
ENHANCED QUEUE MANAGEMENT MECHANISM FOR

DIFFERENTIATED SERVICES NETWORKS

MAJID HAMID ALI ALBAYATI

UNIVERSITI UTARA MALAYSIA
2012

ENHANCED QUEUE MANAGEMENT MECHANISM FOR

DIFFERENTIATED SERVICES NETWORKS

A project submitted to Dean of Awang Had Salleh Graduate School in
Partial Fulfilment of the requirement for the degree

Master of Science in Information Technology
Universiti Utara Malaysia

BY

MAJID HAMID ALI ALBAYATI

KOLEJ SASTERA DAN- SAINS
(College of Arts and Sciences)

Universiti Utara Malaysia

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certifies that)

WID HAMID ALI
180628 11

calon untuk Ijazah
(candidate for the degree on M&. lhformation Technolo~rv]

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project of the following title)

ENHANCED QUEUE MANAGEMENT MECHANISM
FOR DIFFERENTIATED SERVICES NETWORKS

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project)

bahawa kertas projek tersebut boleh diterirna dari segi bentuk serta kandungan
dan meliputi bidang ilmu dengan memuaskan.
(that this project is in acceptable form and content, and that a satisfactory
knowledge of thefield is covered by the project).

Nama Penyelia Utama:
(Main Supervisor)
Tandatangan
(Signature) 'Farikh (Date) :
Nama Penyelia Kedua:
(Co-Supervisor) : DR. MOHAMMED M. KADHUBB
Tandatangan
(Signature) Tarikh (Date) :

Nama Penilai 1
(Name of Evaluator I)
Tapdatangan
(m-+e)
Nama Penilai 2
(Name of Evahcator 2) : W6R SHAHRUDIN AWANG NOR
Tandatangan
(Signature)

I
:- Tarikh (Date) : I T/ I / I a

PERMISSION TO USE

In presenting this project in partial fulfilment of the requirements for a postgraduate

degree from the University Utara Malaysia, I agree that the University Library may make

it freely available for inspection. I further agree that permission for copying of this project

in any manner in whole or in part, for scholarly purposes may be granted by my

supervisor(s) or in their absence by the Dean of Postgraduate Studies and Research. It is

understood that any copying or publication or use of this project or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to University Utara Malaysia for any

scholarly use which may be made of any material from my project.

Requests for permission to copy or to make other use of materials in this project, in

whole or in part, should be addressed to

Dean of Awang Had Salleh Graduate School

College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman

Malaysia

ABSTRACT

In the Internet, it is supposed that all connections are treated equally in the network. Due

to the limitation of network resources are limited, providing guarantees on performance

measures imposes declining new connections if resources are not available. Assigning

network resources to connections according to their classes requires differentiating

between the connection classes. For this reason, the Differentiated Services (DifJServ)

has been proposed. Many of the QoS mechanisms have been developed which allow

different services carried by the Internet to co-exist. Many of these mechanisms were both

complex and failed to scale to meet the demands of the Internet. MRED is the common

mechanism used in DifJServ routers. It suflers from large queue length variation and

untimely congestion detection and notification. These consequences cause performance

degradation due to high queuing delays and high packet loss. In this project, enhanced

version of MRED is developed to improve the performance of DlFerv networks that use

TCP as the transport layer protocol. Enhanced MRED includes average packet arrival

rate when computing the packet drop probability. Enhanced MRED showed a good

pedonnance compared to that of MRED, in term of fast congestion detection and

notijication. The limitation of the new mechanism is that it works only with responsive

connections which play a big role in avoiding and controlling the congestion. The major

contribution of this project is to provide an improved queue management mechanism for

Diffserv networks that responds to congestion more quickly, delivers congestion

notification timers, and controls the queue length directly to congestion which results in

minimizing queue length variation. All these would help improve the DlffServ networks

pedormance.

I1

ACKNOWLEDGEMENTS

Praise to Allah for his guidance and blessing for giving me the strength and

perseverance to complete this project. I would like to thank my supervisors: Dr. Massudi

bin Mahmuddin and Dr. Mohammed M .Kadhum for all the guidance, stimulus, and

practical advice provided over the past time and he gave me many interesting, valuable

and sincere feedbacks throughout his supervision. I am thankful to him for his support

and motivation without which completion of the work presented in this project would not

have been possible. I shall always remember Dr. Muhammad for the efforts he has spent

in strengthening my understanding about topics related to my research, and giving me

enough leeway to help me in managing my research.

I am also thankful to the Information Technology Department - the faculty and staff.

Being a postgraduate student at UUM has been an incredible experience. I shall always

remember the time I have spent here as one of the best phases of my life. I wish to thank

the Ministry of Higher Education of Iraq for their financial support awarded to me. I am

thankful to all fiends, whose love, blessings and well wishes have shown me the success

that I have achieved in the form of this master's degree. Finally yet importantly, I am

extremely grateful to my beloved father, my affectionate mother, and my precious

brothers who always provided me the encouragement to acquire the education I wanted.

Special thanks are due to my faithful wife, and my two kids, Layth, and Lena. Without

your love and support I am sure that I would not have been able to achieve so much

throughout the two years of my study abroad. I dedicate the accomplishment of this

project to my beloved father, my affectionate mother, and to the twin of my spirit, my

wife. May Allah bless all of you.

I11

TABLE OF CONTENTS

PERMISSION TO USE ... I

ABSTRACT .. I1

ACKNOWLEDGEMENTS .. I11

TABLE OF CONTENTS .. IV

LIST OF FIGURES .. VII

APPENDIXVII

CHAPTER ONE INTRODUCTION

1.1 Introduction ... 1

1.2 Differentiated Services (DiffServ) ... 3

1.3 Problem Statements .. 5

1.4 Research Questions ... 6

1.5 Research Scope .. 6

1.6 Research Objectives ... 6

1.7 Research Significance .. 7

1.8 Organization of the Project Report ... 8

CHAPTER TWO LITERATURE REVIEW

2.1 Quality of Service ... 9

2.2 Differentiated Services (DiffServ) Architecture .. 11

2.3 Queue Management in DiffServ Network .. 12

2.4 Multiple RED Queue Management Mechanism .. 13

.. 2.5 Random Early Detection (RED) 15

... 2.6 RED Parameters 19

.. 2.7 Improving The Response Time 22

... 2.8 RED Algorithm Description 24

IV

.. 2.9 Summary 27

CHAPTER THREE RESEARCH METHODOLOGY

.. 3.1 Introduction 28

3.2 Awareness of A Problem Step .. 29

3.3 Suggestion Step .. 30

.. 3.4 Development Step 30

... 3.4.1 System Requirements 30

3.4.2 System Design ... 31

... 3.4.3 Implementation 32

3.5 Evaluation Step ... 32

... 3.5.1 Simulation Topology and Scenario 3 2

... 3.5.2 Performance Metrics 3 5

3.6 Conclusion Step ... 38

.. 3.7 Summary 38

CHAPTER FOUR DESIGN AND IMPLEMENTATION OF ENHANCED MRED

... 4.1 Enhanced MRED Implementation Design 39

4.1.1 Average Packet Arrival Rate Estimation ... 40

4.2 Enhanced MRED Implementation ... 43

....................................... 4.2.1 Configuration of Enhanced MRED in Network Simulator 2 (ns-2) 45

... 4.2.2 Defining Enhanced MRED Policies 48

.. 4.3 Summary 51

CHAPTER FIVE EVALUATION & RESULTS

... 5.1 Introduction 52

... 5.2 The Effect of the Committed Information Rate (CIR) Variation 53

... 5.3 Average Queue Length 55

5.4 Outgoing Link Utilization .. 57

v

5.5 Packet Anival Rate .. 58

5.6 Throughput ... 60

5.7 Summary .. 63

CHAPTER SIX CONCLUSION AND FUTURE WORK

6.1 Conclusion .. 64

6.2 Suggestions for Future Work ... 68

REFERENCES ... 69

LIST OF FIGURES

Figure 2.1. DiffServ Domain .. 11

Figure 2.2 Single Physical Buffer in DiffSew .. 14

Figure 2.3 RED Router Buffer (Adopted from (Ryu. Rump. & Qiao. 2004)) .. 16

Figure 2.4 LPFIODA Algorithm ... 23

Figure 2.5 RED Packet DropMark Function .. 24

Figure 2.4 RED Algorithm .. 25

Figure 3 . 1 General Methodology for Design Science Research (Vaishnavi & Kuechler, 2008) 29

Figure 3 . 2 Network Topology .. 33

Figure 4 . 1 Enhanced MRED Algorithm .. 42

Figure 4 . 2 The class hierarchy of dsREDQueue .. 43

Figure 4 . 3 dsREDQueue illustration .. 45

Figure 5 . 1 CIR of 100Kbps .. 53

Figure 5 . 2 CIR of 300Kbps .. 53

Figure 5 . 3 CIR of 1 Mbps ... 54

Figure 5 . 4 CIR of 10Mbps ... 54

Figure 5 . 5 CIR of 1Mbps for Original MRED ... 54

Figure 5 . 6 The actual queue length of the enhanced MRED ... 55

.. Figure 5 . 7 The actual queue length of the original MRED 56

... Figure 5 . 8 Link utilization using enhanced MRED 57

Figure 5 . 9 Link utilization using original MRED .. 58

.. Figure 5 . 10 Packet amval using enhanced MRED 59

... Figure 5 . 11 Packet arrival using original MRED 59

... Figure 5 . 12 Throughput using enhanced MRED 61

.. Figure 5 . 13 Throughput using original MRED 61

VII

APPENDIX

.. APPENDIX A: Differentiated Services Core.cc 73

.. APPENDIX B: Differentiated Services C0re.h 75

APPENDIX C: Differentiated Services red.cc ... 76

.. APPENDIX D: Differentiated Services red.h 102

VIII

CHAPTER ONE
INTRODUCTION

This project is about enhancing the queue congestion management mechanism used in

Differentiated Services environment to help providing good quality of service to end users

based on their requirements. The goal of this chapter is to place the project in its context. In this

chapter, an introduction to Differentiated Services, its issues, and the role of queue management

mechanism in enhancing the network performance are provided in Section 1.1 and 1.2,

respectively. The research problem is presented in Sections 1.3. Sectionsl.4, 1.5, and 1.6 of this

chapter, respectively, include the research questions, research scope, and objectives of the

research presented in this project. The importance of the work done in this project is stated in

Section 1.7 while the project organization is presented in Section 1.8 of this chapter.

1.1 Introduction

In recent years, important investments have been made in the planning and development of

computer networks. The rapid growth of the Internet provides a good opportunity for creating

new mechanisms for internet infrastructure to service the increase of new applications, such as

web surfing, network monitoring, desktop sharing and video conferencing. The delay variations

in network system affect network applications. In an acknowledgement and time-out-based

congestion control mechanism, e.g., TCP, performance is related to the delay-bandwidth

product of the connection (Durresi, Sridharan, Jain, Liu, & Goyal, July 2001). Furthermore,

TCP round-trip time (RTT) measurements are sensitive to delay variations, which may cause

wrong timeouts and retransmissions.

Internet Protocol (IP) based network was designed to provide users with best effort service that

allows user packets to share network resources. The rapid increase in the IP applications

resulted in a significant burden on restricted network resources, such as bandwidth and buffer

space, leading to high degree of congestion (Qadeer, Sharma, Agarwal, & Husain, 2009). IP

applications, such as real-time and mission-critical, are the influenced ones due to high packet

loss in the network. In the Internet, all sources get the same handling in the network. While

network resources are limited, providing guarantees on performance measures requires rejecting

new connections if resources are not available. To assign resource to connections according to

their class, connection classes should be differentiated. Therefore, IP Quality of Service (QoS)

was developed to allow network operators offering different levels of packets treatment

according to user requirements. QoS Routing, as defined in (Qadeer et al., 2009), is a routing

mechanism as per which paths for flows are established based on some knowledge of resource

availability in the network as well as the QoS requirement of flows. It attempts to perform

routing by computing multiple paths between two nodes which could satisfy different service

requirements; and change routing when the availability of resources in the shortest path is

insufficient.

Since Internet carries many different types of services, including voice, video, streaming data,

web pages and email, many of the proposed QoS mechanisms that allowed these services to co-

exist were both complex and failed to scale to meet the demands of the Internet. For that, the

Differentiated Services (Dimerv) has been proposed.

1.2 Differentiated Services (DiffServ)

Differentiated Service (DiffServ) is an IP QoS architecture that allows prioritizing packets

according to the type of service the user desires. According to (Kimura, Kamei, & Okamoto,

2002), DiffServ is a computer networking architecture that specifies a simple, scalable and

coarse-grained mechanism for classifying, managing network traffic and providing quality of

service (QoS) guarantees on modem IP networks. DiffServ can, for example, be used to provide

low-latency, guaranteed service (GS) to critical network traffic such as voice or video while

providing simple best-effort traffic guarantees to non-critical services such as web traffic or file

transfers.

By marking packets at the edge of the network according to the performance level that the

network wishes to provide them, the network's nodes treat the packets differently (El Hachimi,

Abouaissa, Lorenz, & Sathya, 2003). A general way to distinguish packets is by using RED

buffers and use different parameters for different packets (Stankiewicz & Jajszczyk, 2007).

Thus, applications over the internet could benefit of lesser delays and larger throughputs.

A packet belonging to a flow may get three possible priority levels within the flow. This can be

used to provide a lower loss probability to SYNC packets in a TCP connection, as in contrast

with other packets, the losses of SYNC packets result in very long time-outs. Additional to

differentiation within each flow, all flows are grouped to some classes (not more than four), and

different treatment can be given to different classes (Peng, Hongchao, Binqiang, & Hui, 2009).

Furthermore, it is possible to differentiate between flows. Four classes of flows are defined, and

packets of a given class are queued in a class-dependent queue. To differentiate between packets

belonging to same class, three virtual queues are implemented in each of the four queues. To

3

each of the 12 combinations of the four flow class and the three internal priority levels within a

flow correspond a code point that a packet is given when entering the network. Actually, not all

queues and all priority groups need to be implemented (Qian, 2008).

Nodes in DiffServ environment are equipped with some functional units that allow Per-Hop

Behaviors (PHBs), packet classification, marking, shaping, and policing. The encodings

recommended for DiffServ enable a network operator with great flexibility in defining different

classes of data traffic. Actually, network operators can configure their networks according to

any of the following commonly-defined Per-Hop Behaviors:

Default PHB (Per hop behaviorFwhich is typically best-effort traffic

Expedited Forwarding (EF) PHB-dedicated to low-loss, low-latency traffic

rn Assured Forwarding (AF) PHB-gives assurance of delivery under prescribed

conditions

rn Class Selector PHBs-which maintain backward compatibility with the IP Precedence

field.

The DiffServ is scalable because of that tasks, such as multi-flow classification, policing,

shaping and marking, are performed at the border (edge) routers networks. This is because the

border routers deal with the end user links that are slow as a result of which it has time to do the

costly functions like Multi-field Classifier (MFC) and traffic conditioning as mention in

(Sundaresan, 1999). In contrast, core routers do the forwarding according to the DiffServ Code

Point (DSCP) stated in the packet header. DSCP is the first six bits in the Type of Service byte

in the IP header.

According to Lain-Chyr et al., Assured Forwarding (AF) (Lain-Chyr, Hsu, Cheng-Yuan, &

Chun-Shin, 2004) can provide many QoS services, and compared to the Expedited Forwarding

(EF) PHB (Makkar et al., 2000), Assured Service provides a statistical bandwidth guarantee to

end users, and allows them to claim a share of the excess network bandwidth in addition to the

subscribed bandwidth. The main problem in the process of assured forwarding is the stability of

the average queue length and the latency. Solving this problem can be done by deploying the

RED with In and Out (RIO) algorithm (or other improved RIO queue management) in the

interior node. However, several studies (Du, Qiu, & Guo, 2009) found that these algorithms are

hard to set parameters and easy to make some mistakes, the vibration of the average queue size

and the latency are big when the speed changes.

1.3 Problem Statements

DiffServ-capable router utilizes virtual buffers called MRED (multi-RED) (Jahon, Byunghun,

Kwangsue, Hyukjoon, & Hyunkook, 2001) in each physical queue allows to its performance

and to create dependence between their operation. MRED probability of dropping each packet is

based on the size of its virtual queue (Qadeer et al., 2009). MRED drop probability function

uses the average queue length, which is collected over long period, to make its control

decisions. However, the use of average queue length makes MRED reacts to congestion slowly.

This results in large queue length variation and untimely congestion detection and notification

which would cause performance degradation due to high queuing delays and high packet loss

(Nagendran, Kartick, Sayee Ram, SenthilKumar, & Sudha, 2010). MRED suffers from low

bandwidth utilization, low throughput under poorly setting parameters, and large queuing delay

variance (jitter) because of the fluctuation of the queue level, being unable to handle

unresponsive connections, and hgh number of consecutive drop. Thus, the quality of service

observed by the end system is lowered significantly.

1.4 Research Questions

i. How can we enhance the queue management mechanism used in DiffServ-capable

router that ensures good quality of service?

. .
11. How can we evaluate and validate the DiffServ-capable router that employs the

enhanced the queue management mechanism?

1.5 Research Scope

This research focuses on improving Multi-Random Early Detection (MRED) queue

management mechanism in order to improve the performance of differentiated service

environment. Therefore, the focus will be on developing a drop probability function for MRED

queue management mechanism utilized by in the DiffServ-capable routers. The implementation

of the mechanisms and all the test experiments will be performed using the version 2.32 of the

network simulator (NS-2) software on a machine running the CentOS 5.2 version of the Linux

operating system.

1.6 Research Objectives

The aim of this research is to improve the performance of differentiated service network by

enhancing DiffServ-capable router scheduling mechanism. In order to achieve this research aim,

we come up with the following research objectives:

i. To develop an enhanced drop probability function for DiffJerv-capable router that

utilizes MRED mechanism in order to improve the throughput and decrease packet

drop.

ii. To implement the enhanced MRED mechanism in simulated differentiated service

network by using network simulator 2 (ns-2).

...
111. To analyze the results obtained from the simulations in terms of throughput, packet loss,

queue length, and link utilization.

1.7 Research Significance

DiffJerv has been introduced to differentiate between connection classes and to allocate

resources to connections according to their class. Therefore, As Diffjerv is based on marking

data packets at the edge router of the network according to the performance level (quality of

service) that the network wishes to provide, packets are handled differently at the network

routers. This requires efficient and reliable buffering and scheduling mechanism to meet the

user or subscriber requirements. Enhanced MRED mechanism proposed in this project can help

improving DiffServ performance.

1.8 Organization of the Project Report

This project is organized in six chapters as follows:

Chapter 1 provides an overview of the project. It presents an introduction to the importance of

queue management mechanism and the need for improving the current mechanism used in

DiffServ network's routers. The chapter presents the objectives and contributions of this project

as well.

Chapter 2 is a literature review that contains a background material on Quality of Service and

queue management in DiffServ that defines the general fkamework for this research. The issues

in DiffServ and the efforts done to alleviate them are covered in this chapter.

Chapter 3 presents the experimental tools and methodologies. The former introduces popular

TCP/IP performance measurement tools, such as ns-2, with description of their usage while the

latter covers network topology and settings used in the experiments. It presents the development

of the enhanced MRED mechanism in the simulation.

Chapter 4 introduces the enhanced MRED mechanism proposed in this project. The chapter

describes the details of enhanced MRED's structural design. It discusses the enhanced

mechanism implementation issues as well.

Chapter 5 presents a detailed performance evaluation of the enhanced MRED mechanism

based on the numerical results obtained through simulations. It studies the behavior of the

enhanced MRED a performance comparison of enhanced MRED to RED.

Chapter 6 states the global conclusions of the research work presented in this project and

provide some suggestions for further studies.

CHAPTER TWO
LITERATURE REVIEW

While the issues of Differentiated Services (DiffServ) environment were generally

described in Chapter 1, this chapter provides the background and some related research on

queue management in DiffServ network that defines the general framework of this research.

This chapter explains the function of queue management mechanism in performance

optimization of DiffServ networks that utilize TCP/IP protocols; and it provides performance

analysis of the current mechanism used in DiffServ. In this chapter, the Quality of Service

(QoS) concept is presented in Section 2.1 A general introduction about DiffServ architecture is

presented in Section 2.2 Queue management ant its important role in DiffServ is presented in

Section 2.3 Multiple RED queue management mechanism is presented in Section 2.4. The

details of RED queue management algorithm including its function and structure are covered in

Sections 2.5, 2.6, 2.7, 2.8, and 2.9 respectively. Section 2.6 summarizes the topics covered in

this chapter.

2.1 Quality of Service

Quality of Service (QoS) QoS is defined as the proficiency of a network element to furnish

some degree of commitment for congenial network data delivery as stated in (Qadeer et al.,

2009). Network should meet the service requirements of QoS when transporting packets from a

source to their destination. QoS goals are to meet the user application requirements, providing a

network that is transparent to its users.

According to Qadeer et al. (Qadeer et al., 2009),The common QoS factors are:

Bandwidth: the average usable and available bandwidth over the link at any time;

Delay: the average end-to-end delay caused at network level at any time;

Delay jitter: the average difference of the various delay times over the link;

Packet loss probability: the average probability of packet loss over the link over a length of

time.

Over Internet, different applications have different requirements for packet loss, delay, and

bandwidth. Network service providers (ISPs) provide QoS to users based on an agreement

between them. The agreement is known as a Service Level Agreement (SLA). QoS manage

traffic across a network according to the applications requirement. Some applications, such as

voice applications, require bandwidth and delay guarantees, referred to as quantitative

applications, while others, such as file transfer applications, are more qualitative. Voice

applications have strict delay requirements and can tolerate minimum packet loss. On the

other hand, a file transfer application is very sensitive to packet drops but can endure delays.

According to Xipeng et al. (Xipeng & Ni, 1999), to deal with such differences, QoS assigns

flows to one of the following two categories:

Guaranteed service keeps a specific amount of bandwidth from end to end and can guarantee a

specified delay tolerance for the exclusive use of an application or even aggregated sessions.

Differentiated service provides simple prioritization. Applications are detected at the ingress

and assigned SLAs, which in turn decide the QoS mechanisms to be employed by the router,

like which queue will be used to place traffic, and which drop priority will be designated in

case of congestion requiring a packet drop.

2.2 Differentiated Sewices (DiffServ) Architecture

DiffServ uses six bits of the DS field in the IP header to make up the DSCP (Differentiated

Service Code Point) field. DSCP is used to select the per-hop behaviour (PHB) a packet

experiences at each node. The mapping of DSCPs to PHBs at each node is not fixed. Before a

packet enters a DiffServ domain, its DSCP field is marked by the end-host or the fust-hop

router according to the service quality the packet is required and entitled to receive. Within the

DiffServ domain (see Figure I), each router only needs to look at DSCP to decide the proper

treatment for the packet. No complex classification or per-flow state is needed. DiffServ has

two important design principles, namely pushing complexity to the network boundary and the

separation of policy and supporting mechanisms. The network boundary refers to application

hosts, leaf (or first hop) routers, and edge routers. Figure 2.1 shows the DiffServ domain that

includes

Figure 2.1. DiffServ Domain

DiffServ design has the following elements:

Policy and resource manager: it creates policies and distributed them to DiffServ

routers in the DiffServ domain. A policy determines which level of services in the

network is assigned to which packets. This assignment may depend on the behavior of

the source of the flow (e.g. its average rate and its burstiness) and special network

elements are therefore added at the edge of the network so as to measure the source

behavior.

Edge routers: responsible to mark (assign code points) packets according to the policy

specified by the network administrator. The mark that a packet receives identifies the

class of traffic to which it belongs. After being marked, a packet may then be

immediately forwarded into the network, delayed for some time before being

forwarded, or it may be discarded.

Core routers: When marked packet arrives at DifPServ-capable router, the packet is

forwarded to its next hope according to the per-hop behavior associated with that

packet's class. Routers within the network have to assign the right priority to packets

according to their code mark. The priority translates to parameters of scheduling and of

dropping decisions in the core routers.

2.3 Queue Management in DiffServ Network

Queue management is essential to provide good quality of service to end users. Queue

management enables bandwidth control traffic treatment. Therefore, two queue types are

needed. They are weighted fair bandwidth distribution and priority.

Depending on the available buffer space and the desired steady state queue length at the router,

packets are admitted to the router. Queue management mechanisms allocate the available buffer

space at the router between the flows being multiplexed over the outgoing transmission links

and control the length of the packet queues created within the buffers. This is accomplished by

deciding whether admitting the newly arrived packet to the router or discarding it fiom the

network. Incoming packet may be allowed to enter the router without changing the queue status

or it may be admitted after dropping a packet fiom the queue, or the arriving packet itself may

be dropped as highlighted by Xiaojie et al. (Xiaojie, Kamal, & Leonard, 2004).

To guarantee that higher priority flows are given priority over lower priority ones, the queue

management mechanism used in the router drops lower priority packets when congestion

occurs. Currently, a modified RED queue management mechanism, namely Multiple RED

(MRED), is used in DiffServ networks

2.4 Multiple RED Queue Management Mechanism

DiffServ provides QoS by classifying traffic flows into different categories. Each packet is

marked with a code point indicating its unique category. Packets are scheduled according to

their code points. The Assured Forwarding mechanism (Bianchi & Blefari-Melazzi, 2001) is a

group of code points that can be used to classify four classes of traffic in a DiffServ network.

Each class has three drop precedences that enable traffic treatment within a single class.

Assured Forwarding uses, redQueue, a modified RED which put all packets for a single class in

one physical queue. This physical queue is consists of three virtual queues (see Figure 2.2), one

for each drop precedence, or RED queues (called Multi RED). MRED can have more than one

physical queue.

Physical Queue

Figure 2.2 Single Physical Buffer in DiffServ

Assured Forwarding is recommended for applications that need a better reliability than the best-

effort service. Assured Forwarding Service is implemented where classification and policing are

done at the ingress routers of the ISP networks. If the Assured Service traffic does not exceed

the bit-rate specified by the SLA, they are considered as in profile. Otherwise, the excess

packets are considered as out of profile. All packets, in and out, are put into an Assured Queue

to avoid out of order delivery. The queue is managed by a queue management mechanism called

RED with In and Out, or RIO.

Assured Forwarding mechanism (Makkar et al., 2000) provides different levels of forwarding

assurances for IP packets by dropping more packets that have low priority compared to packets

with high priority.

MRED has many versions such as Rio Coupled (RIO C), in which the probability of dropping

low priority packets, called "out-of-profile packets", is based on the weighted average lengths of

all virtual queues (Yang, Chen, & Zhang, 201 I), whereas the probability of dropping a high

priority ("in-profile") packet is based only on the weighted average length of its own virtual

queue (Yang, Chen, & Zhao, 2008). It basically maintains two RED algorithms, one

for in packets and one for out packets. There are two thresholds for each queue. When the queue

size is below the first threshold, no packets are dropped. When the queue size is between the

two thresholds, only out packets are randomly dropped. When the queue size exceeds the

second threshold, indicating possible network congestion, both in and out packets are randomly

dropped, but out packets are dropped more aggressively.

Another version of MRED is called RIO De-couple (RIO D) (Wen-Ping & Zhen-Hua) which

has the probability of dropping each packet is based on the size of its virtual queue. Another

version is the WRED (Weighted RED) in which all probabilities are based on a single queue

length (Bianchi & Blefari-Melazzi, 200 1) . It is possible to use the dropTail queue.

While MRED mechanism is RED with multi virtual queues, this means that MRED inherits all

problems associated with RED. In the following section, the Random Early Detection (RED)

mechanism is reviewed.

2.5 Random Early Detection (RED)

RED uses a Triple Threshold Average Queue Occupancy Level (Minth, Maxth, 2 Maxth)

activation function for congestion detection. Using two thresholds in Basic RED and three

thresholds in Gentle RED, enables RED to differentiate between different congestion levels

experienced at the router based on the router queue condition. The use of average queue length

allows RED to better differentiate between temporary queue oscillations due to short-term data

traffic increases and persistent queue growth due to long-term data traffic overload. As

concluded by Nga (Nga, Iu, Ling, & Lam, 2008), this enables RED to properly detect persistent

congestion and to house and endure short term data traffic increases even though the algorithm's

ability for early congestion detection is compromised and the average queue length is

controlled.

RED routers accept all incoming packets until the queue length reaches Minth, and then it drops

a packet with a linear distribution function. When the queue length reaches Maxth, all incoming

packets are dropped with probability one. RED router buffer is shown in Figure 2.3

RED Gateway Buffer

Agglagale TCP Traffic

Dmp Man,!, M ~ q h

Figure 2.3 RED Router Buffer (Adopted from (Ryu, Rump, & Qiao, 2004))

A router implementing RED detects congestion early by computing the average buffer length

avg and sets the two queue thresholds Maxth and Minth for packet drop. Upon the arrival of a

new packet to the router, RED calculates the average queue length using EWMA process. The

average queue length is defined as

avg= (1-w)avg+ wq (2.1)

where avg is the new value of the average queue length at a given time, q is the current queue

length, and w, which is normally less than one, is the weight parameter that is used for

calculating the average queue length, avg, from the instantaneous queue length as stated in (Ryu

et al., 2004). ave is used as a control variable to activate packet droplmark process. The average

buffer length tracks the current buffer length. However, the average queue length fluctuates

much slower than q because w value is much less than one. Thus, the average queue length

tracks the long-term fluctuations of q to reflect the congestion in networks.

As mentioned in (Floyd, November 1997), the packet dropping probability function determines

how frequently the router will send congestion notifications by dropping packets, given the

current level of congestion. The probability function of RED allows it to tune the packet

dropping probability based on the congestion level at the router. The level of the congestion is

proportional to the level by which the lower threshold is exceeded by the average queue length.

RED gives proper packet droplmark probabilities to different packets depending on the average

queue length, packet length, and the number of undroppedlunmarked packets since last

droppinglmarking .

According to Mahbub et al. (Mahbub & Raj, 2003), RED algorithm includes two computational

parts :

Computation of the average queue length

Computation of the packet droplmark probability

In RED, the initial packet droplmark probability (Pini) is computed as a linear function of the

average queue length which reflects different congestion severity levels. The larger the

computed average queue length is, the greater the probability with which an incoming packet is

dropped or marked.

The RED initial packet droplmark probability, Pini, is calculated by

The adjusted initial packet droplmark probability is computed by scaling the initial packet

droplmark probability by a fraction which reflects the relative length of a packet with respect to

the maximum packet length. The initial packet droplmark probability is defined as:

This is to ensure that the packet droplmark probability is proportional to the packet length in

bytes. RED incorporates the number of undropped packets since last dropping, count, to

compute the final packet drop probability that can be expressed as:

As stated in (Floyd, November 1997), the application to final drop probability to incoming

packets ensures a uniformly distributed packet intermarking interval with packet drops at evenly

spaced intervals. This helps to avoid clustered packet drops which cause global synchronization.

It also helps to reduce the occurrence of long periods during which no packets are dropped so as

to enable effective control of the queue length and prevention of congestion.

Having several congestion detection thresholds together with dynamically adjusted packet drop

probabilities allow RED routers to set the frequency of congestion notification delivery to the

intensity of the congestion detected (Firoiu & Borden, 2000).

The RED algorithm involves four parameters to regulate its performance. Minth and Maxth are

the queue thresholds to perform packet drop, Maxdrop is the packet drop probability at Maxth,

and w is the weight parameter to calculate the average queue length from the instantaneous

queue length. The average buffer length follows the instantaneous buffer length. However,

because w is much less than one, avg changes much slower than q. Thus, avg follows the long-

term changes of q, reflecting persistent congestion in networks. By making the packet drop

probability a function of the level of congestion, RED router has a low racket-drop probability

during low congestion, while the drop probability increases the congestion level increases

(Hassan & Jain, 2004).

The packet drop probability of RED is small in the interval Minth and Maxth. Furthermore, the

packets to be dropped are chosen randomly from the arriving packets from different flows.

Consequently, packets coming from different sources are not dropped simultaneously. Hence,

RED gateways avoid global synchronization by randomly dropping packets. The performance

of RED significantly depends on the values of its four parameters (May, Diot, Lyles, & Bolot,

2000) (Wu-Chang & Dilip, 1999), Maxdrop, Minth, Maxth, and w. It is very hard to find

optimal values for these parameters as they would to depend on the typical round-trip times in

the system (Welzl, 2005) (Floyd, http:llwww.icir.org/floyd~red.htrnl#parameters, November

2008).

2.6 RED Parameters

In this subsection, we examine the effect of the RED parameters and how should be set:

The Weight Parameter, w.

This parameter determines the reactiveness of the Exponential Weighted Moving Average

(EWMA) process to traffic oscillations (Welzl, 2005). RED uses the average (and not the

instantaneous) queue length as a control variable to control active packet drop. Computing the

average queue length involves the previous average queue length and the instantaneous queue

length modified by a weight parameter w. Hence, average queue length works as low pass filter

(LPF) (Floyd & Jacobson, 1993). The average queue length is required to track persistent

congestion that occurs over long time range while, at the same time, filtering out short time

congestion (Mahbub & Raj, 2003). Now consider what would happen if w were 1: only the

instantaneous queue would be used, and the impact of preceding values would be completely

eliminated. Setting this parameter to 0, conversely, would mean that the average queue length

would remain fixed at some old value and not react to queue oscillations at all (Welzl, 2005).

This means that, if w is very small, the average queue length does not catch up with the long

range congestion that may result in the failure of active queue management. If w is very large,

the average queue length tracks the instantaneous queue length, which also degrades the

performance of active queue management (Bing & Mohammed, 2008).

In a realistic model for determining w, where aggregate TCP traffic has been taken into account,

the values (0.05, 0.07) (Bing & Mohammed, 2008) give better performance than the values

(0.001,0.002) (Floyd, 1997) (Floyd & Jacobson, 1993) in certain cases.

Buffer Thresholds, Minth and Maxth.

The desired (required) average queue length determines the values of these two parameters.

Dropping incoming packets when the average queue length surpasses Maxth prevents the queue

from growing further. If this parameter is set to a small value the queue will be small (and

therefore short delay). Conversely, the parameter Minth depends on the burstiness of data traffic

- if the bursty data traffic should be accommodated in the buffer fairly, Minth should be set to a
r

rather large value - and at the same time, (Maxth - Minth) must not be very small to allow for

the randomness to take effect (Welzl, 2005). For a RED carrying only TCP traffic, Minth should

be around five packets, and Maxth should be at least three times Minth (Floyd, 1997). A

different set of values are required for Minth and Maxth to protect TCP traffic from non-TCP

traffic which does not employ the congestion control mechanisms of TCP (Pams, Jeffay, &

Smith, January 1999).

Maximum Packet Drop Probability, MaxdrOP'

The selection of this parameter significantly affects the performance of RED. If Maxdrop is

very small, then active packet drops are not enough to prevent global synchronization. Very

large value of Maxdrop decreases the throughput. Even though a Maxdrop value of 0.1 is

generally suggested (Floyd, 1997), the selection of an optimal value of Maxdrop according to

network traffic situation is still an open issue (May et al., 2000) (Wu-Chang & Dilip, 1999).

It was demonstrated that the value of Maxdrop depends on the number of flows as well as the

bandwidth delay product (Feng, Kandlur, Saha, & Shin, 1999). The upper bound of packet drop

probability (Maxdrop) can be expressed as:

< ((N * SS * C) I Bz) Mmrdrop -

where N is the number of flows, B is the total bandwidth, SS is the segment size, T is the round-

trip time, and C is a constant. From Eq. 2.5, it is not possible to fix a value of Maxdrop for a

dynamically changing the network environment (Mahbub & Raj, 2003). Finally, Maxdrop

should be small because the general goal of RED is not to drop a large number of packets once

Minth is exceeded but only drop a packet occasionally, as a result forcing senders to reduce

their transmission rates (Welzl, 2005).

2 1

2.7 Improving the Response Time

RED uses four parameters and one state variable to regulate its performance. Using the average

queue length in controlling the active packet drop provides the following advantages (Mahbub

& Raj, 2003):

Accumulating short-term congestion.

Tracing long-term congestion.

The low pass filter characteristic of average queue is also featured with slow-time response to

the changes of long-term congestion in networks. This is harmful to the throughput and delay

performance of RED gateway. For example, after a long-term congestion, the average buffer

length stays high even if the instantaneous queue is back to normal or low; RED will, therefore,

continue dropping packets even after the end of congestion (May et al., 2000) resulting in low

throughput. The slow response of the average queue length will result in the throughput

restoring slowly after heavy congestion (Christiansen, Jeffay, Ott, & Smith, 2001). A larger

value of w can improve the response time, but at the expense of the RED queue tracing short-

term congestion, which is against the proactive queue management mechanisms principle.

Low Pass Filterlover Drop Avoidance (LPFIODA) is an efficient algorithm for calculating the

average queue length. It has shown that LPFIODA algorithm improves the response time,

throughput, and reduces the delay of RED routers (Zheng & Atiquzzaman, 2005). LPFIODA

calculates the average queue length as follows:

During long-term congestion, and the average queue length is calculated by

(2.6)
= w+w,(q -mg)

And, during this period, the RED queue is in the active drop phase.

If the average queue length is high at the end of long-term congestion, halve the average

queue length. During this period, the RED queue is in the over drop avoidance (ODA)

phase.

If the average queue length is below a specific threshold value after the end of long-term

congestion, renew the value of the average queue length using the LPF model.

Figure 2.4 shows the flowchart of LPFJODA algorithm.

avg: average queue length
w: weight parameter
q: instantaneous queue

t.
lavg - (1 - w)avg + wql avg = (I - w)avg + wq

Figure 2.4 LPF/ODA Algorithm

2.8 RED Algorithm Description

This subsection describes the details of the RED algorithm, shown in Figure 2.6. The line

numbers, enclosed in parenthesis, appearing throughout this section, refer to line numbers in

Figure 2.6.

Min, Max, B~ avg

Figure 2.5 RED Packet Drop/Mark Function

The pseudo code given in Figure 2.6 describes the RED algorithm.

for (each arrvlng packet (Pkr,)) {
'* c M a k the a q e queue stze (q) *

[11aq" - (l - u).mgr-' + u .q;

wnmalopntlon
l f (avg" <Jdm,) [

* admitpaekettobuffer *
[21 enweue(PM) 1

* congestion avoidance *
else if (,MIPI, Smg'J t M q) [

* comprte nnbal w e t droppg &g pobalnlity(P,J *

.. * wrmalk initial pednt d q y m g , : m ~ pobabtw *

.;* drophark the &et with pobebility(qd*;
[6] dropPacket(~k1~: P Z)

m markPacket(Pt.cni,))

* conge- mtrol *
else P (, & z ~ *) * / {

. '* dqimrk RIe pseket with pobabilityl*.
[8] dropPacketlPkri. 1.0)

(91 mrkPacket(Phn,, 1.0) I I

Figure 2.6 RED Algorithm

As mentioned earlier, Basic RED uses two thresholds, Maxth and Minth, on the average queue

length for droplmark activation and congestion detection. The Basic RED'S initial packet

droppinglmarking probability is a piece-wise continuous linear increasing hnction of the

average queue length and varies linearly fiom (0) to (Maxdrop) as the average queue length

varies fiom (Minth) to (Maxth) as shown in Figure 2.5. Basic RED computes the average queue

length (avg) upon every packet's arrival using an Exponential Weighted Moving Average

(EWMA) low pass filter (line 1). The average queue length is compared to the minimum

threshold (Minth) and the maximum threshold (Maxth). If the average queue length is less than

the minimum threshold, the packet is admitted to the buffer (line 2). If the average queue length

is between the minimum and the maximum thresholds, the initial (line 3), the scaled initial (line

4), and finally the final (line 5) packet droppinglmarking probability is computed and the packet

is droppedmarked with the final droppinglmarking probability (Pf) (1 ine 6 if ECN-capable) and

(line 7 if non-ECN-capable). If the average queue length is larger than the maximum threshold,

the packet is droppedmarked with probability 1.0 (line 8 if ECN-capable) and (line 9 if non-

ECN-capable).

Numerous studies were carried out widely to investigate the performance of TCPIIP over RED.

The studies revealed that even though RED can improve the TCP performance under certain

parameter settings and network conditions, the basic RED algorithm is still susceptible to

several problems, such as bandwidth unfairness, low throughput under poorly setting

parameters, and large queuing delay variance (jitter) because of the fluctuation of the queue

level, being unable to handle unresponsive connections, and a high number of consecutive drop.

In addition, according to Nagendran et al. (agendran et al., 2010), RED has fairness issue when

UDP flows demand assured service. Therefore, it is important to stabilize the queue length to

protect the responsive connections.

It can be concluded that even the use of multiple RED (MRED) with different parameter

settings cannot solve the problems mentioned above due to the wide number of parameters that

have an impact on the system's performance in DiffServ network. It is realized that there is a

dire need for more research in this area of networking to improve the system's performance and

resource utilization in DiffServ environment.

2.9 Summary

This chapter began with a description of quality of service and differentiated services (DiffServ)

environment. The chapter showed how important is the role of queue management mechanism

in DiffServ. It described the function and structure details of RED queue management

algorithms.

In this chapter, it has been revealed that MRED algorithm used in DiffServ has many problems

such as bandwidth unfairness, low throughput under poorly setting parameters, and large

queuing delay variance Gitter) because of the fluctuation of the queue level, being unable to

handle unresponsive connections, and a high number of consecutive drop. These problems have

motivated the researchers to improve MRED in order to improve DiffServ. We have observed

and concluded that the current congestion control mechanisms cannot solve above mentioned

problems due to the wide number of parameters that have an impact on the system's

performance. We also realized that there is a dire need to improve the queuing management in

DiffServ to provide good QoS to end users.

In the next chapter, the experimental tool and the research methods for performance evaluation

of the enhanced version of MRED will be presented.

CHAPTER THREE
RESEARCH METHODOLOGY

Chapter 2 reviewed the background material on queue management that forms the basis of the

general framework for this research, and revealed the necessity for the necessity for improving

the queue management mechanism used in DiffServ networks, namely Multiple RED (MRED),

in order to improve the performance of these networks. . As stated in Chapter 1, one of the

objectives of this project aim at evaluating the enhanced MRED queue management

mechanism. In this chapter, research methodology for developing and evaluating the

performance of the enhanced MRED is presented.

3.1 Introduction

There are several ways to conduct research, and this depends on the purpose of study. It is

common to use either a descriptive or a prescriptive approach in research on information

technology (Nyame-Asiamah & Patel, 2009). Descriptive research seeks knowledge about the

nature of reality, and improves performance of the system (Aken, 2004). Our research adapts

Research Design because it is accepted among many researchers in the information and

communication processing systems (Venable, 2006). Research Design can address the problem

in a unique and efficient way (Khosrow-Pour, 2006). Many researchers have used Research

Design approach depending on Vaishnavi & Kuechler (Vaishnavi & Kuechler, 2005). Vaishnavi

and Kuechler methodology that is used in our research is shown in Figure 3.1.

Knowledge flow Process Steps Outputs

Problem i Proposal
I

I I

I I I

j Tentative Deslgn :
Suggestlon r 1 !

1
l------------------I

Development Artlfact

I I_ EvaL,on Performance Measures

Operation and
Goal Knowledge 1

I Conclusion Results

Figure 3.1 General Methodology for Design Science Research (Vaishnavi & Kuechler, 2008)

The methodology illustrated in Figure 3.1 consists of five phases namely: Awareness of a

problem, Suggestion, Development, Evaluation and Conclusion. Each of these phases is

elaborated afterwards.

3.2 Awareness of Problem Step

The research work presented in this project is motivated by the need for a developed queue

management mechanism to improve the performance of the Diffserv in the Internet as the

current mechanism suffers from low throughput, and high number of consecutive drop in

addition to large queuing delay variance (jitter) that make it being unable to handle

unresponsive connections. This degrades the performance level or quality of service required by

the user at the end system. Therefore, it is important to come up with an enhanced queue

management mechanism to increase the throughput and reduce packet drops and delay in order

to improve Diffserv networks.

3.3 Suggestion Step

Developing a drop probability function for MRED, which uses a measure of packet amval rate

with a measure of the queue length for its control decisions will provide good quality of service

and show better ability in realizing the goals of controlling the packet amval rate to the

Dimerv-capable router, router queue lengths, and network congestion, while achieving a higher

performance. Therefore, the enhanced MRED drop probability function presented in this project

use the average queue length and the average packet amval rate for making its dropping

decision to accomplish the goal of providing good quality of service.

3.4 Development Step

In this section, the system requirements, the design, and the implementation of the enhanced

MRED are presented.

3.4.1 System Requirements

Queue management mechanism in the network routers has to deal with the packets amved at the

input interface and take decision on whether to admit amved packets into the buffer. To do so,

the queue management should have information about the status of the buffer which can be

done by calculating the buffer occupancy level compared to the buffer size. This information is

required once packets amve. Therefore, a model is required to provide this information. Based

on the decision, another model is required to admit or drop the packet. As the drop can be

randomly from the buffer, a model for calculating the drop probability function applied to a

specific packet is required as well.

The enhanced MRED has to do the following tasks:

Controlling the aggregate the packet arrival rate to maintain a higher average packet

arrival rate at the router's buffer, with smaller rate variations, which assists to avoid

congestion and improves link utilization.

Controlling the instantaneous queue length to decrease the queuing delay and avoid

buffer overflows while maintaining high link utilization and low packet drop ratio.

Providing early congestion detection, based on prediction, and timely congestion

notification, via packet dropping or marking based on the value resulting from the

packet droplmark probability computation, to instruct the traffic senders to reduce their

transmission rates to help control the queue length.

3.4.2 System Design

Enhancing the MRED queue management mechanism requires designing a new packet

droplmark probability function that helps the queue management mechanism to take a proper

decision or action in whether to allow or drop the packet to control the queue length efficiently.

The current MRED uses an Exponentially Weighted Moving Average (EWMA) of the queue

length to decide when to drop packets. It requires the use of a small queue averaging weight to

make it less sensitive to very short-term increases in the packet arrival. A packet may be not

allowed to the buffer while there is plenty space available or it may be allowed to the buffer

while there is little room left before the buffer overflows. Therefore, the use of the average

queue length does not allow the exercise of tight control over the instantaneous queue length,

but allows only the average queue length to be controlled. This could lead to higher packet loss

and excessive oscillations in the instantaneous queue length which would generate large delay

variations and delay jitter as well as poor link utilization.

Considering the average packet arrival rate when computing the packet droplmark probability

function, can provide information that helps the queue management mechanism to act properly.

3.4.3 Implementation

In this project, the enhanced MRED is developed by using C-H and implemented in network

Simulator 2.32 software on a machine running the CentOS 5.2 version of the Linux operating

system. The code is debugged and verified several times by conducting many simulation

experiments to ensure that the models are working properly. The enhanced MRED is validated

using ns-2 validation program, Run-time Trace, and Incremental Implementation. For every

simulation, the Run-time Trace is checked to ensure it runs as expected. The detailed

information regarding the development of the enhanced MRED is provided in Chapter four.

3.5 Evaluation Step

Evaluation is performed to ensure that the enhanced MRED is working properly and efficiently.

The results gained from simulations are analyzed statistically to evaluate the performance of the

enhanced MRED. The evaluation details are presented in Chapter five.

3.5.1 Simulation Topology and Scenario

The aim of this experiment is to show that it is possible to achieve prioritization of important

packets without any use of information provided by transport layer, and to test and evaluate the

modified version of MRED under different Committed Information Rate (CIR) levels varied at

the source edge nodes.

In this experiment, two priority levels are defined, the higher "In packets" or "green packets"

and the lower "Out packets" or "red packets". We use the time-sliding window (TSW2CM)

policer. For each edge router, a CIR is defined. All packets will be marked as high priority if the

rate of the connection is below CIR. If the rate exceeds CIR, packets will be marked

probabilistically such that the rate of packets marked with high priority corresponds to the CIR.

The transmission rate is computed as the rate averaged over the "TSW window"; in this

experiment, the simulation its duration is 20msec.

We use the network topology shown in Figure 3.2 below.

Node

Desunat~on
Edge Node ~~d~

Source
Node

, , Edggode /
Node

Node

Figure 3.2 Network Topology

50 sources are connected to their edge nodes via links of lOOMbps bandwidth and O.5msec

delay each. Links between the edge nodes and the bottleneck core node have 30Mbps

bandwidth 2msec delay. The bandwidth of link between the core node and the edge router node

toward the destination node is lOMbps with Smsec delay. The link between the edge node and

the destination has 100Mbps bandwidth and O.5msec delay.

Traffic coming from sources is marked according to parameters that are specified at their edge

routers. The traffic represents a file that has a Pareto distribution with shape parameter 1.25 and

an average size of 1Okbytes (average transferred file over the internet). And the average packet

size is 1040 bytes, of which 1000 are data and 40 bytes are header.

Files to be transmitted arrive at each source node according to a Poisson process with an

average rate of five files per second. Many sessions from the same source node can be active at

the same time.

The size of the queue at the bottleneck router is 100 packets. Therefore, the queue management

parameters at other routers will not have any affects on the results. The modified Multi-RED

version queue management is used at the bottleneck core node queue.

The same parameters for both priority levels are selected. The reason behind this selection is to

create conditions that allow us to study the effect of the modified version of MRED on

diminishing the loss probabilities of vulnerable packets, and on TCP performance in terms of

delay and throughput. Giving the same parameters to both priorities, allows realizing the direct

effect of protecting vulnerable packets on the TCP performance.

For each color of packets (red, green), the averaged queue length is monitored (this is done

using the standard exponential averaging with parameter w, = 0.01). Packets of a given color

start to be dropped when the average number of queued packets of this color exceeds minth of

15. This allows the drop probability to increase linearly with the averaged queue length until it

reaches max,h value of 45, where the drop probability, maxp, is chosen to be 0.5. The drop

probability will be equal to 1 whenever max, is exceeded.

The average packet size is 1040 bytes, of which 1000 are data and 40 bytes are header. An

average ftp file is assumed to contain lo4 bytes of data, which means that its total average size

(including the headers) is about 1.04 x lo4 x 8 bits. After multiplying by the number of source

nodes and dividing by the average time between amvals of files at a node, the packet amval

rate to the bottleneck core node is

Thus, it is obvious that the traffic rate is higher than the bottleneck link (which is 10 Mbps).

Hence, the congestion is expected to occur, and therefore, it is required to have an active queue

management mechanism.

The simulation duration is chosen to be 100 seconds to discard warming up period and avoid

overlapping phenomenon.

When run the scenario, the behavior of MRED is recorded and examined by using performance

metrics explained below.

3.5.2 Performance Metrics

The term metrics refers to the criteria used to evaluate the performance of the system as stated

in (Jain, 1991). In this research, the following performance metrics are used for the quantitative

performance comparison between the enhanced mechanism and standard LDP. This is to

validate the new mechanism.

3 5

Outgoing Transmission Link Utilization

Utilization of a link refers to an amount of data carried by a link relative to the link's maximum

capacity. In this research, link utilization measures the ratio of time the link is utilized, it is

defined as:

L! = h.?~i.nre [seconds; . , 006
Sin~lllar imTkie [seconds:

Packet Drop

Packet loss results in very noticeable performance issues. Network applications such as voice

over IP, online gaming, and videoconferencing experience quality of service degradation when

the packet loss is high as mentioned in (Irnadud & Nazar Abbas, 2008). In this research, packet

loss measures the ratio of the number of packets discarded at the bottleneck link to the total

number of packets inserted into the bottleneck link buffer for all source, it is defined as:

Queue Length

Since the role of the proactive queue management mechanism is to keep the queue length as

small as possible to provide space for accommodating temporary increases in the multimedia

traffic to avoiding packet loss, queue length is an important metric through which the

effectiveness of a queue management mechanism can be shown. In this research, statistical

average (expected value (E(Q)) of the instantaneous queue length is used and defined as:

• Throughput

Throughput is defined as the rate (requests per unit of time) at which the requests can be

serviced by the system. In data network, throughput is defined as the amount of data transferred

successfully from host to another in a given time period. Throughput, which is essentially bound

by the BDP, is measured in number of bits per second (bps). In this research, throughput is

measured as the number of data packets received correctly at the server host in a unit of time (in

bit per second). Throughput for of a connection is calculated using the following formula:

thr = YR; (3.5)

where n is the number of bytes received by the server at the end of the simulation, and t is the

simulation time.

Analyze the results is typically done by post-analysis of the trace information produced by the

ns-2 program execution. The trace files will usually have enough information to compute

average link utilization on the communication links in the simulation, average queue sizes at the

various queue, and drop rate in the queues, just to name a few.

The Diffserv network efficiency, with which the network resources are utilized, can be

measured based on the link utilization and packet loss values. This information is important to

network owners and operators. They can maximize their profits by minimizing their cost based

on this information.

The average queue length identifies the average queuing delay experienced by the real time

traffic passing through the DiffServ-capable router. The quality of service provided to the

network users is indicated by the queuing delay and the packet loss. In other words, the queuing

delay and the packet loss determine the reliability and response time offered by the DiffServ

network.

3.6 Conclusion Step

This step is the final step in this research. The results gained from the simulations and the

analysis of the results showed that the enhanced MRED is work properly and the expected

performance is achieved. More details and potential future work are presented in Chapter six.

3.7 Summary

This chapter presented the research method that is used to conduct this project. It presented the

steps that are followed in enhancing MRED for DifBerv networks. The simulation scenario

used in this research and based on a particular network topology is presented in this chapter as

well. Also, the performance metrics, which are utilized by well-known network researchers and

previous research works, used for the quantitative performance evaluation of the enhanced

MRED queue management mechanism are described in this chapter. With the intention of

running a reliable simulation experiments, the network simulator (ns-2) and the newly

implemented ns-2 module were validate and verified.

After specifying the methodology and the experimental tool and scenario that are used to

implement the enhanced MRED queue management mechanism in this chapter, the design and

the implementation issues of the enhanced MRED will be presented in the next chapter.

CHAPTER FOUR
DESIGN AND IMPLEMENTATION OF ENHANCED MRED

After setting up the research methodology for evaluating the performance of the enhanced

MRED queue management mechanism in Chapter 3, this chapter introduces the design and the

implementation of the enhanced MRED.

4.1 Enhanced MRED Implementation Design

The main objective of enhanced MRED is to ensure that packets get their right treatment while

providing the routers with congestion control capabilities in order to improve DiffServ network.

Enhanced MRED achieves this by controlling packet arrival rate and the average queue length

at the router. Rate and queue control are exercised through early congestion detection &

notification, rate reduction, and queue growth (increase in the queue level) avoidance by

dropping lower priority packets randomly.

The router should differentiate between different congestion levels and to practice congestion

control of different levels, accordingly. The enhanced MRED mechanism controls the aggregate

the packet arrival rate to maintain a higher average packet arrival rate at the router's buffer, with

smaller rate variations, which assists to avoid congestion and improves link utilization and

impose fairness between connections based on their packets priorities. Also, it controls the

average queue length to decrease the queuing delay and avoid buffer overflows while

maintaining high link utilization and low packet drop ratio generally. In addition, it provides

early congestion detection and timely congestion notification by packet dropping or marking

based on the value resulting from the packet droplmark probability computation, to instruct the

traffic senders to reduce their transmission rates to help control the queue length. All this would

help improving DiffServ. Enhanced MRED queue management monitors the average queue

length to detect congestion and to compute the packet drop probability (P) which is applied to

the amving packet. Enhanced MRED queue manager determines the rate at which packets are

discarded from the network in order to reduce the average packet amval rate (R) at the router

near the outgoing link capacity (C). When a packet is amved at the router, the average packet

amval rate (R) will be computed by enhanced MRED queue manager.

After the packet's amval, immediately, enhanced MRED makes a prediction of the expected

changes in the queue length over a subsequent period of time, of length (T), presuming that the

traffic amval characteristics will remain unchanged over this period. Based on this prediction,

enhanced MRED computes the initial packet marking probability (Pini) as the fraction of traffic

amval that needs to be dropped over this period taken into account high priority packets.

4.1.1 Average Packet Arrival Rate Estimation

In practice, a packet sliding window is used to calculate the average packet amval rate of the

aggregate data traffic. The packet sliding window technique uses a sliding window of packets

which moves forward upon every packet amval. A packet sliding window of size Ws packets

calculates the average packet arrival rate based on the packet length and the interamval time for

the last Ws packets. It computes the average packet amval rate as a fraction of the total amved

packets over the total elapsed time. If the kth packet's anival instant is represented by tk, its

interarrival time by Tk (= tk - tk-l), and its length by lk, the average packet amval rate is

computed as:

Which can be implemented as:

A packet sliding window is easy to implement and using actual data points for computing the

average packet amval rate.

If the packet amval and queue states are stable and do not alter very much, it is worthwhile to

drop lower priority packets at fairly regular intervals. It is important not to have too many

packets dropped close to each other or to have long periods of time where no packets are

dropped or marked. Too many droppedmarked packets close together can cause global

synchronization, and also too long packet intermarking times between dropped packets can

cause large queue sizes and congestion as mentioned in (Zheng & Atiquzzaman, 2005).

According to (Floyd, November 1997), when the traffic and queue states are stable, the number

of undroppedunmarked packets between two adjacent dropping would be exponentially

distributed if the probability (Pini) is directly applied to individual amving packets

independently.

Therefore, if the initial packet droppinglmarking probability (Pini) is used directly to drop

packets, packets could get dropped or marked in large numbers close to each other or not get

dropped for very long periods of time. This is avoided by modifying the initial marking

probability based on the number of undropped packets since the last droppedmarked packet

4 1

(count) to obtain a packet intermarking interval that is uniformly distributed over (1. 2, ...,

2Pini) as in (Floyd, November 1997). This distributes the droppedlmarked packets consistently

over the incoming packets.

The pseudo code given in Figure 4.1 describes the enhanced MRED algorithm.

for (each arriuing packet (PXa,)) {

a cumput amage pcket arrival rate lo the rouln buffer (R)'

R =
P=wAA,*, + + p m w l ! .

Pklnen.alTiir,,, + .. + PktimenrJlTm '
.!* calculate the average queue s k (A@ *,

[I] avg':! - (I - w) *mg'.:-'! + u +Q;

:* flofmal opention *i
~f (QI$' <&fin,) I

I * sdmitpscket to buffer *;
[21 enqreue(PM~) 1

..'* umgedion avoidance *.'
else if (Miq f q!'! <,\bm,) i

.'* complteinilial pecketdroHJry pobabllityQJ *.

,'* d k initial pscltet drop@q,imafhg pobabihty*.
C41 p<i) _ { rarPkrLawtk(PRri) (i)

I N .UaKPRrLl*lli
)%I

'* compte find &cq.& pobabihty(P$ *;
p2?

151 PY) -
2 - rolat.~$?

,'* drop the pscket with pbabilit).@)*.
161 dropacket(prri, P:?)

.!* cmgestion control *;
e l s t /*(arm 2 M&,)*;/ {

; * drop'ma* the packet with pobability 1 *:
m dropacket {~q, 1.0)

Figure 4 .1 Enhanced MRED Algorithm

4.2 Enhanced MRED Implementation

The Diffserv environment that we are implementing follows the "Assured forwarding"

approach. A packet that belongs to a connection could receive three levels of priority within the

connection. These levels are called "drop precedences". It can be used to provide a lower loss

probability to sync packets in a TCP connection. According to Noureddine and Tobagi

(Noureddine & Tobagi, 2002), the losses of sync packets result in very long time-outs.

Implementing enhanced MRED for DiffServ required five modules to be compiled in ns2

simulator. One for RED-based queuing, one for policing, one for the base DiffServ router

functionality (dsRED), and one for each the edge and core routers. Each of these modules

defines a single class.

The essential module for the DiffJerv implementation is dsRED module. It is included in

"dsred.h" and "dsred.cc files." The dsRED Queue class is the parent class for the edgeQueue

and coreQueue classes as shown in Figure 4.2 below.

--- -..-" ,/- - 1
I-r

i,. Queue
---T-

-el.2

Figure 4.2 The class hierarchy of dsREDQueue

In Difrjerv architecture, dsRED Queue responsible for implementing functionality and

declaring the parameters that are common to edge and core routers. The edge router module is

defined by edgeQueue class. It is included in "edge.h" and "edge.cc." files. It is responsible for

marking the code point for each packet. Also, it defines and managing policies which determine

the kind of dealing that a packet receives at edge router. In addition, maintaining multiple

physical and virtual queues and setting parameters for each these queues are done by this

module. The maximum bandwidth a queue can use over a link to the core router can be

determined by this module as well. coreQueue class that defines the core router module

forwards packets based on the value of the code points marked on each packet. Core module is

included in the "c0re.h and "core.cc" files.

While differentiation of packets can be within each connection, all connections can be classified

to many classes (at most four) which can be given different dealing as well.

Moreover, it is possible to differentiate between connections. Four classes of classes are defined

(see Figure 4.3), and packets of a given class are queued in a class-dependent queue. To

distinguish between packets that belong to the same class, in each of the four queues there are

three internal virtual queues. To each of the 12 combinations of the four flow class and the three

internal priority levels within a flow correspond a code point that a packet is given when

entering the network.

4 Physical Queues

3 Virtual Queues per Physical Quew

Figure 4.3 dsREDQueue illustration

Rio Coupled RIO C is used in enhanced MRED, in which the probability of dropping low

priority packets (called "out-of-profile packets") is based on the weighted average lengths of all

virtual queues, whereas the probability of dropping a high priority ("in-profile") packet is based

only on the weighted average length of its own virtual queue.

4.2.1 Configuration of Enhanced MRED in Network Simulator 2 (ns-2)

To simulate Diffserv using, the policy should be fully determined in the tcl script. To determine

the number of physical queues, we use the following command:

$dsredq set numQueues- $m

where m can take values between 1 and 4.

Configuring queue 0 to be a RIO-C is done with the following command:

$dsredq setMREDMode RIO-C 0

All queues are set to be RIO-C if the last argument is not given. Likewise, types other than RIO-

C can be defined. To specify the number $n of virtual queues, we use the command:

RED has 6 parameters: the parameter queue weight, queue number, virtual queue number, minth,

maxth and maxp. If queue weight parameter, q,, is not stated then it is taken to be 0.002 by

default.

Red parameters can be configured using the following command:

The DropTail queue can also be used with the following command:

$dsredq se tMREDMode DROP

The configuration then is given as before with only the first three parameters:

All arriving packets are dropped when the minth value is reached.

To compute the drop probability of RED, we need an estimate of the packet size. For a packet

of size 1000 bytes, we can use the following command:

Regarding the scheduling of packets, specific scheduling regimes can be defined. For example

the weighted round robin with queue weights 5 and 1 respectively can be defined using the

following command:

$dsredq setSchedularMode WRR

Other possible scheduling are Weighted Interleaved Round Robin (WIRR), Round Robin (RR)

which is the default scheduling, and the strict priorities (PRI).

The set of four queues along with the virtual queues is supplemented with a Per Hop Behavior

(PHB) table. Its entries are defined by

the code point,

the class (physicalqueue), and

a the "precedence" (virtual queue).

An entry is assigned by using the following command

which means that code point 11 is mapped to the virtual queue 1 of the physical queue 0.

The following command results in bringing the PHB table:

The number of physical and virtual queues can be brought using the following command:

$dsredq printstats

The following command can bring the RED weighted average size of the specified physical

queues (0 in our case):

4.2.2 Defining Enhanced MRED Policies

All connections within the same source and going to same destination are subject to a regular

policy. A policy defines many specific parameters such as policer type and target rate. It

specifies at least two code points. The selection between them depends on the difference

between the connection's current sending rate and its target, and possibly on the policy

dependent parameters (such as burstiness). The policy specifies meter types that are used for

measuring the relevant input traffic parameters. A packet arriving at the edge router causes the

meter to update the state variables corresponding to the connection, and the packet is then

marked according to the policy. The packet has an initial code point corresponding to the

required service level; the marking can result in downgrading the service level with respect to

the initial required one.

A policy table is used in ns-2 to store the policy type of each connection. Information stored in

the policy table include Source Node ID, Destination Node ID, Policer Type, Meter Type,

Initial Code Point, CIR (Committed Information Rate), CBS (Committed Burst Size), C Bucket

48

(Current Size Of The Committed Bucket), EBS (Excess Burst Size), E Bucket (Current Size of

the Excess Bucket), PIR (Peak Information Rate), PBS (Peak Burst Size), P bucket (current size

of the peak bucket), Arrival Time of Last Packet, Average Sending Rate, and TSW Window

Length (TSW).

TSW is a policer based on average transmission rates and the averaging is performed over the

window length, in seconds, of data. The default value is 1 sec. Possible policer types can be:

It uses a CIR and two drop precedences as well. The used probabilistically when the CIR is

exceeded.

TS W3CM (TS W3CMPolicer)

It uses a CIR, a PIR and three drop precedences. The medium priority level is used

probabilistically when the CIR is exceeded, and the lowest one is used probabilistically when

the PIR is exceeded.

Token Bucket (TokenBucketPolicer)

It uses CIR and a CBS, and two drop precedences.

Single Rate Three Color Marker (srTCMPolicer)

It uses CIR, CBS and EBS to choose fi-om three drop precedences.

Two Rate Three Color Marker (trTCMPolicer)

It uses CIR, CBS, EBS and PBS to choose fi-om three drop precedences.

49

Each of the policer type mentioned above defines the meter it uses. The initial code point and

one or two downgraded code points are defined by a policer table for each policy type. The

initial code point is called "green code" and the lowest downgraded code is "red". If there is

another code point in-between, it is called "yellow".

The configuration of the polices in ns-2 can be done through TCL. We can update the policy

table by using the "addPolicyEntry" command which contains the edge queue variable

denoting the edge queue, the source and destination nodes of the connection, the policer type, its

initial code point, and then the values of the parameters that it uses; these are some or all of

CIR, CBS, PIR and PBS as mentioned above. CIR and PIR are given in bps, and CBS, EBS and

PBS in bytes.

For example:

$edgeQueue addPolicerEntry [$nl i d] [$n8 id] trTCM 10 200000 1000 300000 1000

By doing this, a policy for the connection that originates in $nl and ends at $US is added. If the

TSW policers are used, one can add at the end the TSW window length. If not added, it is taken

to be 1 sec by default.

We can use "addPolicyEntryW command specificcally to the policy and to the initial code

point defines the downgraded code points which are same to all connections that use the policy

with the common initial code point. It can be used as follows,

The command that used in bringing the entire policer table is:

$edgeQueue p r in tPo1 icyTable

We can use the following command to bring the entire policer table:

$edgeQueue p r i n t P o l i c e r T a b l e

To get the current size of the C buckets in bytes, the following command can be used:

$edgeQueue getBucket

4.3 Summary

This chapter presented the design and the implementation of the enhanced MRED queue

management mechanism. It presented the droplmark probability function which is applied upon

packet amval to address the state of congestion and decide the probability with which the

packet should be denied entrance to the queue based on priorities. The chapter covered how

enhanced MRED uses a packet sliding window technique for computing the average packet

arrival rate of the aggregate data traffic upon every packet amval in order to take a proper

decision and ensuring packet treatment. It show how enhanced MRED can be configured in

NS2 for DiffServ networks.

CHAPTER FIVE
EVALUATION & RESULTS

This chapter is dedicated to discuss the evaluation of the enhanced MRED enhanced designed

for DiffServ networks. The chapter provides the performance of the enhanced MRED regarding

the protection of vulnerable packets. The goal of this chapter is to show that, with the enhanced

MRED, we can achieve prioritization of sensitive packets without any use of transport layer

information. The chapter also shows the enhanced MRED performance in terms of Committed

Information Rate (CIR), average queue length, packet loss, the packet amval rate, bandwidth

utilization and throughput, based on the results obtained from the simulation.

5.1 Introduction

In TCPJIP networks, some packets are very important and the loss of them can affect the

performance of TCP seriously. These packets include (i) packets responsible for TCP

connection establishment, (ii) packets sent when the connection has a small window, and (iii)

packets sent after a timeout or a fast retransmission. These packets are called "vulnerable" or

"sensitive" packets. Marking those packets with a higher priority and implementing the priority

using DiffServ architecture can help improve the performance of the TCP connection

significantly. Marking those packets requires that network layer be aware of transport layer

information such as the state of the TCP connection. The enhanced MRED presented in this

project allows prioritizing the sensitive packets without the need for transport layer information.

As mention in Chapter Three, two priority levels can be defined. The higher "In packets" and

lower "Out packets" using Time-Sliding Window (TSWZCM).

5.2 The Effect of the Committed Information Rate (CIR) Variation

Committed Information Rate (CIR) is defined for each edge router. All packets are marked as

high priority providing the TCP connection's rate is below CIR. Once the rate exceeds CIR,

packets are marked probabilistically such that at the average, the rate of packets marked with

high priority corresponds to the CIR. The transmitted rate is computed as the rate averaged over

the "TSW window".

In evaluating the enhanced MRED, many experimentations were conducted with different CIR

levels at the source edge nodes to study the effect CIR variation on performance. The CIR

variation is IOOKbps, 300Kbps, IMbps, and 10Mbps.

We check the effect of the CIR marking rate on the loss probabilities of the SYN packets and of

the first data in a connection, the effect is shown in Figures 5.1 to 5.4 below. In the figures,

CP means Dimem code point; TotPkts means total packets; TxPkts means transmitted packets;.

Ldrops means late drops; Edmps means early drops.

CP TotPkts TxPkts ldrops edrops
- - - - - - - - - - - - - - - - - -

4898 4890
33718 32558 112 1848

Figure 5 . 1 CIR of lOOKbps

I t s TxPkts ldrops edropsl
- - - - - - - - - - - - - - - - - - - - - - - - - - -

A l l 37513 36573 9 2 848
1 e 942 1 9421 e e
11 28892 27152 9 2 848

Figure 5.2 CIR of 300Kbps

CP T o t P k t s T x P k t s l d r o p s edrops

Figure 5.3 CIR of lMbps

CP T O t P k t s T x P k t s l d r o p s edrops
- - - - - - - - - - - - - - - - - -

38861 36726 1328

Figure 5.4 CIR of lOMbps

While the performance of enhanced MRED was the best when the CIR is lMbps, the original

MRED for the same CIR is considered for comparison. The performance of the original MRED

when CIR equals to lMbps is illustrated in Figure 5.5 below.

A l l 38822 36725 17 1288
16 1476 1478 8 8
11 36552 35255 17 1286

Figure 5. 5 CIR of lMbps for Original MRED

As mentioned in Chpater Three, the amount of packet loss results in very noticeable

performance issues. It degrades the performance of the TCP applications significatly. From the

figures we noticed that even with varied CIR levels, the losses of SYN packets is decreased as

an implication of more packets transmitted and the better performance was achieved when CIR

is 1Mbps.

5.3 Average Queue Length

This section provides the performance of enhanced MRED in terms of the average queue length

compared to the original MRED. The average queue length can show how often the buffer is

occupied which can help realizing how much it is controlled by the queue management

employed at the router. The queue management mechanism used imposes its rules, such as

packet drop or mark, to keep the queue length as small as possible to accommodate the sudden

increases in the data traffic.

Figure 5.6 shows the average queue length of the bottleneck buffer when using enhanced

MRED while Figure 5.7 shows the average queue length of original MRED, respectively.

0 10 20 30 40 S0 60 70 80 98 188

Tine i n seconds

Figure 5 .6 The actual queue length of the enhanced MRED

T i m i n seconds

Figure 5.7 The actual queue length of the original MRED

From the Figure 5.6, we can realize that enhanced MRED control the queue length efficiently

compare to the case of the original MRED. As shown in Figure 5.6, the average queue size of

the enhanced MRED is around 700 packets. Taking into account the packets size of 1000 and

the bottleneck link bandwidth of 20Mbps, the average queuing delay equals:

For the case of original MRED, as shown in Figure 5.7, the average queue size is around 2300

packets. Therefore, the average queuing delay is:

Which is much higher than the case of enhanced MRED. It is clear that enhanced MRED

control the queue length efficiently which leads to better network performance.

5.4 Outgoing Link Utilization

It is well known that the proportion of time the buffer having packets waiting to be transmitted

on the outgoing transmission link determines the level to which the outgoing transmission link

capacity is utilized. Link utilization is affected by the packet arrival pattern and speed of the

packet arrival reaching the router buffer. Therefore, the link utilizations obtained on the

outgoing transmission link can be understood in the view of the averages of the packet arrival

rate and average queue size.

The link utilization obsereved throughout enhanced MRED and original MRED experiments are

shown in Figure 5.8 and 5.9, respectively.

Tine i n seconds

Figure 5.8 Link utilization using enhanced MRED

T i n e i n seconds

Figure 5.9 Link utilization using original MRED

The figures show that enhanced MRED utilizes the bandwidth of bottleneck link somewhat

better than original MRED even though there is a flactuation in the link utilization which can be

due to the controlled amval rate by the drop probability function of enhanced MRED.

5.5 Packet Arrival Rate

The aggregated packet amval rate to the router buffer when using enhanced MRED is shown in

Figure 5.10 while Figure 5.1 1 shows arrival rate for the case of original MRED.

Tine in seconds

Figure 5.10 Packet arrival using enhanced MRED

0 10 29 30 40 50 60 70 60 90 190

Tine in seconds

Figure 5.11 Packet arrival using original MRED

From Figures 5.10, it is clear that enhanced MRED apply tight control1 to direct the aggregated

packet amval rate to managemable level which help controlling the queue size and reducing the

packet loss. Figure 5.11 indicates that the amount of packets amved at the router was almost

double than that of enhanced MRED, which justify the more packet drops that the sources

experince over original MRED.

5.6 Throughput

In data network, throughput is defined as the amount of data transferred successfully fi-om host

to another in a given time period. Throughput, which is essentially bound by the Bandwidth

Delay Product (BDP), is measured in number of bits per second (bps). In this project,

throughput is measured as the number of data packets received correctly at the server host in a

unit of time (in bit per second). Throughput is the significant performance measure for short and

long-lived TCP connections.

Throughtout enhanced MRED expewriments, we have noticed that throughput is increased and

packet loss is reduced. Tables 5.1 to 5.4 show that the number of data packets that where

successfully transmitted during the simulations was quit independent on the CIR. This is due to

the fact that arrival rate of sessions does not depend on the CIR. Figure 5.12 demonstrates the

throughput gained when using enhanced MRED over CIR of 1Mbps. We can realize that with

less packet losses and delay, the throughput is good as well, compared to that of original

MRED.

0 5 18 15 28 25 30 35 40

Tine in s e d s

Figure 5.12 Throughput using enhanced MRED

Figure 5.13 illustrates the throughputs gained when using the original RED.

0 10 20 30 48 !50 60 70 80 90

Tine in seconds

Figure 5.13 Throughput using original MRED

From the figures, we can see that the average troughput in the use of enhanced MRED is better

than original MRED.

We can conclude that a significant improvement was made by enhancing MRED mechnism to

improve TCPIIP network performance using DiffServ architerchture. The enhanced MRED was

validated through several simulations experiments. It was applied on specific case which is the

protection of sensitive packets mentioned earlier in this chapter. Sensitive packets worsen

performance of TCP considerably since they cause long time-outs. This is particularly the case

for the loss of a SYN that results in a timeout of 3sec or of 6sec. In high speed networks the

duration of a file transfer is short (often the whole transfer is much shorter than timeout), so we

can expect to gain much by applying enhanced MRED to eliminate these long timeouts.

In simulation experiments, an average file size was chose to be IOkbytes, which is the

avereaged measured file size in the Internet. Thus, approximately around 10% of the packets is

a SYN packet and additionally, another 10% of the packets are first in a transfer. Therefore, in

the absence of enhanced MRED mechnism, around 20% of lost packets would correspond to

these types of sensitive packets. Thus, reducing these losses can result in a significant

improvement in the TCP/IP performance.

5.7 Summary

This chapter presented the performance evaluation of the enhanced MRED and compared to the

original MRED mechanism, used currently in DifBerv environment, based on the numerical

results gained from simulation experiments. It studied the performance of the enhanced MRED

in terms of the average queue length, the packet arrival rate, packet loss, the bottleneck link

utilization, and the throughput gained.

It showed that the enhanced MRED helps moderating and controlling the packet arrival rate

where the bottleneck link bandwidth is the limiting factor and the average arrival rate remains

relatively near the maximum link capacity. It was shown how enhanced MRED can protect the

sensitive packets, such as SYN, fiom being dropped or lost.

It was shown that the enhanced MRED offers less delay; and the packet loss is less compared

to the case of using the original MRED, thus, it confirms the suitablity of the enhanced MRED

for short TCP connections.

In addition, in terms of throughput, it was shown that the enhanced MRED allows TCP to

improve its throughput with comparable packet loss. Forthermore, the enhanced MRED system

helps to avoid congestion and improving the TCP network overall.

Finally, the enhanced MRED offers a superior performance to that of original MRED in terms

of providing a lower queuing delay at a higher link utilization and a lower fraction of packet

loss.

CHAPTER SIX
CONCLUSION AND FUTURE WORK

As the performance of enhanced MRED queue management mechanism was analyzed in

Chapter Five based on the numerical results obtained fiom simulations to verify and validate the

enhanced MRED developed for DifPJerv networks, this chapter provides the conclusion of the

research work presented in this project in Section 6.1 in addition to some suggestions for further

studies in Section 6.2.

6.1 Conclusion

Recently, significant investments have been made in the planning and development of computer

networks. The rapid growth of the applications over the Internet drives researchers to develop

new mechanisms for internet infrastructure in order to guarantee the quality of service provided

to user who use applications, such as web surfing, network monitoring, desktop sharing and

video conferencing. The delay variations in network system affect in network applications. In an

acknowledgement and time-out-based congestion control mechanism, e.g., TCP, performance is

related to the delay-bandwidth product of the connections. In addition, TCP round-trip time

(RTT) measurements are sensitive to delay variations, which may cause wrong timeouts and

retransmissions.

In the Internet, all sources are supposed to have same treatment. While network resources are

limited, providing guarantees on performance measures requires rejecting new connections

when network resources are not available. To assign resource to connections according to their

class, we have to differentiate between connection classes. For that, the Diffserv has been

proposed. Since Internet cames many different types of services, including voice, video,

streaming data, web pages and email, many of the proposed QoS mechanisms that allowed these

services to co-exist were both complex and failed to scale to meet the demands of the Internet.

DifPJerv is a computer networking architecture that specifies a simple and scalable mechanism

for classifying, managing network traffic and providing quality of service (QoS) guarantees on

modem IP networks. For example, DifPJerv can be used to provide low-latency, guaranteed

service to critical network traffic such as voice or video while providing simple best-effort

traffic guarantees to non-critical services such as web traffic or file transfers.

As Diffserv is based on marking data packets at the edge router of the network according to the

performance level (quality of service) that the network wishes to provide, packets are handled

differently at the network routers. This requires efficient and reliable buffering and scheduling

mechanism to meet the user or subscriber requirements.

By marking packets at the edge of the network according to the performance level that the

network wishes to provide them, the network's nodes treat the packets differently. A general

way to distinguish packets is by using RED buffers and use different parameters for different

packets. Thus, applications over the internet could benefit of lesser delays and larger

throughputs.

A packet belonging to a flow may get three possible priority levels within the flow. This can be

used to provide a lower loss probability to SYN packets in a TCP connection, as in contrast with

other packets, the losses of SYN packets result in very long time-outs. Additional to

differentiation within each connection, all connections are grouped to some classes (not more

than four), and different treatment can be given to different classes.

Furthermore, it is possible to differentiate between flows. Four classes of flows are defined, and

packets of a given class are queued in a class-dependent queue. To differentiate between packets

belonging to same class, three virtual queues are implemented in each of the four queues. To

each of the 12 combinations of the four flow class and the three internal priority levels within a

flow correspond a code point that a packet is given when entering the network.

DiffServ-capable router utilizes MRED (mulit-RED) in each physical queue that allows creating

dependencies between their operations. MRED probability of dropping each packet is based on

the size of its virtual queue. MRED drop probability function uses the average queue length,

which is collected over long period, to make its control decisions. However, the use the average

queue length makes MRED reacts to congestion slowly. This results in large queue length

variation and untimely congestion detection and notification which would cause performance

degradation due to high queuing delays and high packet loss. MRED suffers from low

bandwidth utilization, low throughput under poorly setting parameters, and large queuing delay

variance ('jitter) because of the fluctuation of the queue level, being unable to handle

unresponsive connections, and high number of consecutive drop. Thus, the quality of service

observed by the end system is lowered significantly. Therefore, the goal of the research

presented in this project was motivated by the need to improve the performance of differentiated

service network by enhancing DiffServ-capable router scheduling mechanism. Thus, a new drop

probability function for DiffServ-capable router that utilizes MRED was develops. The main

objective of the enhanced MRED is to improve the throughput and decrease packet loss.

Developing a drop probability function for MRED, which uses a measure of packet arrival rate

with a measure of the queue length for its control decisions will provide good quality of service

and show better ability in realizing the goals of controlling the packet arrival rate to the

DiffServ-capable router, router queue lengths, and network congestion, while achieving a higher

performance. Therefore, the enhanced MRED drop probability function presented in this project

use the average queue length and the average packet arrival rate for making its dropping

decision to accomplish the goal of providing good quality of service. The enhanced MRED was

implemented in simulated differentiated service network by using Network Simulator 2 (ns-

2).Enhanced MRED was studied to analyze its performance in terms of throughput, packet loss,

queue length, and link utilization based on the results obtained fiom the simulations.

We have concluded that a significant improvement was made by enhancing MRED mechnism

to improve TCPIIP network performance using DiffServ architerchture. The enhanced MRED

was validated through several simulations experiments. It was applied on specific case which is

the protection of sensitive packets mentioned earlier in this chapter. Sensitive packets worsen

performance of TCP considerably since they cause long time-outs. This is particularly the case

for the loss of a SYN that results in a timeout of 3sec or of 6sec. In high speed networks the

duration of a file transfer is short (often the whole transfer is much shorter than timeout), so we

can expect to gain much by applying enhanced MRED to eliminate these long timeouts.

In simulation experiments, an average file size was chose to be lokbytes, which is the

avereaged measured file size in the Internet. Thus, around 10% of the packets is a SYN packet

and additionally, another 10% of the packets are first in a transfer. Consequently, in the absence

of enhanced MRED mechnism, approximately 20% of lost packets would correspond to these

types of sensitive packets. Therefore, reducing these losses can result in a significant

improvement in the TCPIIP performance. Enhanced MRED mechanism developed in this

project can help improving Diffserv performance to ensure the user satisfaction regarding

network traffic.

6.2 Suggestions for Future Work

For further research, we are going to investigate the performance of enhanced MRED over a

TCPJIP network that involve ECN-capable sources. To enhance the performance further, the

drop position should be changed to allow faster notification through ECN packets. Therefore,

we are going to need to modify the packet drop position used by the enhanced MRED. We are

going to deploy bigger network size than the one used in this project, in terms of number of

nodes, router, and bottleneck links with different bandwidth and delays. Also, we are going to

include different flavors of TCP to study the performance of the enhanced MRED in

heterogonous network environment.

REFFERENCES

Aken, J. E. (2004). Management Research Based on the Paradigm of the Design Sciences: The
Quest for Field Tested and Grounded Technological Rules. Journal of management
studies, 41(2), 2 19-246.

Bianchi, G., & Blefari-Melazzi, N. (2001, 2001). Admission control over assured forwarding
PHBs: a way to provide sewice accuracy in a Dijjfsew framework. Paper presented at the
Global Telecommunications Conference, 200 1. GLOBECOM '0 1. IEEE.

Bing, Z., & Mohammed, A. (2008). A framework to determine bounds of maximum loss rate
parameter of RED queue for next generation routers. J. Netw. Comput. Appl., 31(4), 429-
445.

Christiansen, M., Jeffay, K., Ott, D., & Smith, F. D. (2001). Tuning RED for Web traffic.
Networking, IEEE/ACM Transactions on, 9(3), 249-264.

Du, L., Qiu, Z.-Y., & Guo, Y.-L. (2009, 21-22 May 2009). An Improved Queue Management
Algorithm in DiffSeew Networks. Paper presented at the Information and Computing
Science, 2009. ICIC '09. Second International Conference on.

Durresi, A., Sridharan, M., Jain, R., Liu, & Goyal. (July 2001). Traffic management using
multilevel explicit congestion notification. Paper presented at the 5th World
MultiConference on Systemics, Cybernetics and Informatics SCI'200 1, ABR over the
Internet.

El Hachimi, M., Abouaissa, A., Lorenz, P., & Sathya, R. (2003, 9-11 April 2003). Control
algorithm for QoS based multicast in Diffsew domain. Paper presented at the
Communication Technology Proceedings, 2003. ICCT 2003. International Conference
on.

Feng, W. C., Kandlur, D. D., Saha, D., & Shin, K. G. (1999). A self-configuring RED gateway.
Paper presented at the INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE.

Firoiu, V., & Borden, M. (2000). A study of active queue management for congestion control.
Paper presented at the INFOCOM 2000. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE.

Floyd, S. (1997). Discussions of Setting Parameters, http://www.icir.org/floyd/REDparameters.txt.

Floyd, S. (http://www.icir.org/floyd~red.html#paramete, November 2008). Setting Parameters.

Floyd, S. (1Vovember 1997). RED: discussion of setting parameters, .

Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance.
Networking, IEEE/A CM Transactions on, 1 (4), 3 97-4 1 3.

Hassan, M., & Jain, R. (2004). High Performance TCP/IP Networking: Concepts, Issues, and
Solutions: Pearson Prentice Hall.

Jahon, K., Byunghun, S., Kwangsue, C., Hyukjoon, L., & Hyunkook, K. (2001,2001). MRED:
a new approach to random early detection. Paper presented at the Information
Networking, 200 1. Proceedings. 15th International Conference on.

Khosrow-Pour, M. (2006). Emerging Trends and Challenges in Information Technology
Management: IGI Global.

Kimura, T., Kamei, S., & Okamoto, T. (2002, 2002). Evaluation of DlJSew-aware constraint-
based routing schemes for multiprotocol label switching networks. Paper presented at the
Networks, 2002. ICON 2002. 10th IEEE International Conference on.

Lain-Chyr, H., Hsu, S. J., Cheng-Yuan, K., & Chun-Shin, J. (2004, 23-24 March 2004). A new
scheduler for AF and EF in a DS node. Paper presented at the Distributed Computing
Systems Workshops, 2004. Proceedings. 24th International Conference on.

Mahbub, H., & Raj, J. (2003). High Performance TCP/IP Networking: Concepts, Issues, and
Solutions: Prentice-Hall, Inc.

Makkar, R., Lambadaris, I., Salirn, J. H., Seddigh, N., Nandy, B., & Babiarz, J. (2000, 2000).
Empirical study of bufler management scheme for Diffsew assured forwarding PHB.
Paper presented at the Computer Communications and Networks, 2000. Proceedings.
Ninth International Conference on.

May, M., Diot, C., Lyles, B., & Bolot, J. (2000). Influence of Active Queue Management
Parameters on Aggregate Trafic Performance.

Nagendran, A., Kartick, V., Sayee Ram, V., SenthilKumar, L., & Sudha, S. (20 10, 13-14 Dec.
2010). Study on the eflect of CBR on packet marking in assured forwarding. Paper
presented at the Research and Development (SCOReD), 2010 IEEE Student Conference
on.

Nga, J. H. C., Iu, H. H. C., Ling, S. H., & Lam, H. K. (2008). Comparative study of stability in
different TCPIRED models. Chaos, Solitons & Fractals, 3 7(4), 977-987.

Nyame-Asiamah, F., & Patel, N. V. (2009). Research methods and methodologies for studying
organisational learning.

Parris, M., Jeffay, K., & Smith, F. D. (January 1999). Lightweight Active Router-Queue
Management for Multimedia Networking. Paper presented at the Multimedia Computing
and Networking (MMCN), San Jose, CA.

Peng, Y., Hongchao, H., Binqiang, W., & Hui, L. (2009, 24-26 April 2009). PMUF: A High-
Pe$ormance Scheduling Algorithm for DzffSew Classes. Paper presented at the
Computational Sciences and Optimization, 2009. CSO 2009. International Joint
Conference on.

Qadeer, M. A., Sharma, V., Agarwal, A., & Husain, S. S. (2009, 8-11 Aug. 2009).
Differentiated sewices with multiple random early detection algorithm using ns2
simulator. Paper presented at the Computer Science and Information Technology, 2009.
ICCSIT 2009.2nd IEEE International Conference on.

Qian, G. (2008, 20-22 Dec. 2008). An Integrated Approach for DifjSew Multicasting. Paper
presented at the Computer Science and Computational Technology, 2008. ISCSCT '08.
International Symposium on.

Royce, W. W. (1970). Managing the development of large software systems.

Ryu, S., Rump, C., & Qiao, C. (2004). Advances in Active Queue Management (AQM) Based
TCP Congestion Control. Telecommunication Systems, 25(3), 3 17-35 1.

Stankiewicz, R., & Jajszczyk, A. (2007, 26-30 Nov. 2007). Analytical Models for Multi-RED
Queues Sewing as Droppers in DifjSew Networks. Paper presented at the Global
Telecommunications Conference, 2007. GLOBECOM '07. IEEE.

Sundaresan, A. (1999). Differentiate Service, http://qos.ittc.ukans.edu/DiffSpec/node5.html.

Vaishnavi, V., & Kuechler, B. (2005, 16/9/2009). Design Research in Information Systems.
Retrieved 20/11/2010, 2010, fiom http://desrist.org/design-research-in-information-
systems1

Venable, J. (2006). The role of theory and theorising in design science research. Proceedings of
DESRIST, 24-35.

Welzl, M. (2005). Network Congestion Control: Managing Internet Traffic: John Wiley &
Sons.

Wen-Ping, L., & Zhen-Hua, L. (1 1-13 Dec. 2010). Fractional Exponent Coupling of RIO. Paper
presented at the Computational Science and Engineering (CSE), 2010 IEEE 13th
International Conference on.

Wu-Chang, F., & Dilip, D. K. (1999). Adaptive packet marking for maintaining end-to-end
throughput in a differentiated-services internet. IEEE/ACM Trans. Netw., 7(5), 685-697.

Xiaojie, G., Kamal, J., & Leonard, J. S. (2004). Fair and efficient router congestion control.
Paper presented at the Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms.

Xipeng, X., & Ni, L. M. (1999). Internet QoS: a big picture. Network, IEEE, 13(2), 8-18.

Yang, X., Chen, H., & Zhang, Z. (201 1,28-29 March 201 1). A Queue Management Algorithm
for Dzflerentiated Services. Paper presented at the Intelligent Computation Technology
and Automation (ICICTA), 20 1 1 International Conference on.

Yang, X., Chen, H., & Zhao, H. (2008, 16-18 July 2008). A Queue Management algorithm of
relative discrimination for Differentiated Services. Paper presented at the Control
Conference, 2008. CCC 2008.27th Chinese.

Zheng, B., & Atiquzzaman, M. (2005). Low pass filterlover drop avoidance (LPFIODA): an
algorithm to improve the response time of RED gateways. International Journal of
Communication Systems, 15 (lo), 899-906.

APPENDIX A: Differentiated Sewices (Core.cc)

class coreclass

static class coreclass : public TclClass I

public:

coreclass 0 : TclClass("Queue/dsRED/core") I)

TclObject* create (int, const char*const*) {

return (new coreQueue) ;

J

class-core;

/

coreQueue () Constructor

, -.-
int command (int argc, const char*const* argv)

Commands from the ns file are interpreted through this interface.

.. */

int coreQueue: :command(int argc, const char*const* argv) {

return (dsREDQueue: : command (argc, argv)) ;

I

APPENDIX B: Differentiated Sewices (C0re.h)

#ifndef DS-CORE-H

#define DS-CORE-H

#include "dsred. h"

class coreQueue

This class specifies the characteristics for the core router.

class coreQueue : public dsREDQueue {

public :

coreQueue 0 ;

int command (int argc, const char*const* argv) ;

protected:

APPENDIX C: Differentiated Services (red.cc)

#include <stdio. h>

#include "ip. h"

#include "dsred. h"

#include "delay. h"

#include "random. h"

#include "flags. h"

#include "tcp. h"

#include "dsredq. h"

dsREDClass declaration.

Links the new class in the TCL heirarchy.

static class dsREDClass : public TclClass {

public:

dsREDClass () : TclClass ("Queue/dsREDP') {)

TclObject* create (int, const char*const*)

return (new dsREDQueue) ;

I

1 class-dsred;

// RED queues ini t i 1 izat ion

void dsREDQueue: :reset 0 {

int i ;

// q to be dequed, initialized to 0

for (i=O ; i<MAX-QUEUES ; i++) {

queueAvgRate [il = 0.0;

queue~rr~ime [i 1 = 0.0 ;

slicecount [iI=O;

pktcount [i]=O;

wirrTemp [i]=O;

wirrqDone[iI=O;

1

stats. drops = 0;

stats. edrops = 0;

stats. pkts = 0;

for (i=O; i<MAX-CP; i++) {

stats. drops-CP[il=O;

stats. edrops-CP [i]=O;

stats. pkts-CP[i]=O;

1

for (i = 0 ; i < MAX-QUEUES ; i++)

redq-[i].qlim = limit();

// Compute the "~acket time constant" if we know the link bandwidth. The ptc is

the max number of (avg sized)

// pkts per second which can be placed on the link.

if (link-)

for (int i = 0 ; i < MAX-QUEUES; i++)

Queue : :reset 0 ;

1

/*---

void edrop(Packet* pkt)

This method is used so that flowmonitor can monitor early drops.

... */

void dsREDQueue : : edrop (Packet* p)

{

else {

drop (p) ;

I

I

void applyTSWh4eter(int q-id, int pkt-size)

Update the average rate for a physical Q (indicated by q-id).

Pre: policy's variables avgRate, arrivalTime, and winLen hold valid values;

pkt-size specifies the bytes just dequeued (0 means no packet dequeued)

Post: Adjusts policy's TSW state variables avgRate and arrivalTime (also called

tFront) according to the bytes sent.

... */

void dsREDQueue: :applyTSWMeter(int q-id, int pkt-size) {

double now, bytesInTSW, newBytes;

double winLen = 1.0;

newBytes = bytesInTSW + pkt-size;

// caculate the avarage packet arrival rate to the queue

now = Scheduler: : instance 0. clock0 ;

queue~vg~ate [q-id] = newBytes / (now - queue~rr~ime [q-id] + winLen) ;

queueArrTime [q-id1 = now;

/*---

void enque (Packet* pkt)

The following method outlines the enquing mechanism for a Diffserv router.

This method is not used by the inheriting classes; it only serves as an

outline.

... */

void dsREDQueue: : enque (Packet* pkt) {

int codePt, eq-id, prec;

hdr - ip* iph = hdr-ip: :access (pkt) ;

//extracting the marking done by the edge router

codePt = iph->prio () ;

int ecn = 0;

//looking up queue and prec numbers for that codept

lookupPHBTable(codePt, &exid, &prec) ;

// code added for ECN support

//hdr-flags* hf = (hdr-f lags*) (pkt->access (off-f lags-)) ;

hdr-f lags* hf = hdr-f lags : :access (pkt) ;

i f (ecn- && hf->ect 0) ecn = 1 ;

s t a t s . pkts-CP[codePtl++;

s t a t s . pkts++;

swi tch (redq-[eq-id]. enque (pkt, prec, ecn)) {

case PKT-ENQUEUED :

break;

case PKT-DROPPED:

s t a t s . d r o p s - C ~ [c o d e ~ t] ++;

s t a t s . drops++;

drop (pkt) ;

break ;

case PKT-EDROPPED:

s t a t s . edrops-CP[codePt] ++;

s t a t s . edrops++;

edrop (pkt) ;

break ;

case PKT-MARKED:

hf-)ce() = 1; // mark Congestion Experienced b i t

break ;

d e f a u l t :

break :

// Dequing mechanism for both edge and core router.

Packet* dsREDQueue: : deque 0

Packet *p = NULL;

int queue, prec;

hdr-ip* iph;

int fid;

int dq-id;

// Select queue to deque under the scheduling scheme specified.

dq-id = selectQueueToDeque 0 ;

// Dequeue a packet from the underlying queue:

if (dq-id < numQueues-)

p = redq-[dq-id] . deque 0 ;

if (P) 1

iph= hdr-i p: :access (p) ;

fid = iph->flowid()/32;

pktcount [dpid] +=I ;

// update the average rate for pri-queue when there is a packet dequeued, update
the average rate of each queue 0

if (schedMode==schedModePRI)

for (int i=0; i<numQueues-; i++)

if (queueMaxRate [il)

applyTSWMeter(i, (i == dq-id) ? hdr-cmn: :access(p)->size() : 0) ;

/ / Get the precedence level (or virtual queue id) for the packet dequeued.

lookupPHBTable (getCodePt (PI, &queue, &prec) ;

// decrement virtual queue length

// Previously in updateREDStateVar,

//redq-[dq-id]. q~aram-[precl. qlen--;

redq - [dq-i dl. updateVREDLen (prec) ;

/ / update state variables for that "virtual" queue

redq-[dq-id] . updateREDStateVar (prec) ;

1

// Return the dequed packet:

return (P) ;

// Extracts the code point marking from packet header

int dsREDQueue : : getCodePt (Packet *p) {

hdr-ip* iph = hdr-ip: :access (p) ;

return (iph->prio 0) ;

// Reutrn the id of physical queue to be dequeued

int dsREDQueue : : selectQueueToDeque () {

// If the queue to be dequed has no elements,

// look for the next queue in line

int i = 0:

// Round-Rob in

if (schedMode==schedModeRR)

//printf ("RR\ne) ;

qToDq = ((qToDq + 1) % numQueues-) ;

while ((i < numQueues-) && (reds-[qToDql. getRealLength 0 == 0))

qToDq = ((qToDq + 1) % numQueues-) ;

it+;

1

1

else if (schedMode==schedModeWRR) { // Weighted Round Robin

if (wirrTemp [qToDql <=O)

qToDq = ((qToDq + 1) % numQueues-) ;

wirrTemp [qToDq] = queueweight [qToDq] - 1 ;

1 else

wirrTemp [qToDql = wirrTemp [qToDq] -1 ;

while ((i < numQueues-) && (redq-[qToDql. getRealLength() == 0)) {

wirrTemp [qToDq] = 0 ;

qToDq = ((qToDq + 1) % numQueues-) ;

wirrTemp [qToDql = queueweight [qToDql - 1 ;

i++;

else if (schedMode==schedModeWIRR) {

while ((i<numQueues-) && ((redq-[qToDq]. getRealLength () ==O) 1 1
(w i rrqDone IqToDq]))) {

w i rrTemp [qToDq] -=1 ;

i f (queuesDone >= numQueues-)

{

queuesDone = 0 ;

f o r (i = 0 ; i<numQueues-; i++)

{

wirrTemp[i] = queueweight [il ;

wirrqDone [i] =0;

1

I

1 e l s e

i f (schedMode==schedModePRI)

I

// Find t h e queue w i t h h i g h e s t p r i o r i t y , which s a t i s f i e s :

// 1. noze ro queue l e n g t h ; and e i t h e r

// 2.1. h a s no MaxRate s p e c i f i e d ; o r

// 2.2. h a s MaxRate s p e c i f i e d and

// i ts a v e r a g e r a t e is n o t beyond t h a t limit.

i = 0 ;

w h i l e (i < numQueues- &&

(redq-[i] . g e t ~ e a l ~ e n g t h (1 == 0 1 1

(queueMaxRate [i 1 && queueAvgRat e [i 1 >queueMaxRate [i 1))) {

qToDq = i ;

/ / If no queue satisfies the condition above,

// find the Queue with highest priority,

// which has packet to dequeue.

// NOTE: the high priority queue can still have its packet dequeued

// even if its average rate has beyond the MAX rate specified!

/ / Ideally, a NO-PACKET-TO-DEQUEUE should be returned.

if (i == numQueues-)

{

i = qToDq = 0;

while ((i < numQueues-) && (reds-[qToDql. getRealLength 0 == 0)) {

qToDq = ((qToDq + 1) % numQueues-) ;

i++;

I

I

return (qToDq) ;

I

/*---

void 1ookupPHBTable (int codePt, int* queue, int* prec)

Assigns the queue and prec parameters values corresponding to a given code

point. The code point is assumed to be present in the PHB table. If it is

not, an error message is outputted and queue and prec are undefined.

... */

void dsREDQueue: : lookupPHBTable (int codePt, int* queue, int* prec)

for (int i = 0; i < phbEntries; i++) {

if (phb-[i]. codePt- == codePt) {

*queue = phb- [il . queue-;

*prec = phb- [i I. prec- ;

return ;

1

1

// quiet the compiler

*queue = 0;

*prec = 0;

printf ("ERROR: No match found for code point %d in PHB Table. \n", codePt) ;

assert (false) ;

1

void addPHBEntry (int codePt, int queue, int prec)

Add a PHB table entry. (Each entry maps a code point to a queue-precedence pair.)

... * /
void dsREDQueue: :addPHBEntry(int codePt, int queue, int prec) {

if (phbEntries == MAX-CP) {

printf ("ERROR: PHB Table size limit exceeded. \n") ;

else

{

phb-[phbEntries]. codePt- = codePt ;

~hb-[~hbEntries]. queue- = queue ;

phb-[phb~ntries]. prec- = prec;

stats. valid-CP [codePtl = 1 ;

phbEntries++;

I

I

void addPHBEntry(int codePt, int queue, int prec)

Add a PHB table entry. (Each entry maps a code point to a queue-precedence

pair.)

double dsREDQueue: : g e t S t a t (i n t argc , cons t char*const* argv) {

i f (argc == 3) {

i f (strcmp (argv121, "drops") == 0)

r e t u r n (s t a t s . drops*l. 0) ;

i f (strcmp (argv[2], "edrops") == 0)

r e t u r n (s t a t s . edrops*l. 0) ;

r e t u r n (s t a t s . pkts*l. 0) ;

I

i f (argc == 4) i

i f (strcmp (argv 121, "drops") == 0)

r e t u r n (s t a t s . drops-CP[atoi (argv 131) 1*l. 0) ;

i f (strcmp (argv[2], "edrops") == 0)

r e t u r n (s t a t s . ed rops -C~[a to i (argv [31)]*l. 0) ;

i f (strcmp (argv121, "~k t s ' ') == 0)

r e t u r n (s t a t s . pkts-CP[atoi (argvI31) l*l. 0) ;

1

r e t u r n -1 .0;

I

void setNumPrec (i n t ~ r e ~)

S e t s t h e c u r r e n t number o f drop precendences. The number o f precedences i s t h e

number of v i r t u a l queues pe r phys ica l queue.

void dsREDQueue: : setNumPrec (int prec) {

int i ;

if (prec > MAX-PREC)

{

p-intf ("ERROR: Cannot declare more than %d prcedence levels (as defined by

MAX-PREC) \n", MAX-PREC) ;

I else

{

numPrec = prec;

for (i = 0 ; i < MAX-QUEUES ; i++)

redq- [il. numPrec = numPrec ;

void setMREDMode (const char* mode)

sets up the average queue accounting mode.

.. */

void dsREDQueue : : setMREDMode (const char* mode, const char* queue) {

int i ;

mredModeType tempMode;

tempMode = rio-c;

else if (strcmp (mode, "RIO-D") == 0)

tempMode = rio-d;

else if (strcmp(mode, "WRED") == 0)

tempMode = wred;

else if (strcmp (mode, "DROP") == 0)

tempMode = dropTai 1 ;

else {

printf ("Error: MRED mode %s does not exist\na, mode) ;

return ;

I

if (!queue)

for (i = 0 ; i < MAX-QUEUES ; i++)

redq- [i] . mredMode = tempMode ;

else

redq-[atoi (queue) 1. mredMode = tempMode

void printPHBTable ()

Prints the PHB Table, with one entry per line.

.. */

void dsREDQueue: :printPHBTable

printf ("PHB Table: \nu) ;

for (int i = 0; i < phbEntries; i++)

printf("Code Point %d is associated with Queue %d, Precedence %d\n",

phb-[il. codePt-, phb-[il . queue-, phb-[il . prec-) ;

void printStats

An output method that may be altered to assist debugging.

void dsREDQueue: :printStats {

printf ("\nPackets statistics\nU) ;

printf (" CP TotPkts TxPkts ldrops edrops\n") ;

printf ("All %81d %81d %81d %81d\ne, stats. pkts, stats. pkts-stats. drops-

stats. edrops, stats. drops, stats. edrops) ;

for (int i = 0; i < MAX-CP; i++)

if (stats. pkts-CP[i] != 0)

printf ("%3d %81d %81 d

%81d\nP', i, stats. pkts-C~[i], stats. pkts-CP[i]-stats. drops-CP[i]-

stats. edrops-CP[i], stats. drops-CP[i], stats. edrops-CP[i]) ;

void dsREDQueue : : printWRRcount () {

int i ;

for (i = 0; i < numQueues-; i++)

printf ("%d: %d %d %d. \n", i, slicecount[i], pktcount [il, queue~ei~htllil) ;

/*--

void setSchedularMode (int schedtype)

sets up the schedular mode.

.. */

void dsREDQueue: : setSchedularMode (const char* schedt~pe) {

if (strcmp(schedtype, "RR") == 0)

schedMode = schedModeRR;

else if (strcmp(schedtype, "WRR") == 0)

schedMode = schedModeWRR;

else if (strcmp(schedtype, "WIRR") == 0)

schedMode = schedModeWIRR;

else if (strcmp(schedtype, "PRI") == 0)

schedMode = schedModePRI;

else

printf ("Error: Scheduler type %s does not exist\n", schedtype) ;

void addQueueWeights (int queueNum, int weight)

An input method to set the individual Queue Weights.

void dsREDQueue: :addQueueWeights(int queueNum, int weight) {

if (queueNum < MAX-QUEUES) 1

queueweight [queueNuml =weight ;

) else 1

~rintf ("The queue number is out of range. \n") ;

I

1

//Set the individual Queue Max Rates for Priority Queueing.

void dsREDQueue : : addQueueRate (int queueNum, int rate) {

if (queueNum < MAX-QUEUES) {

// Convert to BYTE/SECOND

queueMaxRate [queueNum]= (double) rate/8.0 ;

I else {

~rintf ("The queue number is out of range. \nu) ;

I

1

int command (int argc, const char*const* argv)

Commands from the ns file are interpreted through this interface.

int dsREDQueue: :command (int argc, const char*const* argv) I

if (strcmp (argv[ll, "configQ") == 0) {

// modification to set the parameter q-w by Thilo

redq-[atoi (argv[21)]. conf ig(atoi (argv [3]) , argc, argv) ;

return (TCL-OK) ;

1

if (strcmp(argv[ll, "addPHBEntry") == 0) {

addPHBEntry (atoi (argv [21), atoi (argv [31), atoi (argv [4])) ;

return (TCL-OK) ;

1

if (strcmp(argv[ll, "meanPktSize") == 0) {

for (int i = 0; i < MAX-QUEUES; i++)

redq-[il . setMPS (atoi (argv [2])) ;

re turn (TCL-OK) ;

1

if (strcmp(argv [ll, "setNumPrec") == 0) {

setNumPrec (atoi (argv [2])) ;

return (TCL-OK) ;

1

if (strcmp (argv [-I.], "getAverage") == 0) {

Tclb tcl = Tcl: : instance () ;

tcl. resultf ("%f", redq-Catoi (argv C21) I. getWeightedLength0) ;

return (TCL-OK) ;

1

Tcl& tcl = Tcl : : instance 0 ;

tcl. resultf ("%f", getstat (argc, argv)) ;

return (TCL-OK) ;

if (strcmp(argv[l], "getcurrent") == 0) {

Tcl& tcl = Tcl: : instance() ;

tcl. resultf ("%fm, redq-[atoi (argv [21) I. getRealLength0 *l. 0) ;

return (TCL-OK) ;

i

if (strcmp(argv[l], "printStatsU) == 0) {

printstats () ;

return (TCL-OK) ;

if (strcmp (argv [l] , "printWRRcount") == 0) {

printWRRcount 0 ;

return (TCL-OK) ;

1

if (strcmp (argv [l], "printPHBTable") == 0) {

printPHBTable 0 ;

return (TCL-OK) ;

if (strcrnp(argv[l], "link") == 0) {

T c ~ & tcl = Tcl: : instance () ;

LinkDelay* del = (LinkDelay*) TclOb ject : : lookup (argv [21) ;

if (del == 0) {

tcl. resultf ("RED: no LinkDelay object %s",

argv [21) ;

return (TCL-ERROR) :

link- = del;

return (TCL-OK) ;

if (strcrnp (argvC11, "early-drop-target") == 0)

Tcl& tcl = Tcl: : instance() ;

NsOb ject* p = (NsOb ject*) Tc10b ject : : lookup (argv [2]) ;

if (p == 0) I

tcl. resultf ("no object %s", argv [2]) ;

return (TCL-ERROR) ;

return (TCL-OK) ;

1

if (strcmp(argv 111, "setSchedularMode") == 0) {

setSchedularMode (argv [2]) ;

return (TCL-OK) ;

I

if (strcmp (argv[ll, "setMREDModeu) == 0) {

if (argc == 3)

setMREDMode (argv [2], 0) ;

else

setMREDMode (argv [2], argv [31) ;

return (TCL-OK) ;

if (strcmp(argv[ll, "addQueueWeightse) == 0) {

addQueueWeights (atoi (argv [21), atoi (argv [31)) ;

return (TCL-OK) ;

I

if (strcmp (argv [I.], "addQueueRateu) == 0) {

addQueueRate (atoi (argv [21), atoi (argv [31)) ;

return (TCL-OK) ;

// Returns the weighted RED queue length for one virtual queue in packets

if (strcmp (argv [ll, "getAverageVf') == 0) {

Tcl& tcl = Tcl: :instance0 ;

tcl. resultf ("%f", redq-[atoi (argv [2l) I. getWeightedLength-v (atoi (argv [31)))

return (TCL-OK) ;

I

// Returns the length of one virtual queue, in packets

if (strcmp (argv [l], "getCurrentVU) == 0) {

Tcl& tcl = Tcl: : instance0 ;

tcl. resultf ("%fU, redq-[atoi (argv [21) 1. getRealLength-v (atoi (argvr31)) *l* 0)

return (TCL-OK) ;

1

return (Queue : :command (argc, argv)) ;

I

APPENDIX D: Differentiated Services (red.h)

#ifndef dsred-h

#define dsred-h

#include "red. h" // need RED class specs (edp definition, for example)

#include "queue. h" // need Queue class specs

#include "dsredq. h"

/* The dsRED class supports the creation of up to MAX-QUEUES physical queues at

each network device, with up to MAX-PREC virtual queues in each queue. */

#define MAX-QUEUES 8// maximum number of physical RED queues

#define MAX-PREC 3 // maximum number of virtual RED queues in one physical queue

#define MAX-CP 40 // maximum number of code points in a simulation

#define MEAN-PKT-SIZE 1000 // default mean packet size, in bytes, needed for
RED calculations

enum schedModeType {schedModeRR, schedModeWRR, schedModeWIRR, schedModePRI} ;

#define PKT-MARKED 3

#define PKT-ENQUEUED 1

#define PKT-DROPPED 0

struct phbParam

This struct is used to maintain entries for the PHB parameter table, used to map

a code point to a physical queue-virtual queue pair.

struct phbParam 1

int codePt-;

int queue-; // physical queue

int prec-; // virtual queue (drop precedence)

struct statType {

long drops; // per queue stats

long edrops;

long pkts;

long valid-CP[MAX-CP] ; // per CP stats

long drops-CP [MAX-CPI ;

long edrops-CP [MAX-CPI ;

long pkt s-CP [MAX-CPI ;

1 :

/*---

class dsREDQueue

This class specifies the characteristics for a Diffserv RED router.

class dsREDQueue : public Queue {

pub1 ic :

dsREDQueue () ;

int command(int argc, const char*const* argv); // interface to ns scripts

protected:

redQueue ~~~Q[MAX-QUEUES]; // the physical queues at the router

NsObject* de-drop-; // drop-early target

statType stats; // used for statistics gatherings

int qToDq; // current queue to be dequeued in a round robin manner

int numQueues-; // the number of physical queues at the router

int numPrec; // the number of virtual queues in each physical
queue

phbParam phb-[MAX-CP] ; // PHB table

int phbEntries; // the current number of entries in the PHB table

int ecn-; // used for ECN (Explicit Congestion Notification)

LinkDelay* link-; // outgoing link

int schedMode; // the Queue Scheduling mode

int queueweight [MAX-QUEUES] ; // A queue weight per queue

double queueMaxRate [MAX-QUEUES] ; // Maximum Rate for Priority Queueing

double queueAvgRate [MAX-QUEUES] ; // Average Rate for Priority Queueing

double queueArrTime [MAX-QUEUES] ; // Arrival Time for Priority Queueing

int slicecount [MAX-QUEUES] ;

int pktcount [MAX-QUEUES] ;

int wirrTemp [MAX-QUEUES] ;

unsigned char wirrqDone [MAX-QUEUES] ;

int queuesDone;

void reset 0 ;

void edrop (Packet* p) ; // used so f lowmonitor can monitor early drops

void enque (Packet *pkt) ; // enques a packet

Packet *deque (void) ; // deques a packet

int getCodePt(Packet *p) ; // given a packet, extract the code point marking from
its header field

int selectQueueToDeque ; // round robin scheduling dequing algorithm

void lookupPHBTable(int codePt, int* queue, int* prec) ; // looks up queue and prec
numbers corresponding to a code point

void addPHBEntry(int codePt, int queue, int prec); // edits phb entry in the table

void setNumPrec (int curPrec) ;

void setM~ED~ode(const char* mode, const char* queue) ;

void printstatso ; // print various stats

double getstat (int argc, const char*const* argv) ;

void printPHBTable0 ; // print the PHB table

void setSchedularMode(const char* schedtype) ; / / Sets the schedular mode

// Add a weigth to a WRR or WlRR queue

void addQueueWeights (int queueNum, int weight) ;

// Add a maxRate to a PRI queue

void addQueueRate(int queueNum, int rate) ;

void printWRRcount () ; // print various stats

// apply meter to calculate average rate of a PRI queue

void applyTSWMeter (int q-id, int pkt-size)

1 ;

#endif

