APPLICATION OF TECHNOLOGY ACCEPTANCE MODEL ON DATABASE NORMALIZER

Ahmed Abdulhakim Ahmed Al-Absi

Universiti Utara Malaysia
2011
APPLICATION OF TECHNOLOGY ACCEPTANCE MODEL
ON DATABASE NORMALIZER

A project submitted to Dean of the Awang Had Salleh Graduate School of Arts and Sciences in partial Fulfillment of the requirements for the degree Master of Science of Information Technology
Universiti Utara Malaysia

© Al-Absi, Ahmed, 2011. All rights reserved.
PERMISSION OF USE

In presenting this project in partial fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholarly purpose may be granted by my supervisors or, in their absence by the Dean of Postgraduate Studies and Research.

It is understood that any copying or publication or use of this project or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project. Requests for permission to copy or to make other use of materials in this project, in whole or in part, should be addressed to

Dean of Awang Had Salleh Graduate School of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman.
ABSTRACT

Normalization is one of the most important activities in database designing. The good database design is the database that meets user requirements and designed its structure carefully. Therefore, this study focused on developing a database normalization application that helps database designers to perform the normalization process automatically and improves the database designing by avoiding the problems of carrying out normalization manually which has many drawbacks such as time consuming, prone to errors and requires more than one skilled user. The main objective of this study is to develop a database normalizer application to normalize the database tables up to the third normal form (3NF). This study provides a normalization algorithm to perform the 1NF, 2NF, and 3NF automatically based on Microsoft Access and SQL Server databases. Experiment was conducted to check the functionality in performing the normalization process. The experiment result showed that the prototype achieved the result successfully as expected and fulfills the requirements and rules of normalization processes. Moreover, a questionnaire based on the Technology Acceptance Model technique has been adopted to ensure of the prototype level in terms of easiness of use, and satisfaction.
Dedication

Specially dedicated to
My beloved father and mother
To my siblings and family
Thanks for all the encouragement and support
ACKNOWLEDGEMENT

Alhamdulilah. All thanks and praise to Allah for giving me the strength to pursue and complete this project.

I would like express my deepest gratitude to my supervisor Assoc. Prof. Abd Ghani B. Golamdin for his support, guidance and ideas given to me throughout this research and for finding time and patience reading my drafts repetitively are very much appreciated.

Many thanks go to my evaluator Dr. Massudi Mahmuddin for his tremendous help in providing me the valuable support, time and feedback are much appreciated.

I am grateful to all lecturers of the College of Arts and Sciences at Universiti Utara Malaysia where I gained a lot of experience, information and knowledge and learnt the most valuable things in the world of research.

Special thanks to my dear friend Mr. Ahmed Talib for his help in giving me valuable ideas and sharing me his experience.

My thanks to Mr. Mustafa Muwafak and SerindIT UUM for their help and giving me the permission to do the interview and the evaluation.

I would like to thank my colleagues and friends who helped me directly or indirectly for the completion of this project.

Finally, my gratitude and love goes out to my family. This project will not have been possible without their help and support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMISSION OF USE</td>
<td>I</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>II</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>III</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>IV</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>V</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>VIII</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>IX</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>X</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XI</td>
</tr>
<tr>
<td>CHAPTER ONE: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Research Questions</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Significance of the Study</td>
<td>3</td>
</tr>
<tr>
<td>1.6 Scope of the Study</td>
<td>3</td>
</tr>
<tr>
<td>1.7 Organization of the Report</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER TWO: LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Introduction to Database</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Database Normalization</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 First Normal Form (1NF)</td>
<td>8</td>
</tr>
<tr>
<td>2.2.2 Second Normal Form (2NF)</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3 Third Normal Form (3NF)</td>
<td>10</td>
</tr>
<tr>
<td>2.2.4 Boyee Code Normal Form</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Related Works</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Summary</td>
<td>18</td>
</tr>
</tbody>
</table>
CHAPTER THREE: RESEARCH METHODOLOGY

3.1 Problem Understanding 20
3.2 Prototype Design 21
 3.2.1 Data Input (Unnormalized form) 22
 3.2.2 Normalization Algorithm 23
 3.2.2.1 Select Database Table Function 23
 3.2.2.2 Select Primary Keys Function 24
 3.2.2.3 First Normal Form Algorithm (1NF) 24
 3.2.2.4 Second Normal Form Algorithm (2NF) 25
 3.2.2.5 Third Normal Form Algorithm (3NF) 26
 3.2.3 Graphical User Interface (GUI) Design 27
3.3 Prototype Development 29
3.4 Experiment Design 29
3.5 Evaluation 30
3.6 Summary 31

CHAPTER FOUR: ANALYSIS OF THE SYSTEM AND DESIGN

4.1 Introduction 32
4.2 Tools for System Design 32
 4.2.1 Unified Modeling Language (UML) 32
 4.2.2 Rational Rose 2010 33
4.3 Database Normalizer Prototype Requirements 33
 4.3.1 Functional Requirements of DBNP 34
 4.3.2 Non-Functional Requirements of DBNP 35
4.4 Modeling and System Design 35
 4.4.1 Use Case Diagram 36
 4.4.2 Use Case Specification 36
 4.4.3 DBNP Sequence Diagram 40
 4.4.4 Class Diagram 43
4.5 Prototype Implementation 43
4.6 Graphical User Interface 44
4.7 Summary 51
CHAPTER FIVE: RESULTS AND FINDINGS

5.1 Introduction 52
5.2 Experiment Design 52
 5.2.1 Experiment Result 59
5.3 Questionnaire 59
 5.3.1 Questionnaire Analysis 60
 5.3.2 Easiness Evaluation 62
 5.3.3 Satisfaction Evaluation 63
 5.3.4 Reliability Statistics 65
 5.3.4.1 Reliability Statistics for Easiness Evaluation 65
 5.3.4.2 Reliability Statistics for Satisfaction Evaluation 65
 5.3.4.3 Reliability Statistics for All sections 66
 5.3.4.4 Item-Total Statistics 66
5.4 Summary 67

CHAPTER SIX: CONCLUSION AND FUTURE WORK

6.1 Conclusion 68
6.2 Research Contribution 69
6.3 Problems and Limitations 69
6.4 Future Work 70
6.5 Summary 70

REFERENCES 71
APPENDICES 75
LIST OF TABLES

Table 2.1: ClientRental unnormalized data table.
Table 2.2: 1NF ClientRental data table.
Table 2.3: 2NF tables derived from ClientRental data table.
Table 2.4: 3NF tables derived from propertyOwner table.
Table 4.1: Functional Requirements
Table 4.2: Apply First Normal Form use case specification
Table 4.3: Apply Second Normal Form use case specification
Table 4.4: Apply Third Normal Form use case specification
Table 5.1: Experimentation standard relations
Table 5.2: Experimentation expected results
Table 5.3: Descriptive Statistics (Easiness of use)
Table 5.4: Descriptive Statistics (Satisfaction)
Table 5.5: Reliability Statistics (Easiness of use)
Table 5.6: Reliability Statistics (Satisfaction)
Table 5.7: Reliability Statistics for all sections
Table 5.8: Item-Total Statistics
LIST OF FIGURES

Figure 2.1: Functional dependency diagram. 5
Figure 2.2: Student relation example. 6
Figure 2.3: Normalization process diagram. 12
Figure 2.4: Linked list Node structure. 13
Figure 2.5: Graphical, Matrix and Directed graph Representation. 14
Figure 2.6: A screenshot run of JMathNorm tool for 3NF decomposition. 15
Figure 2.7: A screenshot of the main window of the web-based normalization tool. 17
Figure 3.1: Methodology flowchart of the database normalization prototype. 20
Figure 3.2: Structure of Report relation. 22
Figure 3.3: Sample of relation in UNF to be normalized by the prototype. 22
Figure 3.4: Database Normalizer Prototype GUI. 27
Figure 3.5: Database Normalizer Architecture. 28
Figure 4.1: DBNP use case Diagram. 36
Figure 4.2: Apply 1NF Sequence Diagram. 40
Figure 4.3: Apply 2NF Sequence Diagram. 41
Figure 4.4: Apply 3NF Sequence Diagram. 42
Figure 4.5: DBNP class diagram. 43
Figure 4.6: Database Normalizer Home Page. 45
Figure 4.7: Selecting database to be normalized. 45
Figure 4.8: Selecting table primary keys to be normalized. 46
Figure 4.9: Performing the 1NF operation. 47
Figure 4.10: Performing the 2NF operation. 48
Figure 4.11: Performing the 3NF operation and selecting the table transitive keys. 49
Figure 4.12: Shows the tables that been created at 1NF, 2NF and 3NF levels. 50
Figure 4.13: Shows the automatically created normalized tables in SQL Server database. 50
Figure 5.1: Type of participants. 61
Figure 5.2: Age of the participants. 61
Figure 5.3: Participants educational background. 62
Figure 5.4: Evaluation result 64
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>75</td>
</tr>
<tr>
<td>Appendix B</td>
<td>77</td>
</tr>
<tr>
<td>Appendix C</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1NF</td>
<td>First Normal Form</td>
</tr>
<tr>
<td>2NF</td>
<td>Second Normal Form</td>
</tr>
<tr>
<td>3NF</td>
<td>Third Normal Form</td>
</tr>
<tr>
<td>4NF</td>
<td>Fourth Normal Form</td>
</tr>
<tr>
<td>5NF</td>
<td>Fifth Normal Form</td>
</tr>
<tr>
<td>BCNF</td>
<td>Boyce-Codd Normal Form</td>
</tr>
<tr>
<td>DB</td>
<td>Database</td>
</tr>
<tr>
<td>DBMS</td>
<td>Database Management System</td>
</tr>
<tr>
<td>DBNP</td>
<td>Database Normalizer Prototype</td>
</tr>
<tr>
<td>ERD</td>
<td>Entity-Relationship Diagram</td>
</tr>
<tr>
<td>FD</td>
<td>Functional Dependency</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>TAM</td>
<td>Technology Acceptance Model</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modelling Language</td>
</tr>
<tr>
<td>UNF</td>
<td>Un-Normalized Normal Form</td>
</tr>
<tr>
<td>UUM</td>
<td>Universiti Utara Malaysia</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

1.1 Background

Data has become one of the important strategic resources for many organizations from industry, and government. The tradition data resource had been managed by a file processing system that requires no special data management techniques. Now, data has been stored and manipulated through database management systems (DBMS) as the need for information processing has become necessary.

In 1972, Relational databases has been proposed by Dr. Codd as stated in Connolly and Begg (2004) which are widely used in almost commercial applications to store, manipulate and use huge data for a specific enterprises and decision making. The success of relational database modeled for any enterprise is depending on the design of relational schema (Bahmani, Naghibzadeh, & Bahmani, 2008). Process of designing databases is referring to the activities that are related to the design of the database structure for storing and managing end-user data. The good database design is that database which meets all user requirements and designed its structure carefully (Rob & Coronel, 2009). Database design is an essential phase of working with databases where it affects a good DBMS to work poorly with a badly designed database. Therefore, to have a proper database design, database designer should identify exactly the expected use of database such as process of designing a data warehouse database that requires identifying the historical data also designing a centralized database involve using a centralized approach which is differs from that one in distributed database (Rob & Coronel, 2009).
The contents of the thesis is for internal user only
REFERENCES

