DESIGNING AND DEVELOPING AN INTELLIGENT CONGKAK

A project report submitted to the
Faculty of Information Communication Technology
in partial fulfilment of the requirement for the degree
Master of Science (Information Communication Technology)
Universiti Utara Malaysia

By
Muhammad Safwan Bin Mohd Shahidan (s805747)
PERMISSION TO USE

In presenting this project report in partial fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project report in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence by the Dean of the Graduate School. It is understood that any copying or publication or use of this project report or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project report.

Requests for permission to copy or to make other use of materials in this project report, in whole or in part, should be addressed to

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman.
ABSTRAK

ABSTRACT

Congkak is the nation's traditional game which could soon be forgotten if no serious attention is given to it, but literature survey has not yet found any research publication that mentioned the use of neural network algorithm (NN) on Congkak. Therefore the project want to try to rectify this issue by trying to develop an Intelligent Congkak System that also implemented NN and try answer research question such as this: “What is the best Congkak evaluation function for training NN for game playing?” and “Can Min-Max algorithm (MM) be speeded up by using NN as a forward-pruning method?” This issues can solved by programming the Congkak system based on previous work on Mancala and NN system, and then recording the performance of the related algorithm. As a result: the project had created a Congkak system that had featured 3 Artificial Intelligence (AI) agent, and discovered that the combination of NN and MM is slower than MM alone.
ACKNOWLEDGEMENT

Firstly I would like to thank all the people in the world that have willingly shared their knowledge freely on the internet. Without them the internet would have been empty and the project would fail. Thank you for sharing.

I would also like to thank Madam Latifah binti Abdullah for sharing with me the guideline & protocol for project writing and also allowed me to extend my project report submission date, and I would also like to thank both my project supervisor Miss Noraziah binti Che Pa and Miss Aniza binti Mohamed Din for giving me the encouragement & helpful comment and for checking and suggesting to me the correction for my project, and Dr. Yuhanis for evaluating my project, and also a friend Fadi Shaar Abdulghani who had helped me by sharing the guideline of the project proposal. Without them the project would have failed. Thank you for all the help.

I would also like to thank Ministry of Higher Education (MOHE) for funding my study (under Mini Budget 2009), and also both my parent for giving me the financial support, and also my cousin Rizal Harun for helping me with everything. Life would be difficult if without them. Thank you.
TABLE OF CONTENT

PERMISSION OF USE	...	i
ABSTRACT (MALAY)	..	ii
ABSTRACT	..	iii
ACKNOWLEDGEMENT	..	iv
TABLE OF CONTENT	..	v
LIST OF TABLE	..	vi
LIST OF FIGURE	..	vii
CHAPTER 1: INTRODUCTION	..	1
1.1. Problem Statement	..	2
1.2. Research Question	..	3
1.3. Goal and Objective of the Project	..	4
1.4. The Significance of the Project	..	4
1.5. Scope, Assumption and Limitation of the Project	..	5
1.5.1. Scope	..	5
1.5.2. Assumption Made Prior to Project Execution	..	6
1.5.3. Limitation	..	6
1.6. Definition of Terms	..	7
1.7. Organization of Report	..	8
CHAPTER 2: LITERATURE REVIEW	..	9
2.1. Introduction	..	9
2.2. Brief Review on Artificial Intelligence Literature	..	9
2.3. Overall Literature Review	..	11
2.3.1. Neural Network (NN)	..	12
2.3.2. Congkak Game	..	13
2.3.3. Min-Max Algorithm with Alpha-Beta function (MM)	..	16
2.4. Extra Definition and Term	..	17
2.5. Summary	..	18
CHAPTER 3: PROJECT METHODOLOGY	..	19
3.1. Introduction	..	19
3.2. Project Methodologies	..	20
3.2.1. Project Identification & Initiation	..	21
a) Identify the Problems	..	21
b) Perform Literature Review ... 22

c) Create a Valid Research Question .. 22

3.2.2. System Design & Development .. 23

a) Design a System that Answers Research Question 23

i. Neural Network (NN) Sub-system: Intro 25

ii. Neural Network (NN) Sub-system: Classes 25

iii. Neural Network (NN) Sub-system: Design Intro 27

iv. Neural Network (NN) Sub-system: Design 27

v. Neural Network (NN) Sub-system: Extra Term and Definitions . 37

3.2.3. Data Collection & Analysis ... 38

a) Identify the Data to be Collected .. 38

b) Perform the Data Collection .. 38

c) Processing the Data and Analyze the Data 39

d) Interpret the Data and Answer Research Question 40

3.2.4. Project Documentation: Prepare the Report 40

3.3. The Limitation of the Project's Methodology 42

3.4. Summary ... 42

CHAPTER 4: RESULT .. 43

4.1. Introduction .. 43

4.2. Brief Statement of the Result ... 43

4.3. Result and Processed Data .. 44

4.3.1. The GUI .. 44

4.3.2. Artificial Intelligent Agents .. 49

4.4. Summary ... 58

CHAPTER 5: DISCUSSION OF THE RESULT .. 59

5.1. Issues ... 59

5.1.1. The GUI’s Simultaneous Move .. 59

5.1.2. Possible Aesthetic Improvement .. 60

5.1.3. The Move Pause ... 60

5.1.4. Congkak and Numbers .. 61

5.1.5. More Functionality for GUI .. 61

5.1.6. Real Congkak and Simulated Congkak 62

5.1.7. Issue: First Move is not Hidden to Artificial Agent 62

5.1.8. Issues with the Training Graph ... 62
5.1.9. Noise During Neural-Network Training ...63
5.1.10. Possible Reasons for Neural-Network Poor Performance.............64
5.2. Summary...65

CHAPTER 6: CONCLUSION AND RECOMMENDATION.................................66
6.1. Conclusions..66
6.2. Recommendation/ Future work...68

REFERENCES...70

APPENDIX ...75
LIST OF TABLE

Table 3.1: Project's Methodology...20
Table 4.1: Win-lose count for all agent..50
Table 4.2: The speed of NN agent algorithm. ..57
Table 4.3: The speed of NMM agent algorithm...57
Table 4.4: The speed of RandomMove agent algorithm.............................57
Table 4.5: The speed of MM agent algorithm...58
LIST OF FIGURE

Figure 3.1: Congkak board representation for Neural Network (NN)..........................29
Figure 3.2: Move state representation for NN input..29
Figure 3.3: A typical NN training configuration..31
Figure 3.4: Method for selecting move from 2 parallel NN output.........................32
Figure 4.1: GUI waiting for input...45
Figure 4.2: GUI waiting for input...45
Figure 4.3: GUI Simultaneous move...46
Figure 4.4: Move pause during simultaneous move..47
Figure 4.5: Sorting simulation...48
Figure 4.6: The endgame dialogue..48
Figure 4.7: Helper function...48
Figure 4.8: The Win over TrainingCount graph for “Defensive move” and “Custom strategy” (4000 trainingCount)..51
Figure 4.9: The Win over TrainingCount graph for “Defensive move” and “Distance from Endgame” (5000 trainingCount)..52
Figure 4.10: The Win over TrainingCount graph for “Winning Move” and “Distance from Endgame” (11000 trainingCount)...54
Figure 4.11: Maximum training time for “Defensive Move” and “Custom Strategy” evaluation function...55
Figure 4.12: Maximum training time for “Winning Move” and “Distance from Endgame” evaluation function...56
Chapter 1

1. INTRODUCTION

This project is focused on implementing Artificial Intelligence (AI) technique in Congkak game playing. An AI agent was created as a player that could be configured to play with a human or with itself. The agent used Neural Network algorithm (NN), Min-Max algorithm with Alpha-Beta function (MM), and Random-moves-generator to play the game.

AI is an exciting field of research. The goal of AI field is to develop a system that can solve real-world problems: such as Chess game, predicting stock market and facial recognition. Most recent and exciting development is an AI agent named Watson developed by IBM; it can answer question posed in natural language and has won a game in an American quiz show called “Jeopardy” (IBM (2011)). Another AI field is visual recognition; which also has become ubiquitous nowadays in form of facial recognition software installed on our laptop, and other exciting development is in computer gaming; where an AI agent named Milo can recognize player's emotion and interact with the player (Gibson. E (2009)).

The project will use AI on a small scale. Several AI technique was used on the game Congkak; Congkak has simpler rule and simpler mechanics than
The contents of the thesis is for internal user only
REFERENCES

Cofer, A. (2003), Mancala In Java: Experiment in Artificial Intelligence and Game Playing. Departmental Honor Thesis. University of Tennesse at Chattanooga.

