APPLICATION OF TECHNOLOGY ACCEPTANCE MODEL
ON DATABASE NORMALIZER

Ahmed Abdulhakim Ahmed Al-Absi

Universiti Utara Malaysia
2011

APPLICATION OF TECHNOLOGY ACCEPTANCE MODEL
ON DATABASE NORMALIZER

A project submitted to Dean of the Awang Had Salleh Graduate School
of Arts and Sciences in partial Fulfillment of the requirements for the
degree Master of Science of Information Technology
Universiti Utara Malaysia

© Al-Absi, Ahmed, 2011. All rights reserved.

PERMISSION OF USE

In presenting this project in partial fulfillment of the requirements for a
postgraduate degree from Universiti Utara Malaysia, | agree that the University
Library may make it freely available for inspection. | further agree that
permission for copying of this project in any manner, in whole or in part, for
scholarly purpose may be granted by my supervisors or, in their absence by the

Dean of Postgraduate Studies and Research.

It is understood that any copying or publication or use of this project or parts
thereof for financial gain shall not be allowed without my written permission. It is
also understood that due recognition shall be given to me and to Universiti Utara
Malaysia for any scholarly use which may be made of any material from my
project. Requests for permission to copy or to make other use of materials in this

project, in whole or in part, should be addressed to

Dean of Awang Had Salleh Graduate School of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman.

ABSTRACT

Normalization is one of the most important activities in database designing. The good
database design is the database that meets user requirements and designed its structure
carefully. Therefore, this study focused on developing a database normalization
application that helps database designers to perform the normalization process
automatically and improves the database designing by avoiding the problems of carrying
out normalization manually which has many drawbacks such as time consuming, prone to
errors and requires more than one skilled user. The main objective of this study is to
develop a database normalizer application to normalize the database tables up to the third
normal form (3NF). This study provides a normalization algorithm to perform the 1NF,
2NF, and 3NF automatically based on Microsoft Access and SQL Server databases.
Experiment was conducted to check the functionality in performing the normalization
process. The experiment result showed that the prototype achieved the result successfully
as expected and fulfills the requirements and rules of normalization processes. Moreover,
a questionnaire based on the Technology Acceptance Model technique has been adopted

to ensure of the prototype level in terms of easiness of use, and satisfaction.

Dedication

Jpecia@ dedicated o
My beloved father and mother

Tomy .w’éﬁ‘iyy and, fam@
Thanks for all the encouragement and. support

ACKNOWLEDGEMENT

Alhamdulilah. All thanks and praise to Allah for giving me the strength to pursue and complete

this project.

| would like express my deepest gratitude to my supervisor Assoc. Prof. Abd Ghani B. Golamdin
for his support, guidance and ideas given to me throughout this research and for finding time and

patience reading my drafts repetitively are very much appreciated.

Many thanks go to my evaluator Dr. Massudi Mahmuddin for his tremendous help in providing

me the valuable support, time and feedback are much appreciated.

| am grateful to all lecturers of the College of Arts and Sciences at Universiti Utara Malaysia
where | gained a lot of experience, information and knowledge and learnt the most valuable

things in the world of research.

Special thanks to my dear friend Mr. Ahmed Talib for his help in giving me valuable ideas and

sharing me his experience.

My thanks to Mr. Mustafa Muwafak and SerindlIT UUM for their help and giving me the

permission to do the interview and the evaluation.

I would like to thank my colleagues and friends who helped me directly or indirectly for the

completion of this project.

Finally, my gratitude and love goes out to my family. This project will not have been possible
without their help and support.

TABLE OF CONTENTS

PERMISSION OF USE
ABSTRACT
DEDICATION
ACKNOWLEDGEMENT
TABLE OF CONTENT
LIST OF TABLES

LIST OF FIGURES

LIST OF APPENDICES

LIST OF ABBREVIATIONS

CHAPTER ONE: INTRODUCTION
1.1 Background
1.2 Problem Statement
1.3 Research Questions
1.4 Objectives
1.5 Significance of the Study
1.6 Scope of the Study
1.7 Organization of the Report

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction to Database

2.2 Database Normalization
2.2.1 First Normal Form (1NF)
2.2.2 Second Normal Form (2NF)
2.2.3 Third Normal Form (3NF)
2.2.4 Boyee Code Normal Form

2.3 Related Works

2.4 Summary

Xl

AW w W W N R R

© o ~N O »;

10
11
13
18

CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Problem Understanding
3.2 Prototype Design
3.2.1 Data Input (Unnormalized form)
3.2.2 Normalization Algorithm
3.2.2.1 Select Database Table Function
3.2.2.2 Select Primary Keys Function
3.2.2.3 First Normal Form Algorithm (1INF)
3.2.2.4 Second Normal Form Algorithm (2NF)
3.2.2.5 Third Normal Form Algorithm (3NF)
3.2.3 Graphical User Interface (GUI) Design
3.3 Prototype Development
3.4 Experiment Design
3.5 Evaluation

3.6 Summary

CHAPTER FOUR: ANALYSIS OF THE SYSTEM AND DESIGN

4.1 Introduction
4.2 Tools for System Design
4.2.1 Unified Modeling Language (UML)
4.2.2 Rational Rose 2010
4.3 Database Normalizer Prototype Requirements
4.3.1 Functional Requirements of DBNP
4.3.2 Non-Functional Requirements of DBNP
4.4 Modeling and System Design
4.4.1 Use Case Diagram
4.4.2 Use Case Specification
4.4.3 DBNP Sequence Diagram
4.4.4 Class Diagram
4.5 Prototype Implementation
4.6 Graphical User Interface

4.7 Summary

Vi

19
20
21
22
23
23
24
24
25
26
27
29
29
30
31

32
32
32
32
33
33
34
35
35
36
36
40
43
43
44
51

CHAPTER FIVE: RESULTS AND FINDINGS
5.1 Introduction
5.2 Experiment Design
5.2.1 Experiement Result
5.3 Questionnaire
5.3.1 Questionnaire Analysis
5.3.2 Easiness Evaluation
5.3.3 Satisfaction Evaluation
5.3.4 Reliability Statistics
5.3.4.1 Reliability Statistics for Easiness Evaluation
5.3.4.2 Reliability Statistics for Satisfaction Evaluation
5.3.4.3 Reliability Statistics for All sections
5.3.4.4 Item-Total Statistics
5.4 Summary

CHAPTER SIX: CONCLUSION AND FUTURE WORK
6.1 Conclusion
6.2 Research Contribution
6.3 Problems and Limitations
6.4 Future Work
6.5 Summary

REFERENCES
APPENDICES

VII

52
52
52
59
59
60
62
63
65
65
65
66
66
67

68
68
69
69
70
70

71
75

Table 2.1:
Table 2.2:
Table 2.3:
Table 2.4:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:
Table 5.8:

LIST OF TABLES

ClientRental unnormalized data table.

INF ClientRental data table.

2NF tables derived from ClientRental data table.
3NF tables derived from propertyOwner table.
Functional Requirements

Apply First Normal Form use case specification
Apply Second Normal Form use case specification
Apply Third Normal Form use case specification
Experimentation standard relations
Experimentation expected results

Descriptive Statistics (Easiness of use)
Descriptive Statistics (Satisfaction)

Reliability Statistics (Easiness of use)

Reliability Statistics (Satisfaction)

Reliability Statistics for all sections

Item-Total Statistics

VI

10
11
34
37
38
39
53
57
63
64
65
66
66
67

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:

LIST OF FIGURES

Functional dependency diagram.

Student relation example.

Normalization process diagram.

Linked list Node structure.

Graphical, Matrix and Directed graph Representation.

A screenshot run of JMathNorm tool for 3NF decomposition.

A screenshot of the main window of the web-based normalization tool.
Methodology flowchart of the database normalization prototype.
Structure of Report relation.

Sample of relation in UNF to be normalized by the prototype.
Database Normalizer Prototype GUI.

Database Normalizer Architecture.

DBNP use case Diagram.

Apply INF Sequence Diagram.

Apply 2NF Sequence Diagram.

Apply 3NF Sequence Diagram.

DBNP class diagram.

Database Normalizer Home Page.

Selecting database to be normalized.

Selecting table primary keys to be normalized.

Performing the INF operation.

Figure 4.10: Performing the 2NF operation.

Figure 4.11: Performing the 3NF operation and selecting the table transitive keys.
Figure 4.12: Shows the tables that been created at 1INF, 2NF and 3NF levels.

Figure 4.13: Shows the automatically created normalized tables in SQL Server database.

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:

Type of participants.
Age of the participants.
Participants educational background.

Evaluation result

12
13
14
15
17
20
22
22
27
28
36
40
41
42
43
45
45
46
47
48
49
50
50
61
61
62
64

Appendix A
Appendix B
Appendix C

LIST OF APPENDICES

75
77
80

INF
2NF
3NF
4ANF
SNF
BCNF
DB
DBMS
DBNP
ERD
FD
GUI

TAM
UML
UNF

UuUM

LIST OF ABBREVIATIONS

First Normal Form

Second Normal Form

Third Normal Form

Fourth Normal Form

Fifth Normal Form
Boyce-Codd Normal Form
Database

Database Management System
Database Normalizer Prototype
Entity-Relationship Diagram
Functional Dependency
Graphical User Interface
Information Technology
Technology Acceptance Model
Unified Modelling Language
Un-Normalized Normal Form

Universiti Utara Malaysia

Xl

CHAPTER ONE

INTRODUCTION

1.1 Background

Data has become one of the important strategic resources for many organizations from industry,
and government. The tradition data resource had been managed by a file processing system that
requires no special data management techniques. Now, data has been stored and manipulated
through database management systems (DBMS) as the need for information processing has

become necessary.

In 1972, Relational databases has been proposed by Dr. Codd as stated in Connolly and Begg
(2004) which are widely used in almost commercial applications to store, manipulate and use
huge data for a specific enterprises and decision making. The success of relational database
modeled for any enterprise is depending on the design of relational schema (Bahmani,
Naghibzadeh, & Bahmani, 2008). Process of designing databases is referring to the activities that
are related to the design of the database structure for storing and managing end-user data. The
good database design is that database which meets all user requirements and designed its
structure carefully (Rob & Coronel, 2009). Database design is an essential phase of working with
databases where it affects a good DBMS to work poorly with a badly designed database.
Therefore, to have a proper database design, database designer should identify exactly the
expected use of database such as process of designing a data warehouse database that requires
identifying the historical data also designing a centralized database involve using a centralized

approach which is differs from that one in distributed database (Rob & Coronel, 2009).

1

One of the essential steps in designing stage of any relational database is Normalization, which
defined as the technique that can used to produce a set of relations with desirable properties for
specifying enterprises data requirements (Connolly & Begg, 2010). The goal of normalization is
to create a set of relational tables with minimum data redundancy and to avoid insertion and
deletion anomalies. In case if the redundant data cannot be avoided in databases, then reducing
the redundancy should be the objective for any database designer to achieve with the help of data
normalization (Ram, 2008).

Normalization is achieved in steps. Every step has its own name and requirements, these steps
names are First Normal Form (1NF), Second Normal Form (2NF), Third Normal Form (3NF),
Fourth Normal Form (4NF) and Fifth Normal Form (5NF). However, the last two normal forms

deals with situation that is very rare (Connolly & Begg, 2010).

1.2 Problem Statement

In most of software industries, process of normalization is still done manually which requires
more than one experienced user to do normalization (Dongare, Dhabe, & Deshmukh, 2011). In
large database enterprises, there is large number of relations that contains many attributes and
functional dependencies which involves normalization process. The problem of carrying out
normalization manually is in its time consuming, and it’s prone to errors on dealing with large
number of attributes (Dongare, Dhabe, & Deshmukh, 2011). Another problem is that performing
normalization manually is costly because it requires more than one skilled user in database design.
Moreover, according to Yazici and Karakaya (2007) the available commercial database tools are
not providing a full solution for normalization and requiring a programming and data structure

skills.

1.3 Research Questions

The research questions that represent this study are:

1. What is the requirement to develop a database normalizer application systematically?

1.4 Objectives

1. To develop a prototype tool that can do database normalization systematically.

1.5 Significance of the Study

The developed normalization application is based on a windows application for faster
performance, normalization process will generate a normalized relational tables based on
relations that been created on a given database after entering table’s records. The database
normalizer prototype is a contribution to the society especially for users who work on database
normalization. This prototype can easily be used by any user with little background on database

normalization like database relations attributes and functional dependencies.

1.6 Scope of the Study

The study focused on the first three types of normalization: first normal form (1NF), second
normal form (2NF), and third normal form (3NF). This prototype work based on Microsoft

Access and SQL Server databases.

1.7 Organization of the Report

This report is divided into six chapters. The first chapter provided an introduction about database
designing and normalization. It includes research problem statement, research questions,
objectives, significance and scope of the study. Chapter Two is a review of related literatures
pertaining to this project which is divided into three sections: introduction to database, database
normalization, and database normalization applications. Chapter Three presented the research
methodology that been used in this project in details. The fourth chapter discussed the
normalization normalizer prototype analysis and implementation. Chapter Five presents the
results and findings of the experiment along with the questionnaire. Finally, the conclusions and
recommendations for future research are stated in the Chapter Six. The used references along

with the required appendices have been attached at the end of this study.

CHAPTER TWO

LITERATURE REVIEW

This chapter presents a brief introduction to database and concept of normalization as well

discusses previous literatures that are related to database normalization applications.

2.1 Introduction to Database

Database is a collection of related data that is created and maintained either by a set of
applications written specially for that task or by database management system where this
database contains a complete description and definition of the database structure and constraints
(Srikanth & Sudarshan, 2001). The data in database are represented in form of tables/relations as
a set rows/tuples and columns/attributes. The database columns are called attributes and have a
name and are ordered in the table. A table contains functional dependencies (FDs) between its
attributes. Functional dependency is a constraint between two sets of attributes from the database
and describes the relationship between attributes (Connolly & Begg, 2010). The functional
dependencies and attributes determine the normal form of the table. For instance, if there are
attributes called A and B in a relation called R, we say attribute B is functionally dependent on
attribute A (represented as A — B), if each value of attribute A in relation R is associated with

exactly one value of attribute B in R as shown in Figure 2.1.

B is functionally
A > B

dependent on A

Figure 2.1: Functional dependency diagram.

It is essential in any database relation to have attributes where every row in the relation must be
unique to provide enough information. These unique values are known as the key. One relation
may have more than one key called candidate key. For example, in the Figure 2.2 below several
columns might serve as a key. Either students register number or students name, both are
candidate keys. One of the candidate keys are considered as primary key which is preferred to be
register number rather than name because same name is possible for each student. Figure 2.2
below shows an example of a database relation called student contains set of attributes that
represents students’ information such as RegNo, Name, Course, Sex and Age. To identify the

data of this relation every row must has a unique value, in this case RegNo is the primary key.

Student (RegNo, Name, Course, Sex, Age)

l ! l

Relation name Primary Key List of Attributes

Column/Attribute

RegNo Name Course Sex Age
AQO008 Ahmed MSc IT M 25
Row / CA032 | Abdulhakim MCA M 31
Tuple CA022 Merry MBA F 29
UQO19 Absi BCA M 21

Figure 2.2: A student relation example.

2.2 Database Normalization

Normalization is the most applied technique for analyzing database relation based on their
primary key and functional dependencies to reduce data redundancy and file storage space of a
given relation (Srikanth & Sudarshan, 2001). There are several forms of normalization, in
practice, databases are normalized up to third normal form, including BCNF (Bahmani,
Naghibzadeh, & Bahmani, 2008). This study focuses on the first three normal forms and not

addressing higher order of normalization.

Before starting with first normal form, there is normalization process case called Unnormalized
Normal Form (UNF) which refers to a relation that holds one or more repeating groups. This
case requires transforming the data from the information sources like form into table format with
columns and rows. The output of this process is unnormalized data in form of table (Connolly &
Begg, 2010). The next section discusses process of transferring the unnormalized table to 1NF
and the following example comes from Connolly and Begg (2010, Chapter 14) which shows the
ClientRental relation normalization process for UNF, 1NF, 2NF and 3NF relations. This
ClientRental relation is one of five other relations that have been chosen to undergone to
experiment to check the functionality of the prototype in fulfilling the requirements and rules of
INF, 2NF and 3NF. Chapter Five provides more details on the experiment and the chosen

relations.

2.2.1 First Normal Form (1NF)

A relation can be in 1INF if every cell on the relation contains exactly one value where all the
repeated data has to be removed. According to Connolly and Begg (2010) transforming UNF to
INF involves the following:

- Choosing table attributes that acts as the key values.

- ldentifying the repeating groups in the unnormalized table.

- Removing the repeated group by one of two approaches: Either by inserting data into the
empty rows that hold the repeated data or by placing the repeated data in a separate table
with a copy of the original key attributes.

In Table 2.1, the data is in unnormalized form because it contains a repeated group for attributes
(propertyNo, pAddress, rentStart, rentFinish, rent, ownerNo, and oName). Moreover, client
named John has two values for propertyNo (PG4 and PG16).

Table 2.1: ClientRental unnormalized data table.

ClientNo | cName | propertyNo | pAddress rentStart | rentFinish | rent | ownerNo | oName
Tina
6 lawrence
1-Jul-00 31-Aug-01 350 | CO40 Murph
o PG4 St.Glasgow . ug ey
CR76 k: ’ Tony
y
PG16 5 Movar Dr,
1-Sep-02 1-Sep-02 450 | CO93 Shaw
Glasgow
6 lawrence Tina
PG4 1-Sep-99 10-Jun-00 350 | CO40
St,Glasgow P un Murphy
) Tony
Aline 2 Manor Rd,
CR56 PG36 10-Oct-00 1-Dec-01 370 | CO@83 Shaw
Stewart Glasgow
5N D Tony
ovar Dr,
PG16 1-Nov-02 1-Aug-03 450 | CO93 Shaw
Glasgow

Therefore, to transfer Table 2.1 to 1NF, each cell must have a single value by inserting data into

each row of CilentRental relation. The output of this process is shown in Table 2.2.

Table 2.2: 1NF ClientRental data table.

ClientNo | propertyNo | cName | pAddress | rentStart | rentFinish | rent | ownerNo | oName

CR76 PG4 John Glawrence |, 50 31-Aug-01 | 350 | co4o Tina
Kay St,Glasgow Murphy
Joh 5 Novar Dr,
CR76 PG16 onn Varoh | i.sep-02 | 1-Sep-02 | 450 | Co93 Tony
Kay Glasgow Shaw
Aline B lawrence i
CRS56 PG4 n wren 1-Sep-99 | 10-Jun-00 | 350 | Co40 Tina
Stewart | St.Glasgow Murphy
] Tony
Aline 2 Ma Rd,
CR56 PG36 " nor 10-Oct-00 | 1-Dec-01 370 | coes Shaw
Stewart Glasgow
. Tony
CRS56 PG16 Aline SNovarDr | 4 \ov-02 | 1-Aug-03 450 | coes Shaw

Stewart Glasgow

2.2.2 Second Normal Form (2NF)

A relation can be in 2NF if it is in INF and all non-primary attribute be fully functionally
dependent on the primary key. This form requires removing the partial dependencies attributes
that are related to only part of the primary key and assign a new table to place the functionally

dependent attributes along with a copy of their determinant.

In order to transfer Table 2.2 to 2NF, this requires checking the functional dependencies of
ClientRental relation through identifying existence of any partial dependencies on the primary
key as following:
- cName is partially dependent on the clientNo primary key.
- pAddress, rent, ownerNo and oName are partially dependent on the propertyNo primary
key.
- rentStart and rentFinish are fully dependent on the clientNo and propertyNo primary key.
The output of this process will be creation of three new tables called Client, PropertyOwner,

and Rental as in Table 2.3.

Table 2.3: 2NF tables derived from ClientRental data table.

Rental
Client ClientNo | propertyNo | rentStart | rentFinish
: CR76 PG4 1-Jul-00 31-Aug-01
ClientNo | cName CR76 PG16 1-Sep-02 1-Sep-02
CR76 John Kay CR56 PG4 1-Sep-99 | 10-Jun-00
CR56 Aline Stewart CR56 PG36 10-Oct-00 | 1-Dec-01
CR56 PG16 1-Nov-02 1-Aug-03
PropertyOwner
propertyNo | pAddress rent | ownerNo | oName
PG4 6 lawrence St,Glasgow 350 CO40 Tina Murphy
PG16 5 Novar Dr, Glasgow 450 COog3 Tony Shaw
PG36 2 Manor Rd, Glasgow 370 COog3 Tony Shaw

2.2.3 Third Normal Form (3NF)
A relation can be in 3NF if it is in INF and 2NF and every non primary attribute is functionally
dependent on just the primary key. This normal form is based on the transitive dependency and

requires assigning the transitive dependences in a new table along with a copy of their

determinant.

From Table 2.3, the propertyOwner table holds transitive dependency where the oName attribute

is dependent on ownerNo attribute, so this transitive dependency must be placed in a new table

called Owner as in Table 2.4.

10

Table 2.4: 3NF tables derived from propertyOwner table.

Client Rental
ClientNo | cName ClientNo | propertyNo | rentStart | rentFinish
CR76 John Kay CR76 PG4 1-Jul-00 31-Aug-01
CRE6 Aline Stewart CR76 PG16 1-Sep-02 1-Sep-02
CR58 PG4 1-Sep-99 10-Jun-00
CR56 PG36 10-Oct-00 1-Dec-01
CR56 PG16 1-Nov-02 1-Aug-03
PropertyForRent Owner
propertyNo | pAddress rent | ownerNo ownerNo | oName
PG4 6 lawrence St,Glasgow | 350 C0O40 CO40 Tina Murphy
PG16 5 Novar Dr, Glasgow 450 C083 C0o93 Tony Shaw
PG36 2 Manor Rd, Glasgow 370 COo93

2.2.4 Boyce-Codd Normal Form (BCNF)
A relation can be in Boyce-Codd Normal form if every determinant is a candidate key. If a
relation has only one candidate key then 3NF and BCNF are equivalent and if not then the

functional dependencies must be removed and placed in a new relation.

In fact, the Table 2.4 of 3NF is equivalent to BCNF because Client, PropertyForRent, and Owner

tables have a single determinant which is the candidate key while Rental table contains 3

determinants so because of that all tables are candidate keys then in BNCF.

11

Figure 2.3 below illustrates process of normalization diagram.

Oata Sources

Users' Requiremants Sources describing the enterprise such

U (— PE—
= Specification a5 Data dictionary and Data Model
¢ Transfer altributes into Table formal
Unnormalised Form (UNF)

Remove repeating Groups

!
First Normal Form (1NF)

Remove Partial Dependencies

L
Second Normal Form (2NF)

Remove Transitiva dependancies

Thire Normal Form {3NF)

Make sure every determinant 15 & Candidate key

'
Boyce-Codd normal Form (BCNF)

Remaove Mulfi-Valuad dependencies

{ Fourth Normal Form (4NF) |

Remove Join dapendancies

!
Fifth Normal Form (SNF)

Figure 2.3: Normalization process diagram (Connolly & Begg, 2010).

12

2.3 Related Works

To eliminate the drawbacks of the manual normalization process that been mentioned in the
problem statement, many researchers already attempted to come out with automation for

normalization process.

Recently, Dongare, Dhabe, and Deshmukh (2011) proposed a semi-automated normalization tool
using single linked list to represent relations as data structure as shown in Figure 2.4. The tool
works at schema level for 2NF and 3NF of normalization which means the tool normalizes tables
before defining a table and inserting records to it. Although this approach is convenient but still
it is not fully automated where user is required to set empty database relations to be normalized
manually at schema level. Therefore, in this work, the prototype deals with inputted tables that
been already stored with records which mean normalization will be carried out for INF, 2NF and

3NF after defining and entering table’s records of a given database.

attribute_name

attribute_tvpe
determiner

nodeid
determinerofthisnodel

determinerofthisnodel
determinerofthisnodel

determinerofthisnodel
kevattribute

prrionext

Figure 2.4: Linked list Node structure.

13

Bahmani, Shekofteh, Naghibzadeh, and Deldari (2010) proposed database normalization
application using parallel algorithm to compute and reduce time of database normalization
process. The proposed application is for 2NF and 3NF normalization process. The process of the
algorithm was based on using three data structures: Dependency Graph, Dependency Matrix and
Directed Graph Matrix to represent and manipulate dependencies amongst attributes of a relation
as shown in Figure 2.5. The proposed application has shown a good result in reducing the time of
normalization using parallel algorithm than any other algorithm. However, their scope was
limited to 2NF and 3NF only. In addition the application deals with relations that has no repeated
data and already normalized in its INF. Therefore, in this research, the prototype eliminates the
repeated data and performs the 1NF systematically in addition to 2NF and 3NF. According to
Hoffer, Prescott, and McFadden (2007) normalization is process of converting complex data
structures into simple and stable data structures. Therefore, in this study, the prototype was

implemented without using any complex data structures.

()
(b)

AB| 212 (0(0|1||AB[1]|-1]|-1
BC| 1| 27 2 (-0 [0| 'BC 2 |1 -l
DE|1]|0(0|2)]|2||DE|-1]-1]|1

Figure 2.5: (a) Dependencies graphical representation. (b) Dependency Matrix.

(c) Directed Graph Matrix. (Bahmani et al., 2010)

14

Yazici and Karakaya (2007) proposed another automatic normalization tool called JMathNorm
designed using built-in functions provided by Mathematica with user designed interface using
Java language. The important aspect in this tool is that it provides facility to normalize relations
up to Boyce-Codd Normal Form (BCNF). However, normalization process of this tool is
represented by the symbolic nature of Mathematica as shown in Figure 2.6. Moreover,
JMathNorm tool does not provide facility of table creations for the normalized schema of any
DBMS. Therefore, in this research, the prototype generates normalized relations in form of

structured tables of a given database depending on a DBMS.

£ JMathNorm =] P3|

FD Ops HNForm Results Options Help

Eliminating extraneous attributes.. ..
Eliminating redundant dependencies. ...
Minimal Cover obtained. ..

Mew: L= {supplierto,partMo},supplierto, city}
Mew: R = {gquantity,city, status}

2MF decompositions:
Hcity, status}), {city, suppliertlo}, {partto, gquantity, supplierto}}

All done. |

Figure 2.6: A screenshot run of JMathNorm tool for 3NF decomposition.

According to Yazici and Karakaya (2007) the available commercial database tools are not
providing a full solution for normalization and requiring a programming and data structure skills.
One of these tools is performing the normalization through Metamodelling in which the Unified
Modelling Language (UML) is used to access Object Constraint Language (OCL) to construct

expressions that encode Functional Dependency’s using classes at a meta-level (Akehurst,

15

Bordbar, Rodgers, & Dalgliesh, 2002). In the study, the process of automation is achieved by

using two declarative specifications over the UML meta-model.

Kung and Tung (2006) proposed a web-based normalization tool using Java applet in which it
can be accessed through the Internet. The tool developed for purpose of enhancing teaching and
learning of database normalization to students. The study had evaluated the students’ perceptions
of the tool through a questionnaire for 45 students. The result of evaluation found the tool easy to
use and the step-by-step feature helped students gain understanding of database normalization
process. However, this tool does deal with functional dependencies in form of symbols rather
than a structured database relation as shown in Figure 2.7. The tools do not provide visual aid for
normalization. Another issue is that developing a database tool in a web-based platform is not
recommended because web application performance is slower than windows application
especially in dealing with huge database relations (Bhavsar, 2008). Therefore, in this research,
the developed prototype will be based on a windows application for faster performance and
normalization process will be carried out based on relations that been created by user on a
database as a structured tables where the prototype will generate a normalized relations for the

given database.

16

Figure 2.7: A screenshot of the main window of the web-based normalization tool.

Mitrovic (2002) also developed a web enabled data normalization tutor called NORMIT.
NORMIT is a system proposed to teach university students concept of database normalization
and solve problems. The student is required to register first where the system provides the
student a general description about the system and data normalization then student has to select a
predefined normalization problem to normalize from list. NORMIT involves the student to
determine prime attributes, candidate keys, compute the set of attributes closure, simplify
functional dependencies, and the normal form the table is in. However, these requirements made

the approach to be difficult for learners.

17

2.4 Summary

This chapter presented a brief introduction to database in terms of database tables and functional
dependencies, moreover discussed in details the concept of normalization along with its rules and
requirements till the third normal form. The chapter discussed as well the previous literatures
that were related to database normalization application. The next chapter presents the research

methodology that defines the layout phases of this study to achieve the objectives.

18

CHAPTER THREE

RESEARCH METHODOLOGY

In order to complete and answer the research questions of this study, researcher used a research
methodology that defines the layout of the research phases. According to Hoffer, George, and
Valacich (2002) the best methodology is that which ensures a reliable approach in all research
phases and facilities achieving the identified objectives easily. The research approach of this
study is inspired from the General Methodology for Design Research (GMDR) which is
advocated by Vaishnavi and Kuechler (2008). Applying this methodology helps in producing
the proposed prototype in a better quality and achieves the objectives perfectly.

The methodology has five phases as shown in Figure 3.1:

i Problem Understanding.

ii. Prototype Design.

iii. Prototype Development.

iv. Experiment phase.

V. Prototype Evaluation.

The study carried out in several steps as illustrated in Figure 3.1 This methodology has been
carefully designed to make sure that it is flexible and more suitable for developing the database
normalization prototype. The aims of this study accomplished when the prototype is developed

and evaluated.

19

Problem Understanding Proposal

Tentative
Prototype Design design
Development Artifact
Experiment, Analysis Prototype
Performance
Prototype Evaluation Result

Figure 3.1: Methodology flowchart of the database normalization prototype.

3.1 Problem Understanding

The first stage of this methodology is to understand the objectives and scope of this study. This
stage required understanding and analyzing the problem in order to define the problem
(Whitten, Bentley, & Dittman, 2001). Therefore, this case required a clear understanding of
normalization concept in all of its forms (INF, 2NF, & 3NF) along with database relations
background. The researcher checked the previous related work on the normalization concepts
and tools and gathers required information through interview as a primary data sources and from
secondary data sources as well. The aim of the interview was to explore how do IT company’s

database designers achieve normalization process and what is the most used types of

20

normalization process along with its importance to projects work. The interview (using
unstructured interview with open ended questions) was carried out in IT Company called
SerindIT at Sintok city and conducted with three employees who were working as Database
designer, Database administrator and software programming and developer. The interviews
generally produce riches detailed data about a much smaller number of people where
interviewees should be knowledgeable and experienced on the topic they provide information on
(Patton, 2002; Rubin & Rubin, 2005). Therefore, the participants of the interview were chosen to
provide more information and knowledge. According to the information that gathered during the
interview, the conclusion was that SerindIT company developers are performing the
normalization process manually with the help of Entity-relationship diagram approach (ERD)
Moreover, the employees go up to the 3NF and stated that the 4NF doesn’t occur. Appendix A

provides more details on the interview questions and summary of participants responses.

The secondary data sources were also used in this study such as standard texts books like
(Connolly & Begg, 2010; Teorey et al., 2011; Srikanth & Sudarshan, 2001), articles, journals,
proceedings and websites. The gathered data have been analyzed and helped the researcher to

have a clear idea and more understanding of normalization process.

3.2 Prototype Design

This phase started by identifying the inputs/outputs and the functional system requirements for
the proposed prototype. The prototype has been designed using the Rational Rose 2010 software
to construct the Unified Modeling Language (UML) diagrams and design the use case diagram
along with sequence diagrams and class diagrams as shown in Chapter Four. The prototype

designed process carried out carefully according to the prototype needs.

21

3.2.1 Data Input (Unnormalized form)

The process of normalization in this prototype involves the user to specify and retrieve the
required database sources to be normalized in a form of structured database relation from
Microsoft Access as in Figure 3.2 and Figure 3.3. This stage of design identifies the Unormalized
Form (UNF) where the attributes of the retrieved relation are all in a single relation. The
prototype will check the redundancy of the inputted relation and remove the repeating groups.
The prototype identifies the retrieved database structure in terms of relations, attributes, data
types, and size. The following shows example of database structure of a database relation called
Project used in this prototype. Details of all the used databases relations of this study are

available in Chapter Five.

Field Name Data Type

‘# | Project Mumber Mumber

Froject Name Text

Employee Number MNumber

Employvee MName Text

Job Class Text

Charge Hour Currency

Hours Billed Currency

Figure 3.2: Structure of Report relation.

EH ProjectDE - = 0x
Project Mum - | Project Mam ~ Employee M -~ |Employese M ~ Job Class =~ |Charge Hour - |Howurs Billed ~
15 Evergresn 103 June E. Arboug Elec. Engineer S84.50 $23.80
Ewvergreen 101 John G. News Databasae Des 5105.00 519.40
Ewvergreen 105 Alice K. Johnso Databasae Des $105.00 $35.70
Ewvergreen 106 wWilliam Smith Programmer $35.75 $12.50
Evergreen 102 Dawid Harry Systems Analy: 596.75 $23.90 |_
18 Amber Wave 114 Annelise Jones Applications Dv $18.10 $24.60 ||
Amber Wawve 118 James J. Fromn General Suppo 518.36 S545.30
Amber Wave 104 Anne K. Raffie Systems Analy: $96.75 $32.10
Amber Wave 112 Darline M. Sith| DSS Analyst 545.95 544.00
22 Rolling Tide 105 Alice K. Johnso Databasae Des 5105.00 564.70 || |
22 104 Anne K. Raffie | Systems Analy: 596.75 S548.90
22 113 Delbert K. Joer Applications Dv 548.10 $23.60
22 111 Geoff B. Wabas Clerical Suppor 526.87 522.50
22 106 William Smith Programmer 535.75 $12.70
25 star flight 107 Maria D. Alonzi Programmer 535.75 52470
25 115| Travis B. Bawar Systems Analy: 596.75 545.80
Star flight 101 John G. Mews Databasae Des S105.00 $56.30
25 114 Annelise Jones Applications Dn $48.10 $33.10
Star flight 108 Ralph B. Washi Systems Analy: 596.75 $23.90
25 118 James). Fromn General Suppo 518.36 5$30.20
Star flight 112 Darline M. Sith DSS Analyst 545.95 541.40
27 UUM Dept 119 Ahmed absi DwW developer $50.00 $29.00
Record: M 4 3 of 24 e | [[searcn I B] |

Figure 3.3: Sample of relation in UNF to be normalized by the prototype.

22

3.2.2 Normalization Algorithms

The normalization algorithms of INF, 2NF and 3NF of this prototype are depending on a table
that is in unnormalized form and contains a collection of records. The algorithms check the
matched values and normalize the given table to 1NF, 2NF, and 3NF.

This prototype has been designed based on the requirements and rules of each normalization
forms process that been discussed and illustrated in the literature review for Connolly and Begg
(2010) where if each row contains single value then it is in INF. The table has removed partial
dependency then it is in 2NF. Lastly, eliminating the transitive functionally dependency then it is

in 3NF.

3.2.2.1 Select database table function

The Select Database Table function is used to read all the tables that are available in a selected
database. This function works as the prototype input function that inputs the unnormalized table
to be normalized. The function ignores reading system files and temporary files. The output of
this function is displaying the contents of the selected table in a grid. This can be represented in

pseudo code as follows:

Step 0: Open database for input;
Step 1: Read tables of the database;
Step 2: Set database Open (filename);

Step 3: Initialize table definitions and table name type of String;
Step 4: For each table definitions in database (td,i=0,...,n) do Step 5
Step 5: Assign table name by table definitions.Name;

Step 6: Ignore system tables and temporary tables;
Step 7: Display RecordSources in DBGrid;

Algorithm 1: Pseudo code of selecting database tables.

23

3.2.2.2 Select Primary Key Function

This function is used to allow user to specify the primary keys of the select table. Process of this
requires user to select table first and then according to the selection, all the fields of the table will
be shown to user in form of list to allow user to select the primary keys of the given table. The
output of this process is two lists: first holds the table’s fields and the other list hold the select

primary keys list. The following algorithm describes the process:

Step 0: Initialize tabledefinition, field, and fieldname type of String;
Step 1: Check if database table is selected,
IF selected, do Step 2-6
Step 2: Set database Open (filename);
Step 3: Set table definitions (MainTableName)
Step 4: For each field in table definitions. Fileds
Do Step 5-6;
Step 5: Assign field to fieldname;
Step 6: Add fieldname to list
IF not selected do Step 7
Step 7: Display select table message;

Algorithm 2: Pseudo code of selecting table’s primary keys.
3.2.2.3 First Normal Form Algorithm (1NF)

Process of transferring the selected table from unnormalized status to INF requires from the user
to specify the primary keys of the given table. The output of this algorithm is creating a new
table with same name of the table name prefixed by “INF”. The algorithm applies the rules of
the first normal form by assuring that each field in the selected table does not has empty values
and contains single value. According to these rules the algorithm will check each row in the
selected table and fill up the required empty fields automatically. So by this, the rules of 1NF are
applied successfully and the table becomes ready to move to 2NF. A flag (NF1) is used to
indicate the result of 1NF to be used in the rules of 2NF algorithm. The following algorithm
describes the process:

24

Step 0: Check selection of primary key
IF selected, do Step 1-4
Step 1: Create new relation with name (“1NF” + MainTableName)
Step 2: Initialize one-dimensional Array (AA) type of String for each field
Step 3: Check if RecordSource not in EndOfFile then do Step 4-9;
Step 4: For each Field in RecordSource (field 1, i=0,...,n) do Step 5
Step 5: IF fields are text and
IF fields value not null and single value do Step 6
Step 6: Return Array fields
Else do Step 7
Step 7: Edit RecordSource;
Step 8: Fill empty fields;
Step 9: Update RecordSource;
Step 10: IF EndOfFile do step 11
Step 11: Close RecordSource
Step 12: Display INF successful
Step 13: Set NF1= True
IF not selected, do Step 14
Step 14: Display message select primary key first

Algorithm 3: Pseudo code of 1NF algorithm.

3.2.2.4 Second Normal Form Algorithm (2NF)
The 2NF algorithm works depending on the result of the 1NF, the flag (NF1) indicates that the

table is in INF and ready to be normalized according to 2NF rules. The inputs of 2NF algorithm
are the created table of the 1NF. The algorithm checks the functional dependencies of the fields
on the selected primary keys. The two-dimensional array of type string is used to hold rows and
columns of the table, the purpose of using string is to allow accepting all types of data types. A
function Canseparate is used to separate the 1NF table into sub tables according to their fields’
dependencies on primary keys. The algorithm creates the new sub tables with the same name of
the original table prefixed by “Table , . The separation is done according to the similarities of
the fields’ values. After creating the new tables the algorithm eliminates the redundant data. So
by this, the rule of 2NF is applied successfully and the new created tables become ready to move
to 3NF. A flag (NF2) is used to indicate the result of 2NF to be used in the rules of 3NF
algorithm. The following algorithm describes the process:

25

Step O: Initialize two-dimensional Array type of String
Step 1: Initialize Primarykey, Recordset, and Myindex as integer
Step 2: keylInfo As String, otherinfo As String, CanSeparate As Boolean
Step 3: IF NF1 is false then do Step 4
Step 4: Display message not in INF
Else do Step 5 to
Step 5: Open Recordset (“1NF” & MainTableName)
Step 6: Get index of the selected Primarykey
Step 7: For each Primarykey selected (pk,i=0,...,n) do Step 8
Step 8: Check all fields dependency on pk(i);
Step 9: While Recordset not EOF and Canseparate =True do Step 9
Step 10: IF field type = “Datatype” then do Step 10
Step 11: value of field (index) equal to keyinfo
Step 12: value of field (Recordset) equal to otherInfo
(Datatype)
Else do Step 13
Step 13: IF otherInfolnt Not equal to value of field
(Recordset) Then CanSeparate = False
While end
Step 14: Create new relation with name contains pk(i)
(“Table”&NextTableIndex&” & MainTableName)
Step 15: Fill the values OpenRecords ((“Table”&i&” &
MainTableName)
Step 16: Remove redundancies of the created table
Step 17: Create new relation with all pk(i) and otherinfo fields with
no primary key dependencies
(“Table”&i&” & MainTableName)
Step 18: Display 2NF successful
Step 19: Set NF2 = True

Algorithm 4: Pseudo code of 2NF algorithm.

3.2.2.5 Third Normal Form Algorithm (3NF)

In order to normalize the selected table to 3NF, the algorithm apply the first rule of 3NF by
checking first whether the inputted table is in 2NF or not through the flag, if the flag is True then
the 2NF table will be opened and show all of its attributes, the user in this case is required to
choose the attribute that work as a Transitive key for the table, then the algorithm will apply the
second 3NF rule which is about removing the transitive dependencies by separating the table
according to the similarities of the fields’ values and creating a new relation based on the

26

Transitive key of the table along with its filled data. The following algorithm describes the
process:

Step 0: Check the NF2, IF NF2= false then do Step 1
Step 1: Display message not in 2NF
Else do Step 2
Step 2: Open Recordset (2NF table)
Step 3: For each field in table definitions. Fileds, do Step 4-12;
Step 4: Assign fields to list1;
Step 5: Add fieldname (Transitivekey) to list2
Step 6: Get index of the selected TransitiveKey
Step 7: Create a new table TD.Name = TheTableName & NextTablelndex
Step 8: Fill up the values Move newRecordset (TheTableName & i)
Step 9: Check redundant data, For each field in new table Recordset, do Step10-12
Step 10: IF newRecordset (Fields). Type = (Datatype) Then do Step 11
Step11: Move value of Recorset.fields to NewRecordsetpoition
Else do Step 12
Step 12: Close newRecordset
Step 13: Display TheTableName (i)
Step 14: Set NF3 = True

Algorithm 5: Pseudo code of 3NF algorithm.

3.2.3 Graphical User Interface (GUI) Design

DATABASE NORMALIZER PROTOTYPE

Select
) Apply Apply Apply Show .
ij‘sry INF ONF 3NF Table Helb S

Select
Relation

Separate Transitive J
Dependencies Keys

Figure 3.4: Database Normalizer Prototype GUI.

27

Figure 3.5 illustrates the architecture of the database normalizer prototype.

. Sitart
v

Import B File

+

SNelect Relation]

+

Select Primary Key

T T

+

l Apply 1T9F Algorithm

Create 1MF Relation
—

DE
File

[Import 1TMF Helation]

¥

[Apply 2I9F Algorithm J

Create 2MF Relations

DE
File

Tmport 2T™NF Relations

+

melect Helation]

+

Select Transitive K ey

+

HApply 3NFE Algorithm

e

LN

Zreate SMF Relations

Figure 3.5: Database normalizer prototype architecture.

28

3.3 Prototype Development

In this phase, the prototype design of the previous phase has been translated into the program
code to build the prototype. The prototype developed on windows platform as windows
application using Visual Basic programming as front-end and Microsoft Access and SQL Server

as back-end.

In this phase, a prototype development methodology called Code-and-Fix has been used. This
methodology is appropriate for this prototype which is of type throwaway prototypes that used
for answering certain type of questions (Erdil et al., 2003; Norshuhada & Shahizan, 2010). The
Code-and-fix methodology chosen because of its iterative nature where it is easy to modify the
functionality of the prototype whenever is necessary. This methodology is achieved in two
stages: programming some code and then fix the problem in the code which is efficient for early
defect detection and correction (McConnell, 1999).The developing process started and as coding
error occurs it fixed until the prototype is complete. The developed code is available in Appendix
C.

3.4 Experiment

Testing is one of the most critical steps in implementation (Bahrami, 1999). In this step, the
prototype undergone to experiment to check the functionality of the prototype in performing the
normalization process. Five relations have been checked from chosen databases with different
number of attributes and number of rows to be validated and normalized. The experiment
considered the result of the manual normalization process and compared it with the prototype
normalization result of the INF, 2NF and 3NF of each relation. Details of all the used databases

relations of this study are available in Chapter Five.

29

3.5 Evaluation

The evaluation phase is one of the important phases of this study. In this phase, a usability
testing technique has been utilized and used to evaluate the prototype by testing it by users. The
usability testing evaluation gives direct input and feedback on how real users use the prototype
(Nielsen & Levy, 1994).

Questionnaire method has been used to check the prototype easiness of use and satisfaction. The
questionnaire designed according to the Technology Acceptance Model (TAM) by Davis (1986)
which is an information systems theory that models how users come to accept and use a
technology. TAM model suggests that when users are presented with a new technology, a
number of factors influence their decision about how and when they will use it, the factors are:
Perceived usefulness which defines the degree to which a person believes that using a particular
system would enhance his job performance, the other factor is the Perceived ease-of-use which
defines the degree to which a person believes that using a particular system would be free from
effort (Davis, 1986).

The questionnaire was answered on a five-point Likert scale. The Likert Scale categorized from
strongly disagrees to strongly agree to facilitate the data analysis (Best & Kahn, 2006).
According to Chan and Teo (2007), the TAM model proved to be a robust in predicting the user
acceptance in the IT field and applied usually in understanding issues in computer and software
adoption. Easiness of use and satisfaction are important measures for acceptance model (Babar,
Winkler, & Biffl, 2007).

Participates in this evaluation were of total 30 Participants (10 developers and 20 students) from
database designers in the IT Company SerindIT and IT background students in UUM. The

questionnaire questions are available in Appendix B.

30

3.6 Summary

This chapter presented the methodology that been used to develop the database normalize
prototype. The methodology involves five phases: Problem understanding, prototype design,
development, experiment, and prototype evaluation. The next chapter presented the design

process of the prototype using the UML notation.

31

CHAPTER FOUR

ANALYSIS OF THE SYSTEM AND DESIGN

4.1 Introduction

This chapter discussed more details on analysis design and proposed prototype design. Among
others, this chapter explains on the requirements determination and structuring activity as well
as the production of system’s design according to functional requirements.

This chapter is elaborating more on analysis. The analysis process should not be taken easily as
most observers agreed that many errors occurs in an information system was a consequence of
inadequate efforts in analysis and design phase. For that reason, any requirements for the
proposed application was thoroughly defined as to make sure that the system meets the needs of
the database designer. The eventual aim of this phase is to identify what designer would require
from the Database Normalier Prototype (DBNP). In order to come out with the result, the
steps for analysing the requirements had been started since at the early stage of the development.
The project initiation and planning phase had boosted up the decision of pursuing the study thus

ignited the analysis process.

4.2 Tools for System Design

There are several tools available. For this project to designed audio visual system, Unified
Modeling Language (UML) Rational Rose 2010 has been selected.

4.2.1 Unified Modeling Language (UML)

According to Krishna and Samuel (2010) the Unified Modeling Language is a standard language

for specifying, visualizing, constructing, and documenting the artifacts of software systems, as

32

well as for business modeling and other non-software systems. The UML represents a collection
of best engineering practices that have proven successful in the modeling of large and complex
systems. The UML is a very important part of developing objects oriented software and the
software development process (Berenbach et al., 2009). According to Barclay and Savage (2004)
an object-oriented approach using the UML was employed in the development of the online food
order management. The primary benefits of such an approach are that it leads to software that
demonstrates the following qualities; Reliability, Robustness, Reparability, Resolvability,
Maintainability, and Reusability one of the goals of Object-Oriented System Analysis and
Design (OOSAD) is to describe several major alternative methodologies for developing
Information System (Kern & Garrett, 2003). An object-oriented approach using the UML was
employed in the development.

4.2.2 Rational Rose 2010

Rational Rose 2010 is a designed to provide the software developer with a complete set of visual
modeling tools and automates parts of the software development process use of Unified
modeling Language (UML). It provides a very robust notation, which grows from analysis into
design. The output from Rational Rose 2010 case tools are use case diagram, sequence diagram,

collaboration diagram, class diagram, object diagram, and activity diagram (Dennis, 2005).

4.3 Database Normalizer Prototype Requirement

System design is the activity of proceeding from an identified set of requirements for a system to
a design that meets those requirements (Daintith, 2009), therefore the first step should be
exploring the requirements of the system, where the system requirements are the start key and

foundation upon which systems are constructed.

33

4.3.1 Functional Requirements of DBNP

Functional requirements are intended to capture the anticipated behavior of the system. There are
several functional requirements to the proposed system (Bennett, 2002). The system consists of
the one user who is a database designer; the designer will interact with the system through
interfaces. As well as the requirements appear it based on the designer needs. Table 4.1
summarizes the functional requirements for the prototype and gives a brief description of the
different requirements.

Table 4.1: Functional Requirements.

Requirement_ ID Function Requirement Priority

DBNP -01 Import Database Mandatory

By the DBNP the designer can import the required
database file to apply the normalization process.

DBNP -02 Select primary key Mandatory

The designer shall define the data base tables’ primary

key trough the use of this function

DBNP -03 Mandatory

Apply 1° Normal Form

This function allows to designer to apply the 1%

Normal Form

DBNP -04 Mandatory

Apply 2™ Normal Form

This function allows to designer to apply the 2™

Normal Form

DBNP - 05 Mandatory

Apply 3rd Normal Form

This function allows to designer to apply the 3rd

Normal Form

34

4.3.2 Non-Functional Requirements of DBNP

The non-functional requirements try to capture properties of the system that has to do with
performance, quality or features that are not fundamental for the system to work (Kern &
Garrett, 2003). They are however very important because they are often properties that highly
desired by the user and can help the system gain competitive advantage over other systems

(Krishna & Samuel, 2010). The list of the nonfunctional requirements for the system as follow:

Secure data handling: The data has to be stored in a way that they cannot be
compromised.

e User friendly: The graphical user interface has to be easy to understand.

e Reliability: Availability of the system, rate of failure occurrence very low.

e Speed: The system will increase the speed of all daily activities.

e Navigation: The system offering the opportunity to go to other parts of the application.

e Help & Support: Support workflow in the system and support the user to fulfill their

missions.

e Error handling: Errors are avoided as much as possible.

4.4 Modeling and System Design

This section illustrates the design of the system. The design of this system includes the use of
UML diagrams. According to Barclay and Savage (2004) UML diagram is designed to let

developers and users view a software system from a different perspective and in varying degrees

35

of abstraction. UML diagrams commonly created in visual modeling tools include. It includes

use case diagram, sequence diagrams and class diagram.

4.4.1 Use Case Diagram

A use case diagram is a set of scenarios that describing an interaction between a user and a
system. A use case diagram displays the relationship among actors and use cases (Egeberg,
2006). The two main components of a use case diagram are use cases and actors. The following

Figure 4.1 shows the DBNP use case diagram.

{

" Defineprimary key ™ __ <<nclude>>
_ =, .:'— _==include==
- e - —_— B .
Ly = applyist NF - A
i T B 3 =ainclydass—" " Fimport DB File
Db Designer e i 3
apply 2nd NF
<pnelude ==
™
apphy 3rd NF

Figure 4.1: DBNP use case Diagram.

4.4.2 Use Case Specification

The use case specification shows the essential specifications of the prototype based on the uses
case diagram (Jivan & Gruner, 2009). The DBNP use cases specifications for INF, 2NF and 3NF

are depicted in Table 4.2, Table 4.3 and Table 4.4 respectively.

36

Table 4.2: Apply First Normal Form use case specification.

Use Case Name:
Apply 1° Normal Form

ID: Importance Level:
DBNP_03 High

Primary Actor: Designer

Short Description: Through this function the designer can apply the 1% Normal

Form on the selected database file.

Type: External / Temporal.

Basic Flow of Events
Designer

1. Designer imports the database file.

2. Select the primary key of the selected
database.

3. Press on apply 1* normal form button.

System

4. The system applies the 1% Normal
Form algorithm.

5. The system displays the
confirmation message.

Alternatives
Not applicable

Exceptions : El: “ Primary key not selected ”

Characteristic of Activation
Click apply button.

Pre-conditions
Database File.

Post-conditions
1% Normal form done.

37

Table 4.3: Apply Second Normal Form use case specification.

Use Case Name:
Apply 2" Normal Form

ID:
DBNP 04

Importance Level:
High

Primary Actor: Designer

Short Description: Through this function the designer can apply the 2" Normal

Form on the selected database file which is on the first normal form.

Type: External / Temporal

Basic Flow of Events

Designer

1. Designer imports the database file on
1 NF.

2. Press on apply 2" normal form

button.

System

3. The system applies the 2" Normal
Form algorithm.

4. The system displays the

confirmation message.

Alternatives
Not applicable

Exceptions: El: “Database file on 1 NF not selected”.

Characteristic of Activation

Click apply button

Pre-conditions
Database File on 1% NF

Post-conditions

2"Y Normal form done.

38

Table 4.4: Apply Third Normal Form Use Case Specification.

Use Case Name:
Apply 3" Normal Form

ID:
DBNP_05

Importance Level:
High

Primary Actor: Designer

Short Description: Through this function the designer can apply the 3" Normal

Form on the selected database file which is on the second normal form.

Type: External / Temporal

Basic Flow of Events

Designer

1. Designer imports the database file on
2" NF (designer required to choose the

required table to apply rules of 3NF)

2. Press on apply 3" Normal form

button.

System

3. The system applies the 3" NF

algorithm.

4. The system displays confirmation

message.

Alternatives

Not applicable

Exceptions: E2: “database file on 2 NF not selected”.

Characteristic of Activation

Click apply button.

Pre-conditions
Database File on 2" NF.

Post-conditions

3" Normal form done.

39

4.4.3. DBNP Sequence Diagrams

The sequence diagram kind of Interaction diagram that used to describe the object interaction
(Johan, 2004). The sequence diagram shows the interactions among objects that participate in a
use case and the message that pass between them over time for one use case. In this prototype,
there are three main sequence diagrams that represent 1INF, 2NF, and 3NF as shows in Figure

4.2, 4.3 and 4.4 respectively.

¥
A,
" LENS boyndry DENS system Lata base fles
— Db Designer controller
I I
| click on select table | | I
! > display browser | I
choose table i [—H | I
I I
I I
| send request I I
get table data
| D
| display table |
| B |
| click select pnmary key I
- display key page | |
load pnmary key [e—— | |
i
chick on submdt = | send request | |
[|
chek an apply INF) | I
7] sand request | I
L appty 1NF algenathm |
. <— addnew tables I
T | = update
I | . P—
| L'_dli paly confwmation message
| 7 |
I I I
I I I
I [I

Figure 4.2: Apply INF Sequence Diagram.

40

Figure 4.3 illustrates the process of applying the second normal form (2NF) sequence diagram.

This function allows the database designer to apply the 2NF process.

A

: : DBNS boundry DBNS system Data base fles
Db Designer :

| | I

| | | table

| clickon apply 2N | | ;elm;d not

end
send request | 5 s
check table
P
T apply 2NF algorithm

| I —

| | - save tables on 2NF

| | ' =71 Update

| Itispaty confirmation message «—

| i)

| |

| |

| |

l |

cm— —

Figure 4.3: Apply 2NF Sequence Diagram.

41

Figure 4.4 illustrates the process of applying the third normal form (3NF) sequence diagram.

This function allows the database designer to apply the 3NF process.

X

click on apply 3NF |

display tables
Pe—

I
I
I
I
I
selct table |
|
I
I
I

click submit

send request

I apply 3NF algonthm

| i

| T

I I 1

| l save tables on3NF "
| | update
I I

I I 1

| Inﬁfpaly confirmation message|

| U

|

I

I

I :
' !

Figure 4.4: Apply 3NF Sequence Diagram.

42

4.4.4 Class diagram
Class diagram one of UML diagrams and type of static structure diagram that describes the
structure of a system by showing the system's classes, their attributes, and the relationships

between the classes (Yi, Wu & Gan, 2005). Class diagrams for system are shown in Figure 4.5

bellow.
Data base file
&pid
&name
DBNS system Spextention
controller Q)path
&Boundry &normalization
$check() 2 1 ¥imoprt()
$control) $select primary key...
®apply 1NF()
®apply2 NF()
®apply3 NF()

Figure 4.5: DBNP class diagram.

4.5 Prototype Implementation

This phase involves the development of the prototype database normalizer. Prior to
implementing the prototype, the prototype requirements have been reviewed to be sure that the
prototype behavior is correct (Peters & Parnas, 2002). The design was translated into program
code using VB language. Microsoft Access and SQL Server used as the databases to store and
retrieve all the required tables that needs to be normalized. The aesthetics of the appearance of
the user interface was granted a prime attention to make the user experience as pleasant as

possible. The following section provides snapshots of the prototype user interfaces.

43

4.6 Graphical User Interface

The developed prototype has many interfaces based on the requirements that have been
discussed in Chapter Three. The following are the prototype interfaces that show the

normalization process functionalities and operations:

(A)Home Page
From the home page, the database designer starts performing the normalization process where

this page contains the following functions as illustrated in Figure 4.6:

- Select Relation: this used for purpose of selecting the required relation that’s need to be
normalized.

- Select Primary Key: this is used for purpose of identifying the primary keys of the
selected table.

- Apply First Normal Form: this is for purpose of applying the 1NF rules on the selected
table where the INF algorithm will be applied automatically.

- Apply Second Normal Form: this is for purpose of applying the 2NF rules on the selected
table where the 2NF algorithm will be applied automatically.

- Apply Third Normal Form: this is for purpose of applying the 3NF rules on the selected
table where the 3NF algorithm will be applied.

- Help: This will show the prototype manual for the user.

- Exit: To exit from the prototype.

- Show table: this is used for purpose of showing the normalization generated tables for

INF, 2NF, and 3NF.

44

| DB Normalizer

Select Relation

Select Primarny Keys
Apply 1st Normal Form
Apply 2nd Normal Form

Apply 3rd Normal Form

Figure 4.6: Database Normalizer Home Page.

(B) Select Table
Figure 4.7 illustrates the screen of selecting a database where the user is required to select a

database to be normalized through the open wizard.

=~ DB Normalizer

Open
Select Relation
ClientRental
Select Primary Keys I% enienta
ecen

Laak in: [) CliertRental ~| « eF EE-

ceuments
Apply 1st Mormal Form @
Desktop
Apply 2nd Normal Form -
pply &‘}:
My Documents

Apply 3rd Normal Form
—_—a | B

Show Relation E__'-'-‘___ A EEmREET
i g;

% File riame [CienRertal ~|

My Network Files of type |S0L Server Database Files =~
Places

I Open as read-only

Figure 4.7: Selecting database to be normalized.

45

(C)Select Primary Key
Figure 4.8 illustrates the screen of selecting the selected table primary keys from a list that

contains all tables’ attributes.

= DB Normalizer

rentStan rentFinish 1ert cwnere
sgow 17772007 =1/8/2008 350 40

. Cliento__[cName
Select Relation | N3 John Kay 4

ol

Tina Murphy
IG5 gow |1/9/2008 1/9/2009 450 EE] Tory Shaw

56 Aline Stewart [} oo 1792006 10672007 30 a0 Tina Mumphy
3 jow [10,10,/2007 /1272008 375 EE] Tony Shaw
18 141172009 10842010 450 93 Tony Shaw

ov o
Apply 1st Normal Form 0 i it EEEXE
Apply 2nd Normal Form Available Fields -

o

Apply 3rd Normal Farm
- —

et T]

Show Relation

—
Help .
Exit
= — e
Ea W, ‘?:‘:_--h-c-.- = e el j

Figure 4.8: Selecting table primary keys to be normalized.

(D) INF Form

Figure 4.9 illustrates the screen of performing the 1NF for the selected table by pressing 1NF

button and the system show the process result in the grid.

46

& DB Normalizer

Select Relati ClientNo | cHame propertulNo | pdddress rentStart rentFinizh 1ent ownero | oMame

ele elation ¥ |76 John Kap 4 & Lawrence St Glasgow 1/7/2007 /6872008 350 a0 Tina Murphy
7 John Kay i3 5 Novar Dr, Glasgow | 1/3/200% 1/3/2009 450 33 Tony Shaw
56 Aline Stewart 4 6 Lawrencs 5t, Glasgow 1/3/2006 10/5/2007 350 40 Tina Murphy

Select Primary Keys 56 Aling Stewart 36 2 Manor Rd, Glasgow | 10/10/2007 11242008 e 93 Tory Shaw
5 Aling Stewart 16 5 Movar Dr, Glasgow |1/11/2009 10/8/2010 450 93 Tony Shaw
Apply 1st Normal Form
DB Normalizer. (%]
First Wormal Form Applied Successfully
Apply 2nd Normal Form

Apply 3rd Normal Form

e
Show Relation E'\--
.

Help

Exit

P

s,

"

Figure 4.9: Performing the 1NF operation.

(E) 2NF Form
Figure 4.10 illustrates the screen of performing the 2NF for the selected table by pressing 2NF
button and the system perform the normalization automatically and shows the process result in

the grid.

47

& DB Normalizer

. propertyio | péddress rent ownerio | oMame
Select Relation | Y4 & Lawrence St Glasgow 350 20 Tina Muphy
18 S MNovar Dr, Glasgow 450 Ex] Tony Shaw
36 2 Manor Rd, Glasgow | 375 93 Tory Shaw
Select Primary Keys
Apply 1st Normal Form =
DB Normalizer \£|
JETE—— 0 This is TableZ_ClientRental
pply 2nd Normal Form
Apply 3rd Normal Form
e]
Show Relation E'\--
e
F
Help
Exit
aSTR

Figure 4.10: Performing the 2NF operation.

(F) 3NF Form

Figure 4.11 illustrates the screen of performing the 3NF process for a table in a 2NF in which the
user is required to specify the transitive keys of the table and the system perform the

normalization automatically and shows the process result in the grid.

48

& DB Normalizer

Select Transitive keys

q ClientNo | propertylo | rentStart tentFinish il o
Select Relation | S L tenlar e Select the Relation Name:
76 16 1/5/2008 1/3/2003
56 4 1/3/2006 10/6/2007 Tablez_ClientRental

Select Primary Keys 56 3 10/10/2007 1/12/2008
5 18 1/11/2009 10/8/2010
Display Fields
Apply 1st Normal Form
ownerio
Apply 2nd Normal Form

Apply 3rd Normal Form

e]
Show Relation E'\--
.

Help

Exit

Figure 4.11: Performing the 3NF operation and selecting the table transitive keys.

(G) Show Table Form
Figure 4.12 illustrates the output tables of each normal form process “INF, 2NF, and 3NF”. The
system creates these tables in the SQL Server database automatically at the same time of

performing the normalization.

49

& DB Normalizer

Show Relation

[ame I
[Tina Murphy |
[Tory Shaw |

Select Relation |

Select Primary Keys
Apply 1st Normal Form
Apply 2nd Normal Form

Apply 3rd Normal Form

i, -
oy)

Show Relation =

Help

}%\MBIND Available Relations:

[Ez]

TableZ ClientRental2

ClientFiental

Exit

—
g

osoft SQL Server Management Studio

Fle Edit Query

D Newoueny | Oy B T 03|05 W B B oS
0 =] CADOCUMENTS AND SETTIM: » | § Exeute o = 35 2 | AL 27 Uy 5 &j

Object Explorer > 1 x Summary .~ ABSI-30C049D...0LQueryLsql*| - X
Connect~ | #3 = g select * from sys.tables|

ABST-30C049DC29 (SQL Server 9.0.1399 - ABS. A
= [Databases M
[[System Databases
[Database Snapshots
[|) Ahmedabsi
B | CHDOCUMENTS AND SETTINGS\ABSIID
B [Database Diagrams
= L Tables
[[System Tables
® = dbo ClientRental
® = dbo.FINF_ClisntRental
[dbo.Table1_ClientRental
5 dbo.Tablez_ClientRental
= dbo.Table2_ClientRentall

viger Projsct Tools Window Commumity Help

~

& (3 dbo.Tablez_ClientRentalz < m | 3
& 3 dbo.Table3_li | =
[[Views Resuts | [y Messages
@ O3 Synenyms object_id principalid | schema_id | parent_obiect_id | type | type_desc create_date madify_date is_ms_sh... | is_pu.. is_schemd
= g Z’“’gmmﬁ"‘ai:'ty 1 FiN fental | 994102582 NULL 1 0 U USER_TABLE 2011-0527 2211:25233 20110527 2211:25.237 0 0 0
SD an':’:; roker 2 Tablel_ClentRentsl 1010102633 NULL 1 0 U USER_TABLE 20110527 221203700 20110527 221203717 0 0 i
[O Security 3 Tabled ClentRental 1026102589 NULL 1 0 U USER_TABLE 20110527 221203717 20110527 221203740 0 0 0
@ [ClientRental 4 Tabled ClentRental 1042102753 NULL 1 0 U USER_TABLE 20110527 221203733 20110527 221203753 0 0 0
@ |] GradeDB 5 TabledClentRentall 1058102810 NULL 1 [U USER_TABLE 20110527 221322653 20110527 221322673 0 0 0
8 | ProjectDB § TabledClentRental2 1074102857 NULL 1 [U USER_TABLE 20110527 221322670 20110627 221322677 0 0 0
© | Reporton 7 ClientRental 2029058472 NULL 1 [U USER_TABLE 201105201240:08560 201105201240:08827 0 0 0
B || ReportServer
@ | || ReportServerTempDB
® | sales
& | || StudentDB & o | 5
& | Summon
7(7 - T } > ‘7 @ ABSI-30C049DC29 (3.0RTM) ABSI-30C049DC294ABSI (54) CDOCUMENTS AMD SETTINGS\ABSI\DESK TOPLAHMED DESIGN 215QL SERVER DATABASES CLIENTRENTALVCLIEMTRENTAL, MDF 000
Ready Lni Cal2s chzs INS

Figure 4.13:

50

Shows the automatically created normalized tables in SQL Server database.

4.7 Summary

This chapter discussed the design, development and implementation of the system at the
prototype level. The functional and non functional requirements of the system were initially
determined and then the system modeling was carried out the Unified Modeling Language
(UML). The sequence diagrams and the class diagrams were also presented in this chapter as
design stage. The system was implemented using VB as front-end and Microsoft Access and
SQL Server as back-end. The screen shots of the user interfaces for the different normalization

processes functionalities and operations have been presented.

51

CHAPTER FIVE

RESULTS AND FINDINGS

5.1 Introduction

This chapter aims to discuss the evaluation process of the database normalize prototype. The
evaluation phase is one of the important phases of this study. In this phase, a usability testing
technique has been utilized and used to evaluate the prototype. According to Holzinger (2005)
usability testing with end users is one of the most essential methods in usability evaluation. The
usability testing evaluation gives direct input and feedback on how real users use the prototype
(Nielsen & Levy, 1994).The prototype has undergone to an experiment for purpose of checking
the functionality of the prototype in performing the normalization process. Moreover, a
questionnaire method has been used to ensure of the prototype level in terms of easiness of use

and satisfaction.

5.2 Experiment Design
As the development phase completed the prototype undergone to experiment to check the
functionality in performing the normalization process. For this purpose, five examples of

relations up to the 3NF have been collected from standard books and research papers.

The chosen relations are from different databases with different number of attributes, rows and
functional dependencies to be validated and normalized. The experiment considered the result of
the manual normalization process that mentioned in standard books and research papers i.e.
Connolly & Begg (2010), Teorey et al. (2011), Srikanth & Sudarshan (2001), and compared it

with the prototype normalization result of the 1INF, 2NF and 3NF of each relation. Details and

52

description of the 5 benchmark databases relations in this study are presented in Table 5.1 where

the functional dependencies of each relation are separated by semicolon. To test the normalized

relations output of the prototype, Table 5.2 shows the expected output of the prototype.

Table 5.1 Relations used in the experiment.

. Number Number of
NFS) Rﬁ?ﬂgn Relation Description of Functional
' Attributes | Dependencies
(ReportNo, Editor, DeptNo,
DeptName, DeptAddress,
AuthorID,AuthorName,
Report
AuthorAddress)
Relation
1 Functional Dependencies are: 8 6
(Teorey et
- ReportNo — Editor, DeptNo;
al., 2011)
- DeptNo — DeptName,
DeptAddress;
- AuthorID — AuthorName;
- AuthorID — AuthorAddress;
ClientRental (clientNo, propoertyNo, cName,
Relation pAddress, rentStart, rentFinish, rent,
2 9 17
(Connolly & ownerNo, oName)
Begg, 2010) Functional Dependencies are:

- clientNo, propoertyNo —

53

rentStart, rentFinish;
clientNo — cName;
ownerNo — oName;
prpoertyNo — pAddress,
rent, ownerNo, oName;
clientNo, rentStart —
prpoertyNo, pAddress,
rentFinish, rent, ownerNo,
oName;

propoertyNo, rentStart —

clientNo, cName, rentFinish;

Student
Relation
(Srikanth &
Sudarshan,

2001)

(MatricNo,SurName,DateOfBirth,

MentorID,MentorSurName,
MentorOffice,CourseCode,

CourseName,Credits,Grade)

Functional Dependencies are:

MatricNo — SurName,
DateOfBirth,MentorID,
MentorSurName,
MentorOffice;
MentorID —

MentorSurName

10

12

54

,MentorOffice;

- MatricNo — SurName ,
DateOfBirth;

- CourseCode — Credits,
CourseName;

- MatricNo,CourseCode —

Grade;

Project
Relation
(Rob &
Coronel,

2009)

(ProjectNumber,ProjectName,
EmployeeNumber,EmployeeName,
JobClass,ChargeHour,HoursBilled)

Functional Dependencies are:

ProjectNumber —

ProjectName;

- EmployeeNumber —
EmployeeName,JobClass,
ChargeHour;

- JobClass — ChargeHour;

- ProjectNumber,

EmployeeNumber —

HoursBilled;

55

Grade
Relation
(Shelly,
Cashman, &
Rosenblatt,

2009)

(StudentNo,StudentName,
TotalCredits,GPA, AdvisorNo ,
AdvisorName , CourseNo,
CourseDESC , NumCredits , Grade)

Functional Dependencies are:

- StudentNo — StudentName,
TotalCredits,GPA,AdvisorNo
/AdvisorName;

- CourseNo — CourseDESC,
NumCredits;

- AdvisorNo — AdvisorName;

- StudentNo — StudentName,

TotalCredits,GPA;

10

12

56

Table 5.2 Experimentation expected results.

Relation

2NF Result 3NF Result
No. Name
ReportNo(ReportNo,Editor,
ReportNo(ReportNo,Editor, DeptNo)
DeptNo,DeptName, DeptAddress)

DeptNo(DeptName,

Report
1 AuthorID (AuthorID,AuthorName, DeptAddress)
Relation
AuthorAddress)
AuthorID(AuthorID,
(ReportNo,AuthorID) AuthorName,AuthorAddress)
(ReportNo,AuthorID)
Client (clientNo, cName)
Client (clientNo, cName)
Rental (clientNo,
Rental (clientNo, propertyNo, propertyNo,rentStart,
ClientRental
2 rentStart, rentFinish) rentFinish)

Relation

PropertyOwner (propertyNo,

pAddress,rent, ownerNo, oName)

PropertyForRent (propertyNo,

pAddress, rent, ownerNo)

Owner (ownerNo, oName)

57

Student (MatricNo,SurName,
DateOfBirth,MentorID,

MentorSurName,MentorOffice)

Student (MatricNo,SurName,

DateOfBirth)

Mentor (MentorID,

MentorSurName,
Student
MentorOffice)
Relation Course (CourseCode,
CourseName,Credits)
Course (CourseCode,
CourseName,Credits)
Grade (MatricNo,
CourseCode,Grade)
Grade (MatricNo,
CourseCode,Grade)
Project (ProjectNumber,
Project (ProjectNumber, ProjectName)
ProjectName) Employee (EmployeeNumber,
Project Employee (EmployeeNumber, EmployeeName,JobClass)
Relation EmployeeName,JobClass,

ChargeHour)

ProjectEmployee (ProjectNumber,

EmployeeNumber, HoursBilled)

(JobClass, ChargeHour)

ProjEmp (ProjectNumber,
EmployeeNumber,

HoursBilled)

58

Grade

Relation

(StudentNo,StudentName,
TotalCredits,GPA,AdvisorNo,

AdvisorName)

(CourseNo,CourseDESC,

NumCredits)

(StudentNo,CourseNo,Grade)

(StudentNo,StudentName,

TotalCredits,GPA)

(AdvisorNo,AdvisorName)

(CourseNo,CourseDESC,

NumCredits)

(StudentNo,CourseNo,Grade)

5.2.1 Experiment Result

In this experiment, the functionality of the prototype has been checked through comparison
between output result of the prototype and expected result in Table 5.2. The experiment showed

that the prototype achieved the result successfully as expected and fulfills the requirements and

rules of INF, 2NF and 3NF of normalization processes that been discussed in chapter two.

5.3 Questionnaire
Questionnaire method has been used to check the prototype easiness of use and satisfaction. The
questionnaire designed according to the Technology Acceptance Model (TAM) by Davis (1989)

and was answered on a five-point Likert scale. Participates in this evaluation were of total 30

Participants (10 developers and 20 students) from database designers.

59

The questionnaire measured using the Likert Scale format ranging from strongly disagree to
strongly agree and included three main sections, firstly the demographic questions, secondly
prototype easiness of use questions and lastly satisfaction questions. The questionnaire consisted
of 11 questions exclude the participant’s demographical information. The questionnaire
questions are available in Appendix B. All statistical analysis was carried out using SPSS

program, version 17 (SPSS Inc, Chicago, Il, USA).

5.3.1 Questionnaire Analysis

The prototype has been set along with the questionnaire for the participants to evaluate it in two
places at SerindIT company and at UUM-CAS. The questionnaires have been collected after
participants’ answered the questions where the participants’ response against each question and
each group has been analyzed and calculated. Graphs and tables were used to represent the

statistical data obtained from questionnaires.

According to the analysis, majority of the participants were of male gender with percentage of

83.3% while female formed 16.7% in this study.

The Figure 5.1 below shows the sample of the study (type of the participants) which were for a
total of 30 participants. The analyzing showed the following types of evaluators: Students
formed 66.67% of the participation, 13.33% were DB developers and designers, 16.67% were

programmers and 3.33% participated as analyst who were working at SerindIT company.

60

W Student

B DB Developer f Designer
User CJProgrammer

W ~Analyst

Figure 5.1: Type of participants.

Age of the participants were 46.67% for the age interval 18-29, 50% for the interval 30-39 and

3.33% were in the interval 40-50 as shown in Figure 5.2.

50—

40—

e 30
brd
= . 50.00%
o 46.67 % :

20

10

| 3.33%)| |
o T T T
18-29 30-39 40-50
Age

Figure 5.2: Age of the participants.

61

The educational background of the participants in this study varies as following: 80% as Master

students, 13.33% as Bachelor and 6.67% as PhD as shown in Figure 5.3.

Educational Background
B Batchelor

; B Waster
Educational Background C]PhD

Figure 5.3: Participants educational background.

5.3.2 Easiness Evaluation
The first section of the questionnaire questions was to evaluate the prototype easiness of use.
This section consists of six questions; Table 5.3 describes the number of the respondent, the

minimum and maximum answer, the mean and the STD deviation for this section.

62

Table 5.3: Descriptive Statistics (Easiness of use)

Descriptive Statistics (Easiness Of Use}

N Minimum Maximum Mean Std. Deviation
1 30 1 5 3.83 1.020
Q2 30 2 5 3.60 814
Q3 30 2 5 4.07 828
Q4 30 1 5 4.10 960
Q5 30 3 5 4.20 714
Qb 30 2 5 4.17 834
Valid N (listwise) 30

Since the six questions measure the prototype easiness of use, the summation of the
corresponding values of the (mean) row of each question has been divided by the total number of
questions i.e. six questions, so the mean of the all mean values corresponding to the easiness of

use questions is 3.995 which equal almost 66.58% indicates that measuring the prototype

easiness of use is high and agreed altitude.

5.3.3 Satisfaction Evaluation

The second section of the questionnaire questions was to evaluate the prototype satisfaction. This

section consisted of five questions; Table 5.4 describes the number of the respondent, the

minimum and maximum answer, the mean and the STD deviation for this section.

63

Table 5.4: Descriptive Statistics (Satisfaction)

Descriptive Statistics (Satisfaction)

N Minimum Maximum Mean Std. Deviation
Q7 30 2 5 4.10 .803
Q8 30 2 5 4.23 .898
Q9 30 3 5 4.30 750
Q10 30 3 5 4.17 531
QM 30 4 5 4.60 498
Valid N (listwise) 30

Since the five questions measure the prototype satisfaction, the summation of the corresponding
values of the (mean) row of each question has been divided by the total number of questions i.e.
five questions, so the mean of the all mean values corresponding to the easiness of use questions
is 4. 28 which equal almost 86.6% indicate that measuring the prototype satisfaction is high and

agreed altitude.

100
90
80
70
60
50
40
30
20
10

86.6%

66.58%

Easiness of Use Satisfaction

Figure 5.4: Evaluation result.

64

5.3.4 Reliability Statistics

According to Field (2006) reliability is the degree to which measure are free from error and
therefore yield consistent results. Cronbach’s alpha based on standardized items used to measure
the reliability scale of the prototype usability. The closer the reliability coefficient gets to 1.0, the
better it is, and those values over .80 are considered as good and those value in the .70 is

considered as acceptable and those reliability value less than .60 is considered to be poor (Yu,

2000).

5.3.4.1 Reliability Statistics for Easiness Evaluation

As shown in Table 5.5, Alpha value for the easiness evaluation is above 0.8 which is considered

as good.

Table 5.5: Reliability Statistics (Easiness Evaluation)

Cronbach's
Alpha Based
on
Cronbach's Standardized
Alpha ltems M of ltems
814 818 6

5.3.4.2 Reliability Statistics for Satisfaction Evaluation

Table 5.6 illustrates Cronbach’s alpha based on standardized items for satisfaction evaluation.

The alpha value for the satisfaction evaluation is above 0.7 which is considered as acceptable.

65

Table 5.6: Reliability Statistics (Satisfaction Evaluation)

Cronbach's
Alpha Based
on
Cronbach's Standardized
Alpha ltems N of ltems
.718 694 5

5.3.4.3 Reliability Statistics for All Sections

Table 5.7 illustrates Cronbach's alpha to all questions (Easiness and Satisfaction). The alpha
value for the database normalizer prototype usability evaluation is above 0.8 which is considered
as good.

Table 5.7: Reliability Statistics

Cronbach's
Alpha Based
on
Cronbach's Standardized
Alpha ltems N of ltems
.848 838 11

5.3.4.4 Item-Total Statistics

According to Field (2006) one of the most important for questionnaire reliability the scale if item
deleted. The questionnaire is reliable if the value of Cronbach's alpha around 0.8 or higher. Table
5.8 shows the percentage of scale mean if item deleted and the scale variance if item deleted and
the corrected item total correlation and the Cronbach's alpha if item deleted for the prototype

usability questions.

66

Table 5.8: Item-Total Statistics

Scale Corrected Cronbach's
Scale Mean if Variance if ltem-Total Alpha if ltem
ltem Deleted ltem Deleted Correlation Deleted
Q1 - Easiness Of Use 41.53 23.568 624 827
Q2 - Easiness Of Use 41.77 26.530 429 843
Q3 - Easiness Of Use 41.30 24 976 620 .828
Q4 - Easiness Of Use 41.27 25.306 473 .842
Q5 - Easiness Of Use 41.17 25.592 .649 .827
Q6 - Easiness Of Use 41.20 24 441 .686 .822
Q7 - Satisfaction 41.27 26.271 471 .840
Q8 - Satisfaction 41.13 23.154 T91 811
Q9 - Satisfaction 41.07 25.237 663 .825
Q10 - Satisfaction 41.20 30.166 .059 .862
Q11 - Satisfaction 40.77 28.944 .298 .850

5.4 Summary

This chapter presented the evaluation process of the database normalize prototype in terms of
three factors: functionality, easiness of use, and satisfaction. The evaluation process has been
conducted by two usability testing, the first one was by an experiment for purpose of checking
the functionality of the prototype in performing the normalization process. The second usability
test was by a questionnaire to evaluate the prototype easiness of use and satisfaction.

The experiment showed that the prototype achieved the result successfully as expected and
fulfills the requirements and rules of INF, 2NF and 3NF. Moreover, the questionnaire reveals
that 66.58% of the participants indicated that the prototype easiness of use and 86.6% indicated
that the prototype satisfaction which is high and agreed altitude.

The analysis of the evaluation process revealed that the prototype fulfils the requirements needed
to normalize databases relations systematically. This led to conclude that the usability of the

prototype was very high on aspects of functionality, easiness and satisfaction.

67

CHAPTER SIX

CONCLUSION AND FUTURE WORK

This chapter concludes and summaries the findings of this study and present the research

contribution along with the limitations and future work.

6.1 Conclusion

This study addressed the problem of performing the database normalization process manually by
the database designers as mentioned in Chapter One. The main objective of this study is to
develop a prototype tool that can do database normalization systematically. The prototype has
been developed to process the first three forms of normalization (INF, 2NF, &3NF). The
prototype undergone to experiment to check the functionality of the algorithms in performing the
normalization process and the experiment showed that the prototype achieved the result
successfully as expected and fulfill the requirements and rules of normalization processes, which
were mentioned in Chapter Two. In terms of measuring the prototype easiness of use and
satisfaction, the questionnaire reveals that 66.58% of the participants indicated that the prototype
easiness of use and 86.6% indicated that the prototype satisfaction which is high and agreed

altitude.

68

6.2 Research Contribution

The developed database normalizer prototype would assist the database designers and developers
to achieve the process of database tables’ normalization systematically. Additionally, the
developed prototype would also significantly contribute to the society especially for users who
work on database normalization. The prototype helps in reducing time of database designing and
errors of normalization process especially once dealing with large number of attributes. In
addition, the database designers can reduce their effort on normalizing the tables by not spending
long time in performing the normalization. Moreover, this research contributes to the area of
academic in educational environment to assist the students understanding the database

normalization process.

This prototype is easily used by any user with little background on database normalization like
database relations attributes and functional dependencies. Hence, this prototype will offer

extensive benefits to all database designers.

6.3 Problems and Limitations
This study focused on developing a database normalizer prototype to perform the normalization
process on databases automatically. The prototype has been developed successfully. However

there are some limitations as following:

= Although the prototype can cover a wide area of scope of database management

systems types like Oracle, MySQL, and Sybase but the prototype focused on the

69

Microsoft Access and SQL Server databases only. Due to time constrained, other types
of DBMS did not consider in this prototype.

* The prototype can normalize up to the third normalization only.

= Time delay problem has been reported during the creating table process of the first

normal form in Microsoft Access databases while no delay in SQL Server databases.

6.4 Future work
The development for normalizing database tables automatically has been achieved in this study.
However, a lot of enhancements still can be made on the prototype in the future as following:

= Currently, the prototype can handle tables till the third normal form; the prototype can be

extended to 4NF, and 5NF.

= Supporting all types of database management systems.

= Support of visualization of functional dependencies constructed.

= Evaluating the prototype in educational environment to know the positive impact of the

prototype to assist the students in understanding the database normalization process.

6.5 Summary
This chapter summaries the whole research processes included the findings of the study, research
contribution, problems and limitations faced during the study, and the recommended future

works to enhance the study in future.

70

REFERENCES

Akehurst, D., Bordbar, B., Rodgers, P., & Dalgliesh, N. (2002). Automatic normalization via
Metamodelling, In Proceedings of the ASE Declarative Meta Programming to Support
Software Developmen, held on September 23-24, 2002 at Edinburgh, UK (pp. 23-27).
Edinburgh: IEEE.

Babar, M., Winkler D., & Biffl, S. (2007). Evaluating the usefulness and ease of use of a
groupware tool for the software architecture evaluation process. In Proceedings of the
first international symposium on empirical software engineering and measurement,
ESEM 2007, held on September 20-21, 2007 at Madrid, Spain (pp. 430-439). CA: IEEE
Computer Society.

Bahmani, A., Naghibzadeh, M., & Bahmani, B. (2008). Automatic database normalization and
primary key generation. In proceedings of the 21% Canadian Conference on Electrical
and Computer Engineering, held on May 4-7, 2008 at Ontario, Canada (pp. 11-16). CA:
IEEE CCECE.

Bahmani, A., Shekofteh, S., Naghibzadeh, M., & Deldari, H. (2010). Parallel algorithms for
automatic database normalization. Computer and Automation Engineering, 2(1), 157-161

Bahrami, A. (1999). Object-Oriented Systems Development: Using the Unified Modeling
Language. New York: McGraw-Hill.

Barclay, K., & Savage, J. (2004). Object-Oriented design with UML and Java. Burlington, USA:
Elsevier Butterworth-Heinemann.

Bennett, S., McRobb, S., & Farmer, R. (2002). Object-oriented system analysis and design
(2nd ed.). UK: McGraw Hill.

Bhavsar, C. (2008). Comparison between Windows Forms and Web Applications. Retrieved
March 30, 2011, from
http://www.eggheadcafe.com/community/aspnet/2/10036174/whats the major difference
between windows and web applications.aspx

Berenbach, B., Paulish, D., Kazmeier, J., & Rudorfer, R. (2009). Software & systems
requirements engineering in practice. New York: McGraw-Hill.

Best, J., & Kahn, J. (2006). Research in Education (10th ed.). New York: Pearson Education Inc.

Chan, H.C., & Teo, H.-H. (2007). Evaluating the boundary conditions of the technology
acceptance model: An exploratory investigation. ACM Transactions on Computer-
Human Interaction, 14(2), 1-22.

Connolly, T., & Begg, C. (2004). Database solutions: A step-by-step approach to building
databases (2nd ed.). Boston: Pearson.

71

Connolly, T., & Begg, C. (2010). Database Systems: A practical approach to design,
implementation, and management (5th ed.). Boston: Pearson.

Daintith, J. (2009). Systems design a dictionary of computing. Retrieved May 15, 2011, from
http://www.encyclopedia.com/doc/1011-systemdesign.html.

Davis, F. (1989). Technology Acceptance Model for Empirically Testing New End-User
Information Systems: Theory and Results. Boston, MA: Massachussetts Institute of
Technology.

Dennis, A., Wixom, B., & Tegarden, D. (2005). System analysis and design with UML version
2.0: an object-oriented approach with UML (2nd ed.). Hoboken, NJ: John Wiley and
Sons, Inc.

Dongare, Y., Dhabe, P., & Deshmukh, S. (2011). RDBNorma: A semi-automated tool for
relational database schema normalization. International Journal of Database
Management Systems, 3(1), 133-154.

Egeberg, M. (2006). The mobile phone as a contactless ticket. Master’s thesis, Norwegian
University of Science and Technology, Norway.

Erdil, K., Finn, E., Keating, K., Meattle, J., Park, S., & Yoon, D. (2003). Software maintenance
as part of the software life cycle (Department of Computer ScienceTufts University
Technical Report No. Comp-180). Retrieved March 29, 2011, from
http://www.hepguru.com/maintenance/Final_1.pdf

Field, A. P. (2006). Discovering statistics using SPSS (2nd ed.). London: Sage.

Jivan, E. & Gruner, S. (2009).Tool support for more precise use-case specifications. In
Proceedings of Warm-Up Workshop for ACM, WUP/ISS 2009, held on April 1-3, 2009 at
Cape Town, South Africa (pp. 29-32). Cape Town: ACM.

Johan, K. (2004). Information system analysis and design. Retrieved May 11, 2011, from
http://www.cs.toronto.edu/jm/3405/slides2/sequenceD.pdf.

Hoffer, J., George, J., &Valacich, J. (2002). Modern Systems Analysis and Design (3rd ed.).
Upper Saddle River, New Jersey: Prentice Hall.

Hoffer, J., Prescott, M., & McFadden, F. (2007). Modern Database Management (8th ed.).
Upper Saddle River, New Jersey: Prentice Hall.

Holzinger, A. (2005). Usability Engineering Methods for Software Developers. Communications
of the ACM, 48(1), 71-74.

72

http://www.encyclopedia.com/doc/1O11-systemdesign.html
http://www.cs.toronto.edu/jm/3405/slides2/sequenceD.pdf

Kern, J., & Garrett, C. (2003). Effective Sequence Diagram Generation: Effective Use of
Options with Borland Together Technologies. Retrieved May 27, 2011, from
http:www.borland.com/resources/en/pdf/white_papers/20263.pdf

Krishnan, H., & Samuel, P. (2010). Relative Extraction Methodology for Class Diagram
Generation using Dependency Graph. In Proceedings of the International Conference on
Communication, Control and Computing Technologies, ICCCCT 2010, held on October
7-9, 2010 at Kanyakumari, Tamilnadu (pp. 815-820). Tamilnadu: IEEE.

Kung, H., & Tung, H. (2006). A web based tool to enhance teaching/Learning database
normalization. In Proceedings of international conference of southern association for
information system, SAIS 2006.30-38.

Martin, F., & Kendall, S. (2000). UML Distilled: Brief guide to the standard object modeling
language (2nd ed.). Boston, USA: Addison-Wesley Longman Publishing.

McConnell, S. (1999, August). Open-Source Methodology: Ready for Prime Time? [Electronic
version]. IEEE Software, 16(4). 6-11.

Mitrovic, A. (2002). NORMIT: a web-enabled tutor for database normalization. In Proceedings
of the International Conference on Computers in Education ICCE, 2002, held on
December 3-6, 2002 at Auckland, New Zealand (pp. 275-80). CA: IEEE Computer
Society.

Nielsen, J., & Levy, J. (1994). Measuring usability: Preference vs.
performance. Communications of the ACM, 37(4), 66-75.

Norshuhada, S., & Shahizan, H. (2010). Design research in software development: constructing
and linking research questions, objectives, methods and outcomes. Sintok: University
Utara Malaysia Press.

Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Thousand Oaks,
CA: Sage.

Peters, D. & Parnas, L. (2002). Requirements based monitors for real time systems. IEEE
Transactions on software engineering, 28(2), 146-158.

Ram, S. (2008). Teaching data normalization: Traditional classroom methods versus online
visual methods — a Literature review. In Proceedings of the 21st Annual Conference of
the National Advisory Committee on Computing Qualifications (NACCQ 2008), held on
July 4-7, 2008 at Auckland, New Zealand (pp. 327-330). Auckland: NACCQ.

Rob, P., & Coronel, C. (2009). Database Systems: Design, Implementation, and Management
(8th ed.). Boston: Course Technology.

73

Rubin, H. J. & Rubin, I. S. (2005). Qualitative interviewing: The art of hearing data. Thousand
Oaks, CA: Sage.

Shelly, G. B., Cashman, T. J., & Rosenblatt, H. J. (2009). Systems Analysis and Design (8th ed.).
Boston, MA: Course Technology.

Srikanth, S., & Sudarshan, D. (2001). Database management Systems. (1st ed.). Bangalore:
Subhas.

Teorey, T., Lightstone, S., Nadeau, T., & Jagadish, H. (2011). Database Modeling and Design:
Logical Design (5th ed.). Morgan Kaufmann: Morgan Kaufmann.

Vaishnavi, V. & Kuechler, W. (2008). Design science research methods and patterns innovating
information and communication technology research in information systems. New York:
Auerbach.

Whitten, J., Bentley, L., & Dittman, K. (2001). Systems analysis and design methods (5th ed.).
New York: McGraw-Hill.

Yazici, A., & Karakaya, Z. (2007). JMathNorm: A database normalization tool using
mathematica. In Proceedings of International conference on computational science,
2007, held on May 27-30, 2007 at Beijing, China (pp. 186-193). Beijing: Springer-Verlag
Berlin Heidelberg.

Yi, T., Wu, F., & Gan, C. (2005). A comparison of metrics for UML class diagrams. ACM
SIGSOFT Software Engineering Notes, 29(5). 1-6.

Yu, C. H. (2000). An introduction to computing and interpreting Cronbach Coefficient

Alpha in SAS (Arizona State University Technical Report No. 246-26). Retrieved May
27, 2011, from http://www2.sas.com/proceedings/sugi26/p246-26.pdf.

74

Appendix A: The Interview with the SerindIT UUM Company

The interview carried out as part of the initial stage of the research for purpose of gathering more
information on the database normalization and exploring how do IT company’s database
designers achieve normalization process and what is the most used types of normalization

process along with its importance to projects work.

The interview held on SerindIT UUM Company in Sintok city. Three of the company IT staff
who work as database designer, database Administrator and software programming and

developer were interviewed. They were asked the following questions:

1. What methodologies do you use in designing a relational database?
2. How far do you take the normalization process and to which level? Why? How?
3. Is normalization important?

Summary of Responses

Question 1: What methodologies do you use in designing a relational database?

Database Designer
- Through identifying the input sources and output requirements.

- Through building the Entity relationship diagram (ERD).

Database Administrator

- Through identifying the requirements.

- By using composite keys in other tables with caution.

Developer

- Through building the Entity relationship diagram (ERD).

75

- By resolving the many to many relationships.

Question 2: How far do you take the normalization process? Why?

Database Designer

- Each entity has its own table — usually forces till the 3NF.

- 4NF doesn’t occur.

Database Administrator
- lonlygoto 3NF.
- The 4NF is not done often.

Developer

- Never go beyond the 3NF.

Question 3: Is normalization important?

Database Designer
- Normalization comes to the picture clearly especially once you solve issues of someone

else work.

Database Administrator
- Itis good to have till the 3NF to avoid the changes

Developer

- Normalization is important once we look at other people’s tables.

76

Appendix B:

COLLEGE OF ARTS & SCIENCES
UNIVERSITY UTARA MALAYSIA

Questionnaire for Database Normalizer Prototype

Dear Sir/Madam

In recent time, relational databases have been used widely in almost all commercial applications
to store, manipulate and use huge data for a specific enterprises and decision making. One of the
essential steps in designing relational databases is Normalization which used to produce a set of
relations with desirable properties for enterprises data requirements.

This questionnaire designed to seek your assistance on the study entitled “DATABASE
NORMALIZER PROTOTYPE”. This work attempts to evaluate the prototype in terms of
easiness of use and satisfaction. You have been selected to participate in this research being
undertaken as part of my final project for MSc-IT degree in University Utara Malaysia.

Please be assured that the information you have provided is strictly confidential and for academic
purpose only. Your feedback in making this study successful is highly appreciated.

Thanking you for precious time and cooperation. If you have any inquiry please do not hesitate
to contact us.

Yours sincerely, Supervisor

Ahmed Absi Assoc. Prof. Abd Ghani B. Golamdin
MSc-IT Student
College of Arts & Sciences
University Utara Malaysia
Email: ahmed_absi2005@yahoo.com

77

The following questions pertain to DATABASE NORMALIZER PROTOTYPE. For each question,
kindly tick the options that come closest to your view and please try to be as accurate as possible when

choosing your answers as your answers will be very important for making critical decisions.

Section A: (Demographic questions)
Please tick (/) or fill up the box at the appropriate blank

1. User:
O Student

[0 DB Developer/Designer
L] Other (please SPecify)ouviiriiniiiii e

2. Gender: O Male O Female

3. Age:
L1 18-29 Years
1 30-39 Years
L1 40-50 Years
O 51 and above

4. Educational Background:
O] Bachelors’ Degree
] Masters Degree
O Doctoral
L] Other (please SPeCify)......ouuiriiniiiiii e

78

Section B

Please tick Strongly Disagree (SD), Disagree (D), Neutral (N), Agree (A), and Strongly Agree (SA) in the
column that best represent your opinion in each of the statements in the table below.

Easiness Of Use

Normalizing relations presented in straight-forward manner

The prototype is easy to use and requires fewest steps to
accomplish desired tasks.

The prototype visual layout is clear.

User friendly and easier to get the result.

Are you interesting in using this system?

All users can use it without any difficulty.

Satisfaction

Terminologies related to task are appropriate.

All functionality is clearly labeled

All necessary functionality is available

The prototype display appropriate messages in case of any error

Are you satisfied that the prototype information is useful for
your purpose?

Thanks for Your Participation

79

Appendix C: The Algorithm Implementation

Appendix C:

1- First Normal Form Algorithm Source Code Implementation

"Filling out the rest of fileds

Dim db As Database, rs As Recordset

Dim AA_Array(100) As String

If SKF = False Then

MsgBox "Please Select Primary Keys", , "DB Normalizer"
Exit Sub

End If

Copy_Table FileName, MainTableName '-- here create INF_MainTable

If SQL_Flag = True Then GoTo SQL_Lab "-------------------- JUMP -------

Set db = OpenDatabase(FileName)
Set rs = db.OpenRecordset("1NF_" + MainTableName)
AA_Counter =0
While Not rs.EOF
Fori=0 Tors.Fields.Count - 1
If rs.Fields(i). Type = dbText Then
If rs.Fields(i).Value <> "" Then
AA_Array(i) = rs.Fields(i).Value
Else
rs.Edit
rs.Fields(i).Value = AA_Array(i)
rs.Update
End If
Else
If rs.Fields(i).Value <>"" Then
AA_Array(i) = Str(rs.Fields(i).Value)
Else
rs.Edit
rs.Fields(i).Value = Val(AA_Array(i))
rs.Update
End If
End If
Next i
rs.MoveNext
Wend
rs.Close
Datal.RecordSource = "INF_" & MainTableName
Datal.Refresh
MsgBox "First Normal Form Applied Successfully”, , "DB Normalizer"
NF1 =True
Command4.Enabled = True
Exit Sub

80

Applying INF Command ---

END ACCESS-- Applying INF Command -------------

SQL_Lab:

Dim dbconn As New ADODB.Connection
Dim rs1 As New ADODB.Recordset

Set dbconn = SQL_OpenDatabase(FileName)
rsl.LockType =3 " for update

rs1.0pen "Select * from FINF_" + MainTableName, dbconn
AA Counter=0

While Not rs1.EOF
Fori=0Torsl.Fields.Count - 1
If rs1.Fields(i). Type = adVarChar Then "Varchar(50)
If rs1.Fields(i).Value <> "" Then
AA_Array(i) = rs1.Fields(i).Value
Else
'rs1.Edit
rs1.Fields(i).Value = AA_Array(i)
rs1.Update
End If
Else
If rs1.Fields(i).Value <> ™" Then
AA_Array(i) = Str(rs1.Fields(i).Value)
Else
'rs1.Edit
rs1.Fields(i).Value = Val(AA_Array(i))
rs1.Update
End If
End If
Next i
rsl.MoveNext
Wend
rs1.Close
dbconn.Close
display_datagrid "Select * from " & "FINF_" & MainTableName
'Datal.RecordSource = "FINF_" & MainTableName
'Datal.Refresh
MsgBox "First Normal Form Applied Successfully"”, , "DB Normalizer"
NF1 =True
Command4.Enabled = True
End Sub

81

2- Second Normal Form Algorithm Source Code Implementation

Dim db As Database

Dim TableName As String, td As TableDef, f As Field

Dim A_Tables(30, 30) As Integer ' 30 subtables max, each 30 fileds max
Dim PK As String, rs As Recordset, MylIndex As Integer

If NF1 = False Then

MsgBox "Please Perform INF First”, , "DB Normalizer"
Exit Sub

End If

If SQL_Flag = True Then GoTo SQL_Lab "'---------------- JUMP to SQL PART 2NF------------- Applying
2NF----

Set db = OpenDatabase(CommonDialogl.FileName)
Set rs = db.OpenRecordset("1NF_" & MainTableName)
Set td = db.TableDefs("1INF_" & MainTableName)

If (rs.BOF = True) And (rs.EOF = True) Then
MsgBox "There is no data in the table"

Exit Sub

End If

Dim keylInfo As String, otherInfo As String, CanSeparate As Boolean ™" Keyinfo changed to string
Dim otherInfolnt As Integer, otherinfoDate As Date, otherinfoCurrency As Single
Dim DoneValues(100) As String, otherinfoText As String "------ DoneValue changed to string
Dim DoneCounter As Integer, NextTablelndex As Integer
DoneCounter = 0
Dim A_Row As Integer, A_Col As Integer, cancelSearch As Boolean
A Row =1: A _Col =1 "the 0 contins the number of fields in this table
Fori =0 To Form4.List2.ListCount - 1 ' for ech primary key
PK = Form4.List2.List(i)
rs.MoveFirst
"this for for finding the index of the primary key in the table
Forj=0Tors.Fields.Count - 1
If rs.Fields(j).Name = PK Then Myindex = j

Next j
' finding the partial dependencies
keyInfo ="": otherInfoText = "": otherInfolnt = 0 "------ changed keyinfo=-1

otherinfoCurrency =0
Forj=0Tors.Fields.Count - 1
CanSeparate = True
DoneCounter = 0

Set f = td.Fields(j)
CanSeparate = True

82

'find non searched key
2: rs.MoveFirst
cancelSearch = True
While (cancelSearch = True) And (Not rs.EOF)
keylInfo = rs.Fields(MyIndex).Value
cancelSearch = False
For w =1 To DoneCounter
If keyInfo = DoneValues(w) Then cancelSearch = True
Next w
If cancelSearch = True Then rs.MoveNext
Wend
If rs.EOF Then GoTo 1
keylnfo ="" "'----changed keyinfo=-1
While (Not rs.EOF) And (CanSeparate = True)
If f. Type = dbLong Then
If keyInfo ="" Then '--- changed keyinfo=-1
keyInfo = rs.Fields(MyIndex).Value
otherInfolnt = rs.Fields(j).Value
DoneCounter = DoneCounter + 1
DoneValues(DoneCounter) = keyInfo
Else
If keylInfo = rs.Fields(MyIndex).Value Then

If otherInfolnt <> rs.Fields(j).VValue Then CanSeparate = False
End If

End If

Elself f. Type = dbText Then
If keylnfo ="" Then '--- changed keyinfo=-1
keyInfo = rs.Fields(MyIndex).Value
otherInfoText = rs.Fields(j).Value
DoneCounter = DoneCounter + 1
DoneValues(DoneCounter) = keylInfo
Else
If keylInfo = rs.Fields(MyIndex).Value Then

If otherIinfoText <> rs.Fields(j).Value Then CanSeparate = False
End If

End If

Elself f. Type = dbCurrency Then
If keyInfo ="" Then '--- changed keyinfo=-1
keylInfo = rs.Fields(MyIndex).Value
otherIinfoCurrency = rs.Fields(j).Value
DoneCounter = DoneCounter + 1
DoneValues(DoneCounter) = keylInfo
Else
If keyInfo = rs.Fields(MyIndex).Value Then

If otherInfoCurrency <> rs.Fields(j).VValue Then CanSeparate = False
End If

End If
Elself f. Type = dbDate Then

83

If keylnfo ="" Then '--- changed keyinfo=-1
keyInfo = rs.Fields(MyIndex).Value
otherinfoDate = rs.Fields(j).Value
DoneCounter = DoneCounter + 1
DoneValues(DoneCounter) = keylInfo
Else
If keyInfo = rs.Fields(MyIndex).Value Then
If otherInfoDate <> rs.Fields(j).Value Then CanSeparate = False
End If
End If
End If
rs.MoveNext

Wend
If CanSeparate = True Then GoTo 2

1. If CanSeparate Then

A_Col = A_Col + 1: A_Tables(A_Row, A_Col) =}
End If

Next j

A_Tables(A_Row, 1) = A _Col

A Row=A Row+1: A Col=1

Next i

" the exact number of trables is row-1

A Row=A Row-1

' now creating the new tables

NextTablelndex = 1 ' for creation purposes like Tablel and Table2 ...
Dim newTD As TableDef
Dim newF As Field, newDB As Database
Set newDB = OpenDatabase(FileName)
Fori=1To A_Row

Set newTD = New TableDef

Forj=2To A_Tables(i, 1)

Set f = td.Fields(A_Tables(i, j))

Select Case f. Type
Case dbLong: Set newF = newTD.CreateField(rs.Fields(A_Tables(i, j)).Name, dbLong)

Case dbText: Set newF = newTD.CreateField(rs.Fields(A_Tables(i, j)).Name, dbText, 50)
Case dbCurrency: Set newF = newTD.CreateField(rs.Fields(A_Tables(i, j)).Name, dbCurrency)
Case dbDate: Set newF = newTD.CreateField(rs.Fields(A_Tables(i, j)).Name, dbDate)

End Select

'On Error GoTo labl

newTD.Fields.Append newF

Next j
newTD.Name = "Table" & NextTablelndex & " " & MainTableName

NextTableIndex = NextTableIndex + 1
newDB.TableDefs.Append newTD
Next i

84

"now creating the other tables that contain the composite primary key
Set newTD = New TableDef
" first of all, creating the table that contains the promary keys
Fori=0 To Form4.List2.ListCount - 1" for ech primary key
PK = Form4.List2.List(i)
rs.MoveFirst
"this for for finding the index of the primary key in the table
For j=0Tors.Fields.Count - 1
If rs.Fields(j).Name = PK Then Myindex = j
Next j
Set f = td.Fields(MyIndex)
Select Case f.Type
Case dbLong: Set newF = newTD.CreateField(rs.Fields(MyIndex).Name, dbLong)
Case dbText: Set newF = newTD.CreateField(rs.Fields(MyIndex).Name, dbText, 50)
Case dbCurrency: Set newF = newTD.CreateField(rs.Fields(MylIndex).Name, dbCurrency)

Case dbDate: Set newF = newTD.CreateField(rs.Fields(MylIndex).Name, dbDate)
End Select

newTD.Fields.Append newF
Next i

Dim NextFieldindex As Integer, found As Boolean, AllFields As Integer
' creating the fields that are not PK
For AllFields = 0 To rs.Fields.Count - 1
found = False
Fori=1To A_Row
Forj=2To A Tables(i, 1)
NextFieldIndex = A_Tables(i, j)
If NextFieldindex = AllFields Then found = True
Next j
Next i
If found = False Then
Set f = td.Fields(NextFieldIndex)
Select Case f. Type
Case dbLong: Set newF = newTD.CreateField(rs.Fields(AllFields).Name, dbLong)
Case dbText: Set newF = newTD.CreateField(rs.Fields(AllFields).Name, dbText, 50)
Case dbCurrency: Set newF = newTD.CreateField(rs.Fields(AllFields).Name, dbCurrency)
Case dbDate: Set newF = newTD.CreateField(rs.Fields(AllFields).Name, dbDate)
End Select
newTD.Fields.Append newF
End If
Next AllFields

newTD.Name = "Table" & NextTablelndex & " " & MainTableName
NextTableIndex = NextTablelndex + 1

newDB.TableDefs.Append newTD

Dim newRS As Recordset

"removing the redandancies from the created tables

Dim coll As New Collection, stPos As String

85

On Error Resume Next
Err.Clear
"filling the values
Fori=1To A_Row
Set newRS = newDB.OpenRecordset("Table" & i & " " & MainTableName)
rs.MoveFirst
While Not rs.EOF
' check for redandant
stPos ="("
For j =0 To newRS.Fields.Count - 1
If rs.Fields(newRS.Fields(j).Name).Type = dbText Then
stPos = stPos + rs.Fields(newRS.Fields(j).Name).Value
Else
stPos = stPos + Str(rs.Fields(newRS.Fields(j).Name).Value)
End If
If j <> newRS.Fields.Count - 1 Then
stPos = stPos + "',"
Else
stPos = stPos +)"
End If
Next j
coll.Add stPos, stPos
If Err.Number = 0 Then
newRS.AddNew
For j =0 To newRS.Fields.Count - 1
newRS.Fields(j).Value = rs.Fields(newRS.Fields(j).Name).Value
Next j
newRS.Update
Else
Err.Clear
End If
rs.MoveNext
Wend
newRS.Close
Next i

"filling the last table values that contains the composite key
i = NextTablelndex - 1
Set newRS = newDB.OpenRecordset("Table" & i & " " & MainTableName)
rs.MoveFirst
While Not rs.EOF
' check for redandant
stPos ="("
For j =0 To newRS.Fields.Count - 1
If rs.Fields(newRS.Fields(j).Name).Type = dbText Then
stPos = stPos + rs.Fields(newRS.Fields(j).Name).Value
Else
stPos = stPos + Str(rs.Fields(newRS.Fields(j).Name).Value)
End If
If j <> newRS.Fields.Count - 1 Then

stPos = stPos + ",

86

Else
stPos = stPos +)"
End If
Next j
coll.Add stPos, stPos
If Err.Number = 0 Then
newRS.AddNew
For j =0 To newRS.Fields.Count - 1
newRS.Fields(j).Value = rs.Fields(newRS.Fields(j).Name).Value
Next j
newRS.Update
Else
Err.Clear
End If
rs.MoveNext
Wend
newRS.Close
rs.Close

MsgBox "Second Normal Form Applied Successfully", , "DB Normalizer"

Fori=1ToA_Row+1
Display_Table i, "Table" & i & " " & MainTableName
Next i

NF2 = True

Command5.Enabled = True

Exit Sub

lab1:

If Err.Number = 3010 Then

MsgBox "DataBase alread Normalized"
newDB.TableDefs.Delete Tablel

End If

Exit Sub

END OF ACCESS 2NF ---------nnneeeeee Applying 2NF
SQL_Lab:

Dim dbconn As ADODB.Connection

Dim rs1 As ADODB.Recordset

Dim tdrs As ADODB.Recordset

Set dbconn = SQL_OpenDatabase(FileName)

Set rs1 = New ADODB.Recordset
Set tdrs = New ADODB.Recordset

87

If dbconn.State = 1 Then
If rs1.State = 1 Then
rs1.Close

End If
Else
MsgBox "No Database Connection”
Exit Sub
End If
rs1.0pen "select * from " & "FINF_" & MainTableName, dbconn
'‘MsgBox rsl.Fields(0).Value

"--Set td = db.TableDefs("FINF_" & MainTableName)
sgl_query = "SELECT c.name ColumnName, t.name ColumnType " & _
"FROM sys.columns ASc" & _
" JOIN sys.types as t ON c.user_type_id=t.user_type_id" & _
" where OBJECT_NAME(c.OBJECT_ID)="' & "FINF_" & MainTableName & "™

tdrs.CursorLocation = adUseServer
tdrs.Open sgl_query, dbconn

'MsgBox tdrs.Fields(0).Value

Dim tdA() As String

ReDim tdA(0 To 1, 0 To 20)

t=-1

While Not tdrs.EOF

t=t+1

tdA(0, t) = tdrs.Fields(0).Value
tdA(1, t) = tdrs.Fields(1).Value
'MsgBox Str(t) + tdA(0, t) + tdA(L, t)
tdrs.MoveNext

Wend

Dim ColNo As Integer
ColNo=t+1

If (rs1.BOF = True) And (rs1.EOF = True) Then
MsgBox "There is no data in the table"

Exit Sub

End If

'Dim keylInfo As String, otherInfo As String, CanSeparate As Boolean """ Keyinfo changed to string
'Dim otherInfolnt As Integer, otherinfoDate As Date, otherInfoCurrency As Single

'Dim DoneValues(100) As String, otherInfoText As String "------ DoneValue changed to string
'‘Dim DoneCounter As Integer, NextTablelndex As Integer

'Dim A_Row As Integer, A_Col As Integer, cancelSearch As Boolean

88

DoneCounter =0

A _Row =1: A _Col =1"the 0 contins the number of fields in this table
For i =0 To Form4.List2.ListCount - 1 ' for ech primary key

PK = Form4.List2.List(i)

rs1.MoveFirst

"this for for finding the index of the primary key in the table

Forj=0Torsl.Fields.Count - 1
" While Not tdd.EOF

If rs1.Fields(j).Name = PK Then MyIndex = j
Next j
" Wend

" finding the partial dependencies
keyInfo ="": otherInfoText = """ otherInfolnt = 0 "------ changed keyinfo=-1
otherInfoCurrency =0

Forj=0Torsl.Fields.Count - 1
CanSeparate = True
DoneCounter = 0

' Set f = td.Fields(j)

CanSeparate = True
"find non searched key
22: rsl.MoveFirst

cancelSearch = True
While (cancelSearch = True) And (Not rs1.EOF)
keylInfo = rs1.Fields(MylIndex).Value
cancelSearch = False
For w =1 To DoneCounter
If keyInfo = DoneValues(w) Then cancelSearch = True
Next w
If cancelSearch = True Then rs1.MoveNext
Wend
If rs1.EOF Then GoTo 11

‘adInteger adVarChar adDate adSingle adDouble

keylnfo = "'----changed keyinfo=-1
While (Not rs1.EOF) And (CanSeparate = True)

'If f. Type = adInteger Then

If tdA(1, j) = "int" Then

If keyInfo ="" Then '--- changed keyinfo=-1
keylnfo = rs1.Fields(MylIndex).Value

89

otherInfolnt = rs1.Fields(j).Value
DoneCounter = DoneCounter + 1
DoneValues(DoneCounter) = keyInfo
Else
If keyInfo = rs1.Fields(MylIndex).Value Then
If otherInfolnt <> rs1.Fields(j).Value Then CanSeparate = False
End If
End If

"Elself f.Type = adVarChar Then
Elself tdA(1, j) = "varchar" Then
If keyInfo ="" Then '--- changed keyinfo=-1
keyInfo = rs1.Fields(MyIndex).Value
otherinfoText = rs1.Fields(j).Value
DoneCounter = DoneCounter + 1
DoneValues(DoneCounter) = keyInfo
Else
If keylInfo = rs1.Fields(MylIndex).Value Then
If otherIinfoText <> rs1.Fields(j).Value Then CanSeparate = False
End If
End If

‘Elself f.Type = adCurrency Then
Elself tdA(1, j) = "money" Then
If keylnfo ="" Then '--- changed keyinfo=-1
keyInfo = rs1.Fields(MyIndex).Value
otherInfoCurrency = rs1.Fields(j).Value
DoneCounter = DoneCounter + 1
DoneValues(DoneCounter) = keyInfo
Else
If keylInfo = rs1.Fields(MylIndex).Value Then
If otherinfoCurrency <> rs1.Fields(j).Value Then CanSeparate = False
End If
End If

‘Elself f. Type = adDate Then
Elself tdA(1, j) = "datetime” Then
If keylnfo ="" Then '--- changed keyinfo=-1
keyInfo = rs1.Fields(MyIndex).Value
otherinfoDate = rs1.Fields(j).Value
DoneCounter = DoneCounter + 1
DoneValues(DoneCounter) = keylInfo
Else
If keyInfo = rs1.Fields(MyIndex).Value Then
If otherInfoDate <> rs1.Fields(j).Value Then CanSeparate = False
End If
End If
End If
rsl.MoveNext
Wend
If CanSeparate = True Then GoTo 22

90

11: If CanSeparate Then
A_Col = A_Col + 1: A_Tables(A_Row, A_Col) =]

End If

Next j
"tdd.MoveNext
‘Wend

A_Tables(A_Row, 1) = A _Col
A Row=A Row+1: A Col=1

Next i
' the exact number of trables is row-1

A Row=A Row-1

"-Dim newTD As TableDef
“-Dim newF As Field, newDB As Database
"Set newDB = OpenDatabase(FileName) '--- no need

" Now creating the new tables

Dim cn As ADODB.Connection

Dim cmd As New ADODB.Command

NextTablelndex = 1 ' for creation purposes like Tablel and Table2 ...

Fori=1To A_Row
" Set newTD = New TableDef
NewTabName = "Table" & NextTablelndex & " " & MainTableName

Forj=2To A_Tables(i, 1)
' Set f = td.Fields(A_Tables(i, j))

'Select Case tdA(1, A_Tables(i, j))
'Case adInteger: Set newF = newTD.CreateField(rs1.Fields(A_Tables(i, j)).Name, dbLong)

'Case adVarChar: Set newF = newTD.CreateField(rs1.Fields(A_Tables(i, j)).Name, dbText, 50)
'Case adCurrency: Set newF = newTD.CreateField(rs1.Fields(A_Tables(i, j)).Name, dbCurrency)
'Case adDate: Set newF = newTD.CreateField(rs1.Fields(A_Tables(i, j)).Name, dbDate)

'End Select
'newTD.Fields.Append newF

Set cn = SQL_OpenDatabase(FileName)

cmd.ActiveConnection = cn
cmd.CommandType = adCmdText

If tdA(1, A_Tables(i, j)) = "varchar" Then
dtype = "varchar(50)"

Else
dtype = tdA(1, A_Tables(i, j))

91

End If

If j=2Then
cmd.CommandText = "CREATE TABLE " + NewTabName + " (" + tdA(0, A_Tables(i, j)) +" " +
dtype +")"
Else
cmd.CommandText = "ALTER TABLE " + NewTabName + " ADD " + tdA(0, A_Tables(i, j)) +" " +

dtype
End If

cmd.Execute
cn.Close

Next j

"newTD.Name = "Table" & NextTablelndex & " " & MainTableName
NextTableIndex = NextTablelndex + 1

'newDB.TableDefs.Append newTD

Next i

" Now creating the other tables that contain the composite primary key

'--Set newTD = New TableDef
" first of all, creating the table that contains the promary keys

NewTabName = "Table" & NextTableIlndex & " " & MainTableName
Fori=0 To Form4.List2.ListCount - 1' for ech primary key

PK = Form4.List2.List(i)

rs1.MoveFirst

"this for for finding the index of the primary key in the table
Forj=0Torsl.Fields.Count - 1

If rs1.Fields(j).Name = PK Then MylIndex = j

Next j

'Set f = td.Fields(MyIndex)

'Select Case f.Type

" Case dbLong: Set newF = newTD.CreateField(rs1.Fields(MylIndex).Name, dbLong)

"Case dbText: Set newF = newTD.CreateField(rs1.Fields(MyIndex).Name, dbText, 50)

" Case dbCurrency: Set newF = newTD.CreateField(rs1.Fields(MylIndex).Name, dbCurrency)
' Case dbDate: Set newF = newTD.CreateField(rs1.Fields(MylIndex).Name, dbDate)

'End Select

'newTD.Fields.Append newF
Set cn = SQL_OpenDatabase(FileName)

cmd.ActiveConnection = cn
cmd.CommandType = adCmdText

92

If tdA(1, MylIndex) = "varchar" Then
dtype = "varchar(50)"

Else

dtype = tdA(1, Mylndex)

End If

Ifi=0Then
cmd.CommandText = "CREATE TABLE " + NewTabName + " (" + tdA(0, Mylndex) + " " + dtype +
ll)ll
Else
cmd.CommandText = "ALTER TABLE " + NewTabName + " ADD " + tdA(0, MyIndex) + " " +

dtype
End If

cmd.Execute
cn.Close

Next i

"--Dim NextFieldIndex As Integer, found As Boolean, AllFields As Integer
' creating the fields that are not PK
'Dim found As Boolean
For AllFields =0 To rs1.Fields.Count - 1
found = False
Fori=1To A _Row
Forj=2To A _Tables(i, 1)
NextFieldIndex = A_Tables(i, j)
If NextFieldindex = AllFields Then found = True
Next j
Next i
If found = False Then
Set cn = SQL_OpenDatabase(FileName)

cmd.ActiveConnection = cn
cmd.CommandType = adCmdText

If tdA(1, AllFields) = "varchar" Then
dtype = "varchar(50)"

Else

dtype = tdA(1, AllFields)

End If

cmd.CommandText = "ALTER TABLE " + NewTabName + " ADD " + tdA(0, AllFields) + " " + dtype
cmd.Execute

cn.Close

End If

Next AllFields

'newTD.Name = "Table" & NextTablelndex & " " & MainTableName
NextTablelndex = NextTablelndex + 1

93

'newDB.TableDefs.Append newTD

Dim newRS1 As New ADODB.Recordset

" removing the redandancies from the created tables
"--Dim coll As New Collection, stPos As String
On Error Resume Next

Err.Clear

' filling the values

Fori=1To A_Row

'Set newrsl = newDB.OpenRecordset("Table" & i & " " & MainTableName)

newRS1.LockType =3
newRS1.0pen "Select * from " & "Table" & i & "_" & MainTableName, dbconn

rs1.MoveFirst
'‘MsgBox rsl.Fields(0).Value
While Not rs1.EOF
" check for redandant
stPos =" ("
For j =0 To newRS1.Fields.Count - 1
If rs1.Fields(newRS1.Fields(j).Name).Type = adVarChar Then
stPos = stPos + rs1.Fields(newRS1.Fields(j).Name).Value

Else
stPos = stPos + Str(rs1.Fields(newRS1.Fields(j).Name).Value)

End If

If j <> newRS1.Fields.Count - 1 Then
stPos = stPos + ","

Else

stPos = stPos +)"

End If

Next j

coll.Add stPos, stPos

If Err.Number = 0 Then
newRS1.AddNew

For j =0 To newRS1.Fields.Count - 1
newRS1.Fields(j).Value = rsl.Fields(newRS1.Fields(j).Name).Value
Next j

newRS1.Update

'MsgBox newRS1.Fields(0).Value

Else
Err.Clear

End If

rsl.MoveNext

Wend

newRS1.Close

Next i
"Filling the last table values that contains the composite key

i = NextTablelndex - 1
‘Set newrsl = newDB.OpenRecordset("Table" & i & "_" & MainTableName)
94

newRS1.LockType =3
newRS1.0pen "Select * from " & "Table" & i & "_" & MainTableName, dbconn
rs1.MoveFirst
While Not rs1.EOF
' check for redandant
stPos ="("
For j =0 To newRS1.Fields.Count - 1
If rs1.Fields(newRS1.Fields(j).Name).Type = adVarChar Then
stPos = stPos + rs1.Fields(newRS1.Fields(j).Name).Value
Else
stPos = stPos + Str(rs1.Fields(newRS1.Fields(j).Name).Value)
End If
If j <> newRS1.Fields.Count - 1 Then
stPos = stPos + ",
Else
stPos = stPos +)"
End If
Next j
coll.Add stPos, stPos
If Err.Number = 0 Then
newRS1.AddNew
For j =0 To newRSL1.Fields.Count - 1
newRS1.Fields(j).Value = rsl.Fields(newRS1.Fields(j).Name).Value
Next j
newRS1.Update
Else
Err.Clear
End If
rsl.MoveNext
Wend
newRS1.Close
rs1.Close
MsgBox "Second Normal Form Applied Successfully”, , "DB Normalizer"
Fori=1To A _Row+1
'Display_Table i, "Table" & i & " " & MainTableName
display_datagrid "Select * from " & "Table" & i & " " & MainTableName
MsgBox "Thisis" & "Table" & i & "_" & MainTableName, , "DB Normalizer"
Next i
Command5.Enabled = True
NF2 = True
Exit Sub
labll:
If Err.Number = 3010 Then
MsgBox "DataBase alread Normalized"
newDB.TableDefs.Delete Tablel
End If
End Sub

95

3- Third Normal Form Algorithm Source Code Implementation

Dim db As Database
Dim td As TableDef, TableName As String, rs As Recordset

If NF2 = False Then

MsgBox "Please Perform 2NF First", , "DB Normalizer"
Exit Sub

End If

If SQL_Flag = True Then GoTo SQL_Lab "----x-mmrmmmrmmeeces JUMP INTo SQL ---- 3NF

Set db = OpenDatabase(FileName)

Form5.Combol.Clear

For Each td In db.TableDefs

TableName = td.Name

If Left$(TableName, 4) <> "MSys" And Left$(TableName, 5) =
Form5.Combol.Addltem TableName

Next

Forml.Tag = FileName

Form5.Show vbModal

If Form5.Tag = 0 Then Exit Sub

If Form5.Tag = 1 Then

" the table in form5.combol.text and the fields is in form5.list2

Dim TheTableName As String

TheTableName = Form5.Combol.Text

Set rs = db.OpenRecordset(TheTableName)

Set td = db.TableDefs(TheTableName)

' now creating the new tables

Dim NextTablelndex As Integer

NextTablelndex = 1 ' for creation purposes like Table21 and Table22 ...

"if we select the table2 for separation

Dim newTD As TableDef

Dim newF As Field, newDB As Database

Set newDB = OpenDatabase(FileName)

Set newTD = New TableDef

For j =0 To Form5.Listl.ListCount - 1

Set f = td.Fields(Form5.List1.List(j))

Select Case f. Type
Case dbLong: Set newF = newTD.CreateField(Form5.List1.List(j), dbLong)
Case dbText: Set newF = newTD.CreateField(Form5.List1.List(j), dbText, 50)
Case dbCurrency: Set newF = newTD.CreateField(Form5.List1.List(j), dbCurrency)
Case dbDate: Set newF = newTD.CreateField(Form5.List1.List(j), dbDate)
End Select

newTD.Fields.Append newF
Next j
"add the first field of the list2 as connection field

96

"Table"

Then

Set f = td.Fields(Form5.List2.List(0))

Select Case f.Type

Case dbLong: Set newF = newTD.CreateField(Form5.List2.List(0), dbLong)

Case dbText: Set newF = newTD.CreateField(Form5.List2.List(0), dbText, 50)

Case dbCurrency: Set newF = newTD.CreateField(Form5.List2.List(0), dbCurrency)
Case dbDate: Set newF = newTD.CreateField(Form5.List2.List(0), doDate)

End Select

newTD.Fields.Append newF

newTD.Name = TheTableName & NextTablelndex
NextTablelndex = NextTablelndex + 1
newDB.TableDefs.Append newTD

Set newTD = New TableDef
For j =0 To Form5.List2.ListCount - 1
Set f = td.Fields(Form5.List2.List(j))
Select Case f.Type
Case dbLong: Set newF = newTD.CreateField(Form5.List2.List(j), dbLong)
Case dbText: Set newF = newTD.CreateField(Form5.List2.List(j), doText, 50)
Case dbCurrency: Set newF = newTD.CreateField(Form5.List2.List(j), dbCurrency)
Case dbDate: Set newF = newTD.CreateField(Form5.List2.List(j), dbDate)
End Select

newTD.Fields.Append newF
Next j

newTD.Name = TheTableName & NextTablelndex
NextTablelndex = NextTablelndex + 1
newDB.TableDefs.Append newTD

'filling the values
Dim newRS As Recordset
' removing the redandancies from the created tables
Dim coll As New Collection, stPos As String
On Error Resume Next
Err.Clear
Fori=1To NextTableIndex - 1
Set newRS = newDB.OpenRecordset(TheTableName & i)
rs.MoveFirst
While Not rs.EOF
' check for redandant
stPos = "'("
For j =0 To newRS.Fields.Count - 1
If rs.Fields(newRS.Fields(j).Name).Type = dbText Then
stPos = stPos + rs.Fields(newRS.Fields(j).Name).Value
Else
stPos = stPos + Str(rs.Fields(newRS.Fields(j).Name).Value)
End If
If j <> newRS.Fields.Count - 1 Then
stPos = stPos + "
Else

97

stPos = stPos +)"
End If
Next j
coll.Add stPos, stPos
If Err.Number = 0 Then
newRS.AddNew
For j =0 To newRS.Fields.Count - 1
newRS.Fields(j).Value = rs.Fields(newRS.Fields(j).Name).Value
Next j
newRS.Update
Else
Err.Clear
End If
rs.MoveNext
Wend
newRS.Close
Next i
rs.Close
End If

Fori=1To?2

Display_Table i, TheTableName & i
Next i

NF3 = True

Exit Sub

END ACCESS ---------- c] V[—

SQL_Lab:

Dim dbconn As ADODB.Connection
Dim rs1 As New ADODB.Recordset

Set dbconn = SQL_OpenDatabase(FileName)

Form5.Combo1l.Clear

rs1.0pen "SELECT name FROM sys.Tables", dbconn
While Not rs1.EOF

TableName = rs1.Fields(0).Value

If Left$(TableName, 5) = "Table" Then Form5.Combol.Addltem TableName
rsl.MoveNext

Wend
rs1.Close

Forml.Tag = FileName

98

Form5.Show vbModal

If Form5.Tag = 0 Then Exit Sub

If Form5.Tag = 1 Then

" the table in form5.combol.text and the fields is in form5.list2
'Dim TheTableName As String

TheTableName = Form5.Combol.Text

'Set rs = db.OpenRecordset(TheTableName)
rs1.0pen "SELECT * FROM " & TheTableName, dbconn

'Set td = db.TableDefs(TheTableName)

Dim tdrs As New ADODB.Recordset

sgl_query = "SELECT c.name ColumnName, t.name ColumnType " & _
"FROM sys.columns ASc" & _
" JOIN sys.types as t ON c.user_type_id=t.user_type id" & _
" where OBJECT_NAME(c.OBJECT_ID)="" & TheTableName & "

tdrs.CursorLocation = adUseServer
tdrs.Open sgl_query, dbconn

Dim tdA() As String

ReDim tdA(0 To 1, 0 To 20)

t=-1

While Not tdrs.EOF

t=t+1

tdA(0, t) = tdrs.Fields(0).Value
tdA(1, t) = tdrs.Fields(1).Value
'MsgBox Str(t) + tdA(0, t) + tdA(L, t)
tdrs.MoveNext

Wend

Dim ColNo As Integer
ColNo=t+1

' now creating the new tables

'Dim NextTablelndex As Integer

NextTablelndex = 1 ' for creation purposes like Table21 and Table22 ...
"if we select the table2 for separation

Dim cn As ADODB.Connection
Dim cmd As New ADODB.Command

For j =0 To Form5.Listl.ListCount - 1
'Set f = td.Fields(Form5. List1.List(j))
For k=0 To ColNo

If Form5.List1.List(j) = tdA(0, k) Then
fldno = k

Exit For

99

End If
Next k

Set cn = SQL_OpenDatabase(FileName)

cmd.ActiveConnection = cn
cmd.CommandType = adCmdText

If tdA(1, fldno) = "varchar" Then
dtype = "varchar(50)"

Else

dtype = tdA(1, fldno)

End If

If j=0Then
cmd.CommandText = "CREATE TABLE " + TheTableName + Chr(NextTableIndex + 48) + " (" +
tdA(O, fldno) + " " + dtype +")"
Else
cmd.CommandText = "ALTER TABLE " + TheTableName + Chr(NextTablelndex + 48) + " ADD " +
tdA(O, fldno) + " " + dtype
End If

cmd.Execute
cn.Close

Next j

"add the first field of the list2 as connection field

'Set f = td.Fields(Form5.List2.List(0))
For k=0 To ColNo

If Form5.List2.List(0) = tdA(0, k) Then
fldno = k

Exit For

End If

Next k

Set cn = SQL_OpenDatabase(FileName)
cmd.ActiveConnection = cn
cmd.CommandType = adCmdText

If tdA(1, fldno) = "varchar" Then
dtype = "varchar(50)"

Else

dtype = tdA(1, fldno)

End If

cmd.CommandText = "ALTER TABLE " + TheTableName + Chr(NextTablelndex + 48) + " ADD " +
tdA(O, fldno) + " " + dtype

100

cmd.Execute
cn.Close

NextTablelndex = NextTablelndex + 1

'newDB.TableDefs.Append newTD
‘Set newTD = New TableDef

For j =0 To Form5.List2.ListCount - 1
'Set f = td.Fields(Form5.List2.List(j))
For k=0 To ColNo

If Form5.List2.List(j) = tdA(0, k) Then
fldno = k

Exit For

End If

Next k

Set cn = SQL_OpenDatabase(FileName)

cmd.ActiveConnection = cn
cmd.CommandType = adCmdText

If tdA(1, fldno) = "varchar" Then
dtype = "varchar(50)"

Else

dtype = tdA(1, fldno)

End If

If j=0Then
cmd.CommandText = "CREATE TABLE " + TheTableName + Chr(NextTablelndex + 48) + " (" +
tdA(O, fldno) + " " + dtype +")"
Else
cmd.CommandText = "ALTER TABLE " + TheTableName + Chr(NextTablelndex + 48) + " ADD " +
tdA(0, fldno) + " " + dtype
End If

cmd.Execute
cn.Close

Next j

'newTD.Name = TheTableName & NextTablelndex
NextTablelndex = NextTablelndex + 1
'newDB.TableDefs.Append newTD

"filling the values

Dim newRS1 As New ADODB.Recordset

' removing the redandancies from the created tables
‘Dim coll As New Collection, stPos As String

On Error Resume Next

Err.Clear

101

Fori=1To NextTablelndex - 1

'Set newRS = newDB.OpenRecordset(TheTableName & i)
newRS1.LockType =3
newRS1.0pen "Select * from " & TheTableName & i, dbconn

rs1.MoveFirst
While Not rs1.EOF
'MsgBox rsl.Fields.Count
' check for redandant
stPos ="("
For j =0 To newRS1.Fields.Count - 1
If rs1.Fields(newRS1.Fields(j).Name).Type = adVarChar Then
stPos = stPos + rs1.Fields(newRS1.Fields(j).Name).Value
Else
stPos = stPos + Str(rs1.Fields(newRS1.Fields(j).Name).Value)
End If
If j <> newRS1.Fields.Count - 1 Then
stPos = stPos + ""
Else
stPos = stPos +)"
End If
Next j
coll.Add stPos, stPos
If Err.Number =0 Then
newRS1.AddNew
For j =0 To newRS1.Fields.Count - 1
newRS1.Fields(j).Value = rs1.Fields(newRS1.Fields(j).Name).Value
Next j
newRS1.Update
Else
Err.Clear
End If
rsl.MoveNext
Wend
newRS1.Close
Next i
rs1.Close
End If

Fori=1To2
'Display_Table i, TheTableName & i
display_datagrid "Select * from " & TheTableName & i
MsgBox "This is " & TheTableName & i, , "DB Normalizer"
Next i

NF3 = True

End Sub

102

