is inversely proportional to the minimum-

training-error.  A large  minimum-training-error  means  that  the  training  was 

“insignificant” and the training will be interrupted early to allow deviation in 

the output.  This  minimum-training-error can be changed using any kind of 

transfer-function  (eg:  exponential,  linear,  or  IF-else  statement),  while  the 

“significance” level can be evaluated using any kind of selection scheme (such 

as mentioned in previous paragraph).

An  example  of  evaluation  function  is  available  in  the  source-code 

(http://congkaksystem.sourceforge.net/) in CongkakTrainer.java. There was an 

example  of  exponential  function,  linear  function,  and  IF-else  statement's 

transfer-function. The value of minimum-training-error used in for the project 

is between 0.01 to 0.49.
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The  learning  rule  used  for  this  project  is  Backpropagation  without 

momentum.  Momentum  is  preferred  but  Neuroph  (version  2.5b)  caused 

nullPointerException whenever momentum is used (can't find solution to this 

issue).  Momentum would allow faster learning, but if a bug exist in Neuroph 

then it is impossible to fix it since Neuroph is treated as a blackbox.

The learning rate was initially set at 0.1 (Tesauro, G. (1995)) but then 

was changed to 0.01,  and the weight range is  between -5 to 5.  The initial  

learning-rate and weight value is based on Gerald Tesauro's paper. A lower 

learning rate can make the NN less susceptible to noise but will require longer 

training time (refer to Chapter 4).  

For the game history: dynamic array is used. Dynamic array allow the 

game history to expand indefinitely without initializing an infinite array. This 

is  demonstrated  in  DynamicArrayOfDouble.java;  whenever  the  history 

exceeded a certain size: a new bigger array will automatically be allocated to 

game history, and the game history will never run out of space. 

The training cycle and the data collection cycle can be configured in 

CongkakDataLogger.java.  This  sub-system  can  be  disabled  or  enabled  by 

setting  'logging'  to  a  value  of  “true”  or  “false”  in  CongkakServer.java, 

however  this  sub-system  is  unavailable  in  CongkakGUI.java.  By  default: 

CongkakDataLogger.java is set to firstly measure the win-loose count for a 

self-play between the AI agents, and then to do a NN training with a self-play 

of NN, RandomMove and NNMM agent, and then to repeat everything for a 

certain set of cycle count. 
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 v. Neural Network (NN) Sub-system: Extra Term and 

Definitions

A “nullPointerException” happens when a code or a function is calling 

a non-existing object. This happens when that object has never existed, or it is 

referring  to  non-existing  external  library  or  Java had automatically  deleted 

those object. Java's automatic memory management  will delete any object that 

is not used.

“Burnt_pit” and “burnt hole” is two different term that refer to a same 

thing. It  means that a hole or a pit  was 'burnt'.  A burnt_pit  (a pit  that was 

'burnt') is ignored during game play, it will be left empty until a player reclaim 

it on next round. 

A burnt_pit is 'reclaimed' whenever a player collected enough pebbles 

to fill the pit during the start of a new round. The reason why the player had a 

burnt pit in the first place is because the player doesn't have enough pebble to 

fill this pit during the start of new round. A player need to collect at least 7 

additional pebbles to reclaim one burnt pit. 

“Blackbox”  is  the  term used to  describe  a  system that  behave  in  a 

known way but its mechanism was hidden. Neuroph is a blackbox because its 

mechanism is  entirely ignored.  It  is  trusted that  Neuroph version 2.5b is  a 

reliable NN system.  
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 3.2.3. Data Collection & Analysis

 a.  Identify the Data to be Collected

During the design and development phase all  possible data from the 

system is collected. This is used for debugging the system and not yet for the 

purpose of answering the research question. Eg: the move history, the number 

of nodes that MM explore, NN output, and the content of CongkakBoard is 

among the data collected; they can reveal any unexpected behaviour that could 

imply a logic error in the code, which then can be fixed/corrected.  

After the system is debugged, the data-collection sub-system is created 

to  collect  & save  data  for  the  research  question.  The  data-collection  sub-

system export the collected data into a text file outside of the Congkak system 

for use by other software such as SPSS. It  is designed to collect about the 

speed for all AI agents, win-loose count for all AI agents, and the training-time 

for NN agent.  

 b. Perform the Data Collection

Firstly, all the old “.nnet” file was deleted (this is the NN's 'brain'), then 

the  data-collection  sub-system is  configured  to  record  for  about  1  training 

cycle (eg: set stopCycle=1 at CongkakDataLogger.java.), then the system is 

run and the total amount of time for completion was recorded. The time for 

completion for 1 training-cycle is used to determine if more training-cycle can 

be completed within project's time budget or not. The project aim to do about 

38



100,000 training-count (about 10,000 training-cycle) for all 4 different type of 

training-evaluation-function.

During actual data collection: NN training is performed in a batch of 1 

to 100 training-cycle (depending on the training's speed). After each batch is 

completed: the resultant “.nnet” file and the text data was copied and stored in 

different folder for later processing and as a backup, and then the record-ID 

(eg: trainingCount=10, and nNid=600 in CongkakDataLogger.java) was set to 

the last recorded value and the system is re-started. The training for the first 

NN agent was systematic (see attached softcopy), but the third NN agent was 

performed to do 10,000 training-count at once; unfortunately the training must 

be ended abruptly due to time constraint (the training took too long) and half 

of the training data was lost except the first 3000 training-count (Java did not 

output the entire text if the output file was not 'closed' properly. An abrupt 

termination will prevent a proper file 'close'). 

 c. Processing the Data and Analyze the Data

All  the  text  data  was  then  opened  with  SPSS  and  then  tediously 

combined into 1 file using “merge data” function in the SPSS, and then the 

training-count was “visually-binned” into 10 segment (to summarize the rest 

of the data), and finally the data was analysed using “descriptive-statistic” and 

processed into a “line-chart”.  The following is the 3 output: (1) the “mean 

value” of the processing speed for all  AI agent,  (2) the graph of win-loose 

count (for all AI agent against NN agent) vs. total training-count, and (3) the 
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graph of NN's maximum-training-time vs. total training-count. This result is 

displayed in Chapter 4. 

Screen-capture of the GUI was also taken to show the functionality of 

the system. The GUI can be used to demonstrate the Congkak game playing to 

an audiences, and can also be used to evaluate the accuracy of the Congkak 

system in simulating the Congkak rule. The screen-capture was edited using 

MS Paint. 

 d. Interpret the Data and Answer Research Question

Literature  review must  be  the  basis  for  the  data  interpretation.  The 

literature  is used to either confirm the expected output or to try explain the 

non-ideal  result.  The interpretation is  written down in Chapter  5,  but  as  a 

summary:  based  on  current  knowledge  and  current  data:  the  NN agent  is 

performing  poorly  (it  even  loses  to  RandomMove)  probably  because  the 

network  has  an  issue  with  noise  and  over-fitting  and  because  of  lack  of 

training (which is mentioned in the literature but wasn't considered seriously 

during the design phase), also: the MM agent is significantly faster than NN 

probably  because  of  its  Alpha-Beta  function  and also  because  of  Neuroph 

itself being low performance NN algorithm (taheretaheri (2010)).

 3.2.4. Project Documentation: Prepare the Report

  The report was written with an aim to allow the reader to grasp the 

concept used in the source-code. The source-code is an important deliverable 
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for  the  project  but  it  is  not  easy  to  be  understood  because  it  was  written 

entirely  on low-level language (for  reference:  source-code can be retrieved 

from http://congkaksystem.sourceforge.net/). Therefore Section 3.2.2: “Design 

& Development” had described the concepts that is used to write the low-level 

language (Section 3.2.2, in sub-section a), in sub-section i.-v.).  

The report also aim to show the performance/capability of the Congkak 

system.  This  is  the  reason  Graphical  User  Interface  (GUI)  was  shown  in 

Chapter 4. A screen shot was taken to show that the system is functional and 

could interact with users, and has achieved the project's objectives. 

The report also answered the research question presented in Chapter 1. 

Answering research question is essential for the fulfilment of a Master project. 

The report  describes the Congkak system as a system that  has produce an 

output that will answer the theoretical questions presented in earlier chapter 

(the system can answer a variety of research question as long as a relevant 

algorithm is used). 

Then the report must follow a stringent format and style of writing. This 

is to ensure that all report were written in the same way like other researcher 

did, and therefore allows an easy understanding of the content by readers and 

authors (eg: standardized citation, standardize font, standardized page number, 

standardized methodology). For this report: The project need to spent nearly 2 

month to ensure that  it  follows the required format (doing correction takes 

considerable time). 

41



 3.3. The Limitation of the Project's Methodology

The “Data Analysis & Collection” phase was performed only at the end 

of the project: this leave very little time to fix the Congkak system if an issue 

was  revealed by  the  data  analysis.  Issues  such as  noise,  and increasing & 

decreasing trend of winning cannot be observed during system design because 

data analysis is not a priority task during the design phase (data collection is 

performed for immediate testing and debugging only). The data collection sub-

system is  also  a  portion  of  the  whole  design  process  and  it  only  became 

operational once the Congkak system is completed: but then it leave only a 

little  time  to  collect,  process  and  analyse  the  data  after  the  system  is 

completed.  

 3.4. Summary

 This chapter has described the research methodology used and also the 

important concept used for developing the NN's sub-system (Section 3.2.2). It 

has described the classes used for NN sub-system, and how the board state 

was represented to the NN, and what kind of evaluation function was used, 

and what kind of error encountered and its solution, and finally it described 

how the training was conducted. It also briefly describe how the project was 

conducted using the research methodology.    
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Chapter 4

 4.  RESULT

 4.1. Introduction

This chapter focusses on showing the GUI and showing the data on the 

performance of all the artificial agent. It is an assumption that data-collection 

sub-system is working accurately, and the content of the data indicate how 

well the artificial agent is performing.

 4.2. Brief Statement of the Result

The GUI is basic but functional. It allow user to click a button to make 

a move rather than typing a number. It illustrate hand move and it uses colour 

to emphasis important idea, it also feature a menus to select an artificial agent, 

and featured a 'helper' that can help player to win. 

All  the  artificial  agents  can offer  an artificial  adversary  to  a  human 

player, but the NN is not yet a good player; it looses to RandomMove and has 

never  won  against  MM.  However  other  agent  worked  extremely  well: 

Random-Move makes random move as specified, and MM can defeat other 

player with 100% certainty. 
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 4.3. Result and Processed Data

Data was collected using the game's engine itself and is processed into 

graphs  using  SPSS.  The  collected  data  includes:  the  speed  of  agent's 

algorithm, the speed of training, the number of training, and the number of 

winning.  

The GUI screen-shots were captured using Microsoft's (MS) Windows 

“print screen function” and edited using MS Paint. The screen-shot shows how 

the GUI work. It  showed that the GUI is capable of showing the Congkak 

board accurately.

 4.3.1. The GUI

The screen shot (Figure 4.1 (next page)) shows the initial board state. 

The green boxes indicate the valid button for player 1 to press, and the red 

boxes (Figure 4.2 (next page)) indicate the valid button for player 2 to press. 

The player make a move by clicking on these coloured boxes.
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Figure 4.1: GUI waiting for input. Valid move for player 1 is coloured green.  

Figure 4.2: GUI waiting for input. Valid move for player 2 is coloured red.

After both player made their move: changes made to the pebble count 

was stored as a sequence in the Congkak system, and then it is displayed one-

by-one using a time delay to simulate motions. Using these motion the player 

can see how the pebbles move and thus can deduce the rule of the game. The 

player can control the speed of this motion using the slider and the “update” 
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button.

The following figure (Figure 4.3 (below)) illustrate how simultaneous 

move and hand move is simulated. A coloured box will blink-in and blink-out 

on top of each hole/pit in order to simulate the motion of a hand. The speed of 

the blink is also determined by the slider under the “update” button on bottom 

right. 

Figure 4.3: GUI Simultaneous move. Coloured box simulate player's hand.

Figure  4.4  (next  page)  shows  the  GUI  pausing  the  game  during 

“move_pause”. But in real game: a player must asynchronously select a new 

move whenever he/she has emptied his hand on his own storehouse (there is 

no  pause).  However,  current  Congkak  engine  (CongkakBoard.java)  doesn't 

have any method to implement asynchronous move, so alternatively: the game 

is paused until a new move is inserted.  
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Figure 4.4: Move pause during simultaneous move. Player 2 has landed on his own 
storehouse: GUI is requesting another move.  

Figure 4.5 (in next page) shows the sorting simulation. It shows how 

the  available  pebble  is  distributed  to  the  remaining  hole  according  to 

burnt_house rule. The purple boxes will blink-in and blink-out at each player's 

storehouse  and  blink-out  and  blink-in  at  the  empty  hole  to  simulate  the 

addition and subtraction of pebbles.  
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Figure 4.5: Sorting simulation. New round is initialized. 

Figure 4.6 (below) shows the endgame dialogue. It display who is the 

winner and showed the storehouse difference, and prompt if player wanted to 

initialize  a  next  round.   If  player  press  “Next  Round” then the  board will 

prepare itself for a new round, if not: then nothing will happen. 

Figure 4.6: The endgame dialogue. Display winner and prompt for next round.
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Figure 4.7 shows the helper function. Whenever a mouse cursor hover 

over a button: a GUI Calculator will display the outcome of the move, and a 

player can also see what move an artificial agent would make if it was playing. 

This would help human player defeat a difficult artificial agent.   

Figure 4.7: Helper function. Help player to make better decision.

 4.3.2. Artificial Intelligent Agents

Table 4.1 (next page) shows the win-loose count for all AI agent. MM is 

the winner for all games while NN is the worse (worse than Random move). 

NN agent was balanced when fighting against itself but will looses more when 

fighting against a Random move agent, and looses completely when fighting 

against MM.
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Table 4.1: Win-loose count for all agent. Min-Max won all game.

Each testing is capped at maximum 10 rounds, and the test is repeated 

for 10 times for each combination of agents; resulting in total of 100 round for 

each combination. Notice that MM had played less than 100 round; this is 

because MM immediately win in each game; and on average MM only need 2 

round to defeat the other agent: so it  only played a maximum of 10x2=20 

game. 'Constants' such as: the number of test performed, the combination of 

AI agent, and the training-Count is configured in data-collection sub-system 

(CongkakDataLogger.java). 

The NN agent mentioned in Table 4.1 above is trained using “Defensive 

Move”  game-evaluation-function  and  “Custom  strategy”  move-evaluation-

function  with  4000  training-count.  There  are  also  other  game  evaluation 

function (mentioned in Chapter 3), but not shown in Table 4.1 due to time 

constraint. In total there are 2 game evaluation function; “Winning Move” and 

“Defensive Move”, and 2 move evaluation function; “Custom-strategy” and 

“Distance-from-endgame”: resulting in a total of 4 combination. 

Figure 4.8 (next page) shows the effect of training using “Defensive 
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 Winner  Total Num.  Win
 Artificial Agent  Player 1  Player 2  Tie  of Games  Ratio
 Random vs MinMax 0 19 19 0|1
 NeuralMinMax vs MinMax 0 20 20 0|1
 NeuralMinMax vs Random 52 1 53 1|0.02
 NeuralNetwork vs NeuralMinMax 0 100 100 0|1
 NeuralNetwork vs Random 39 59 2 100 0.66|1
 NeuralNetwork vs MinMax 0 30 30 0|1

 NeuralMinMax vs NeuralMinMax 60 40 100 3|2
 NeuralNetwork vs NeuralNetwork 50 50 100 1|1
 Random vs Random 41 42 8 90 0.98|1
 MinMax vs MinMax 0 54 54 0|1



Move” & “Custom Strategy” evaluation function. It shows that Random-Move 

had more wins than NN, and MM is unbeatable as usual. Discussion related  to 

this and the following figure is delayed until Chapter 5.  

Figure 4.8: The Win over TrainingCount graph for “Defensive move” and “Custom 
strategy” (4000 trainingCount). Line 0 represent NN agent's wins, Line1 means  

opponent's wins, Line 3 means Tie, Opponent 0 is RandomMove, Opponent 4 is MM.  

Figure 4.9 (next page) shows the effect of training using “Defensive 

Move” & “Distance from Endgame” evaluation function, however at training-

count 3000 the move-evaluation-function was changed into “Custom Strategy” 

for testing. It showed a trend where Random-Move started to win massively at 
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initial, but then its win count start to fell after training-count 3000.  The reason 

is  because  “Custom  Strategy”  move-evaluation-function  had  given  more 

significance to a multi-lap move thus allowing the NN to collect more pebble. 

Figure 4.9: The Win over TrainingCount graph for “Defensive move” and “Distance  
from Endgame” (5000 trainingCount). Line 0 represent NN agent's wins, Line 1  

means opponent's wins, Line 3 means Tie, Opponent 0 is RandomMove, Opponent 4  
is MM. “Distance from Engame” was changed into “Custom Strategy” at training-

count 3000.
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Figure 4.10 (next page) shows the effect of training using “Winning 

Move”  & “Distance  from Endgame” evaluation  function.  This  is  the  only 

session that goes over 10,000 training count, and it showed that NN is starting 

to win; it has more win over Random-Move after training-count reach 6000 

and the amount of game with MM also increases; probably indicating that NN 

is  becoming  more  resistant  to  MM.  The  training  took  about  3  days  to 

complete,  but  eventually  was  stopped  because  NN's  win-loose  percentage 

appears to be degrading and other evaluation function also need to be tested.

53



Figure 4.10: The Win over TrainingCount graph for “Winning Move” and “Distance  
from Endgame” (11000 trainingCount). Line 0 represent NN's wins, Line 1 means  

opponent's wins, Line 3 means Tie, Opponent 0 is RandomMove, Opponent 4 is MM.

Figure 4.11 (next page) shows the maximum-training-time vs, training-

count for “Defensive Move” and “Custom Strategy” evaluation function. The 

training time will naturally decrease with the number of training because each 

training bring the network closer to its minimum-error, the closer the network 

to its minimum-error the lesser the training-iteration needed to reach it; hence 

less training time. The decreasing training time also mean that the network is 

now is closer to being able to predict the board state accurately; the small 

training time means that the difference between network prediction and the 
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actual output is sufficiently small such that it require almost no new training. 

(discussion related to this and the following figure is on Chapter 5)   

Figure 4.11: Maximum training time for “Defensive Move” and “Custom Strategy”  
evaluation function. Training time decrease over number of training.

Figure  4.12  (next  page)   shows  the  maximum-training-time  over 

training-count for “Winning Move” and “Distance from Endgame” evaluation 

function  (this  was  the  combination  that  showed  good  result  after  training 

Count 6000 (Figure 4.10 (page 54))). It shows that: the training-time abruptly 

drop to a minimum after 2000 training-count, but then rise and then drop again 

after  6000 training-count,  and then  it  level-off  at  5  second.   The level-off 
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means that the network is trying to learn noises but is constantly failing; but it  

kept trying thus this prevent the training-time from going down. 

Figure 4.12: Maximum training time for “Winning Move” and “Distance from 
Endgame” evaluation function. Training time decrease over number of training.

Table 4.2 (next page) display the calculated speed of NN algorithm. It 

require  on  average  386.0  millisecond  with  a  deviation  about  +-  69.2 

millisecond to complete. This algorithm consist of several array manipulation 

algorithm (for about 360 array points),  a  several call-in to Neuroph,  and a 

simple move selection algorithm.  
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Table 4.2: The speed of NN agent algorithm.  

Table  4.3  (below)  display  the  speed  of  NeuralMinMax  (NMM) 

algorithm.   The  algorithm  require  on  average  of  388  millisecond  with  a 

deviation of +- 71.2 millisecond to complete (this is almost similar to NN). 

But NMM is a combination of NN agent plus Min-Max agent; which mean 

that MM is incredibly fast when compared to NN. 

Table 4.3: The speed of NMM agent algorithm.

Table 4.4 (below) display the speed of Random-Move algorithm.  The 

algorithm appear to operate almost instantaneously with 0.015 milliseconds 

delay on average. RandomMove is consist of a call-in to Java's Random class 

and some simple algorithm that check and select for valid move.

Table 4.4: The speed of RandomMove agent algorithm.

Table 4.5 (next page) display the speed of MM algorithm.  The MM 

require on average only 5.3 millisecond, with a deviation of +- 9.1 millisecond 

to operate. MM algorithm consist of repetitive call-in to CongkakBoard.java 
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and  CongkakNode.java,  and  it  also  contain  an  algorithm that  evaluate  the 

nodes  and also Alpha-Beta  cut-off  algorithm.  The MM in this  project  was 

limited to search 5-plies only. 

Table 4.5: The speed of MM agent algorithm.

 4.4. Summary

This  Chapter  showed that  NN require  more training.  The maximum 

training ever achieved was only 10,000, whereas real research on NN usually 

involve  training  up  to  100,000  count  (Tesauro,  G.  (1995);  Lawrence,  S. 

(1997)). 

The problem is due to lack of computational resources. The CPU used 

for this project (single core 1.666Ghz) is too slow to even perform a 10,000 

training set. 

In summary this chapter did not reveal any immediate flaw with the 

system except the failure of NN training to reach its target value of 100,000 

training  count.  In  overall  the  Congkak  system  appear  to  be  working  as 

expected.
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Chapter 5

 5.  DISCUSSION OF THE RESULT

 5.1. Issues

 5.1.1. The GUI's Simultaneous Move

The game is on default started with a simultaneous move but the GUI 

(Figure 4.1 (page 45), Figure 4.2 (page 45)) didn't appear to accurately reflect 

a simultaneous move; the system demanded an inputs from player 1 before 

demanding an input from player 2 (suggesting a turn-move). This issues is not 

a problem. The game engine will not perform any calculation until both move 

was inserted; this is to emulate the simultaneous move.

Taking turn to insert move can be beneficial to both players. Player 1 

can hide his own move from player 2 (and vice-versa) by hiding where he 

pressed the button. Hiding the first move is the main reason why simultaneous 

move in Congkak even exist;  to prevent second player from exploiting the 

knowledge of the first move. The GUI work in such a way that the first move 

is not displayed, where the second player must decide its move independently 

of player 1's move. 
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 5.1.2. Possible Aesthetic Improvement

To make the GUI appear like a real game: any artful illustration can be 

added  to  replace  the  boxes  used  in  the  GUI.  Woodcarving  figure  and 

illustration of a hand could be used to make the GUI appear more Congkak 

rather than like a calculator. Java Swing has this feature which allowed those 

boxes to be replaced with a picture or an icon.

 Animation  programming  could  also  allow  the  hand  to  move  more 

fluidly. Currently the boxes only blink-in and blink-out at fixed position. If 

animation was use: hundred of boxes need to be drawn on top of each hole and 

it  will  blink-in and blink-out into existent at  a  rate of about 20 frame-per-

second (emulating smooth motion).

 5.1.3. The Move Pause

The move pause is a simplification of an actual game. It is similar to a 

person who can instantaneous pick a move and then start  moving (without 

delay). This is not a problem, but perhaps an option could be made to allow a 

delayed  move  to  be  made;  making  the  system  operate  more  like  a  real 

Congkak, however this is not done in this  current Congkak system because it 

would add extra complexity to the artificial agent's system; because the agent 

would  be  required to  perceive a  delayed move instead of  just  the  player's 

instant turn.

  Also, having a different rate of motion (another characteristic of real 
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Congkak) will require complicated  new algorithm in CongkakBoard.java. It 

will require a difficult but not impossible system where 2 asynchronous thread 

run in parallel with each other and interact with the board like 2 independent 

player do (JuMpErFLY (April 24th 2004)). The GUI itself also used external 

thread to do asynchronous periodic screen update which apply similar concept. 

The interval between update was controlled by the slider on the bottom right 

and the  thread will  periodically  push the  “Update”  button (in  the  GUI)  to 

allow the GUI to update its screen, but various flow control must be devised to 

prevent the an asynchronous thread from effecting the system unexpectedly.

 5.1.4. Congkak and Numbers

The GUI uses a lot of numbers. Perhaps playing Congkak will make 

people be more intuitive about numbers (Voogt ,A de (2001)).  This can be 

used in education. 

 5.1.5. More Functionality for GUI

A complete GUI should have the options to train the NN, and a button 

to restart the game, and option to set the cut-off depth (of MM), and the ability 

to input the random-seed of Random-Move. Currently the GUI only show a 

representation  of  Congkak  Board  and  provided  a  way  to  input  move  by 

clicking, and none of the feature mentioned above is available. At present the 

NN can be trained using CongkakServer.java, and the cut-off depth can be set 

by  editing  CongkakMMMove.java,  and  the  random-seed  can  be  set  at 
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CongkakRandomMove.java.

 5.1.6. Real Congkak and Simulated Congkak

Real Congkak is a very slow pace game (Yaakub Rashid (1981)). In 

real life it would take hours and hours of playing before one can totally defeat 

the opponent. The player would need to perform many long multi-lap pebble 

dropping, and need to repeat several round before one one side decided to 

surrender, or is defeated like how MM defeated its opponent.  But fortunately 

Simulated Congkak can perform all those function instantaneously: which turn 

Congkak into a fast pace game.

 5.1.7. Issue: First Move is not Hidden to Artificial Agent.

Notice that MM agent win more against itself when placed on player 2's 

position (Table 4.1 (page 50)).  This is an example of how the knowledge of 

first move give an advantage to the second player.  This is an unintentional 

failure during development, it should have been corrected; the problem occur 

because both MM uses the same CongkakBoard.java to run their simulation, 

obviously the first player's input would effect the way the simulation would 

run. An adjustment can be done to fix this but this problem was only realized 

now. (similarly, CongkakDataKnitter.java would also have same problem too)

 5.1.8. Issues with the Training Graph

The x-axis of the training graph in Figure 4.8 (page 51),  Figure 4.9 
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(page  52),  and Figure  4.10  (page  54)  is  the  training-count  binned into  10 

segment of equal size, the Y-axis of the graph is the number of win for each 

agent counted for each bin: the green line represent the Opponent's win and 

the  blue  line  represent  the  Neural  Network's  win.  The  win count  for  each 

graph is different because the bin size is different; the graph with large bin will 

count more win. The binning has an unequal size because the training count is 

not  made  constant;  only  one  training  session  reach  10,000  training-count, 

however the graph issue is not a serious problem.

 5.1.9. Noise During Neural-Network Training    

Noise (described in Table 4.12 (page 47)) can be reduced by creating a 

better evaluation-function. A better  evaluation function will 'flag' any move 

that  is  important  for  learning  and  'thumbs  down'  any  worthless  one.  For 

example:  move  that  increase  storehouse  count  by  1  is  worthless  because 

almost all move can increase storehouse count by 1, the problem is: which 

move  did  increase  storehouse  count  by  2  or  more?  This  move  should  be 

emphasised using better evaluation-function. 

Also, the effect of noise can be reduced by using small learning-rate. 

Small learning-rate will prevent the network from changing too much due to 

noise  (Tesauro,  G.  (1995)).  Having  a  slow  learning-rate  means  that  the 

network will  only change slightly during  training and most  change due to 

noise will be cancelled-out by another set of noise due to the symmetric nature 

of noise (noise is a move that did not contribute to winning), but when an 
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asymmetrical change was encountered (such as a move that only appear with 

specific kind of condition: such as one that caused double move) the network 

will have a net positive change.   

However,  using  a  large  learning-rate  will  prevent  the  network  from 

being trapped in local-maxima. A local-maxima occurs when a small change in 

the network's weight would not reduce the total-error any further (instead it 

increases  the  relative  total-error):  therefore  the  network  reject  any  further 

changes  and  thus  remain  in  this  state  forever  (and  no  more  training  can 

improve  the  network's  total-error).  However,  a  sufficiently  large  weight 

change can allow the network to escape the local-maxima; this can be induced 

by using a sufficiently large learning-rate during training.    

 5.1.10. Possible Reasons for Neural-Network Poor 

Performance

Apparently NN is just too slow and too difficult to train. Perhaps the 

network  size  is  too  big;  big  network  is  susceptible  to  over-fitting  (which 

causes prediction error) and big network require big array processing which 

waste CPU time. A test should be performed to see if smaller network could 

perform better. 

By  comparison:  previous  NN  for  Mancala  is  2  times  smaller  than 

current Congkak's NN. Mancala's Network is trained significantly faster than 

current  Congkak's  network  and  there's  no  problem associated  with  JVM's 

stack  size.  The  previous  Mancala's  biggest  Network  uses  198  neurons 
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(64,52,40,28,12) while current Congkak's biggest Network uses 464 neurons 

(172,132,93,53,14).

  The NN is either over-fitting or need more training. More-training is a 

most  likely  the  answer because currently  the  network  has  less  that  10,000 

training count. 

 5.2. Summary

The Congkak system contain no serious issues except the “first move” 

issue. The “first move” issue must be fixed first before any NN training is to 

be  done;  this  is  to  make  sure  that  NN  is  to  be  trained  with  a  correct 

representation of the Congkak rule, other issues may or may-not require any 

future development.  
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Chapter 6

 6.  CONCLUSION AND RECOMMENDATION

 6.1. Conclusions

The project  has achieved almost all  of  its  goals  and objectives.  The 

project  has  produced a  Congkak system that  could  simulate  (or  accurately 

approximate) a real Congkak game, and also featured 3 type of AI agent that 

can be configured to pit against each other or to pit against human player, and 

also allowed a human player to pit against another human for the game of 

Congkak. In summary:

• A human player  can  play  the  Congkak game through the  Congkak 

system using a mouse click.

• The NN agent has the ability  to learn through self-play, while MM 

agent has the ability to defeat all other AI agent despite being limited 

to depth 5 search.

• The output produced from the Congkak System allowed the  research 

questions to be answered. 
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The project also answered 1 of 2 research questions posed in Chapter 1. 

The following is the conclusion derived from the data: 

• NMM  hybrid  agent  is  significantly  slower  than  MM  agent  alone. 

NMM's algorithms took on average 380-milliseconds longer  time to 

process than MM's algorithms, (both MM and NMM is programmed 

with Alpha-Beta Cut-off function and is limited to 5 depth search). The 

idea that “NN can improve MM's performance” is dis-proven.

• The best NN training evaluation function is not yet determined. Result 

has  not  yet  been  conclusive  because  training  could  not  reach  the 

targeted  100,000  training  count.  For  the  moment:  training  based on 

store-count (“Winning Move”) and “Distance-from-endgame” appears 

to be the best so far.

Future project can explore the NN's performance issue and complete the NN 

training to yield a more definitive conclusion.

It is also possible that this project is the first demonstration of NN agent 

for Congkak game. Previous NN research was not focussed on Congkak (but 

was focussed on Dakon and Awari), but now the project has filled those gap. 

Hopefully the project can also attract future research on Congkak; which will 

make Congkak the center of attention (and help to preserve the game from 

being forgotten). The Congkak system can be found at the public domain at 

http://congkaksystem.sourceforge.net/ . 
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 6.2. Recommendation/ Future work

The next step would be to fix the “first move” issue (as mentioned in 

Chapter 5). Fixing this issue will probably improve NN's training performance 

(since it is a better representation of the game's actual rule), and MM will play 

much fairer when it cannot see the first-player's first move. This will involve a 

minor restructuring of the CongkakDataKnitter and CongkakMMMove

The  second  step  is  to  re-test  the  MM  but  without  its  Alpha-Beta 

function. The goal is to compare the performance of a pure Min-Max (MM 

without Alpha-Beta) against a hybrid pure Neural-Min-Max algorithm (NMM 

without  Alpha-Beta).  This  way  we  can  really  see  if  NN  did  offer  any 

performance advantage or not.   

The third step is to test the system with different NN package. There  is 

other much faster open-source NN package called Encog (taheretaheri (2010)), 

which could be used instead of Neuroph.  According to the benchmark test 

performed by the Neuroph's team themselves: Encog (version 2.4) is 9 times 

faster than Neuroph version 2.5, which mean: a NN training can be completed 

9 times faster if using Encog.

The final step is to continue with the NN training, and to try different 

combination of evaluation function, and to see which work best. The motive is 

to find the result that might be useful to other kind of NN problem. All other 

control system that is using NN is also based on time-series input (which is 

similar to the Congkak system). 
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Thus, by understanding all the peripheral system that make NN perform 

better (such as a better evaluation function, and better board representation): 

other NN system can also be build to perform better as well. For example: 

having understood why an evaluation function work on Congkak could help 

understand how to make an evaluation function work better on other system 

too.    

Also, the project can proceed to do a more advanced literature review. 

The fact that system building is a difficult task to explain meant that it is rarely 

documented; but most literature still refer to such concept again and again and 

thus making them very difficult to understand, but having understood all the 

basic of system building from the project: those unreachable concept can now 

be understood as well. Therefore a complete understanding of the literature 

can be progressively achieved. 

Future project can also focus on testing different kind of NN topology. 

Currently the project has not yet able to explore with different kind of NN 

topology and is using NN topology that is shaped like a triangle (eg:  large 

number of neurons at input and progressively lesser neuron near the output). It 

is not know what the effect would be to the NN's performance if  different 

topology is used (eg: ring shape).
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APPENDIX

(source-code  is  included  in  softcopy  version  of  this  report,  and  also  was  

uploaded to http://congkaksystem.sourceforge.net/)
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