
APPLICATION OF TECHNOLOGY ACCEPTANCE MODEL

ON DATABASE NORMALIZER

Ahmed Abdulhakim Ahmed Al-Absi

Universiti Utara Malaysia

2011

APPLICATION OF TECHNOLOGY ACCEPTANCE MODEL

ON DATABASE NORMALIZER

A project submitted to Dean of the Awang Had Salleh Graduate School

of Arts and Sciences in partial Fulfillment of the requirements for the

degree Master of Science of Information Technology

Universiti Utara Malaysia

© Al-Absi, Ahmed, 2011. All rights reserved.

I

PERMISSION OF USE

In presenting this project in partial fulfillment of the requirements for a

postgraduate degree from Universiti Utara Malaysia, I agree that the University

Library may make it freely available for inspection. I further agree that

permission for copying of this project in any manner, in whole or in part, for

scholarly purpose may be granted by my supervisors or, in their absence by the

Dean of Postgraduate Studies and Research.

It is understood that any copying or publication or use of this project or parts

thereof for financial gain shall not be allowed without my written permission. It is

also understood that due recognition shall be given to me and to Universiti Utara

Malaysia for any scholarly use which may be made of any material from my

project. Requests for permission to copy or to make other use of materials in this

project, in whole or in part, should be addressed to

Dean of Awang Had Salleh Graduate School of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman.

II

ABSTRACT

Normalization is one of the most important activities in database designing. The good

database design is the database that meets user requirements and designed its structure

carefully. Therefore, this study focused on developing a database normalization

application that helps database designers to perform the normalization process

automatically and improves the database designing by avoiding the problems of carrying

out normalization manually which has many drawbacks such as time consuming, prone to

errors and requires more than one skilled user. The main objective of this study is to

develop a database normalizer application to normalize the database tables up to the third

normal form (3NF). This study provides a normalization algorithm to perform the 1NF,

2NF, and 3NF automatically based on Microsoft Access and SQL Server databases.

Experiment was conducted to check the functionality in performing the normalization

process. The experiment result showed that the prototype achieved the result successfully

as expected and fulfills the requirements and rules of normalization processes. Moreover,

a questionnaire based on the Technology Acceptance Model technique has been adopted

to ensure of the prototype level in terms of easiness of use, and satisfaction.

III

Dedication

Specially dedicated to

My beloved father and mother

To my siblings and family

Thanks for all the encouragement and support

IV

ACKNOWLEDGEMENT

Alhamdulilah. All thanks and praise to Allah for giving me the strength to pursue and complete

this project.

I would like express my deepest gratitude to my supervisor Assoc. Prof. Abd Ghani B. Golamdin

for his support, guidance and ideas given to me throughout this research and for finding time and

patience reading my drafts repetitively are very much appreciated.

Many thanks go to my evaluator Dr. Massudi Mahmuddin for his tremendous help in providing

me the valuable support, time and feedback are much appreciated.

I am grateful to all lecturers of the College of Arts and Sciences at Universiti Utara Malaysia

where I gained a lot of experience, information and knowledge and learnt the most valuable

things in the world of research.

Special thanks to my dear friend Mr. Ahmed Talib for his help in giving me valuable ideas and

sharing me his experience.

My thanks to Mr. Mustafa Muwafak and SerindIT UUM for their help and giving me the

permission to do the interview and the evaluation.

I would like to thank my colleagues and friends who helped me directly or indirectly for the

completion of this project.

Finally, my gratitude and love goes out to my family. This project will not have been possible

without their help and support.

V

TABLE OF CONTENTS

PERMISSION OF USE . I

ABSTRACT II

DEDICATION III

ACKNOWLEDGEMENT IV

TABLE OF CONTENT V

LIST OF TABLES VIII

LIST OF FIGURES IX

LIST OF APPENDICES X

LIST OF ABBREVIATIONS XI

CHAPTER ONE: INTRODUCTION 1

 1.1 Background 1

1.2 Problem Statement 2

1.3 Research Questions 3

1.4 Objectives 3

1.5 Significance of the Study 3

1.6 Scope of the Study 3

1.7 Organization of the Report 4

CHAPTER TWO: LITERATURE REVIEW 5

2.1 Introduction to Database 5

2.2 Database Normalization 7

 2.2.1 First Normal Form (1NF) 8

 2.2.2 Second Normal Form (2NF) 9

 2.2.3 Third Normal Form (3NF) 10

 2.2.4 Boyee Code Normal Form 11

2.3 Related Works 13

2.4 Summary 18

VI

CHAPTER THREE: RESEARCH METHODOLOGY 19

3.1 Problem Understanding 20

3.2 Prototype Design 21

 3.2.1 Data Input (Unnormalized form) 22

 3.2.2 Normalization Algorithm 23

 3.2.2.1 Select Database Table Function 23

 3.2.2.2 Select Primary Keys Function 24

 3.2.2.3 First Normal Form Algorithm (1NF) 24

 3.2.2.4 Second Normal Form Algorithm (2NF) 25

 3.2.2.5 Third Normal Form Algorithm (3NF) 26

 3.2.3 Graphical User Interface (GUI) Design 27

3.3 Prototype Development 29

3.4 Experiment Design 29

3.5 Evaluation 30

3.6 Summary 31

CHAPTER FOUR: ANALYSIS OF THE SYSTEM AND DESIGN 32

4.1 Introduction 32

4.2 Tools for System Design 32

 4.2.1 Unified Modeling Language (UML) 32

 4.2.2 Rational Rose 2010 33

4.3 Database Normalizer Prototype Requirements 33

 4.3.1 Functional Requirements of DBNP 34

 4.3.2 Non-Functional Requirements of DBNP 35

4.4 Modeling and System Design 35

 4.4.1 Use Case Diagram 36

 4.4.2 Use Case Specification 36

 4.4.3 DBNP Sequence Diagram 40

 4.4.4 Class Diagram 43

4.5 Prototype Implementation 43

 4.6 Graphical User Interface 44

 4.7 Summary 51

VII

CHAPTER FIVE: RESULTS AND FINDINGS 52

5.1 Introduction 52

5.2 Experiment Design 52

 5.2.1 Experiement Result 59

5.3 Questionnaire 59

 5.3.1 Questionnaire Analysis 60

 5.3.2 Easiness Evaluation 62

 5.3.3 Satisfaction Evaluation 63

 5.3.4 Reliability Statistics 65

 5.3.4.1 Reliability Statistics for Easiness Evaluation 65

 5.3.4.2 Reliability Statistics for Satisfaction Evaluation 65

 5.3.4.3 Reliability Statistics for All sections 66

 5.3.4.4 Item-Total Statistics 66

5.4 Summary 67

CHAPTER SIX: CONCLUSION AND FUTURE WORK 68

6.1 Conclusion 68

6.2 Research Contribution 69

6.3 Problems and Limitations 69

6.4 Future Work 70

6.5 Summary 70

REFERENCES 71

APPENDICES 75

VIII

LIST OF TABLES

Table 2.1: ClientRental unnormalized data table. 8

Table 2.2: 1NF ClientRental data table. 9

Table 2.3: 2NF tables derived from ClientRental data table. 10

Table 2.4: 3NF tables derived from propertyOwner table. 11

Table 4.1: Functional Requirements

Table 4.2: Apply First Normal Form use case specification

Table 4.3: Apply Second Normal Form use case specification

Table 4.4: Apply Third Normal Form use case specification

Table 5.1: Experimentation standard relations

34

37

38

39

 53

Table 5.2: Experimentation expected results 57

Table 5.3: Descriptive Statistics (Easiness of use) 63

Table 5.4: Descriptive Statistics (Satisfaction)

Table 5.5: Reliability Statistics (Easiness of use)

Table 5.6: Reliability Statistics (Satisfaction)

Table 5.7: Reliability Statistics for all sections

Table 5.8: Item-Total Statistics

64

65

66

66

67

IX

LIST OF FIGURES

Figure 2.1: Functional dependency diagram. 5

Figure 2.2: Student relation example. 6

Figure 2.3: Normalization process diagram. 12

Figure 2.4: Linked list Node structure. 13

Figure 2.5: Graphical, Matrix and Directed graph Representation. 14

Figure 2.6: A screenshot run of JMathNorm tool for 3NF decomposition. 15

Figure 2.7: A screenshot of the main window of the web-based normalization tool. 17

Figure 3.1: Methodology flowchart of the database normalization prototype. 20

Figure 3.2: Structure of Report relation. 22

Figure 3.3: Sample of relation in UNF to be normalized by the prototype.

Figure 3.4: Database Normalizer Prototype GUI.

Figure 3.5: Database Normalizer Architecture.

Figure 4.1: DBNP use case Diagram.

Figure 4.2: Apply 1NF Sequence Diagram.

Figure 4.3: Apply 2NF Sequence Diagram.

Figure 4.4: Apply 3NF Sequence Diagram.

Figure 4.5: DBNP class diagram.

Figure 4.6: Database Normalizer Home Page.

Figure 4.7: Selecting database to be normalized.

Figure 4.8: Selecting table primary keys to be normalized.

Figure 4.9: Performing the INF operation.

Figure 4.10: Performing the 2NF operation.

Figure 4.11: Performing the 3NF operation and selecting the table transitive keys.

Figure 4.12: Shows the tables that been created at 1NF, 2NF and 3NF levels.

Figure 4.13: Shows the automatically created normalized tables in SQL Server database.

Figure 5.1: Type of participants.

Figure 5.2: Age of the participants.

Figure 5.3: Participants educational background.

Figure 5.4: Evaluation result

22

27

28

36

40

41

42

43

45

45

46

47

48

49

50

50

61

61

62

64

X

LIST OF APPENDICES

 Appendix A 75

 Appendix B 77

 Appendix C 80

XI

LIST OF ABBREVIATIONS

1NF First Normal Form

2NF Second Normal Form

3NF Third Normal Form

4NF Fourth Normal Form

5NF Fifth Normal Form

BCNF Boyce-Codd Normal Form

DB Database

DBMS Database Management System

DBNP Database Normalizer Prototype

ERD Entity-Relationship Diagram

FD Functional Dependency

GUI Graphical User Interface

IT Information Technology

TAM Technology Acceptance Model

UML Unified Modelling Language

UNF Un-Normalized Normal Form

UUM Universiti Utara Malaysia

1

CHAPTER ONE

INTRODUCTION

1.1 Background

Data has become one of the important strategic resources for many organizations from industry,

and government. The tradition data resource had been managed by a file processing system that

requires no special data management techniques. Now, data has been stored and manipulated

through database management systems (DBMS) as the need for information processing has

become necessary.

In 1972, Relational databases has been proposed by Dr. Codd as stated in Connolly and Begg

(2004) which are widely used in almost commercial applications to store, manipulate and use

huge data for a specific enterprises and decision making. The success of relational database

modeled for any enterprise is depending on the design of relational schema (Bahmani,

Naghibzadeh, & Bahmani, 2008). Process of designing databases is referring to the activities that

are related to the design of the database structure for storing and managing end-user data. The

good database design is that database which meets all user requirements and designed its

structure carefully (Rob & Coronel, 2009). Database design is an essential phase of working with

databases where it affects a good DBMS to work poorly with a badly designed database.

Therefore, to have a proper database design, database designer should identify exactly the

expected use of database such as process of designing a data warehouse database that requires

identifying the historical data also designing a centralized database involve using a centralized

approach which is differs from that one in distributed database (Rob & Coronel, 2009).

2

One of the essential steps in designing stage of any relational database is Normalization, which

defined as the technique that can used to produce a set of relations with desirable properties for

specifying enterprises data requirements (Connolly & Begg, 2010). The goal of normalization is

to create a set of relational tables with minimum data redundancy and to avoid insertion and

deletion anomalies. In case if the redundant data cannot be avoided in databases, then reducing

the redundancy should be the objective for any database designer to achieve with the help of data

normalization (Ram, 2008).

Normalization is achieved in steps. Every step has its own name and requirements, these steps

names are First Normal Form (1NF), Second Normal Form (2NF), Third Normal Form (3NF),

Fourth Normal Form (4NF) and Fifth Normal Form (5NF). However, the last two normal forms

deals with situation that is very rare (Connolly & Begg, 2010).

1.2 Problem Statement

In most of software industries, process of normalization is still done manually which requires

more than one experienced user to do normalization (Dongare, Dhabe, & Deshmukh, 2011). In

large database enterprises, there is large number of relations that contains many attributes and

functional dependencies which involves normalization process. The problem of carrying out

normalization manually is in its time consuming, and it’s prone to errors on dealing with large

number of attributes (Dongare, Dhabe, & Deshmukh, 2011). Another problem is that performing

normalization manually is costly because it requires more than one skilled user in database design.

Moreover, according to Yazici and Karakaya (2007) the available commercial database tools are

not providing a full solution for normalization and requiring a programming and data structure

skills.

3

1.3 Research Questions

The research questions that represent this study are:

1. What is the requirement to develop a database normalizer application systematically?

1.4 Objectives

1. To develop a prototype tool that can do database normalization systematically.

1.5 Significance of the Study

The developed normalization application is based on a windows application for faster

performance, normalization process will generate a normalized relational tables based on

relations that been created on a given database after entering table’s records. The database

normalizer prototype is a contribution to the society especially for users who work on database

normalization. This prototype can easily be used by any user with little background on database

normalization like database relations attributes and functional dependencies.

1.6 Scope of the Study

The study focused on the first three types of normalization: first normal form (1NF), second

normal form (2NF), and third normal form (3NF). This prototype work based on Microsoft

Access and SQL Server databases.

4

1.7 Organization of the Report

This report is divided into six chapters. The first chapter provided an introduction about database

designing and normalization. It includes research problem statement, research questions,

objectives, significance and scope of the study. Chapter Two is a review of related literatures

pertaining to this project which is divided into three sections: introduction to database, database

normalization, and database normalization applications. Chapter Three presented the research

methodology that been used in this project in details. The fourth chapter discussed the

normalization normalizer prototype analysis and implementation. Chapter Five presents the

results and findings of the experiment along with the questionnaire. Finally, the conclusions and

recommendations for future research are stated in the Chapter Six. The used references along

with the required appendices have been attached at the end of this study.

5

CHAPTER TWO

LITERATURE REVIEW

This chapter presents a brief introduction to database and concept of normalization as well

discusses previous literatures that are related to database normalization applications.

2.1 Introduction to Database

Database is a collection of related data that is created and maintained either by a set of

applications written specially for that task or by database management system where this

database contains a complete description and definition of the database structure and constraints

(Srikanth & Sudarshan, 2001). The data in database are represented in form of tables/relations as

a set rows/tuples and columns/attributes. The database columns are called attributes and have a

name and are ordered in the table. A table contains functional dependencies (FDs) between its

attributes. Functional dependency is a constraint between two sets of attributes from the database

and describes the relationship between attributes (Connolly & Begg, 2010). The functional

dependencies and attributes determine the normal form of the table. For instance, if there are

attributes called A and B in a relation called R, we say attribute B is functionally dependent on

attribute A (represented as A → B), if each value of attribute A in relation R is associated with

exactly one value of attribute B in R as shown in Figure 2.1.

Figure 2.1: Functional dependency diagram.

6

It is essential in any database relation to have attributes where every row in the relation must be

unique to provide enough information. These unique values are known as the key. One relation

may have more than one key called candidate key. For example, in the Figure 2.2 below several

columns might serve as a key. Either students register number or students name, both are

candidate keys. One of the candidate keys are considered as primary key which is preferred to be

register number rather than name because same name is possible for each student. Figure 2.2

below shows an example of a database relation called student contains set of attributes that

represents students’ information such as RegNo, Name, Course, Sex and Age. To identify the

data of this relation every row must has a unique value, in this case RegNo is the primary key.

 Student (RegNo, Name, Course, Sex, Age)

 ↓ ↓ ↓

 Relation name Primary Key List of Attributes

Row /

Tuple

Figure 2.2: A student relation example.

RegNo Name Course Sex Age

AQ008 Ahmed MSc IT M 25

CA032 Abdulhakim MCA M 31

CA022 Merry MBA F 29

UQ019 Absi BCA M 21

Column/Attribute

s

7

2.2 Database Normalization

Normalization is the most applied technique for analyzing database relation based on their

primary key and functional dependencies to reduce data redundancy and file storage space of a

given relation (Srikanth & Sudarshan, 2001). There are several forms of normalization, in

practice, databases are normalized up to third normal form, including BCNF (Bahmani,

Naghibzadeh, & Bahmani, 2008). This study focuses on the first three normal forms and not

addressing higher order of normalization.

Before starting with first normal form, there is normalization process case called Unnormalized

Normal Form (UNF) which refers to a relation that holds one or more repeating groups. This

case requires transforming the data from the information sources like form into table format with

columns and rows. The output of this process is unnormalized data in form of table (Connolly &

Begg, 2010). The next section discusses process of transferring the unnormalized table to 1NF

and the following example comes from Connolly and Begg (2010, Chapter 14) which shows the

ClientRental relation normalization process for UNF, 1NF, 2NF and 3NF relations. This

ClientRental relation is one of five other relations that have been chosen to undergone to

experiment to check the functionality of the prototype in fulfilling the requirements and rules of

1NF, 2NF and 3NF. Chapter Five provides more details on the experiment and the chosen

relations.

8

2.2.1 First Normal Form (1NF)

 A relation can be in 1NF if every cell on the relation contains exactly one value where all the

repeated data has to be removed. According to Connolly and Begg (2010) transforming UNF to

1NF involves the following:

- Choosing table attributes that acts as the key values.

- Identifying the repeating groups in the unnormalized table.

- Removing the repeated group by one of two approaches: Either by inserting data into the

empty rows that hold the repeated data or by placing the repeated data in a separate table

with a copy of the original key attributes.

In Table 2.1, the data is in unnormalized form because it contains a repeated group for attributes

(propertyNo, pAddress, rentStart, rentFinish, rent, ownerNo, and oName). Moreover, client

named John has two values for propertyNo (PG4 and PG16).

Table 2.1: ClientRental unnormalized data table.

Therefore, to transfer Table 2.1 to 1NF, each cell must have a single value by inserting data into

each row of CilentRental relation. The output of this process is shown in Table 2.2.

9

Table 2.2: 1NF ClientRental data table.

2.2.2 Second Normal Form (2NF)

A relation can be in 2NF if it is in 1NF and all non-primary attribute be fully functionally

dependent on the primary key. This form requires removing the partial dependencies attributes

that are related to only part of the primary key and assign a new table to place the functionally

dependent attributes along with a copy of their determinant.

In order to transfer Table 2.2 to 2NF, this requires checking the functional dependencies of

ClientRental relation through identifying existence of any partial dependencies on the primary

key as following:

- cName is partially dependent on the clientNo primary key.

- pAddress, rent, ownerNo and oName are partially dependent on the propertyNo primary

key.

- rentStart and rentFinish are fully dependent on the clientNo and propertyNo primary key.

 The output of this process will be creation of three new tables called Client, PropertyOwner,

and Rental as in Table 2.3.

10

Table 2.3: 2NF tables derived from ClientRental data table.

2.2.3 Third Normal Form (3NF)

A relation can be in 3NF if it is in 1NF and 2NF and every non primary attribute is functionally

dependent on just the primary key. This normal form is based on the transitive dependency and

requires assigning the transitive dependences in a new table along with a copy of their

determinant.

From Table 2.3, the propertyOwner table holds transitive dependency where the oName attribute

is dependent on ownerNo attribute, so this transitive dependency must be placed in a new table

called Owner as in Table 2.4.

11

Table 2.4: 3NF tables derived from propertyOwner table.

2.2.4 Boyce-Codd Normal Form (BCNF)

A relation can be in Boyce-Codd Normal form if every determinant is a candidate key. If a

relation has only one candidate key then 3NF and BCNF are equivalent and if not then the

functional dependencies must be removed and placed in a new relation.

In fact, the Table 2.4 of 3NF is equivalent to BCNF because Client, PropertyForRent, and Owner

tables have a single determinant which is the candidate key while Rental table contains 3

determinants so because of that all tables are candidate keys then in BNCF.

12

Figure 2.3 below illustrates process of normalization diagram.

Figure 2.3: Normalization process diagram (Connolly & Begg, 2010).

13

2.3 Related Works

To eliminate the drawbacks of the manual normalization process that been mentioned in the

problem statement, many researchers already attempted to come out with automation for

normalization process.

Recently, Dongare, Dhabe, and Deshmukh (2011) proposed a semi-automated normalization tool

using single linked list to represent relations as data structure as shown in Figure 2.4. The tool

works at schema level for 2NF and 3NF of normalization which means the tool normalizes tables

before defining a table and inserting records to it. Although this approach is convenient but still

it is not fully automated where user is required to set empty database relations to be normalized

manually at schema level. Therefore, in this work, the prototype deals with inputted tables that

been already stored with records which mean normalization will be carried out for 1NF, 2NF and

3NF after defining and entering table’s records of a given database.

Figure 2.4: Linked list Node structure.

14

Bahmani, Shekofteh, Naghibzadeh, and Deldari (2010) proposed database normalization

application using parallel algorithm to compute and reduce time of database normalization

process. The proposed application is for 2NF and 3NF normalization process. The process of the

algorithm was based on using three data structures: Dependency Graph, Dependency Matrix and

Directed Graph Matrix to represent and manipulate dependencies amongst attributes of a relation

as shown in Figure 2.5. The proposed application has shown a good result in reducing the time of

normalization using parallel algorithm than any other algorithm. However, their scope was

limited to 2NF and 3NF only. In addition the application deals with relations that has no repeated

data and already normalized in its 1NF. Therefore, in this research, the prototype eliminates the

repeated data and performs the 1NF systematically in addition to 2NF and 3NF. According to

Hoffer, Prescott, and McFadden (2007) normalization is process of converting complex data

structures into simple and stable data structures. Therefore, in this study, the prototype was

implemented without using any complex data structures.

Figure 2.5: (a) Dependencies graphical representation. (b) Dependency Matrix.

(c) Directed Graph Matrix. (Bahmani et al., 2010)

15

Yazici and Karakaya (2007) proposed another automatic normalization tool called JMathNorm

designed using built-in functions provided by Mathematica with user designed interface using

Java language. The important aspect in this tool is that it provides facility to normalize relations

up to Boyce-Codd Normal Form (BCNF). However, normalization process of this tool is

represented by the symbolic nature of Mathematica as shown in Figure 2.6. Moreover,

JMathNorm tool does not provide facility of table creations for the normalized schema of any

DBMS. Therefore, in this research, the prototype generates normalized relations in form of

structured tables of a given database depending on a DBMS.

Figure 2.6: A screenshot run of JMathNorm tool for 3NF decomposition.

According to Yazici and Karakaya (2007) the available commercial database tools are not

providing a full solution for normalization and requiring a programming and data structure skills.

One of these tools is performing the normalization through Metamodelling in which the Unified

Modelling Language (UML) is used to access Object Constraint Language (OCL) to construct

expressions that encode Functional Dependency’s using classes at a meta-level (Akehurst,

16

Bordbar, Rodgers, & Dalgliesh, 2002). In the study, the process of automation is achieved by

using two declarative specifications over the UML meta-model.

Kung and Tung (2006) proposed a web-based normalization tool using Java applet in which it

can be accessed through the Internet. The tool developed for purpose of enhancing teaching and

learning of database normalization to students. The study had evaluated the students’ perceptions

of the tool through a questionnaire for 45 students. The result of evaluation found the tool easy to

use and the step-by-step feature helped students gain understanding of database normalization

process. However, this tool does deal with functional dependencies in form of symbols rather

than a structured database relation as shown in Figure 2.7. The tools do not provide visual aid for

normalization. Another issue is that developing a database tool in a web-based platform is not

recommended because web application performance is slower than windows application

especially in dealing with huge database relations (Bhavsar, 2008). Therefore, in this research,

the developed prototype will be based on a windows application for faster performance and

normalization process will be carried out based on relations that been created by user on a

database as a structured tables where the prototype will generate a normalized relations for the

given database.

17

Figure 2.7: A screenshot of the main window of the web-based normalization tool.

Mitrovic (2002) also developed a web enabled data normalization tutor called NORMIT.

NORMIT is a system proposed to teach university students concept of database normalization

and solve problems. The student is required to register first where the system provides the

student a general description about the system and data normalization then student has to select a

predefined normalization problem to normalize from list. NORMIT involves the student to

determine prime attributes, candidate keys, compute the set of attributes closure, simplify

functional dependencies, and the normal form the table is in. However, these requirements made

the approach to be difficult for learners.

18

2.4 Summary

This chapter presented a brief introduction to database in terms of database tables and functional

dependencies, moreover discussed in details the concept of normalization along with its rules and

requirements till the third normal form. The chapter discussed as well the previous literatures

that were related to database normalization application. The next chapter presents the research

methodology that defines the layout phases of this study to achieve the objectives.

19

CHAPTER THREE

RESEARCH METHODOLOGY

In order to complete and answer the research questions of this study, researcher used a research

methodology that defines the layout of the research phases. According to Hoffer, George, and

Valacich (2002) the best methodology is that which ensures a reliable approach in all research

phases and facilities achieving the identified objectives easily. The research approach of this

study is inspired from the General Methodology for Design Research (GMDR) which is

advocated by Vaishnavi and Kuechler (2008). Applying this methodology helps in producing

the proposed prototype in a better quality and achieves the objectives perfectly.

The methodology has five phases as shown in Figure 3.1:

i. Problem Understanding.

ii. Prototype Design.

iii. Prototype Development.

iv. Experiment phase.

v. Prototype Evaluation.

The study carried out in several steps as illustrated in Figure 3.1 This methodology has been

carefully designed to make sure that it is flexible and more suitable for developing the database

normalization prototype. The aims of this study accomplished when the prototype is developed

and evaluated.

20

Figure 3.1: Methodology flowchart of the database normalization prototype.

3.1 Problem Understanding

The first stage of this methodology is to understand the objectives and scope of this study. This

stage required understanding and analyzing the problem in order to define the problem

(Whitten, Bentley, & Dittman, 2001). Therefore, this case required a clear understanding of

normalization concept in all of its forms (1NF, 2NF, & 3NF) along with database relations

background. The researcher checked the previous related work on the normalization concepts

and tools and gathers required information through interview as a primary data sources and from

secondary data sources as well. The aim of the interview was to explore how do IT company’s

database designers achieve normalization process and what is the most used types of

21

normalization process along with its importance to projects work. The interview (using

unstructured interview with open ended questions) was carried out in IT Company called

SerindIT at Sintok city and conducted with three employees who were working as Database

designer, Database administrator and software programming and developer. The interviews

generally produce riches detailed data about a much smaller number of people where

interviewees should be knowledgeable and experienced on the topic they provide information on

(Patton, 2002; Rubin & Rubin, 2005). Therefore, the participants of the interview were chosen to

provide more information and knowledge. According to the information that gathered during the

interview, the conclusion was that SerindIT company developers are performing the

normalization process manually with the help of Entity-relationship diagram approach (ERD)

Moreover, the employees go up to the 3NF and stated that the 4NF doesn’t occur. Appendix A

provides more details on the interview questions and summary of participants responses.

The secondary data sources were also used in this study such as standard texts books like

(Connolly & Begg, 2010; Teorey et al., 2011; Srikanth & Sudarshan, 2001), articles, journals,

proceedings and websites. The gathered data have been analyzed and helped the researcher to

have a clear idea and more understanding of normalization process.

3.2 Prototype Design

This phase started by identifying the inputs/outputs and the functional system requirements for

the proposed prototype. The prototype has been designed using the Rational Rose 2010 software

to construct the Unified Modeling Language (UML) diagrams and design the use case diagram

along with sequence diagrams and class diagrams as shown in Chapter Four. The prototype

designed process carried out carefully according to the prototype needs.

22

3.2.1 Data Input (Unnormalized form)

The process of normalization in this prototype involves the user to specify and retrieve the

required database sources to be normalized in a form of structured database relation from

Microsoft Access as in Figure 3.2 and Figure 3.3. This stage of design identifies the Unormalized

Form (UNF) where the attributes of the retrieved relation are all in a single relation. The

prototype will check the redundancy of the inputted relation and remove the repeating groups.

The prototype identifies the retrieved database structure in terms of relations, attributes, data

types, and size. The following shows example of database structure of a database relation called

Project used in this prototype. Details of all the used databases relations of this study are

available in Chapter Five.

Figure 3.2: Structure of Report relation.

Figure 3.3: Sample of relation in UNF to be normalized by the prototype.

23

3.2.2 Normalization Algorithms

The normalization algorithms of 1NF, 2NF and 3NF of this prototype are depending on a table

that is in unnormalized form and contains a collection of records. The algorithms check the

matched values and normalize the given table to 1NF, 2NF, and 3NF.

This prototype has been designed based on the requirements and rules of each normalization

forms process that been discussed and illustrated in the literature review for Connolly and Begg

(2010) where if each row contains single value then it is in 1NF. The table has removed partial

dependency then it is in 2NF. Lastly, eliminating the transitive functionally dependency then it is

in 3NF.

3.2.2.1 Select database table function

The Select Database Table function is used to read all the tables that are available in a selected

database. This function works as the prototype input function that inputs the unnormalized table

to be normalized. The function ignores reading system files and temporary files. The output of

this function is displaying the contents of the selected table in a grid. This can be represented in

pseudo code as follows:

Step 0: Open database for input;

Step 1: Read tables of the database;

Step 2: Set database Open (filename);

Step 3: Initialize table definitions and table name type of String;

Step 4: For each table definitions in database (td,i=0,…,n) do Step 5

 Step 5: Assign table name by table definitions.Name;

Step 6: Ignore system tables and temporary tables;

Step 7: Display RecordSources in DBGrid;

Algorithm 1: Pseudo code of selecting database tables.

24

3.2.2.2 Select Primary Key Function

This function is used to allow user to specify the primary keys of the select table. Process of this

requires user to select table first and then according to the selection, all the fields of the table will

be shown to user in form of list to allow user to select the primary keys of the given table. The

output of this process is two lists: first holds the table’s fields and the other list hold the select

primary keys list. The following algorithm describes the process:

Step 0: Initialize tabledefinition, field, and fieldname type of String;

Step 1: Check if database table is selected,

 IF selected, do Step 2-6

 Step 2: Set database Open (filename);

 Step 3: Set table definitions (MainTableName)

 Step 4: For each field in table definitions. Fileds

 Do Step 5-6;

 Step 5: Assign field to fieldname;

 Step 6: Add fieldname to list

 IF not selected do Step 7

 Step 7: Display select table message;

 Algorithm 2: Pseudo code of selecting table’s primary keys.

3.2.2.3 First Normal Form Algorithm (1NF)

Process of transferring the selected table from unnormalized status to INF requires from the user

to specify the primary keys of the given table. The output of this algorithm is creating a new

table with same name of the table name prefixed by “1NF”. The algorithm applies the rules of

the first normal form by assuring that each field in the selected table does not has empty values

and contains single value. According to these rules the algorithm will check each row in the

selected table and fill up the required empty fields automatically. So by this, the rules of 1NF are

applied successfully and the table becomes ready to move to 2NF. A flag (NF1) is used to

indicate the result of 1NF to be used in the rules of 2NF algorithm. The following algorithm

describes the process:

25

Step 0: Check selection of primary key

 IF selected, do Step 1-4

 Step 1: Create new relation with name (“1NF” + MainTableName)

 Step 2: Initialize one-dimensional Array (AA) type of String for each field

 Step 3: Check if RecordSource not in EndOfFile then do Step 4-9;

 Step 4: For each Field in RecordSource (field i, i=0,…,n) do Step 5

 Step 5: IF fields are text and

 IF fields value not null and single value do Step 6

 Step 6: Return Array fields

 Else do Step 7

 Step 7: Edit RecordSource;

 Step 8: Fill empty fields;

 Step 9: Update RecordSource;

 Step 10: IF EndOfFile do step 11

 Step 11: Close RecordSource

 Step 12: Display INF successful

 Step 13: Set NF1= True

 IF not selected, do Step 14

Step 14: Display message select primary key first

Algorithm 3: Pseudo code of 1NF algorithm.

3.2.2.4 Second Normal Form Algorithm (2NF)

The 2NF algorithm works depending on the result of the 1NF, the flag (NF1) indicates that the

table is in INF and ready to be normalized according to 2NF rules. The inputs of 2NF algorithm

are the created table of the 1NF. The algorithm checks the functional dependencies of the fields

on the selected primary keys. The two-dimensional array of type string is used to hold rows and

columns of the table, the purpose of using string is to allow accepting all types of data types. A

function Canseparate is used to separate the 1NF table into sub tables according to their fields’

dependencies on primary keys. The algorithm creates the new sub tables with the same name of

the original table prefixed by “Table n _”. The separation is done according to the similarities of

the fields’ values. After creating the new tables the algorithm eliminates the redundant data. So

by this, the rule of 2NF is applied successfully and the new created tables become ready to move

to 3NF. A flag (NF2) is used to indicate the result of 2NF to be used in the rules of 3NF

algorithm. The following algorithm describes the process:

26

Step 0: Initialize two-dimensional Array type of String

Step 1: Initialize Primarykey, Recordset, and Myindex as integer

Step 2: keyInfo As String, otherInfo As String, CanSeparate As Boolean

Step 3: IF NF1 is false then do Step 4

 Step 4: Display message not in 1NF

 Else do Step 5 to

 Step 5: Open Recordset (“1NF” & MainTableName)

 Step 6: Get index of the selected Primarykey

 Step 7: For each Primarykey selected (pk,i=0,…,n) do Step 8

 Step 8: Check all fields dependency on pk(i);

 Step 9: While Recordset not EOF and Canseparate =True do Step 9

 Step 10: IF field type = “Datatype” then do Step 10

 Step 11: value of field (index) equal to keyInfo

 Step 12: value of field (Recordset) equal to otherInfo

 (Datatype)

 Else do Step 13

 Step 13: IF otherInfoInt Not equal to value of field

 (Recordset) Then CanSeparate = False

 While end

 Step 14: Create new relation with name contains pk(i)

 (“Table”&NextTableIndex&”_”& MainTableName)

 Step 15: Fill the values OpenRecords ((“Table”&i&”_”&

 MainTableName)

 Step 16: Remove redundancies of the created table

 Step 17: Create new relation with all pk(i) and otherInfo fields with

 no primary key dependencies

 (“Table”&i&”_”& MainTableName)

 Step 18: Display 2NF successful

 Step 19: Set NF2 = True

Algorithm 4: Pseudo code of 2NF algorithm.

3.2.2.5 Third Normal Form Algorithm (3NF)

In order to normalize the selected table to 3NF, the algorithm apply the first rule of 3NF by

checking first whether the inputted table is in 2NF or not through the flag, if the flag is True then

the 2NF table will be opened and show all of its attributes, the user in this case is required to

choose the attribute that work as a Transitive key for the table, then the algorithm will apply the

second 3NF rule which is about removing the transitive dependencies by separating the table

according to the similarities of the fields’ values and creating a new relation based on the

27

Transitive key of the table along with its filled data. The following algorithm describes the

process:

Step 0: Check the NF2, IF NF2= false then do Step 1

 Step 1: Display message not in 2NF

 Else do Step 2

Step 2: Open Recordset (2NF table)

Step 3: For each field in table definitions. Fileds, do Step 4-12;

 Step 4: Assign fields to list1;

 Step 5: Add fieldname (Transitivekey) to list2

 Step 6: Get index of the selected TransitiveKey

 Step 7: Create a new table TD.Name = TheTableName & NextTableIndex

 Step 8: Fill up the values Move newRecordset (TheTableName & i)

 Step 9: Check redundant data, For each field in new table Recordset, do Step10-12

 Step 10: IF newRecordset (Fields).Type = (Datatype) Then do Step 11

 Step11: Move value of Recorset.fields to NewRecordsetpoition

 Else do Step 12

 Step 12: Close newRecordset

Step 13: Display TheTableName (i)

Step 14: Set NF3 = True

Algorithm 5: Pseudo code of 3NF algorithm.

3.2.3 Graphical User Interface (GUI) Design

Figure 3.4: Database Normalizer Prototype GUI.

DATABASE NORMALIZER PROTOTYPE

Select
Relation

Select
Primary

Keys

Apply
1NF

Apply
2NF

Apply
3NF

Separate Transitive
Dependencies Keys

Show
Table

Help Exit

28

Figure 3.5 illustrates the architecture of the database normalizer prototype.

Figure 3.5: Database normalizer prototype architecture.

29

3.3 Prototype Development

In this phase, the prototype design of the previous phase has been translated into the program

code to build the prototype. The prototype developed on windows platform as windows

application using Visual Basic programming as front-end and Microsoft Access and SQL Server

as back-end.

In this phase, a prototype development methodology called Code-and-Fix has been used. This

methodology is appropriate for this prototype which is of type throwaway prototypes that used

for answering certain type of questions (Erdil et al., 2003; Norshuhada & Shahizan, 2010). The

Code-and-fix methodology chosen because of its iterative nature where it is easy to modify the

functionality of the prototype whenever is necessary. This methodology is achieved in two

stages: programming some code and then fix the problem in the code which is efficient for early

defect detection and correction (McConnell, 1999).The developing process started and as coding

error occurs it fixed until the prototype is complete. The developed code is available in Appendix

C.

3.4 Experiment

Testing is one of the most critical steps in implementation (Bahrami, 1999). In this step, the

prototype undergone to experiment to check the functionality of the prototype in performing the

normalization process. Five relations have been checked from chosen databases with different

number of attributes and number of rows to be validated and normalized. The experiment

considered the result of the manual normalization process and compared it with the prototype

normalization result of the 1NF, 2NF and 3NF of each relation. Details of all the used databases

relations of this study are available in Chapter Five.

30

3.5 Evaluation

The evaluation phase is one of the important phases of this study. In this phase, a usability

testing technique has been utilized and used to evaluate the prototype by testing it by users. The

usability testing evaluation gives direct input and feedback on how real users use the prototype

(Nielsen & Levy, 1994).

Questionnaire method has been used to check the prototype easiness of use and satisfaction. The

questionnaire designed according to the Technology Acceptance Model (TAM) by Davis (1986)

which is an information systems theory that models how users come to accept and use a

technology. TAM model suggests that when users are presented with a new technology, a

number of factors influence their decision about how and when they will use it, the factors are:

Perceived usefulness which defines the degree to which a person believes that using a particular

system would enhance his job performance, the other factor is the Perceived ease-of-use which

defines the degree to which a person believes that using a particular system would be free from

effort (Davis, 1986).

The questionnaire was answered on a five-point Likert scale. The Likert Scale categorized from

strongly disagrees to strongly agree to facilitate the data analysis (Best & Kahn, 2006).

According to Chan and Teo (2007), the TAM model proved to be a robust in predicting the user

acceptance in the IT field and applied usually in understanding issues in computer and software

adoption. Easiness of use and satisfaction are important measures for acceptance model (Babar,

Winkler, & Biffl, 2007).

Participates in this evaluation were of total 30 Participants (10 developers and 20 students) from

database designers in the IT Company SerindIT and IT background students in UUM. The

questionnaire questions are available in Appendix B.

31

3.6 Summary

This chapter presented the methodology that been used to develop the database normalize

prototype. The methodology involves five phases: Problem understanding, prototype design,

development, experiment, and prototype evaluation. The next chapter presented the design

process of the prototype using the UML notation.

32

CHAPTER FOUR

ANALYSIS OF THE SYSTEM AND DESIGN

4.1 Introduction

This chapter discussed more details on analysis design and proposed prototype design. Among

others, this chapter explains on the requirements determination and structuring activity as well

as the production of system’s design according to functional requirements.

This chapter is elaborating more on analysis. The analysis process should not be taken easily as

most observers agreed that many errors occurs in an information system was a consequence of

inadequate efforts in analysis and design phase. For that reason, any requirements for the

proposed application was thoroughly defined as to make sure that the system meets the needs of

the database designer. The eventual aim of this phase is to identify what designer would require

from the Database Normalier Prototype (DBNP). In order to come out with the result, the

steps for analysing the requirements had been started since at the early stage of the development.

The project initiation and planning phase had boosted up the decision of pursuing the study thus

ignited the analysis process.

4.2 Tools for System Design

There are several tools available. For this project to designed audio visual system, Unified

Modeling Language (UML) Rational Rose 2010 has been selected.

4.2.1 Unified Modeling Language (UML)

According to Krishna and Samuel (2010) the Unified Modeling Language is a standard language

for specifying, visualizing, constructing, and documenting the artifacts of software systems, as

33

well as for business modeling and other non-software systems. The UML represents a collection

of best engineering practices that have proven successful in the modeling of large and complex

systems. The UML is a very important part of developing objects oriented software and the

software development process (Berenbach et al., 2009). According to Barclay and Savage (2004)

an object-oriented approach using the UML was employed in the development of the online food

order management. The primary benefits of such an approach are that it leads to software that

demonstrates the following qualities; Reliability, Robustness, Reparability, Resolvability,

Maintainability, and Reusability one of the goals of Object-Oriented System Analysis and

Design (OOSAD) is to describe several major alternative methodologies for developing

Information System (Kern & Garrett, 2003). An object-oriented approach using the UML was

employed in the development.

4.2.2 Rational Rose 2010

Rational Rose 2010 is a designed to provide the software developer with a complete set of visual

modeling tools and automates parts of the software development process use of Unified

modeling Language (UML). It provides a very robust notation, which grows from analysis into

design. The output from Rational Rose 2010 case tools are use case diagram, sequence diagram,

collaboration diagram, class diagram, object diagram, and activity diagram (Dennis, 2005).

4.3 Database Normalizer Prototype Requirement

System design is the activity of proceeding from an identified set of requirements for a system to

a design that meets those requirements (Daintith, 2009), therefore the first step should be

exploring the requirements of the system, where the system requirements are the start key and

foundation upon which systems are constructed.

34

4.3.1 Functional Requirements of DBNP

Functional requirements are intended to capture the anticipated behavior of the system. There are

several functional requirements to the proposed system (Bennett, 2002). The system consists of

the one user who is a database designer; the designer will interact with the system through

interfaces. As well as the requirements appear it based on the designer needs. Table 4.1

summarizes the functional requirements for the prototype and gives a brief description of the

different requirements.

Table 4.1: Functional Requirements.

Requirement_ ID Function Requirement Priority

DBNP -01 Import Database Mandatory

By the DBNP the designer can import the required

database file to apply the normalization process.

DBNP -02 Select primary key Mandatory

The designer shall define the data base tables’ primary

key trough the use of this function

DBNP -03 Apply 1
st
 Normal Form Mandatory

 This function allows to designer to apply the 1
st

Normal Form

DBNP -04 Apply 2
nd

 Normal Form Mandatory

 This function allows to designer to apply the 2
nd

Normal Form

DBNP – 05 Apply 3rd Normal Form Mandatory

 This function allows to designer to apply the 3rd

Normal Form

35

4.3.2 Non-Functional Requirements of DBNP

The non-functional requirements try to capture properties of the system that has to do with

performance, quality or features that are not fundamental for the system to work (Kern &

Garrett, 2003). They are however very important because they are often properties that highly

desired by the user and can help the system gain competitive advantage over other systems

(Krishna & Samuel, 2010). The list of the nonfunctional requirements for the system as follow:

 Secure data handling: The data has to be stored in a way that they cannot be

compromised.

 User friendly: The graphical user interface has to be easy to understand.

 Reliability: Availability of the system, rate of failure occurrence very low.

 Speed: The system will increase the speed of all daily activities.

 Navigation: The system offering the opportunity to go to other parts of the application.

 Help & Support: Support workflow in the system and support the user to fulfill their

missions.

 Error handling: Errors are avoided as much as possible.

4.4 Modeling and System Design

This section illustrates the design of the system. The design of this system includes the use of

UML diagrams. According to Barclay and Savage (2004) UML diagram is designed to let

developers and users view a software system from a different perspective and in varying degrees

36

of abstraction. UML diagrams commonly created in visual modeling tools include. It includes

use case diagram, sequence diagrams and class diagram.

4.4.1 Use Case Diagram

A use case diagram is a set of scenarios that describing an interaction between a user and a

system. A use case diagram displays the relationship among actors and use cases (Egeberg,

2006). The two main components of a use case diagram are use cases and actors. The following

Figure 4.1 shows the DBNP use case diagram.

Figure 4.1: DBNP use case Diagram.

4.4.2 Use Case Specification

The use case specification shows the essential specifications of the prototype based on the uses

case diagram (Jivan & Gruner, 2009). The DBNP use cases specifications for 1NF, 2NF and 3NF

are depicted in Table 4.2, Table 4.3 and Table 4.4 respectively.

37

Table 4.2: Apply First Normal Form use case specification.

Use Case Name:

Apply 1
st
 Normal Form

ID:

DBNP_03

Importance Level:

High

Primary Actor: Designer

Short Description: Through this function the designer can apply the 1
st
 Normal

Form on the selected database file.

Type: External / Temporal.

Basic Flow of Events

Designer

1. Designer imports the database file.

2. Select the primary key of the selected

database.

3. Press on apply 1
st
 normal form button.

System

4. The system applies the 1
st
 Normal

Form algorithm.

5. The system displays the

confirmation message.

Alternatives

Not applicable

Exceptions : E1: “ Primary key not selected ”

Characteristic of Activation

Click apply button.

Pre-conditions

Database File.

Post-conditions

1
st
 Normal form done.

38

Table 4.3: Apply Second Normal Form use case specification.

Use Case Name:

Apply 2
nd

 Normal Form

ID:

DBNP_04

Importance Level:

High

Primary Actor: Designer

Short Description: Through this function the designer can apply the 2
nd

 Normal

Form on the selected database file which is on the first normal form.

Type: External / Temporal

Basic Flow of Events

Designer

1. Designer imports the database file on

1
st
 NF.

2. Press on apply 2
nd

 normal form

button.

System

3. The system applies the 2
nd

 Normal

Form algorithm.

4. The system displays the

confirmation message.

Alternatives

Not applicable

Exceptions: E1: “Database file on 1 NF not selected”.

Characteristic of Activation

Click apply button

Pre-conditions

Database File on 1
st
 NF

Post-conditions

2
nd

 Normal form done.

39

Table 4.4: Apply Third Normal Form Use Case Specification.

Use Case Name:

Apply 3
nd

 Normal Form

ID:

DBNP_05

Importance Level:

High

Primary Actor: Designer

Short Description: Through this function the designer can apply the 3
rd

 Normal

Form on the selected database file which is on the second normal form.

Type: External / Temporal

Basic Flow of Events

Designer

1. Designer imports the database file on

2
nd

 NF (designer required to choose the

required table to apply rules of 3NF)

2. Press on apply 3
rd

 Normal form

button.

System

3. The system applies the 3
rd

 NF

algorithm.

4. The system displays confirmation

message.

Alternatives

Not applicable

Exceptions: E2: “database file on 2 NF not selected”.

Characteristic of Activation

Click apply button.

Pre-conditions

Database File on 2
nd

 NF.

Post-conditions

3
nd

 Normal form done.

40

4.4.3. DBNP Sequence Diagrams

The sequence diagram kind of Interaction diagram that used to describe the object interaction

(Johan, 2004). The sequence diagram shows the interactions among objects that participate in a

use case and the message that pass between them over time for one use case. In this prototype,

there are three main sequence diagrams that represent 1NF, 2NF, and 3NF as shows in Figure

4.2, 4.3 and 4.4 respectively.

Figure 4.2: Apply 1NF Sequence Diagram.

41

Figure 4.3 illustrates the process of applying the second normal form (2NF) sequence diagram.

This function allows the database designer to apply the 2NF process.

Figure 4.3: Apply 2NF Sequence Diagram.

42

Figure 4.4 illustrates the process of applying the third normal form (3NF) sequence diagram.

This function allows the database designer to apply the 3NF process.

Figure 4.4: Apply 3NF Sequence Diagram.

43

4.4.4 Class diagram

Class diagram one of UML diagrams and type of static structure diagram that describes the

structure of a system by showing the system's classes, their attributes, and the relationships

between the classes (Yi, Wu & Gan, 2005). Class diagrams for system are shown in Figure 4.5

bellow.

Figure 4.5: DBNP class diagram.

4.5 Prototype Implementation

This phase involves the development of the prototype database normalizer. Prior to

implementing the prototype, the prototype requirements have been reviewed to be sure that the

prototype behavior is correct (Peters & Parnas, 2002). The design was translated into program

code using VB language. Microsoft Access and SQL Server used as the databases to store and

retrieve all the required tables that needs to be normalized. The aesthetics of the appearance of

the user interface was granted a prime attention to make the user experience as pleasant as

possible. The following section provides snapshots of the prototype user interfaces.

44

4.6 Graphical User Interface

The developed prototype has many interfaces based on the requirements that have been

discussed in Chapter Three. The following are the prototype interfaces that show the

normalization process functionalities and operations:

(A) Home Page

From the home page, the database designer starts performing the normalization process where

this page contains the following functions as illustrated in Figure 4.6:

- Select Relation: this used for purpose of selecting the required relation that’s need to be

normalized.

- Select Primary Key: this is used for purpose of identifying the primary keys of the

selected table.

- Apply First Normal Form: this is for purpose of applying the 1NF rules on the selected

table where the INF algorithm will be applied automatically.

- Apply Second Normal Form: this is for purpose of applying the 2NF rules on the selected

table where the 2NF algorithm will be applied automatically.

- Apply Third Normal Form: this is for purpose of applying the 3NF rules on the selected

table where the 3NF algorithm will be applied.

- Help: This will show the prototype manual for the user.

- Exit: To exit from the prototype.

- Show table: this is used for purpose of showing the normalization generated tables for

1NF, 2NF, and 3NF.

45

Figure 4.6: Database Normalizer Home Page.

(B) Select Table

Figure 4.7 illustrates the screen of selecting a database where the user is required to select a

database to be normalized through the open wizard.

Figure 4.7: Selecting database to be normalized.

46

(C) Select Primary Key

Figure 4.8 illustrates the screen of selecting the selected table primary keys from a list that

contains all tables’ attributes.

Figure 4.8: Selecting table primary keys to be normalized.

(D) 1NF Form

Figure 4.9 illustrates the screen of performing the 1NF for the selected table by pressing 1NF

button and the system show the process result in the grid.

47

 Figure 4.9: Performing the 1NF operation.

(E) 2NF Form

Figure 4.10 illustrates the screen of performing the 2NF for the selected table by pressing 2NF

button and the system perform the normalization automatically and shows the process result in

the grid.

48

Figure 4.10: Performing the 2NF operation.

(F) 3NF Form

Figure 4.11 illustrates the screen of performing the 3NF process for a table in a 2NF in which the

user is required to specify the transitive keys of the table and the system perform the

normalization automatically and shows the process result in the grid.

49

 Figure 4.11: Performing the 3NF operation and selecting the table transitive keys.

(G) Show Table Form

Figure 4.12 illustrates the output tables of each normal form process “1NF, 2NF, and 3NF”. The

system creates these tables in the SQL Server database automatically at the same time of

performing the normalization.

50

Figure 4.12: Shows the tables that been created at 1NF, 2NF and 3NF levels.

Figure 4.13: Shows the automatically created normalized tables in SQL Server database.

51

4.7 Summary

This chapter discussed the design, development and implementation of the system at the

prototype level. The functional and non functional requirements of the system were initially

determined and then the system modeling was carried out the Unified Modeling Language

(UML). The sequence diagrams and the class diagrams were also presented in this chapter as

design stage. The system was implemented using VB as front-end and Microsoft Access and

SQL Server as back-end. The screen shots of the user interfaces for the different normalization

processes functionalities and operations have been presented.

52

CHAPTER FIVE

RESULTS AND FINDINGS

5.1 Introduction

This chapter aims to discuss the evaluation process of the database normalize prototype. The

evaluation phase is one of the important phases of this study. In this phase, a usability testing

technique has been utilized and used to evaluate the prototype. According to Holzinger (2005)

usability testing with end users is one of the most essential methods in usability evaluation. The

usability testing evaluation gives direct input and feedback on how real users use the prototype

(Nielsen & Levy, 1994).The prototype has undergone to an experiment for purpose of checking

the functionality of the prototype in performing the normalization process. Moreover, a

questionnaire method has been used to ensure of the prototype level in terms of easiness of use

and satisfaction.

5.2 Experiment Design

As the development phase completed the prototype undergone to experiment to check the

functionality in performing the normalization process. For this purpose, five examples of

relations up to the 3NF have been collected from standard books and research papers.

The chosen relations are from different databases with different number of attributes, rows and

functional dependencies to be validated and normalized. The experiment considered the result of

the manual normalization process that mentioned in standard books and research papers i.e.

Connolly & Begg (2010), Teorey et al. (2011), Srikanth & Sudarshan (2001), and compared it

with the prototype normalization result of the 1NF, 2NF and 3NF of each relation. Details and

53

description of the 5 benchmark databases relations in this study are presented in Table 5.1 where

the functional dependencies of each relation are separated by semicolon. To test the normalized

relations output of the prototype, Table 5.2 shows the expected output of the prototype.

Table 5.1 Relations used in the experiment.

R

No.

Relation

Name
Relation Description

Number

of
Attributes

Number of

Functional
Dependencies

1

Report

Relation

(Teorey et

al., 2011)

(ReportNo, Editor, DeptNo,

DeptName, DeptAddress,

AuthorID,AuthorName,

AuthorAddress)

Functional Dependencies are:

- ReportNo → Editor, DeptNo;

- DeptNo → DeptName,

DeptAddress;

- AuthorID → AuthorName;

- AuthorID → AuthorAddress;

8 6

2

ClientRental

Relation

(Connolly &

Begg, 2010)

(clientNo, propoertyNo, cName,

pAddress, rentStart, rentFinish, rent,

ownerNo, oName)

Functional Dependencies are:

- clientNo, propoertyNo →

9 17

54

rentStart, rentFinish;

- clientNo → cName;

- ownerNo → oName;

- prpoertyNo → pAddress,

rent, ownerNo, oName;

- clientNo, rentStart →

prpoertyNo, pAddress,

rentFinish, rent, ownerNo,

oName;

- propoertyNo, rentStart →

clientNo, cName, rentFinish;

3

Student

Relation

(Srikanth &

Sudarshan,

2001)

(MatricNo,SurName,DateOfBirth,

MentorID,MentorSurName,

MentorOffice,CourseCode,

 CourseName,Credits,Grade)

Functional Dependencies are:

- MatricNo → SurName,

DateOfBirth,MentorID,

MentorSurName,

MentorOffice;

- MentorID →

MentorSurName

10 12

55

,MentorOffice;

- MatricNo → SurName ,

DateOfBirth;

- CourseCode → Credits,

CourseName;

- MatricNo,CourseCode →

Grade;

4

Project

Relation

(Rob &

Coronel,

2009)

(ProjectNumber,ProjectName,

EmployeeNumber,EmployeeName,

JobClass,ChargeHour,HoursBilled)

Functional Dependencies are:

- ProjectNumber →

ProjectName;

- EmployeeNumber →

EmployeeName,JobClass,

ChargeHour;

- JobClass → ChargeHour;

- ProjectNumber,

EmployeeNumber →

HoursBilled;

7 6

56

5

Grade

Relation

(Shelly,

Cashman, &

Rosenblatt,

2009)

(StudentNo,StudentName,

TotalCredits,GPA, AdvisorNo ,

AdvisorName , CourseNo,

CourseDESC , NumCredits , Grade)

Functional Dependencies are:

- StudentNo → StudentName,

TotalCredits,GPA,AdvisorNo

,AdvisorName;

- CourseNo → CourseDESC,

NumCredits;

- AdvisorNo → AdvisorName;

- StudentNo → StudentName,

TotalCredits,GPA;

10 12

57

Table 5.2 Experimentation expected results.

R

No.

Relation

Name
2NF Result

3NF Result

1

Report

Relation

ReportNo(ReportNo,Editor,

DeptNo,DeptName, DeptAddress)

AuthorID (AuthorID,AuthorName,

AuthorAddress)

(ReportNo,AuthorID)

ReportNo(ReportNo,Editor,

DeptNo)

DeptNo(DeptName,

DeptAddress)

AuthorID(AuthorID,

AuthorName,AuthorAddress)

(ReportNo,AuthorID)

2

ClientRental

Relation

Client (clientNo, cName)

Rental (clientNo, propertyNo,

rentStart, rentFinish)

PropertyOwner (propertyNo,

pAddress,rent, ownerNo, oName)

Client (clientNo, cName)

Rental (clientNo,

propertyNo,rentStart,

rentFinish)

PropertyForRent (propertyNo,

pAddress, rent, ownerNo)

Owner (ownerNo, oName)

58

3

 Student

Relation

Student (MatricNo,SurName,

DateOfBirth,MentorID,

MentorSurName,MentorOffice)

Course (CourseCode,

CourseName,Credits)

Grade (MatricNo,

CourseCode,Grade)

Student (MatricNo,SurName,

DateOfBirth)

Mentor (MentorID,

MentorSurName,

MentorOffice)

Course (CourseCode,

CourseName,Credits)

Grade (MatricNo,

CourseCode,Grade)

4

Project

Relation

Project (ProjectNumber,

ProjectName)

Employee (EmployeeNumber,

EmployeeName,JobClass,

ChargeHour)

ProjectEmployee (ProjectNumber,

EmployeeNumber, HoursBilled)

Project (ProjectNumber,

ProjectName)

Employee (EmployeeNumber,

EmployeeName,JobClass)

(JobClass, ChargeHour)

ProjEmp (ProjectNumber,

EmployeeNumber,

HoursBilled)

59

5

Grade

Relation

(StudentNo,StudentName,

TotalCredits,GPA,AdvisorNo,

AdvisorName)

(CourseNo,CourseDESC,

NumCredits)

(StudentNo,CourseNo,Grade)

(StudentNo,StudentName,

TotalCredits,GPA)

(AdvisorNo,AdvisorName)

(CourseNo,CourseDESC,

NumCredits)

(StudentNo,CourseNo,Grade)

5.2.1 Experiment Result

In this experiment, the functionality of the prototype has been checked through comparison

between output result of the prototype and expected result in Table 5.2. The experiment showed

that the prototype achieved the result successfully as expected and fulfills the requirements and

rules of 1NF, 2NF and 3NF of normalization processes that been discussed in chapter two.

5.3 Questionnaire

Questionnaire method has been used to check the prototype easiness of use and satisfaction. The

questionnaire designed according to the Technology Acceptance Model (TAM) by Davis (1989)

and was answered on a five-point Likert scale. Participates in this evaluation were of total 30

Participants (10 developers and 20 students) from database designers.

60

The questionnaire measured using the Likert Scale format ranging from strongly disagree to

strongly agree and included three main sections, firstly the demographic questions, secondly

prototype easiness of use questions and lastly satisfaction questions. The questionnaire consisted

of 11 questions exclude the participant’s demographical information. The questionnaire

questions are available in Appendix B. All statistical analysis was carried out using SPSS

program, version 17 (SPSS Inc, Chicago, Il, USA).

5.3.1 Questionnaire Analysis

The prototype has been set along with the questionnaire for the participants to evaluate it in two

places at SerindIT company and at UUM-CAS. The questionnaires have been collected after

participants’ answered the questions where the participants’ response against each question and

each group has been analyzed and calculated. Graphs and tables were used to represent the

statistical data obtained from questionnaires.

According to the analysis, majority of the participants were of male gender with percentage of

83.3% while female formed 16.7% in this study.

The Figure 5.1 below shows the sample of the study (type of the participants) which were for a

total of 30 participants. The analyzing showed the following types of evaluators: Students

formed 66.67% of the participation, 13.33% were DB developers and designers, 16.67% were

programmers and 3.33% participated as analyst who were working at SerindIT company.

61

Figure 5.1: Type of participants.

Age of the participants were 46.67% for the age interval 18-29, 50% for the interval 30-39 and

3.33% were in the interval 40-50 as shown in Figure 5.2.

Figure 5.2: Age of the participants.

62

The educational background of the participants in this study varies as following: 80% as Master

students, 13.33% as Bachelor and 6.67% as PhD as shown in Figure 5.3.

Figure 5.3: Participants educational background.

5.3.2 Easiness Evaluation

The first section of the questionnaire questions was to evaluate the prototype easiness of use.

This section consists of six questions; Table 5.3 describes the number of the respondent, the

minimum and maximum answer, the mean and the STD deviation for this section.

63

Table 5.3: Descriptive Statistics (Easiness of use)

Since the six questions measure the prototype easiness of use, the summation of the

corresponding values of the (mean) row of each question has been divided by the total number of

questions i.e. six questions, so the mean of the all mean values corresponding to the easiness of

use questions is 3.995 which equal almost 66.58% indicates that measuring the prototype

easiness of use is high and agreed altitude.

5.3.3 Satisfaction Evaluation

The second section of the questionnaire questions was to evaluate the prototype satisfaction. This

section consisted of five questions; Table 5.4 describes the number of the respondent, the

minimum and maximum answer, the mean and the STD deviation for this section.

64

Table 5.4: Descriptive Statistics (Satisfaction)

Since the five questions measure the prototype satisfaction, the summation of the corresponding

values of the (mean) row of each question has been divided by the total number of questions i.e.

five questions, so the mean of the all mean values corresponding to the easiness of use questions

is 4. 28 which equal almost 86.6% indicate that measuring the prototype satisfaction is high and

agreed altitude.

Figure 5.4: Evaluation result.

0

10

20

30

40

50

60

70

80

90

100

66.58%

86.6%

65

5.3.4 Reliability Statistics

According to Field (2006) reliability is the degree to which measure are free from error and

therefore yield consistent results. Cronbach’s alpha based on standardized items used to measure

the reliability scale of the prototype usability. The closer the reliability coefficient gets to 1.0, the

better it is, and those values over .80 are considered as good and those value in the .70 is

considered as acceptable and those reliability value less than .60 is considered to be poor (Yu,

2000).

5.3.4.1 Reliability Statistics for Easiness Evaluation

As shown in Table 5.5, Alpha value for the easiness evaluation is above 0.8 which is considered

as good.

Table 5.5: Reliability Statistics (Easiness Evaluation)

 5.3.4.2 Reliability Statistics for Satisfaction Evaluation

 Table 5.6 illustrates Cronbach’s alpha based on standardized items for satisfaction evaluation.

The alpha value for the satisfaction evaluation is above 0.7 which is considered as acceptable.

66

Table 5.6: Reliability Statistics (Satisfaction Evaluation)

5.3.4.3 Reliability Statistics for All Sections

Table 5.7 illustrates Cronbach's alpha to all questions (Easiness and Satisfaction). The alpha

value for the database normalizer prototype usability evaluation is above 0.8 which is considered

as good.

Table 5.7: Reliability Statistics

5.3.4.4 Item-Total Statistics

According to Field (2006) one of the most important for questionnaire reliability the scale if item

deleted. The questionnaire is reliable if the value of Cronbach's alpha around 0.8 or higher. Table

5.8 shows the percentage of scale mean if item deleted and the scale variance if item deleted and

the corrected item total correlation and the Cronbach's alpha if item deleted for the prototype

usability questions.

67

Table 5.8: Item-Total Statistics

5.4 Summary

This chapter presented the evaluation process of the database normalize prototype in terms of

three factors: functionality, easiness of use, and satisfaction. The evaluation process has been

conducted by two usability testing, the first one was by an experiment for purpose of checking

the functionality of the prototype in performing the normalization process. The second usability

test was by a questionnaire to evaluate the prototype easiness of use and satisfaction.

The experiment showed that the prototype achieved the result successfully as expected and

fulfills the requirements and rules of 1NF, 2NF and 3NF. Moreover, the questionnaire reveals

that 66.58% of the participants indicated that the prototype easiness of use and 86.6% indicated

that the prototype satisfaction which is high and agreed altitude.

The analysis of the evaluation process revealed that the prototype fulfils the requirements needed

to normalize databases relations systematically. This led to conclude that the usability of the

prototype was very high on aspects of functionality, easiness and satisfaction.

68

CHAPTER SIX

CONCLUSION AND FUTURE WORK

This chapter concludes and summaries the findings of this study and present the research

contribution along with the limitations and future work.

6.1 Conclusion

This study addressed the problem of performing the database normalization process manually by

the database designers as mentioned in Chapter One. The main objective of this study is to

develop a prototype tool that can do database normalization systematically. The prototype has

been developed to process the first three forms of normalization (1NF, 2NF, &3NF). The

prototype undergone to experiment to check the functionality of the algorithms in performing the

normalization process and the experiment showed that the prototype achieved the result

successfully as expected and fulfill the requirements and rules of normalization processes, which

were mentioned in Chapter Two. In terms of measuring the prototype easiness of use and

satisfaction, the questionnaire reveals that 66.58% of the participants indicated that the prototype

easiness of use and 86.6% indicated that the prototype satisfaction which is high and agreed

altitude.

69

6.2 Research Contribution

The developed database normalizer prototype would assist the database designers and developers

to achieve the process of database tables’ normalization systematically. Additionally, the

developed prototype would also significantly contribute to the society especially for users who

work on database normalization. The prototype helps in reducing time of database designing and

errors of normalization process especially once dealing with large number of attributes. In

addition, the database designers can reduce their effort on normalizing the tables by not spending

long time in performing the normalization. Moreover, this research contributes to the area of

academic in educational environment to assist the students understanding the database

normalization process.

This prototype is easily used by any user with little background on database normalization like

database relations attributes and functional dependencies. Hence, this prototype will offer

extensive benefits to all database designers.

6.3 Problems and Limitations

This study focused on developing a database normalizer prototype to perform the normalization

process on databases automatically. The prototype has been developed successfully. However

there are some limitations as following:

 Although the prototype can cover a wide area of scope of database management

systems types like Oracle, MySQL, and Sybase but the prototype focused on the

70

Microsoft Access and SQL Server databases only. Due to time constrained, other types

of DBMS did not consider in this prototype.

 The prototype can normalize up to the third normalization only.

 Time delay problem has been reported during the creating table process of the first

normal form in Microsoft Access databases while no delay in SQL Server databases.

6.4 Future work

The development for normalizing database tables automatically has been achieved in this study.

However, a lot of enhancements still can be made on the prototype in the future as following:

 Currently, the prototype can handle tables till the third normal form; the prototype can be

extended to 4NF, and 5NF.

 Supporting all types of database management systems.

 Support of visualization of functional dependencies constructed.

 Evaluating the prototype in educational environment to know the positive impact of the

prototype to assist the students in understanding the database normalization process.

6.5 Summary

This chapter summaries the whole research processes included the findings of the study, research

contribution, problems and limitations faced during the study, and the recommended future

works to enhance the study in future.

71

REFERENCES

Akehurst, D., Bordbar, B., Rodgers, P., & Dalgliesh, N. (2002). Automatic normalization via

Metamodelling, In Proceedings of the ASE Declarative Meta Programming to Support

Software Developmen, held on September 23-24, 2002 at Edinburgh, UK (pp. 23-27).

Edinburgh: IEEE.

Babar, M., Winkler D., & Biffl, S. (2007). Evaluating the usefulness and ease of use of a

groupware tool for the software architecture evaluation process. In Proceedings of the

first international symposium on empirical software engineering and measurement,

ESEM 2007, held on September 20-21, 2007 at Madrid, Spain (pp. 430-439). CA: IEEE

Computer Society.

Bahmani, A., Naghibzadeh, M., & Bahmani, B. (2008). Automatic database normalization and

primary key generation. In proceedings of the 21
st

Canadian Conference on Electrical

and Computer Engineering, held on May 4-7, 2008 at Ontario, Canada (pp. 11-16). CA:

IEEE CCECE.

Bahmani, A., Shekofteh, S., Naghibzadeh, M., & Deldari, H. (2010). Parallel algorithms for

automatic database normalization. Computer and Automation Engineering, 2(1), 157-161

Bahrami, A. (1999). Object-Oriented Systems Development: Using the Unified Modeling

Language. New York: McGraw-Hill.

Barclay, K., & Savage, J. (2004). Object-Oriented design with UML and Java. Burlington, USA:

Elsevier Butterworth-Heinemann.

Bennett, S., McRobb, S., & Farmer, R. (2002). Object-oriented system analysis and design

(2nd ed.). UK: McGraw Hill.

Bhavsar, C. (2008). Comparison between Windows Forms and Web Applications. Retrieved

March 30, 2011, from

http://www.eggheadcafe.com/community/aspnet/2/10036174/whats the major difference

between windows and web applications.aspx

Berenbach, B., Paulish, D., Kazmeier, J., & Rudorfer, R. (2009). Software & systems

requirements engineering in practice. New York: McGraw-Hill.

Best, J., & Kahn, J. (2006). Research in Education (10th ed.). New York: Pearson Education Inc.

Chan, H.C., & Teo, H.-H. (2007). Evaluating the boundary conditions of the technology

acceptance model: An exploratory investigation. ACM Transactions on Computer-

Human Interaction, 14(2), 1-22.

Connolly, T., & Begg, C. (2004). Database solutions: A step-by-step approach to building

databases (2nd ed.). Boston: Pearson.

72

Connolly, T., & Begg, C. (2010). Database Systems: A practical approach to design,

implementation, and management (5th ed.). Boston: Pearson.

Daintith, J. (2009). Systems design a dictionary of computing. Retrieved May 15, 2011, from

http://www.encyclopedia.com/doc/1O11-systemdesign.html.

Davis, F. (1989). Technology Acceptance Model for Empirically Testing New End-User

Information Systems: Theory and Results. Boston, MA: Massachussetts Institute of

Technology.

Dennis, A., Wixom, B., & Tegarden, D. (2005). System analysis and design with UML version

2.0: an object-oriented approach with UML (2nd ed.). Hoboken, NJ: John Wiley and

Sons, Inc.

Dongare, Y., Dhabe, P., & Deshmukh, S. (2011). RDBNorma: A semi-automated tool for

relational database schema normalization. International Journal of Database

Management Systems, 3(1), 133-154.

Egeberg, M. (2006). The mobile phone as a contactless ticket. Master’s thesis, Norwegian

University of Science and Technology, Norway.

Erdil, K., Finn, E., Keating, K., Meattle, J., Park, S., & Yoon, D. (2003). Software maintenance

as part of the software life cycle (Department of Computer ScienceTufts University

Technical Report No. Comp-180). Retrieved March 29, 2011, from

http://www.hepguru.com/maintenance/Final_1.pdf

Field, A. P. (2006). Discovering statistics using SPSS (2nd ed.). London: Sage.

Jivan, E. & Gruner, S. (2009).Tool support for more precise use-case specifications. In

Proceedings of Warm-Up Workshop for ACM, WUP/ISS 2009, held on April 1-3, 2009 at

Cape Town, South Africa (pp. 29-32). Cape Town: ACM.

Johan, K. (2004). Information system analysis and design. Retrieved May 11, 2011, from

http://www.cs.toronto.edu/jm/3405/slides2/sequenceD.pdf.

Hoffer, J., George, J., &Valacich, J. (2002). Modern Systems Analysis and Design (3rd ed.).

Upper Saddle River, New Jersey: Prentice Hall.

Hoffer, J., Prescott, M., & McFadden, F. (2007). Modern Database Management (8th ed.).

Upper Saddle River, New Jersey: Prentice Hall.

Holzinger, A. (2005). Usability Engineering Methods for Software Developers. Communications

of the ACM, 48(1), 71-74.

http://www.encyclopedia.com/doc/1O11-systemdesign.html
http://www.cs.toronto.edu/jm/3405/slides2/sequenceD.pdf

73

Kern, J., & Garrett, C. (2003). Effective Sequence Diagram Generation: Effective Use of

Options with Borland Together Technologies. Retrieved May 27, 2011, from

http:www.borland.com/resources/en/pdf/white_papers/20263.pdf

Krishnan, H., & Samuel, P. (2010). Relative Extraction Methodology for Class Diagram

Generation using Dependency Graph. In Proceedings of the International Conference on

Communication, Control and Computing Technologies, ICCCCT 2010, held on October

7-9, 2010 at Kanyakumari, Tamilnadu (pp. 815-820). Tamilnadu: IEEE.

Kung, H., & Tung, H. (2006). A web based tool to enhance teaching/Learning database

normalization. In Proceedings of international conference of southern association for

information system, SAIS 2006.30-38.

Martin, F., & Kendall, S. (2000). UML Distilled: Brief guide to the standard object modeling

language (2nd ed.). Boston, USA: Addison-Wesley Longman Publishing.

McConnell, S. (1999, August). Open-Source Methodology: Ready for Prime Time? [Electronic

version]. IEEE Software, 16(4). 6-11.

Mitrovic, A. (2002). NORMIT: a web-enabled tutor for database normalization. In Proceedings

of the International Conference on Computers in Education ICCE, 2002, held on

December 3-6, 2002 at Auckland, New Zealand (pp. 275-80). CA: IEEE Computer

Society.

Nielsen, J., & Levy, J. (1994). Measuring usability: Preference vs.

performance. Communications of the ACM, 37(4), 66-75.

Norshuhada, S., & Shahizan, H. (2010). Design research in software development: constructing

and linking research questions, objectives, methods and outcomes. Sintok: University

Utara Malaysia Press.

Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Thousand Oaks,

CA: Sage.

Peters, D. & Parnas, L. (2002). Requirements based monitors for real time systems. IEEE

Transactions on software engineering, 28(2), 146-158.

Ram, S. (2008). Teaching data normalization: Traditional classroom methods versus online

visual methods – a Literature review. In Proceedings of the 21st Annual Conference of

the National Advisory Committee on Computing Qualifications (NACCQ 2008), held on

July 4-7, 2008 at Auckland, New Zealand (pp. 327-330). Auckland: NACCQ.

Rob, P., & Coronel, C. (2009). Database Systems: Design, Implementation, and Management

(8th ed.). Boston: Course Technology.

74

Rubin, H. J. & Rubin, I. S. (2005). Qualitative interviewing: The art of hearing data. Thousand

Oaks, CA: Sage.

Shelly, G. B., Cashman, T. J., & Rosenblatt, H. J. (2009). Systems Analysis and Design (8th ed.).

Boston, MA: Course Technology.

Srikanth, S., & Sudarshan, D. (2001). Database management Systems. (1st ed.). Bangalore:

Subhas.

Teorey, T., Lightstone, S., Nadeau, T., & Jagadish, H. (2011). Database Modeling and Design:

Logical Design (5th ed.). Morgan Kaufmann: Morgan Kaufmann.

Vaishnavi, V. & Kuechler, W. (2008). Design science research methods and patterns innovating

information and communication technology research in information systems. New York:

Auerbach.

Whitten, J., Bentley, L., & Dittman, K. (2001). Systems analysis and design methods (5th ed.).

New York: McGraw-Hill.

Yazici, A., & Karakaya, Z. (2007). JMathNorm: A database normalization tool using

mathematica. In Proceedings of International conference on computational science,

2007, held on May 27-30, 2007 at Beijing, China (pp. 186-193). Beijing: Springer-Verlag

Berlin Heidelberg.

Yi, T., Wu, F., & Gan, C. (2005). A comparison of metrics for UML class diagrams. ACM

SIGSOFT Software Engineering Notes, 29(5). 1–6.

Yu, C. H. (2000). An introduction to computing and interpreting Cronbach Coefficient

Alpha in SAS (Arizona State University Technical Report No. 246-26). Retrieved May

27, 2011, from http://www2.sas.com/proceedings/sugi26/p246-26.pdf.

75

Appendix A: The Interview with the SerindIT UUM Company

The interview carried out as part of the initial stage of the research for purpose of gathering more

information on the database normalization and exploring how do IT company’s database

designers achieve normalization process and what is the most used types of normalization

process along with its importance to projects work.

The interview held on SerindIT UUM Company in Sintok city. Three of the company IT staff

who work as database designer, database Administrator and software programming and

developer were interviewed. They were asked the following questions:

1. What methodologies do you use in designing a relational database?

2. How far do you take the normalization process and to which level? Why? How?

3. Is normalization important?

Summary of Responses

Question 1: What methodologies do you use in designing a relational database?

Database Designer

- Through identifying the input sources and output requirements.

- Through building the Entity relationship diagram (ERD).

Database Administrator

- Through identifying the requirements.

- By using composite keys in other tables with caution.

Developer

- Through building the Entity relationship diagram (ERD).

76

- By resolving the many to many relationships.

Question 2: How far do you take the normalization process? Why?

Database Designer

- Each entity has its own table – usually forces till the 3NF.

- 4NF doesn’t occur.

Database Administrator

- I only go to 3NF.

- The 4NF is not done often.

Developer

- Never go beyond the 3NF.

Question 3: Is normalization important?

Database Designer

- Normalization comes to the picture clearly especially once you solve issues of someone

else work.

Database Administrator

- It is good to have till the 3NF to avoid the changes

Developer

- Normalization is important once we look at other people’s tables.

77

Appendix B:

COLLEGE OF ARTS & SCIENCES

UNIVERSITY UTARA MALAYSIA

Questionnaire for Database Normalizer Prototype

Dear Sir/Madam

In recent time, relational databases have been used widely in almost all commercial applications

to store, manipulate and use huge data for a specific enterprises and decision making. One of the

essential steps in designing relational databases is Normalization which used to produce a set of

relations with desirable properties for enterprises data requirements.

This questionnaire designed to seek your assistance on the study entitled “DATABASE

NORMALIZER PROTOTYPE”. This work attempts to evaluate the prototype in terms of

easiness of use and satisfaction. You have been selected to participate in this research being

undertaken as part of my final project for MSc-IT degree in University Utara Malaysia.

Please be assured that the information you have provided is strictly confidential and for academic

purpose only. Your feedback in making this study successful is highly appreciated.

Thanking you for precious time and cooperation. If you have any inquiry please do not hesitate

to contact us.

 Yours sincerely, Supervisor

 Ahmed Absi Assoc. Prof. Abd Ghani B. Golamdin

 MSc-IT Student

 College of Arts & Sciences

 University Utara Malaysia

Email: ahmed_absi2005@yahoo.com

78

The following questions pertain to DATABASE NORMALIZER PROTOTYPE. For each question,

kindly tick the options that come closest to your view and please try to be as accurate as possible when

choosing your answers as your answers will be very important for making critical decisions.

Section A: (Demographic questions)

Please tick (/) or fill up the box at the appropriate blank

1. User:

□ Student

□ DB Developer/Designer

□ Other (please specify) …………………………………………………

2. Gender: □ Male □ Female

3. Age:

 □ 18-29 Years

 □ 30-39 Years

 □ 40-50 Years

 □ 51 and above

 4. Educational Background:

 □ Bachelors’ Degree

 □ Masters Degree

 □ Doctoral

 □ Other (please specify)…………………………………………………...

5. Have you taken any courses in database? (IF No, Close the Questionnaire)

 □ Yes □ No

79

Section B

Please tick Strongly Disagree (SD), Disagree (D), Neutral (N), Agree (A), and Strongly Agree (SA) in the

column that best represent your opinion in each of the statements in the table below.

Thanks for Your Participation

Easiness Of Use SD D N A SA

Q.1 Normalizing relations presented in straight-forward manner

Q.2 The prototype is easy to use and requires fewest steps to

accomplish desired tasks.

Q.3 The prototype visual layout is clear.

Q.4 User friendly and easier to get the result.

Q.5 Are you interesting in using this system?

Q.6 All users can use it without any difficulty.

Satisfaction SD D N A SA

Q.7 Terminologies related to task are appropriate.

Q.8 All functionality is clearly labeled

Q.9 All necessary functionality is available

Q.10 The prototype display appropriate messages in case of any error

Q.11
Are you satisfied that the prototype information is useful for

your purpose?

80

Appendix C: The Algorithm Implementation

Appendix C:

1- First Normal Form Algorithm Source Code Implementation

' Filling out the rest of fileds

 Dim db As Database, rs As Recordset

 Dim AA_Array(100) As String

 If SKF = False Then

MsgBox "Please Select Primary Keys", , "DB Normalizer"

Exit Sub

End If

 Copy_Table FileName, MainTableName '-- here create 1NF_MainTable

 If SQL_Flag = True Then GoTo SQL_Lab '''-------------------- JUMP -------- Applying 1NF Command ---

 Set db = OpenDatabase(FileName)

 Set rs = db.OpenRecordset("1NF_" + MainTableName)

 AA_Counter = 0

 While Not rs.EOF

 For i = 0 To rs.Fields.Count - 1

 If rs.Fields(i).Type = dbText Then

 If rs.Fields(i).Value <> "" Then

 AA_Array(i) = rs.Fields(i).Value

 Else

 rs.Edit

 rs.Fields(i).Value = AA_Array(i)

 rs.Update

 End If

 Else

 If rs.Fields(i).Value <> "" Then

 AA_Array(i) = Str(rs.Fields(i).Value)

 Else

 rs.Edit

 rs.Fields(i).Value = Val(AA_Array(i))

 rs.Update

 End If

 End If

 Next i

 rs.MoveNext

 Wend

 rs.Close

 Data1.RecordSource = "1NF_" & MainTableName

 Data1.Refresh

 MsgBox "First Normal Form Applied Successfully", , "DB Normalizer"

 NF1 = True

 Command4.Enabled = True

Exit Sub

'''--- END ACCESS-- Applying 1NF Command -------------

81

SQL_Lab:

Dim dbconn As New ADODB.Connection

Dim rs1 As New ADODB.Recordset

 Set dbconn = SQL_OpenDatabase(FileName)

 rs1.LockType = 3 ''' for update

 rs1.Open "Select * from F1NF_" + MainTableName, dbconn

 AA_Counter = 0

 While Not rs1.EOF

 For i = 0 To rs1.Fields.Count - 1

 If rs1.Fields(i).Type = adVarChar Then ''Varchar(50)

 If rs1.Fields(i).Value <> "" Then

 AA_Array(i) = rs1.Fields(i).Value

 Else

 'rs1.Edit

 rs1.Fields(i).Value = AA_Array(i)

 rs1.Update

 End If

 Else

 If rs1.Fields(i).Value <> "" Then

 AA_Array(i) = Str(rs1.Fields(i).Value)

 Else

 'rs1.Edit

 rs1.Fields(i).Value = Val(AA_Array(i))

 rs1.Update

 End If

 End If

 Next i

 rs1.MoveNext

 Wend

 rs1.Close

 dbconn.Close

 display_datagrid "Select * from " & "F1NF_" & MainTableName

 'Data1.RecordSource = "F1NF_" & MainTableName

 'Data1.Refresh

 MsgBox "First Normal Form Applied Successfully", , "DB Normalizer"

 NF1 = True

 Command4.Enabled = True

End Sub

82

2- Second Normal Form Algorithm Source Code Implementation

 Dim db As Database

 Dim TableName As String, td As TableDef, f As Field

 Dim A_Tables(30, 30) As Integer ' 30 subtables max, each 30 fileds max

 Dim PK As String, rs As Recordset, MyIndex As Integer

If NF1 = False Then

MsgBox "Please Perform 1NF First", , "DB Normalizer"

Exit Sub

End If

If SQL_Flag = True Then GoTo SQL_Lab '''---------------- JUMP to SQL PART 2NF-------------Applying

2NF----

 Set db = OpenDatabase(CommonDialog1.FileName)

 Set rs = db.OpenRecordset("1NF_" & MainTableName)

 Set td = db.TableDefs("1NF_" & MainTableName)

 If (rs.BOF = True) And (rs.EOF = True) Then

 MsgBox "There is no data in the table"

 Exit Sub

 End If

 Dim keyInfo As String, otherInfo As String, CanSeparate As Boolean ''''' Keyinfo changed to string

 Dim otherInfoInt As Integer, otherInfoDate As Date, otherInfoCurrency As Single

 Dim DoneValues(100) As String, otherInfoText As String ''------ DoneValue changed to string

 Dim DoneCounter As Integer, NextTableIndex As Integer

 DoneCounter = 0

 Dim A_Row As Integer, A_Col As Integer, cancelSearch As Boolean

 A_Row = 1: A_Col = 1 ' the 0 contins the number of fields in this table

 For i = 0 To Form4.List2.ListCount - 1 ' for ech primary key

 PK = Form4.List2.List(i)

 rs.MoveFirst

 ' this for for finding the index of the primary key in the table

 For j = 0 To rs.Fields.Count - 1

 If rs.Fields(j).Name = PK Then MyIndex = j

 Next j

 ' finding the partial dependencies

 keyInfo = "": otherInfoText = "": otherInfoInt = 0 ''------changed keyinfo=-1

 otherInfoCurrency = 0

 For j = 0 To rs.Fields.Count - 1

 CanSeparate = True

 DoneCounter = 0

 Set f = td.Fields(j)

 CanSeparate = True

83

 ' find non searched key

2: rs.MoveFirst

 cancelSearch = True

 While (cancelSearch = True) And (Not rs.EOF)

 keyInfo = rs.Fields(MyIndex).Value

 cancelSearch = False

 For w = 1 To DoneCounter

 If keyInfo = DoneValues(w) Then cancelSearch = True

 Next w

 If cancelSearch = True Then rs.MoveNext

 Wend

 If rs.EOF Then GoTo 1

 keyInfo = "" '''----changed keyinfo=-1

 While (Not rs.EOF) And (CanSeparate = True)

 If f.Type = dbLong Then

 If keyInfo = "" Then '--- changed keyinfo=-1

 keyInfo = rs.Fields(MyIndex).Value

 otherInfoInt = rs.Fields(j).Value

 DoneCounter = DoneCounter + 1

 DoneValues(DoneCounter) = keyInfo

 Else

 If keyInfo = rs.Fields(MyIndex).Value Then

 If otherInfoInt <> rs.Fields(j).Value Then CanSeparate = False

 End If

 End If

 ElseIf f.Type = dbText Then

 If keyInfo = "" Then '--- changed keyinfo=-1

 keyInfo = rs.Fields(MyIndex).Value

 otherInfoText = rs.Fields(j).Value

 DoneCounter = DoneCounter + 1

 DoneValues(DoneCounter) = keyInfo

 Else

 If keyInfo = rs.Fields(MyIndex).Value Then

 If otherInfoText <> rs.Fields(j).Value Then CanSeparate = False

 End If

 End If

 ElseIf f.Type = dbCurrency Then

 If keyInfo = "" Then '--- changed keyinfo=-1

 keyInfo = rs.Fields(MyIndex).Value

 otherInfoCurrency = rs.Fields(j).Value

 DoneCounter = DoneCounter + 1

 DoneValues(DoneCounter) = keyInfo

 Else

 If keyInfo = rs.Fields(MyIndex).Value Then

 If otherInfoCurrency <> rs.Fields(j).Value Then CanSeparate = False

 End If

 End If

 ElseIf f.Type = dbDate Then

84

 If keyInfo = "" Then '--- changed keyinfo=-1

 keyInfo = rs.Fields(MyIndex).Value

 otherInfoDate = rs.Fields(j).Value

 DoneCounter = DoneCounter + 1

 DoneValues(DoneCounter) = keyInfo

 Else

 If keyInfo = rs.Fields(MyIndex).Value Then

 If otherInfoDate <> rs.Fields(j).Value Then CanSeparate = False

 End If

 End If

 End If

 rs.MoveNext

 Wend

 If CanSeparate = True Then GoTo 2

1: If CanSeparate Then

 A_Col = A_Col + 1: A_Tables(A_Row, A_Col) = j

 End If

 Next j

 A_Tables(A_Row, 1) = A_Col

 A_Row = A_Row + 1: A_Col = 1

 Next i

 ' the exact number of trables is row-1

 A_Row = A_Row - 1

 ' now creating the new tables

 NextTableIndex = 1 ' for creation purposes like Table1 and Table2 ...

 Dim newTD As TableDef

 Dim newF As Field, newDB As Database

 Set newDB = OpenDatabase(FileName)

 For i = 1 To A_Row

 Set newTD = New TableDef

 For j = 2 To A_Tables(i, 1)

 Set f = td.Fields(A_Tables(i, j))

 Select Case f.Type

 Case dbLong: Set newF = newTD.CreateField(rs.Fields(A_Tables(i, j)).Name, dbLong)

 Case dbText: Set newF = newTD.CreateField(rs.Fields(A_Tables(i, j)).Name, dbText, 50)

 Case dbCurrency: Set newF = newTD.CreateField(rs.Fields(A_Tables(i, j)).Name, dbCurrency)

 Case dbDate: Set newF = newTD.CreateField(rs.Fields(A_Tables(i, j)).Name, dbDate)

 End Select

'On Error GoTo lab1

 newTD.Fields.Append newF

 Next j

 newTD.Name = "Table" & NextTableIndex & "_" & MainTableName

 NextTableIndex = NextTableIndex + 1

 newDB.TableDefs.Append newTD

 Next i

85

' now creating the other tables that contain the composite primary key

 Set newTD = New TableDef

' first of all, creating the table that contains the promary keys

 For i = 0 To Form4.List2.ListCount - 1 ' for ech primary key

 PK = Form4.List2.List(i)

 rs.MoveFirst

 ' this for for finding the index of the primary key in the table

 For j = 0 To rs.Fields.Count - 1

 If rs.Fields(j).Name = PK Then MyIndex = j

 Next j

 Set f = td.Fields(MyIndex)

 Select Case f.Type

 Case dbLong: Set newF = newTD.CreateField(rs.Fields(MyIndex).Name, dbLong)

 Case dbText: Set newF = newTD.CreateField(rs.Fields(MyIndex).Name, dbText, 50)

 Case dbCurrency: Set newF = newTD.CreateField(rs.Fields(MyIndex).Name, dbCurrency)

 Case dbDate: Set newF = newTD.CreateField(rs.Fields(MyIndex).Name, dbDate)

 End Select

 newTD.Fields.Append newF

 Next i

 Dim NextFieldIndex As Integer, found As Boolean, AllFields As Integer

 ' creating the fields that are not PK

 For AllFields = 0 To rs.Fields.Count - 1

 found = False

 For i = 1 To A_Row

 For j = 2 To A_Tables(i, 1)

 NextFieldIndex = A_Tables(i, j)

 If NextFieldIndex = AllFields Then found = True

 Next j

 Next i

 If found = False Then

 Set f = td.Fields(NextFieldIndex)

 Select Case f.Type

 Case dbLong: Set newF = newTD.CreateField(rs.Fields(AllFields).Name, dbLong)

 Case dbText: Set newF = newTD.CreateField(rs.Fields(AllFields).Name, dbText, 50)

 Case dbCurrency: Set newF = newTD.CreateField(rs.Fields(AllFields).Name, dbCurrency)

 Case dbDate: Set newF = newTD.CreateField(rs.Fields(AllFields).Name, dbDate)

 End Select

 newTD.Fields.Append newF

 End If

 Next AllFields

newTD.Name = "Table" & NextTableIndex & "_" & MainTableName

NextTableIndex = NextTableIndex + 1

newDB.TableDefs.Append newTD

Dim newRS As Recordset

 ' removing the redandancies from the created tables

 Dim coll As New Collection, stPos As String

86

 On Error Resume Next

 Err.Clear

' filling the values

 For i = 1 To A_Row

 Set newRS = newDB.OpenRecordset("Table" & i & "_" & MainTableName)

 rs.MoveFirst

 While Not rs.EOF

 ' check for redandant

 stPos = "("

 For j = 0 To newRS.Fields.Count - 1

 If rs.Fields(newRS.Fields(j).Name).Type = dbText Then

 stPos = stPos + rs.Fields(newRS.Fields(j).Name).Value

 Else

 stPos = stPos + Str(rs.Fields(newRS.Fields(j).Name).Value)

 End If

 If j <> newRS.Fields.Count - 1 Then

 stPos = stPos + ","

 Else

 stPos = stPos + ")"

 End If

 Next j

 coll.Add stPos, stPos

 If Err.Number = 0 Then

 newRS.AddNew

 For j = 0 To newRS.Fields.Count - 1

 newRS.Fields(j).Value = rs.Fields(newRS.Fields(j).Name).Value

 Next j

 newRS.Update

 Else

 Err.Clear

 End If

 rs.MoveNext

 Wend

 newRS.Close

 Next i

 ' filling the last table values that contains the composite key

 i = NextTableIndex - 1

 Set newRS = newDB.OpenRecordset("Table" & i & "_" & MainTableName)

 rs.MoveFirst

 While Not rs.EOF

 ' check for redandant

 stPos = "("

 For j = 0 To newRS.Fields.Count - 1

 If rs.Fields(newRS.Fields(j).Name).Type = dbText Then

 stPos = stPos + rs.Fields(newRS.Fields(j).Name).Value

 Else

 stPos = stPos + Str(rs.Fields(newRS.Fields(j).Name).Value)

 End If

 If j <> newRS.Fields.Count - 1 Then

 stPos = stPos + ","

87

 Else

 stPos = stPos + ")"

 End If

 Next j

 coll.Add stPos, stPos

 If Err.Number = 0 Then

 newRS.AddNew

 For j = 0 To newRS.Fields.Count - 1

 newRS.Fields(j).Value = rs.Fields(newRS.Fields(j).Name).Value

 Next j

 newRS.Update

 Else

 Err.Clear

 End If

 rs.MoveNext

 Wend

 newRS.Close

 rs.Close

 MsgBox "Second Normal Form Applied Successfully", , "DB Normalizer"

 For i = 1 To A_Row + 1

 Display_Table i, "Table" & i & "_" & MainTableName

 Next i

 NF2 = True

 Command5.Enabled = True

 Exit Sub

lab1:

If Err.Number = 3010 Then

MsgBox "DataBase alread Normalized"

newDB.TableDefs.Delete Table1

End If

Exit Sub

'''-------------------------------------- END OF ACCESS 2NF -------------------Applying 2NF---------------------

-

SQL_Lab:

Dim dbconn As ADODB.Connection

Dim rs1 As ADODB.Recordset

Dim tdrs As ADODB.Recordset

Set dbconn = SQL_OpenDatabase(FileName)

Set rs1 = New ADODB.Recordset

Set tdrs = New ADODB.Recordset

88

If dbconn.State = 1 Then

If rs1.State = 1 Then

 rs1.Close

 End If

Else

MsgBox "No Database Connection"

Exit Sub

End If

rs1.Open "select * from " & "F1NF_" & MainTableName, dbconn

'MsgBox rs1.Fields(0).Value

''--Set td = db.TableDefs("F1NF_" & MainTableName)

sql_query = "SELECT c.name ColumnName, t.name ColumnType " & _

 " FROM sys.columns AS c " & _

 " JOIN sys.types as t ON c.user_type_id=t.user_type_id " & _

 " where OBJECT_NAME(c.OBJECT_ID)='" & "F1NF_" & MainTableName & "'"

tdrs.CursorLocation = adUseServer

tdrs.Open sql_query, dbconn

'MsgBox tdrs.Fields(0).Value

Dim tdA() As String

ReDim tdA(0 To 1, 0 To 20)

t = -1

 While Not tdrs.EOF

 t = t + 1

 tdA(0, t) = tdrs.Fields(0).Value

 tdA(1, t) = tdrs.Fields(1).Value

 'MsgBox Str(t) + tdA(0, t) + tdA(1, t)

 tdrs.MoveNext

 Wend

 Dim ColNo As Integer

 ColNo = t + 1

 If (rs1.BOF = True) And (rs1.EOF = True) Then

 MsgBox "There is no data in the table"

 Exit Sub

 End If

 'Dim keyInfo As String, otherInfo As String, CanSeparate As Boolean ''''' Keyinfo changed to string

 'Dim otherInfoInt As Integer, otherInfoDate As Date, otherInfoCurrency As Single

 'Dim DoneValues(100) As String, otherInfoText As String ''------ DoneValue changed to string

 'Dim DoneCounter As Integer, NextTableIndex As Integer

 'Dim A_Row As Integer, A_Col As Integer, cancelSearch As Boolean

89

 DoneCounter = 0

 A_Row = 1: A_Col = 1 ' the 0 contins the number of fields in this table

 For i = 0 To Form4.List2.ListCount - 1 ' for ech primary key

 PK = Form4.List2.List(i)

 rs1.MoveFirst

 ' this for for finding the index of the primary key in the table

 For j = 0 To rs1.Fields.Count - 1

 ''' While Not tdd.EOF

 If rs1.Fields(j).Name = PK Then MyIndex = j

 Next j

 ''' Wend

 ' finding the partial dependencies

 keyInfo = "": otherInfoText = "": otherInfoInt = 0 ''------changed keyinfo=-1

 otherInfoCurrency = 0

 For j = 0 To rs1.Fields.Count - 1

 CanSeparate = True

 DoneCounter = 0

 ' Set f = td.Fields(j)

 CanSeparate = True

 ' find non searched key

22: rs1.MoveFirst

 cancelSearch = True

 While (cancelSearch = True) And (Not rs1.EOF)

 keyInfo = rs1.Fields(MyIndex).Value

 cancelSearch = False

 For w = 1 To DoneCounter

 If keyInfo = DoneValues(w) Then cancelSearch = True

 Next w

 If cancelSearch = True Then rs1.MoveNext

 Wend

 If rs1.EOF Then GoTo 11

 'adInteger adVarChar adDate adSingle adDouble

 keyInfo = "" '''----changed keyinfo=-1

 While (Not rs1.EOF) And (CanSeparate = True)

 'If f.Type = adInteger Then

 If tdA(1, j) = "int" Then

 If keyInfo = "" Then '--- changed keyinfo=-1

 keyInfo = rs1.Fields(MyIndex).Value

90

 otherInfoInt = rs1.Fields(j).Value

 DoneCounter = DoneCounter + 1

 DoneValues(DoneCounter) = keyInfo

 Else

 If keyInfo = rs1.Fields(MyIndex).Value Then

 If otherInfoInt <> rs1.Fields(j).Value Then CanSeparate = False

 End If

 End If

 ' ElseIf f.Type = adVarChar Then

 ElseIf tdA(1, j) = "varchar" Then

 If keyInfo = "" Then '--- changed keyinfo=-1

 keyInfo = rs1.Fields(MyIndex).Value

 otherInfoText = rs1.Fields(j).Value

 DoneCounter = DoneCounter + 1

 DoneValues(DoneCounter) = keyInfo

 Else

 If keyInfo = rs1.Fields(MyIndex).Value Then

 If otherInfoText <> rs1.Fields(j).Value Then CanSeparate = False

 End If

 End If

 'ElseIf f.Type = adCurrency Then

 ElseIf tdA(1, j) = "money" Then

 If keyInfo = "" Then '--- changed keyinfo=-1

 keyInfo = rs1.Fields(MyIndex).Value

 otherInfoCurrency = rs1.Fields(j).Value

 DoneCounter = DoneCounter + 1

 DoneValues(DoneCounter) = keyInfo

 Else

 If keyInfo = rs1.Fields(MyIndex).Value Then

 If otherInfoCurrency <> rs1.Fields(j).Value Then CanSeparate = False

 End If

 End If

 'ElseIf f.Type = adDate Then

 ElseIf tdA(1, j) = "datetime" Then

 If keyInfo = "" Then '--- changed keyinfo=-1

 keyInfo = rs1.Fields(MyIndex).Value

 otherInfoDate = rs1.Fields(j).Value

 DoneCounter = DoneCounter + 1

 DoneValues(DoneCounter) = keyInfo

 Else

 If keyInfo = rs1.Fields(MyIndex).Value Then

 If otherInfoDate <> rs1.Fields(j).Value Then CanSeparate = False

 End If

 End If

 End If

 rs1.MoveNext

 Wend

 If CanSeparate = True Then GoTo 22

91

11: If CanSeparate Then

 A_Col = A_Col + 1: A_Tables(A_Row, A_Col) = j

 End If

 Next j

 ''tdd.MoveNext

 'Wend

 A_Tables(A_Row, 1) = A_Col

 A_Row = A_Row + 1: A_Col = 1

 Next i

 ' the exact number of trables is row-1

 A_Row = A_Row - 1

 ''-Dim newTD As TableDef

 ''-Dim newF As Field, newDB As Database

 '''Set newDB = OpenDatabase(FileName) '--- no need

 ' Now creating the new tables

 Dim cn As ADODB.Connection

 Dim cmd As New ADODB.Command

 NextTableIndex = 1 ' for creation purposes like Table1 and Table2 ...

 For i = 1 To A_Row

' Set newTD = New TableDef

 NewTabName = "Table" & NextTableIndex & "_" & MainTableName

 For j = 2 To A_Tables(i, 1)

 ' Set f = td.Fields(A_Tables(i, j))

 'Select Case tdA(1, A_Tables(i, j))

 'Case adInteger: Set newF = newTD.CreateField(rs1.Fields(A_Tables(i, j)).Name, dbLong)

 'Case adVarChar: Set newF = newTD.CreateField(rs1.Fields(A_Tables(i, j)).Name, dbText, 50)

 'Case adCurrency: Set newF = newTD.CreateField(rs1.Fields(A_Tables(i, j)).Name, dbCurrency)

 'Case adDate: Set newF = newTD.CreateField(rs1.Fields(A_Tables(i, j)).Name, dbDate)

 'End Select

 'newTD.Fields.Append newF

 Set cn = SQL_OpenDatabase(FileName)

 cmd.ActiveConnection = cn

 cmd.CommandType = adCmdText

 If tdA(1, A_Tables(i, j)) = "varchar" Then

 dtype = "varchar(50)"

 Else

 dtype = tdA(1, A_Tables(i, j))

92

 End If

 If j = 2 Then

 cmd.CommandText = "CREATE TABLE " + NewTabName + " (" + tdA(0, A_Tables(i, j)) + " " +

dtype + ")"

 Else

 cmd.CommandText = "ALTER TABLE " + NewTabName + " ADD " + tdA(0, A_Tables(i, j)) + " " +

dtype

 End If

 cmd.Execute

 cn.Close

 Next j

 ' newTD.Name = "Table" & NextTableIndex & "_" & MainTableName

 NextTableIndex = NextTableIndex + 1

 'newDB.TableDefs.Append newTD

 Next i

' Now creating the other tables that contain the composite primary key

 '--Set newTD = New TableDef

' first of all, creating the table that contains the promary keys

NewTabName = "Table" & NextTableIndex & "_" & MainTableName

 For i = 0 To Form4.List2.ListCount - 1 ' for ech primary key

 PK = Form4.List2.List(i)

 rs1.MoveFirst

 ' this for for finding the index of the primary key in the table

 For j = 0 To rs1.Fields.Count - 1

 If rs1.Fields(j).Name = PK Then MyIndex = j

 Next j

 'Set f = td.Fields(MyIndex)

 'Select Case f.Type

 ' Case dbLong: Set newF = newTD.CreateField(rs1.Fields(MyIndex).Name, dbLong)

 ' Case dbText: Set newF = newTD.CreateField(rs1.Fields(MyIndex).Name, dbText, 50)

 ' Case dbCurrency: Set newF = newTD.CreateField(rs1.Fields(MyIndex).Name, dbCurrency)

 ' Case dbDate: Set newF = newTD.CreateField(rs1.Fields(MyIndex).Name, dbDate)

 'End Select

 'newTD.Fields.Append newF

 Set cn = SQL_OpenDatabase(FileName)

 cmd.ActiveConnection = cn

 cmd.CommandType = adCmdText

93

 If tdA(1, MyIndex) = "varchar" Then

 dtype = "varchar(50)"

 Else

 dtype = tdA(1, MyIndex)

 End If

 If i = 0 Then

 cmd.CommandText = "CREATE TABLE " + NewTabName + " (" + tdA(0, MyIndex) + " " + dtype +

")"

 Else

 cmd.CommandText = "ALTER TABLE " + NewTabName + " ADD " + tdA(0, MyIndex) + " " +

dtype

 End If

 cmd.Execute

 cn.Close

 Next i

 ''--Dim NextFieldIndex As Integer, found As Boolean, AllFields As Integer

 ' creating the fields that are not PK

 'Dim found As Boolean

 For AllFields = 0 To rs1.Fields.Count - 1

 found = False

 For i = 1 To A_Row

 For j = 2 To A_Tables(i, 1)

 NextFieldIndex = A_Tables(i, j)

 If NextFieldIndex = AllFields Then found = True

 Next j

 Next i

 If found = False Then

 Set cn = SQL_OpenDatabase(FileName)

 cmd.ActiveConnection = cn

 cmd.CommandType = adCmdText

 If tdA(1, AllFields) = "varchar" Then

 dtype = "varchar(50)"

 Else

 dtype = tdA(1, AllFields)

 End If

 cmd.CommandText = "ALTER TABLE " + NewTabName + " ADD " + tdA(0, AllFields) + " " + dtype

 cmd.Execute

 cn.Close

 End If

 Next AllFields

'newTD.Name = "Table" & NextTableIndex & "_" & MainTableName

NextTableIndex = NextTableIndex + 1

94

'newDB.TableDefs.Append newTD

Dim newRS1 As New ADODB.Recordset

 ' removing the redandancies from the created tables

 ''--Dim coll As New Collection, stPos As String

 On Error Resume Next

 Err.Clear

' filling the values

 For i = 1 To A_Row

 'Set newrs1 = newDB.OpenRecordset("Table" & i & "_" & MainTableName)

 newRS1.LockType = 3

 newRS1.Open "Select * from " & "Table" & i & "_" & MainTableName, dbconn

 rs1.MoveFirst

 'MsgBox rs1.Fields(0).Value

 While Not rs1.EOF

 ' check for redandant

 stPos = "("

 For j = 0 To newRS1.Fields.Count - 1

 If rs1.Fields(newRS1.Fields(j).Name).Type = adVarChar Then

 stPos = stPos + rs1.Fields(newRS1.Fields(j).Name).Value

 Else

 stPos = stPos + Str(rs1.Fields(newRS1.Fields(j).Name).Value)

 End If

 If j <> newRS1.Fields.Count - 1 Then

 stPos = stPos + ","

 Else

 stPos = stPos + ")"

 End If

 Next j

 coll.Add stPos, stPos

 If Err.Number = 0 Then

 newRS1.AddNew

 For j = 0 To newRS1.Fields.Count - 1

 newRS1.Fields(j).Value = rs1.Fields(newRS1.Fields(j).Name).Value

 Next j

 newRS1.Update

 'MsgBox newRS1.Fields(0).Value

 Else

 Err.Clear

 End If

 rs1.MoveNext

 Wend

 newRS1.Close

 Next i

 ' Filling the last table values that contains the composite key

 i = NextTableIndex - 1

 'Set newrs1 = newDB.OpenRecordset("Table" & i & "_" & MainTableName)

95

 newRS1.LockType = 3

 newRS1.Open "Select * from " & "Table" & i & "_" & MainTableName, dbconn

 rs1.MoveFirst

 While Not rs1.EOF

 ' check for redandant

 stPos = "("

 For j = 0 To newRS1.Fields.Count - 1

 If rs1.Fields(newRS1.Fields(j).Name).Type = adVarChar Then

 stPos = stPos + rs1.Fields(newRS1.Fields(j).Name).Value

 Else

 stPos = stPos + Str(rs1.Fields(newRS1.Fields(j).Name).Value)

 End If

 If j <> newRS1.Fields.Count - 1 Then

 stPos = stPos + ","

 Else

 stPos = stPos + ")"

 End If

 Next j

 coll.Add stPos, stPos

 If Err.Number = 0 Then

 newRS1.AddNew

 For j = 0 To newRS1.Fields.Count - 1

 newRS1.Fields(j).Value = rs1.Fields(newRS1.Fields(j).Name).Value

 Next j

 newRS1.Update

 Else

 Err.Clear

 End If

 rs1.MoveNext

 Wend

 newRS1.Close

 rs1.Close

 MsgBox "Second Normal Form Applied Successfully", , "DB Normalizer"

 For i = 1 To A_Row + 1

 'Display_Table i, "Table" & i & "_" & MainTableName

 display_datagrid "Select * from " & "Table" & i & "_" & MainTableName

 MsgBox "This is " & "Table" & i & "_" & MainTableName, , "DB Normalizer"

 Next i

 Command5.Enabled = True

 NF2 = True

 Exit Sub

lab11:

If Err.Number = 3010 Then

MsgBox "DataBase alread Normalized"

newDB.TableDefs.Delete Table1

End If

End Sub

96

3- Third Normal Form Algorithm Source Code Implementation

' -- 3NF -------------------------------

 Dim db As Database

 Dim td As TableDef, TableName As String, rs As Recordset

If NF2 = False Then

MsgBox "Please Perform 2NF First", , "DB Normalizer"

Exit Sub

End If

 If SQL_Flag = True Then GoTo SQL_Lab '''-------------------- JUMP INTo SQL ---- 3NF --------------

 Set db = OpenDatabase(FileName)

 Form5.Combo1.Clear

 For Each td In db.TableDefs

 TableName = td.Name

 If Left$(TableName, 4) <> "MSys" And Left$(TableName, 5) = "Table" Then

Form5.Combo1.AddItem TableName

 Next

 Form1.Tag = FileName

 Form5.Show vbModal

 If Form5.Tag = 0 Then Exit Sub

 If Form5.Tag = 1 Then

 ' the table in form5.combo1.text and the fields is in form5.list2

 Dim TheTableName As String

 TheTableName = Form5.Combo1.Text

 Set rs = db.OpenRecordset(TheTableName)

 Set td = db.TableDefs(TheTableName)

 ' now creating the new tables

 Dim NextTableIndex As Integer

 NextTableIndex = 1 ' for creation purposes like Table21 and Table22 ...

 ' if we select the table2 for separation

 Dim newTD As TableDef

 Dim newF As Field, newDB As Database

 Set newDB = OpenDatabase(FileName)

 Set newTD = New TableDef

 For j = 0 To Form5.List1.ListCount - 1

 Set f = td.Fields(Form5.List1.List(j))

 Select Case f.Type

 Case dbLong: Set newF = newTD.CreateField(Form5.List1.List(j), dbLong)

 Case dbText: Set newF = newTD.CreateField(Form5.List1.List(j), dbText, 50)

 Case dbCurrency: Set newF = newTD.CreateField(Form5.List1.List(j), dbCurrency)

 Case dbDate: Set newF = newTD.CreateField(Form5.List1.List(j), dbDate)

 End Select

 newTD.Fields.Append newF

 Next j

 ' add the first field of the list2 as connection field

97

 Set f = td.Fields(Form5.List2.List(0))

 Select Case f.Type

 Case dbLong: Set newF = newTD.CreateField(Form5.List2.List(0), dbLong)

 Case dbText: Set newF = newTD.CreateField(Form5.List2.List(0), dbText, 50)

 Case dbCurrency: Set newF = newTD.CreateField(Form5.List2.List(0), dbCurrency)

 Case dbDate: Set newF = newTD.CreateField(Form5.List2.List(0), dbDate)

 End Select

 newTD.Fields.Append newF

 newTD.Name = TheTableName & NextTableIndex

 NextTableIndex = NextTableIndex + 1

 newDB.TableDefs.Append newTD

 Set newTD = New TableDef

 For j = 0 To Form5.List2.ListCount - 1

 Set f = td.Fields(Form5.List2.List(j))

 Select Case f.Type

 Case dbLong: Set newF = newTD.CreateField(Form5.List2.List(j), dbLong)

 Case dbText: Set newF = newTD.CreateField(Form5.List2.List(j), dbText, 50)

 Case dbCurrency: Set newF = newTD.CreateField(Form5.List2.List(j), dbCurrency)

 Case dbDate: Set newF = newTD.CreateField(Form5.List2.List(j), dbDate)

 End Select

 newTD.Fields.Append newF

 Next j

 newTD.Name = TheTableName & NextTableIndex

 NextTableIndex = NextTableIndex + 1

 newDB.TableDefs.Append newTD

 ' filling the values

 Dim newRS As Recordset

 ' removing the redandancies from the created tables

 Dim coll As New Collection, stPos As String

 On Error Resume Next

 Err.Clear

 For i = 1 To NextTableIndex - 1

 Set newRS = newDB.OpenRecordset(TheTableName & i)

 rs.MoveFirst

 While Not rs.EOF

 ' check for redandant

 stPos = "("

 For j = 0 To newRS.Fields.Count - 1

 If rs.Fields(newRS.Fields(j).Name).Type = dbText Then

 stPos = stPos + rs.Fields(newRS.Fields(j).Name).Value

 Else

 stPos = stPos + Str(rs.Fields(newRS.Fields(j).Name).Value)

 End If

 If j <> newRS.Fields.Count - 1 Then

 stPos = stPos + ","

 Else

98

 stPos = stPos + ")"

 End If

 Next j

 coll.Add stPos, stPos

 If Err.Number = 0 Then

 newRS.AddNew

 For j = 0 To newRS.Fields.Count - 1

 newRS.Fields(j).Value = rs.Fields(newRS.Fields(j).Name).Value

 Next j

 newRS.Update

 Else

 Err.Clear

 End If

 rs.MoveNext

 Wend

 newRS.Close

 Next i

 rs.Close

 End If

 For i = 1 To 2

 Display_Table i, TheTableName & i

 Next i

 NF3 = True

 Exit Sub

''-- END ACCESS ---------- 3NF -----------

SQL_Lab:

 Dim dbconn As ADODB.Connection

 Dim rs1 As New ADODB.Recordset

 Set dbconn = SQL_OpenDatabase(FileName)

 Form5.Combo1.Clear

 rs1.Open "SELECT name FROM sys.Tables", dbconn

 While Not rs1.EOF

 TableName = rs1.Fields(0).Value

 If Left$(TableName, 5) = "Table" Then Form5.Combo1.AddItem TableName

 rs1.MoveNext

 Wend

 rs1.Close

 Form1.Tag = FileName

99

 Form5.Show vbModal

 If Form5.Tag = 0 Then Exit Sub

 If Form5.Tag = 1 Then

 ' the table in form5.combo1.text and the fields is in form5.list2

 'Dim TheTableName As String

 TheTableName = Form5.Combo1.Text

 'Set rs = db.OpenRecordset(TheTableName)

 rs1.Open "SELECT * FROM " & TheTableName, dbconn

 'Set td = db.TableDefs(TheTableName)

 Dim tdrs As New ADODB.Recordset

 sql_query = "SELECT c.name ColumnName, t.name ColumnType " & _

 " FROM sys.columns AS c " & _

 " JOIN sys.types as t ON c.user_type_id=t.user_type_id " & _

 " where OBJECT_NAME(c.OBJECT_ID)='" & TheTableName & "'"

tdrs.CursorLocation = adUseServer

tdrs.Open sql_query, dbconn

Dim tdA() As String

ReDim tdA(0 To 1, 0 To 20)

t = -1

 While Not tdrs.EOF

 t = t + 1

 tdA(0, t) = tdrs.Fields(0).Value

 tdA(1, t) = tdrs.Fields(1).Value

 'MsgBox Str(t) + tdA(0, t) + tdA(1, t)

 tdrs.MoveNext

 Wend

 Dim ColNo As Integer

 ColNo = t + 1

 ' now creating the new tables

 'Dim NextTableIndex As Integer

 NextTableIndex = 1 ' for creation purposes like Table21 and Table22 ...

 ' if we select the table2 for separation

 Dim cn As ADODB.Connection

 Dim cmd As New ADODB.Command

 For j = 0 To Form5.List1.ListCount - 1

 'Set f = td.Fields(Form5.List1.List(j))

 For k = 0 To ColNo

 If Form5.List1.List(j) = tdA(0, k) Then

 fldno = k

 Exit For

100

 End If

 Next k

 Set cn = SQL_OpenDatabase(FileName)

 cmd.ActiveConnection = cn

 cmd.CommandType = adCmdText

 If tdA(1, fldno) = "varchar" Then

 dtype = "varchar(50)"

 Else

 dtype = tdA(1, fldno)

 End If

 If j = 0 Then

 cmd.CommandText = "CREATE TABLE " + TheTableName + Chr(NextTableIndex + 48) + " (" +

tdA(0, fldno) + " " + dtype + ")"

 Else

 cmd.CommandText = "ALTER TABLE " + TheTableName + Chr(NextTableIndex + 48) + " ADD " +

tdA(0, fldno) + " " + dtype

 End If

 cmd.Execute

 cn.Close

 Next j

 ' add the first field of the list2 as connection field

 'Set f = td.Fields(Form5.List2.List(0))

 For k = 0 To ColNo

 If Form5.List2.List(0) = tdA(0, k) Then

 fldno = k

 Exit For

 End If

 Next k

 Set cn = SQL_OpenDatabase(FileName)

 cmd.ActiveConnection = cn

 cmd.CommandType = adCmdText

 If tdA(1, fldno) = "varchar" Then

 dtype = "varchar(50)"

 Else

 dtype = tdA(1, fldno)

 End If

 cmd.CommandText = "ALTER TABLE " + TheTableName + Chr(NextTableIndex + 48) + " ADD " +

tdA(0, fldno) + " " + dtype

101

 cmd.Execute

 cn.Close

 NextTableIndex = NextTableIndex + 1

 'newDB.TableDefs.Append newTD

 'Set newTD = New TableDef

 For j = 0 To Form5.List2.ListCount - 1

 'Set f = td.Fields(Form5.List2.List(j))

 For k = 0 To ColNo

 If Form5.List2.List(j) = tdA(0, k) Then

 fldno = k

 Exit For

 End If

 Next k

 Set cn = SQL_OpenDatabase(FileName)

 cmd.ActiveConnection = cn

 cmd.CommandType = adCmdText

 If tdA(1, fldno) = "varchar" Then

 dtype = "varchar(50)"

 Else

 dtype = tdA(1, fldno)

 End If

 If j = 0 Then

 cmd.CommandText = "CREATE TABLE " + TheTableName + Chr(NextTableIndex + 48) + " (" +

tdA(0, fldno) + " " + dtype + ")"

 Else

 cmd.CommandText = "ALTER TABLE " + TheTableName + Chr(NextTableIndex + 48) + " ADD " +

tdA(0, fldno) + " " + dtype

 End If

 cmd.Execute

 cn.Close

 Next j

 'newTD.Name = TheTableName & NextTableIndex

 NextTableIndex = NextTableIndex + 1

 'newDB.TableDefs.Append newTD

 ' filling the values

 Dim newRS1 As New ADODB.Recordset

 ' removing the redandancies from the created tables

 'Dim coll As New Collection, stPos As String

 On Error Resume Next

 Err.Clear

102

 For i = 1 To NextTableIndex - 1

 'Set newRS = newDB.OpenRecordset(TheTableName & i)

 newRS1.LockType = 3

 newRS1.Open "Select * from " & TheTableName & i, dbconn

 rs1.MoveFirst

 While Not rs1.EOF

 'MsgBox rs1.Fields.Count

 ' check for redandant

 stPos = "("

 For j = 0 To newRS1.Fields.Count - 1

 If rs1.Fields(newRS1.Fields(j).Name).Type = adVarChar Then

 stPos = stPos + rs1.Fields(newRS1.Fields(j).Name).Value

 Else

 stPos = stPos + Str(rs1.Fields(newRS1.Fields(j).Name).Value)

 End If

 If j <> newRS1.Fields.Count - 1 Then

 stPos = stPos + ","

 Else

 stPos = stPos + ")"

 End If

 Next j

 coll.Add stPos, stPos

 If Err.Number = 0 Then

 newRS1.AddNew

 For j = 0 To newRS1.Fields.Count - 1

 newRS1.Fields(j).Value = rs1.Fields(newRS1.Fields(j).Name).Value

 Next j

 newRS1.Update

 Else

 Err.Clear

 End If

 rs1.MoveNext

 Wend

 newRS1.Close

 Next i

 rs1.Close

 End If

 For i = 1 To 2

 'Display_Table i, TheTableName & i

 display_datagrid "Select * from " & TheTableName & i

 MsgBox "This is " & TheTableName & i, , "DB Normalizer"

 Next i

 NF3 = True

End Sub

