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ABSTRACT 

In the Internet, it is supposed that all connections are treated equally in the network. Due 

to the limitation of network resources are limited, providing guarantees on performance 

measures imposes declining new connections if resources are not available. Assigning 

network resources to connections according to their classes requires differentiating 

between the connection classes. For this reason, the Differentiated Services (DifJServ) 

has been proposed. Many of the QoS mechanisms have been developed which allow 

different services carried by the Internet to co-exist. Many of these mechanisms were both 

complex and failed to scale to meet the demands of the Internet. MRED is the common 

mechanism used in DifJServ routers. It suflers from large queue length variation and 

untimely congestion detection and notification. These consequences cause performance 

degradation due to high queuing delays and high packet loss. In this project, enhanced 

version of MRED is developed to improve the performance of DlFerv networks that use 

TCP as the transport layer protocol. Enhanced MRED includes average packet arrival 

rate when computing the packet drop probability. Enhanced MRED showed a good 

pedonnance compared to that of MRED, in term of fast congestion detection and 

notijication. The limitation of the new mechanism is that it works only with responsive 

connections which play a big role in avoiding and controlling the congestion. The major 

contribution of this project is to provide an improved queue management mechanism for 

Diffserv networks that responds to congestion more quickly, delivers congestion 

notification timers, and controls the queue length directly to congestion which results in 

minimizing queue length variation. All these would help improve the DlffServ networks 

pedormance. 
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CHAPTER ONE 
INTRODUCTION 

This project is about enhancing the queue congestion management mechanism used in 

Differentiated Services environment to help providing good quality of service to end users 

based on their requirements. The goal of this chapter is to place the project in its context. In this 

chapter, an introduction to Differentiated Services, its issues, and the role of queue management 

mechanism in enhancing the network performance are provided in Section 1.1 and 1.2, 

respectively. The research problem is presented in Sections 1.3. Sectionsl.4, 1.5, and 1.6 of this 

chapter, respectively, include the research questions, research scope, and objectives of the 

research presented in this project. The importance of the work done in this project is stated in 

Section 1.7 while the project organization is presented in Section 1.8 of this chapter. 

1.1 Introduction 

In recent years, important investments have been made in the planning and development of 

computer networks. The rapid growth of the Internet provides a good opportunity for creating 

new mechanisms for internet infrastructure to service the increase of new applications, such as 

web surfing, network monitoring, desktop sharing and video conferencing. The delay variations 

in network system affect network applications. In an acknowledgement and time-out-based 

congestion control mechanism, e.g., TCP, performance is related to the delay-bandwidth 

product of the connection (Durresi, Sridharan, Jain, Liu, & Goyal, July 2001). Furthermore, 

TCP round-trip time (RTT) measurements are sensitive to delay variations, which may cause 

wrong timeouts and retransmissions. 



Internet Protocol (IP) based network was designed to provide users with best effort service that 

allows user packets to share network resources. The rapid increase in the IP applications 

resulted in a significant burden on restricted network resources, such as bandwidth and buffer 

space, leading to high degree of congestion (Qadeer, Sharma, Agarwal, & Husain, 2009). IP 

applications, such as real-time and mission-critical, are the influenced ones due to high packet 

loss in the network. In the Internet, all sources get the same handling in the network. While 

network resources are limited, providing guarantees on performance measures requires rejecting 

new connections if resources are not available. To assign resource to connections according to 

their class, connection classes should be differentiated. Therefore, IP Quality of Service (QoS) 

was developed to allow network operators offering different levels of packets treatment 

according to user requirements. QoS Routing, as defined in (Qadeer et al., 2009), is a routing 

mechanism as per which paths for flows are established based on some knowledge of resource 

availability in the network as well as the QoS requirement of flows. It attempts to perform 

routing by computing multiple paths between two nodes which could satisfy different service 

requirements; and change routing when the availability of resources in the shortest path is 

insufficient. 

Since Internet carries many different types of services, including voice, video, streaming data, 

web pages and email, many of the proposed QoS mechanisms that allowed these services to co- 

exist were both complex and failed to scale to meet the demands of the Internet. For that, the 

Differentiated Services (Dimerv) has been proposed. 



1.2 Differentiated Services (DiffServ) 

Differentiated Service (DiffServ) is an IP QoS architecture that allows prioritizing packets 

according to the type of service the user desires. According to (Kimura, Kamei, & Okamoto, 

2002), DiffServ is a computer networking architecture that specifies a simple, scalable and 

coarse-grained mechanism for classifying, managing network traffic and providing quality of 

service (QoS) guarantees on modem IP networks. DiffServ can, for example, be used to provide 

low-latency, guaranteed service (GS) to critical network traffic such as voice or video while 

providing simple best-effort traffic guarantees to non-critical services such as web traffic or file 

transfers. 

By marking packets at the edge of the network according to the performance level that the 

network wishes to provide them, the network's nodes treat the packets differently (El Hachimi, 

Abouaissa, Lorenz, & Sathya, 2003). A general way to distinguish packets is by using RED 

buffers and use different parameters for different packets (Stankiewicz & Jajszczyk, 2007). 

Thus, applications over the internet could benefit of lesser delays and larger throughputs. 

A packet belonging to a flow may get three possible priority levels within the flow. This can be 

used to provide a lower loss probability to SYNC packets in a TCP connection, as in contrast 

with other packets, the losses of SYNC packets result in very long time-outs. Additional to 

differentiation within each flow, all flows are grouped to some classes (not more than four), and 

different treatment can be given to different classes (Peng, Hongchao, Binqiang, & Hui, 2009). 

Furthermore, it is possible to differentiate between flows. Four classes of flows are defined, and 

packets of a given class are queued in a class-dependent queue. To differentiate between packets 

belonging to same class, three virtual queues are implemented in each of the four queues. To 
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each of the 12 combinations of the four flow class and the three internal priority levels within a 

flow correspond a code point that a packet is given when entering the network. Actually, not all 

queues and all priority groups need to be implemented (Qian, 2008). 

Nodes in DiffServ environment are equipped with some functional units that allow Per-Hop 

Behaviors (PHBs), packet classification, marking, shaping, and policing. The encodings 

recommended for DiffServ enable a network operator with great flexibility in defining different 

classes of data traffic. Actually, network operators can configure their networks according to 

any of the following commonly-defined Per-Hop Behaviors: 

Default PHB (Per hop behaviorFwhich is typically best-effort traffic 

Expedited Forwarding (EF) PHB-dedicated to low-loss, low-latency traffic 

rn Assured Forwarding (AF) PHB-gives assurance of delivery under prescribed 

conditions 

rn Class Selector PHBs-which maintain backward compatibility with the IP Precedence 

field. 

The DiffServ is scalable because of that tasks, such as multi-flow classification, policing, 

shaping and marking, are performed at the border (edge) routers networks. This is because the 

border routers deal with the end user links that are slow as a result of which it has time to do the 

costly functions like Multi-field Classifier (MFC) and traffic conditioning as mention in 

(Sundaresan, 1999). In contrast, core routers do the forwarding according to the DiffServ Code 

Point (DSCP) stated in the packet header. DSCP is the first six bits in the Type of Service byte 

in the IP header. 



According to Lain-Chyr et al., Assured Forwarding (AF) (Lain-Chyr, Hsu, Cheng-Yuan, & 

Chun-Shin, 2004) can provide many QoS services, and compared to the Expedited Forwarding 

(EF) PHB (Makkar et al., 2000), Assured Service provides a statistical bandwidth guarantee to 

end users, and allows them to claim a share of the excess network bandwidth in addition to the 

subscribed bandwidth. The main problem in the process of assured forwarding is the stability of 

the average queue length and the latency. Solving this problem can be done by deploying the 

RED with In and Out (RIO) algorithm (or other improved RIO queue management) in the 

interior node. However, several studies (Du, Qiu, & Guo, 2009) found that these algorithms are 

hard to set parameters and easy to make some mistakes, the vibration of the average queue size 

and the latency are big when the speed changes. 

1.3 Problem Statements 

DiffServ-capable router utilizes virtual buffers called MRED (multi-RED) (Jahon, Byunghun, 

Kwangsue, Hyukjoon, & Hyunkook, 2001) in each physical queue allows to its performance 

and to create dependence between their operation. MRED probability of dropping each packet is 

based on the size of its virtual queue (Qadeer et al., 2009). MRED drop probability function 

uses the average queue length, which is collected over long period, to make its control 

decisions. However, the use of average queue length makes MRED reacts to congestion slowly. 

This results in large queue length variation and untimely congestion detection and notification 

which would cause performance degradation due to high queuing delays and high packet loss 

(Nagendran, Kartick, Sayee Ram, SenthilKumar, & Sudha, 2010). MRED suffers from low 

bandwidth utilization, low throughput under poorly setting parameters, and large queuing delay 

variance (jitter) because of the fluctuation of the queue level, being unable to handle 



unresponsive connections, and hgh number of consecutive drop. Thus, the quality of service 

observed by the end system is lowered significantly. 

1.4 Research Questions 

i. How can we enhance the queue management mechanism used in DiffServ-capable 

router that ensures good quality of service? 

. . 
11. How can we evaluate and validate the DiffServ-capable router that employs the 

enhanced the queue management mechanism? 

1.5 Research Scope 

This research focuses on improving Multi-Random Early Detection (MRED) queue 

management mechanism in order to improve the performance of differentiated service 

environment. Therefore, the focus will be on developing a drop probability function for MRED 

queue management mechanism utilized by in the DiffServ-capable routers. The implementation 

of the mechanisms and all the test experiments will be performed using the version 2.32 of the 

network simulator (NS-2)  software on a machine running the CentOS 5.2 version of the Linux 

operating system. 

1.6 Research Objectives 

The aim of this research is to improve the performance of differentiated service network by 

enhancing DiffServ-capable router scheduling mechanism. In order to achieve this research aim, 

we come up with the following research objectives: 



i. To develop an enhanced drop probability function for DiffJerv-capable router that 

utilizes MRED mechanism in order to improve the throughput and decrease packet 

drop. 

ii. To implement the enhanced MRED mechanism in simulated differentiated service 

network by using network simulator 2 (ns-2). 

... 
111. To analyze the results obtained from the simulations in terms of throughput, packet loss, 

queue length, and link utilization. 

1.7 Research Significance 

DiffJerv has been introduced to differentiate between connection classes and to allocate 

resources to connections according to their class. Therefore, As Diffjerv is based on marking 

data packets at the edge router of the network according to the performance level (quality of 

service) that the network wishes to provide, packets are handled differently at the network 

routers. This requires efficient and reliable buffering and scheduling mechanism to meet the 

user or subscriber requirements. Enhanced MRED mechanism proposed in this project can help 

improving DiffServ performance. 



1.8 Organization of the Project Report 

This project is organized in six chapters as follows: 

Chapter 1 provides an overview of the project. It presents an introduction to the importance of 

queue management mechanism and the need for improving the current mechanism used in 

DiffServ network's routers. The chapter presents the objectives and contributions of this project 

as well. 

Chapter 2 is a literature review that contains a background material on Quality of Service and 

queue management in DiffServ that defines the general fkamework for this research. The issues 

in DiffServ and the efforts done to alleviate them are covered in this chapter. 

Chapter 3 presents the experimental tools and methodologies. The former introduces popular 

TCP/IP performance measurement tools, such as ns-2, with description of their usage while the 

latter covers network topology and settings used in the experiments. It presents the development 

of the enhanced MRED mechanism in the simulation. 

Chapter 4 introduces the enhanced MRED mechanism proposed in this project. The chapter 

describes the details of enhanced MRED's structural design. It discusses the enhanced 

mechanism implementation issues as well. 

Chapter 5 presents a detailed performance evaluation of the enhanced MRED mechanism 

based on the numerical results obtained through simulations. It studies the behavior of the 

enhanced MRED a performance comparison of enhanced MRED to RED. 

Chapter 6 states the global conclusions of the research work presented in this project and 

provide some suggestions for further studies. 



CHAPTER TWO 
LITERATURE REVIEW 

While the issues of Differentiated Services (DiffServ) environment were generally 

described in Chapter 1, this chapter provides the background and some related research on 

queue management in DiffServ network that defines the general framework of this research. 

This chapter explains the function of queue management mechanism in performance 

optimization of DiffServ networks that utilize TCP/IP protocols; and it provides performance 

analysis of the current mechanism used in DiffServ. In this chapter, the Quality of Service 

(QoS) concept is presented in Section 2.1 A general introduction about DiffServ architecture is 

presented in Section 2.2 Queue management ant its important role in DiffServ is presented in 

Section 2.3 Multiple RED queue management mechanism is presented in Section 2.4. The 

details of RED queue management algorithm including its function and structure are covered in 

Sections 2.5, 2.6, 2.7, 2.8, and 2.9 respectively. Section 2.6 summarizes the topics covered in 

this chapter. 

2.1 Quality of Service 

Quality of Service (QoS) QoS is defined as the proficiency of a network element to furnish 

some degree of commitment for congenial network data delivery as stated in (Qadeer et al., 

2009). Network should meet the service requirements of QoS when transporting packets from a 

source to their destination. QoS goals are to meet the user application requirements, providing a 

network that is transparent to its users. 



According to Qadeer et al. (Qadeer et al., 2009),The common QoS factors are: 

Bandwidth: the average usable and available bandwidth over the link at any time; 

Delay: the average end-to-end delay caused at network level at any time; 

Delay jitter: the average difference of the various delay times over the link; 

Packet loss probability: the average probability of packet loss over the link over a length of 

time. 

Over Internet, different applications have different requirements for packet loss, delay, and 

bandwidth. Network service providers (ISPs) provide QoS to users based on an agreement 

between them. The agreement is known as a Service Level Agreement (SLA). QoS manage 

traffic across a network according to the applications requirement. Some applications, such as 

voice applications, require bandwidth and delay guarantees, referred to as quantitative 

applications, while others, such as file transfer applications, are more qualitative. Voice 

applications have strict delay requirements and can tolerate minimum packet loss. On the 

other hand, a file transfer application is very sensitive to packet drops but can endure delays. 

According to Xipeng et al. (Xipeng & Ni, 1999), to deal with such differences, QoS assigns 

flows to one of the following two categories: 

Guaranteed service keeps a specific amount of bandwidth from end to end and can guarantee a 

specified delay tolerance for the exclusive use of an application or even aggregated sessions. 

Differentiated service provides simple prioritization. Applications are detected at the ingress 

and assigned SLAs, which in turn decide the QoS mechanisms to be employed by the router, 

like which queue will be used to place traffic, and which drop priority will be designated in 

case of congestion requiring a packet drop. 



2.2 Differentiated Sewices (DiffServ) Architecture 

DiffServ uses six bits of the DS field in the IP header to make up the DSCP (Differentiated 

Service Code Point) field. DSCP is used to select the per-hop behaviour (PHB) a packet 

experiences at each node. The mapping of DSCPs to PHBs at each node is not fixed. Before a 

packet enters a DiffServ domain, its DSCP field is marked by the end-host or the fust-hop 

router according to the service quality the packet is required and entitled to receive. Within the 

DiffServ domain (see Figure I), each router only needs to look at DSCP to decide the proper 

treatment for the packet. No complex classification or per-flow state is needed. DiffServ has 

two important design principles, namely pushing complexity to the network boundary and the 

separation of policy and supporting mechanisms. The network boundary refers to application 

hosts, leaf (or first hop) routers, and edge routers. Figure 2.1 shows the DiffServ domain that 

includes 

Figure 2.1. DiffServ Domain 



DiffServ design has the following elements: 

Policy and resource manager: it creates policies and distributed them to DiffServ 

routers in the DiffServ domain. A policy determines which level of services in the 

network is assigned to which packets. This assignment may depend on the behavior of 

the source of the flow (e.g. its average rate and its burstiness) and special network 

elements are therefore added at the edge of the network so as to measure the source 

behavior. 

Edge routers: responsible to mark (assign code points) packets according to the policy 

specified by the network administrator. The mark that a packet receives identifies the 

class of traffic to which it belongs. After being marked, a packet may then be 

immediately forwarded into the network, delayed for some time before being 

forwarded, or it may be discarded. 

Core routers: When marked packet arrives at DifPServ-capable router, the packet is 

forwarded to its next hope according to the per-hop behavior associated with that 

packet's class. Routers within the network have to assign the right priority to packets 

according to their code mark. The priority translates to parameters of scheduling and of 

dropping decisions in the core routers. 

2.3 Queue Management in DiffServ Network 

Queue management is essential to provide good quality of service to end users. Queue 

management enables bandwidth control traffic treatment. Therefore, two queue types are 

needed. They are weighted fair bandwidth distribution and priority. 



Depending on the available buffer space and the desired steady state queue length at the router, 

packets are admitted to the router. Queue management mechanisms allocate the available buffer 

space at the router between the flows being multiplexed over the outgoing transmission links 

and control the length of the packet queues created within the buffers. This is accomplished by 

deciding whether admitting the newly arrived packet to the router or discarding it fiom the 

network. Incoming packet may be allowed to enter the router without changing the queue status 

or it may be admitted after dropping a packet fiom the queue, or the arriving packet itself may 

be dropped as highlighted by Xiaojie et al. (Xiaojie, Kamal, & Leonard, 2004). 

To guarantee that higher priority flows are given priority over lower priority ones, the queue 

management mechanism used in the router drops lower priority packets when congestion 

occurs. Currently, a modified RED queue management mechanism, namely Multiple RED 

(MRED), is used in DiffServ networks 

2.4 Multiple RED Queue Management Mechanism 

DiffServ provides QoS by classifying traffic flows into different categories. Each packet is 

marked with a code point indicating its unique category. Packets are scheduled according to 

their code points. The Assured Forwarding mechanism (Bianchi & Blefari-Melazzi, 2001) is a 

group of code points that can be used to classify four classes of traffic in a DiffServ network. 

Each class has three drop precedences that enable traffic treatment within a single class. 

Assured Forwarding uses, redQueue, a modified RED which put all packets for a single class in 

one physical queue. This physical queue is consists of three virtual queues (see Figure 2.2), one 

for each drop precedence, or RED queues (called Multi RED). MRED can have more than one 

physical queue. 



Physical Queue 

Figure 2.2 Single Physical Buffer in DiffServ 

Assured Forwarding is recommended for applications that need a better reliability than the best- 

effort service. Assured Forwarding Service is implemented where classification and policing are 

done at the ingress routers of the ISP networks. If the Assured Service traffic does not exceed 

the bit-rate specified by the SLA, they are considered as in profile. Otherwise, the excess 

packets are considered as out of profile. All packets, in and out, are put into an Assured Queue 

to avoid out of order delivery. The queue is managed by a queue management mechanism called 

RED with In and Out, or RIO. 

Assured Forwarding mechanism (Makkar et al., 2000) provides different levels of forwarding 

assurances for IP packets by dropping more packets that have low priority compared to packets 

with high priority. 

MRED has many versions such as Rio Coupled (RIO C), in which the probability of dropping 

low priority packets, called "out-of-profile packets", is based on the weighted average lengths of 

all virtual queues (Yang, Chen, & Zhang, 201 I), whereas the probability of dropping a high 

priority ("in-profile") packet is based only on the weighted average length of its own virtual 

queue (Yang, Chen, & Zhao, 2008). It basically maintains two RED algorithms, one 

for in packets and one for out packets. There are two thresholds for each queue. When the queue 

size is below the first threshold, no packets are dropped. When the queue size is between the 



two thresholds, only out packets are randomly dropped. When the queue size exceeds the 

second threshold, indicating possible network congestion, both in and out packets are randomly 

dropped, but out packets are dropped more aggressively. 

Another version of MRED is called RIO De-couple (RIO D) (Wen-Ping & Zhen-Hua) which 

has the probability of dropping each packet is based on the size of its virtual queue. Another 

version is the WRED (Weighted RED) in which all probabilities are based on a single queue 

length (Bianchi & Blefari-Melazzi, 200 1) . It is possible to use the dropTail queue. 

While MRED mechanism is RED with multi virtual queues, this means that MRED inherits all 

problems associated with RED. In the following section, the Random Early Detection (RED) 

mechanism is reviewed. 

2.5 Random Early Detection (RED) 

RED uses a Triple Threshold Average Queue Occupancy Level (Minth, Maxth, 2 Maxth) 

activation function for congestion detection. Using two thresholds in Basic RED and three 

thresholds in Gentle RED, enables RED to differentiate between different congestion levels 

experienced at the router based on the router queue condition. The use of average queue length 

allows RED to better differentiate between temporary queue oscillations due to short-term data 

traffic increases and persistent queue growth due to long-term data traffic overload. As 

concluded by Nga (Nga, Iu, Ling, & Lam, 2008), this enables RED to properly detect persistent 

congestion and to house and endure short term data traffic increases even though the algorithm's 

ability for early congestion detection is compromised and the average queue length is 

controlled. 



RED routers accept all incoming packets until the queue length reaches Minth, and then it drops 

a packet with a linear distribution function. When the queue length reaches Maxth, all incoming 

packets are dropped with probability one. RED router buffer is shown in Figure 2.3 

RED Gateway Buffer 

Agglagale TCP Traffic 

Dmp Man,!, M ~ q h  

Figure 2.3 RED Router Buffer (Adopted from (Ryu, Rump, & Qiao, 2004)) 

A router implementing RED detects congestion early by computing the average buffer length 

avg and sets the two queue thresholds Maxth and Minth for packet drop. Upon the arrival of a 

new packet to the router, RED calculates the average queue length using EWMA process. The 

average queue length is defined as 

avg= (1-w)avg+ wq (2.1) 

where avg is the new value of the average queue length at a given time, q is the current queue 

length, and w, which is normally less than one, is the weight parameter that is used for 

calculating the average queue length, avg, from the instantaneous queue length as stated in (Ryu 

et al., 2004). ave is used as a control variable to activate packet droplmark process. The average 

buffer length tracks the current buffer length. However, the average queue length fluctuates 

much slower than q because w value is much less than one. Thus, the average queue length 

tracks the long-term fluctuations of q to reflect the congestion in networks. 



As mentioned in (Floyd, November 1997), the packet dropping probability function determines 

how frequently the router will send congestion notifications by dropping packets, given the 

current level of congestion. The probability function of RED allows it to tune the packet 

dropping probability based on the congestion level at the router. The level of the congestion is 

proportional to the level by which the lower threshold is exceeded by the average queue length. 

RED gives proper packet droplmark probabilities to different packets depending on the average 

queue length, packet length, and the number of undroppedlunmarked packets since last 

droppinglmarking . 

According to Mahbub et al. (Mahbub & Raj, 2003), RED algorithm includes two computational 

parts : 

Computation of the average queue length 

Computation of the packet droplmark probability 

In RED, the initial packet droplmark probability (Pini) is computed as a linear function of the 

average queue length which reflects different congestion severity levels. The larger the 

computed average queue length is, the greater the probability with which an incoming packet is 

dropped or marked. 

The RED initial packet droplmark probability, Pini, is calculated by 



The adjusted initial packet droplmark probability is computed by scaling the initial packet 

droplmark probability by a fraction which reflects the relative length of a packet with respect to 

the maximum packet length. The initial packet droplmark probability is defined as: 

This is to ensure that the packet droplmark probability is proportional to the packet length in 

bytes. RED incorporates the number of undropped packets since last dropping, count, to 

compute the final packet drop probability that can be expressed as: 

As stated in (Floyd, November 1997), the application to final drop probability to incoming 

packets ensures a uniformly distributed packet intermarking interval with packet drops at evenly 

spaced intervals. This helps to avoid clustered packet drops which cause global synchronization. 

It also helps to reduce the occurrence of long periods during which no packets are dropped so as 

to enable effective control of the queue length and prevention of congestion. 

Having several congestion detection thresholds together with dynamically adjusted packet drop 

probabilities allow RED routers to set the frequency of congestion notification delivery to the 

intensity of the congestion detected (Firoiu & Borden, 2000). 

The RED algorithm involves four parameters to regulate its performance. Minth and Maxth are 

the queue thresholds to perform packet drop, Maxdrop is the packet drop probability at Maxth, 

and w is the weight parameter to calculate the average queue length from the instantaneous 



queue length. The average buffer length follows the instantaneous buffer length. However, 

because w is much less than one, avg changes much slower than q. Thus, avg follows the long- 

term changes of q, reflecting persistent congestion in networks. By making the packet drop 

probability a function of the level of congestion, RED router has a low racket-drop probability 

during low congestion, while the drop probability increases the congestion level increases 

(Hassan & Jain, 2004). 

The packet drop probability of RED is small in the interval Minth and Maxth. Furthermore, the 

packets to be dropped are chosen randomly from the arriving packets from different flows. 

Consequently, packets coming from different sources are not dropped simultaneously. Hence, 

RED gateways avoid global synchronization by randomly dropping packets. The performance 

of RED significantly depends on the values of its four parameters (May, Diot, Lyles, & Bolot, 

2000) (Wu-Chang & Dilip, 1999), Maxdrop, Minth, Maxth, and w. It is very hard to find 

optimal values for these parameters as they would to depend on the typical round-trip times in 

the system (Welzl, 2005) (Floyd, http:llwww.icir.org/floyd~red.htrnl#parameters, November 

2008). 

2.6 RED Parameters 

In this subsection, we examine the effect of the RED parameters and how should be set: 

The Weight Parameter, w. 

This parameter determines the reactiveness of the Exponential Weighted Moving Average 

(EWMA) process to traffic oscillations (Welzl, 2005). RED uses the average (and not the 

instantaneous) queue length as a control variable to control active packet drop. Computing the 



average queue length involves the previous average queue length and the instantaneous queue 

length modified by a weight parameter w. Hence, average queue length works as low pass filter 

(LPF) (Floyd & Jacobson, 1993). The average queue length is required to track persistent 

congestion that occurs over long time range while, at the same time, filtering out short time 

congestion (Mahbub & Raj, 2003). Now consider what would happen if w were 1: only the 

instantaneous queue would be used, and the impact of preceding values would be completely 

eliminated. Setting this parameter to 0, conversely, would mean that the average queue length 

would remain fixed at some old value and not react to queue oscillations at all (Welzl, 2005). 

This means that, if w is very small, the average queue length does not catch up with the long 

range congestion that may result in the failure of active queue management. If w is very large, 

the average queue length tracks the instantaneous queue length, which also degrades the 

performance of active queue management (Bing & Mohammed, 2008). 

In a realistic model for determining w, where aggregate TCP traffic has been taken into account, 

the values (0.05, 0.07) (Bing & Mohammed, 2008) give better performance than the values 

(0.001,0.002) (Floyd, 1997) (Floyd & Jacobson, 1993) in certain cases. 

Buffer Thresholds, Minth and Maxth. 

The desired (required) average queue length determines the values of these two parameters. 

Dropping incoming packets when the average queue length surpasses Maxth prevents the queue 

from growing further. If this parameter is set to a small value the queue will be small (and 

therefore short delay). Conversely, the parameter Minth depends on the burstiness of data traffic 

- if the bursty data traffic should be accommodated in the buffer fairly, Minth should be set to a 
r 

rather large value - and at the same time, (Maxth - Minth) must not be very small to allow for 



the randomness to take effect (Welzl, 2005). For a RED carrying only TCP traffic, Minth should 

be around five packets, and Maxth should be at least three times Minth (Floyd, 1997). A 

different set of values are required for Minth and Maxth to protect TCP traffic from non-TCP 

traffic which does not employ the congestion control mechanisms of TCP (Pams, Jeffay, & 

Smith, January 1999). 

Maximum Packet Drop Probability, MaxdrOP' 

The selection of this parameter significantly affects the performance of RED. If Maxdrop is 

very small, then active packet drops are not enough to prevent global synchronization. Very 

large value of Maxdrop decreases the throughput. Even though a Maxdrop value of 0.1 is 

generally suggested (Floyd, 1997), the selection of an optimal value of Maxdrop according to 

network traffic situation is still an open issue (May et al., 2000) (Wu-Chang & Dilip, 1999). 

It was demonstrated that the value of Maxdrop depends on the number of flows as well as the 

bandwidth delay product (Feng, Kandlur, Saha, & Shin, 1999). The upper bound of packet drop 

probability (Maxdrop) can be expressed as: 

< ( ( N  * SS * C) I Bz) Mmrdrop - 

where N is the number of flows, B is the total bandwidth, SS is the segment size, T is the round- 

trip time, and C is a constant. From Eq. 2.5, it is not possible to fix a value of Maxdrop for a 

dynamically changing the network environment (Mahbub & Raj, 2003). Finally, Maxdrop 

should be small because the general goal of RED is not to drop a large number of packets once 

Minth is exceeded but only drop a packet occasionally, as a result forcing senders to reduce 

their transmission rates (Welzl, 2005). 
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2.7 Improving the Response Time 

RED uses four parameters and one state variable to regulate its performance. Using the average 

queue length in controlling the active packet drop provides the following advantages (Mahbub 

& Raj, 2003): 

Accumulating short-term congestion. 

Tracing long-term congestion. 

The low pass filter characteristic of average queue is also featured with slow-time response to 

the changes of long-term congestion in networks. This is harmful to the throughput and delay 

performance of RED gateway. For example, after a long-term congestion, the average buffer 

length stays high even if the instantaneous queue is back to normal or low; RED will, therefore, 

continue dropping packets even after the end of congestion (May et al., 2000) resulting in low 

throughput. The slow response of the average queue length will result in the throughput 

restoring slowly after heavy congestion (Christiansen, Jeffay, Ott, & Smith, 2001). A larger 

value of w can improve the response time, but at the expense of the RED queue tracing short- 

term congestion, which is against the proactive queue management mechanisms principle. 

Low Pass Filterlover Drop Avoidance (LPFIODA) is an efficient algorithm for calculating the 

average queue length. It has shown that LPFIODA algorithm improves the response time, 

throughput, and reduces the delay of RED routers (Zheng & Atiquzzaman, 2005). LPFIODA 

calculates the average queue length as follows: 



During long-term congestion, and the average queue length is calculated by 

(2.6) 
= w+w,(q -mg)  

And, during this period, the RED queue is in the active drop phase. 

If the average queue length is high at the end of long-term congestion, halve the average 

queue length. During this period, the RED queue is in the over drop avoidance (ODA) 

phase. 

If the average queue length is below a specific threshold value after the end of long-term 

congestion, renew the value of the average queue length using the LPF model. 

Figure 2.4 shows the flowchart of LPFJODA algorithm. 

avg: average queue length 
w: weight parameter 
q: instantaneous queue 

t. 
lavg - (1 - w)avg + wql avg = (I - w)avg + wq 

Figure 2.4 LPF/ODA Algorithm 



2.8 RED Algorithm Description 

This subsection describes the details of the RED algorithm, shown in Figure 2.6. The line 

numbers, enclosed in parenthesis, appearing throughout this section, refer to line numbers in 

Figure 2.6. 

Min, Max, B~ avg 

Figure 2.5 RED Packet Drop/Mark Function 



The pseudo code given in Figure 2.6 describes the RED algorithm. 

for (each arrvlng packet (Pkr,)) { 
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Figure 2.6 RED Algorithm 

As mentioned earlier, Basic RED uses two thresholds, Maxth and Minth, on the average queue 

length for droplmark activation and congestion detection. The Basic RED'S initial packet 

droppinglmarking probability is a piece-wise continuous linear increasing hnction of the 

average queue length and varies linearly fiom (0) to (Maxdrop) as the average queue length 

varies fiom (Minth) to (Maxth) as shown in Figure 2.5. Basic RED computes the average queue 

length (avg) upon every packet's arrival using an Exponential Weighted Moving Average 



(EWMA) low pass filter (line 1). The average queue length is compared to the minimum 

threshold (Minth) and the maximum threshold (Maxth). If the average queue length is less than 

the minimum threshold, the packet is admitted to the buffer (line 2). If the average queue length 

is between the minimum and the maximum thresholds, the initial (line 3), the scaled initial (line 

4), and finally the final (line 5) packet droppinglmarking probability is computed and the packet 

is droppedmarked with the final droppinglmarking probability (Pf) (1 ine 6 if ECN-capable) and 

(line 7 if non-ECN-capable). If the average queue length is larger than the maximum threshold, 

the packet is droppedmarked with probability 1.0 (line 8 if ECN-capable) and (line 9 if non- 

ECN-capable). 

Numerous studies were carried out widely to investigate the performance of TCPIIP over RED. 

The studies revealed that even though RED can improve the TCP performance under certain 

parameter settings and network conditions, the basic RED algorithm is still susceptible to 

several problems, such as bandwidth unfairness, low throughput under poorly setting 

parameters, and large queuing delay variance (jitter) because of the fluctuation of the queue 

level, being unable to handle unresponsive connections, and a high number of consecutive drop. 

In addition, according to Nagendran et al. (agendran et al., 2010), RED has fairness issue when 

UDP flows demand assured service. Therefore, it is important to stabilize the queue length to 

protect the responsive connections. 

It can be concluded that even the use of multiple RED (MRED) with different parameter 

settings cannot solve the problems mentioned above due to the wide number of parameters that 

have an impact on the system's performance in DiffServ network. It is realized that there is a 



dire need for more research in this area of networking to improve the system's performance and 

resource utilization in DiffServ environment. 

2.9 Summary 

This chapter began with a description of quality of service and differentiated services (DiffServ) 

environment. The chapter showed how important is the role of queue management mechanism 

in DiffServ. It described the function and structure details of RED queue management 

algorithms. 

In this chapter, it has been revealed that MRED algorithm used in DiffServ has many problems 

such as bandwidth unfairness, low throughput under poorly setting parameters, and large 

queuing delay variance Gitter) because of the fluctuation of the queue level, being unable to 

handle unresponsive connections, and a high number of consecutive drop. These problems have 

motivated the researchers to improve MRED in order to improve DiffServ. We have observed 

and concluded that the current congestion control mechanisms cannot solve above mentioned 

problems due to the wide number of parameters that have an impact on the system's 

performance. We also realized that there is a dire need to improve the queuing management in 

DiffServ to provide good QoS to end users. 

In the next chapter, the experimental tool and the research methods for performance evaluation 

of the enhanced version of MRED will be presented. 



CHAPTER THREE 
RESEARCH METHODOLOGY 

Chapter 2 reviewed the background material on queue management that forms the basis of the 

general framework for this research, and revealed the necessity for the necessity for improving 

the queue management mechanism used in DiffServ networks, namely Multiple RED (MRED), 

in order to improve the performance of these networks. . As stated in Chapter 1, one of the 

objectives of this project aim at evaluating the enhanced MRED queue management 

mechanism. In this chapter, research methodology for developing and evaluating the 

performance of the enhanced MRED is presented. 

3.1 Introduction 

There are several ways to conduct research, and this depends on the purpose of study. It is 

common to use either a descriptive or a prescriptive approach in research on information 

technology (Nyame-Asiamah & Patel, 2009). Descriptive research seeks knowledge about the 

nature of reality, and improves performance of the system (Aken, 2004). Our research adapts 

Research Design because it is accepted among many researchers in the information and 

communication processing systems (Venable, 2006). Research Design can address the problem 

in a unique and efficient way (Khosrow-Pour, 2006). Many researchers have used Research 

Design approach depending on Vaishnavi & Kuechler (Vaishnavi & Kuechler, 2005). Vaishnavi 

and Kuechler methodology that is used in our research is shown in Figure 3.1. 
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Figure 3.1 General Methodology for Design Science Research (Vaishnavi & Kuechler, 2008) 

The methodology illustrated in Figure 3.1 consists of five phases namely: Awareness of a 

problem, Suggestion, Development, Evaluation and Conclusion. Each of these phases is 

elaborated afterwards. 

3.2 Awareness of Problem Step 

The research work presented in this project is motivated by the need for a developed queue 

management mechanism to improve the performance of the Diffserv in the Internet as the 

current mechanism suffers from low throughput, and high number of consecutive drop in 

addition to large queuing delay variance (jitter) that make it being unable to handle 

unresponsive connections. This degrades the performance level or quality of service required by 

the user at the end system. Therefore, it is important to come up with an enhanced queue 

management mechanism to increase the throughput and reduce packet drops and delay in order 

to improve Diffserv networks. 



3.3 Suggestion Step 

Developing a drop probability function for MRED, which uses a measure of packet amval rate 

with a measure of the queue length for its control decisions will provide good quality of service 

and show better ability in realizing the goals of controlling the packet amval rate to the 

Dimerv-capable router, router queue lengths, and network congestion, while achieving a higher 

performance. Therefore, the enhanced MRED drop probability function presented in this project 

use the average queue length and the average packet amval rate for making its dropping 

decision to accomplish the goal of providing good quality of service. 

3.4 Development Step 

In this section, the system requirements, the design, and the implementation of the enhanced 

MRED are presented. 

3.4.1 System Requirements 

Queue management mechanism in the network routers has to deal with the packets amved at the 

input interface and take decision on whether to admit amved packets into the buffer. To do so, 

the queue management should have information about the status of the buffer which can be 

done by calculating the buffer occupancy level compared to the buffer size. This information is 

required once packets amve. Therefore, a model is required to provide this information. Based 

on the decision, another model is required to admit or drop the packet. As the drop can be 

randomly from the buffer, a model for calculating the drop probability function applied to a 

specific packet is required as well. 



The enhanced MRED has to do the following tasks: 

Controlling the aggregate the packet arrival rate to maintain a higher average packet 

arrival rate at the router's buffer, with smaller rate variations, which assists to avoid 

congestion and improves link utilization. 

Controlling the instantaneous queue length to decrease the queuing delay and avoid 

buffer overflows while maintaining high link utilization and low packet drop ratio. 

Providing early congestion detection, based on prediction, and timely congestion 

notification, via packet dropping or marking based on the value resulting from the 

packet droplmark probability computation, to instruct the traffic senders to reduce their 

transmission rates to help control the queue length. 

3.4.2 System Design 

Enhancing the MRED queue management mechanism requires designing a new packet 

droplmark probability function that helps the queue management mechanism to take a proper 

decision or action in whether to allow or drop the packet to control the queue length efficiently. 

The current MRED uses an Exponentially Weighted Moving Average (EWMA) of the queue 

length to decide when to drop packets. It requires the use of a small queue averaging weight to 

make it less sensitive to very short-term increases in the packet arrival. A packet may be not 

allowed to the buffer while there is plenty space available or it may be allowed to the buffer 

while there is little room left before the buffer overflows. Therefore, the use of the average 

queue length does not allow the exercise of tight control over the instantaneous queue length, 

but allows only the average queue length to be controlled. This could lead to higher packet loss 



and excessive oscillations in the instantaneous queue length which would generate large delay 

variations and delay jitter as well as poor link utilization. 

Considering the average packet arrival rate when computing the packet droplmark probability 

function, can provide information that helps the queue management mechanism to act properly. 

3.4.3 Implementation 

In this project, the enhanced MRED is developed by using C-H and implemented in network 

Simulator 2.32 software on a machine running the CentOS 5.2 version of the Linux operating 

system. The code is debugged and verified several times by conducting many simulation 

experiments to ensure that the models are working properly. The enhanced MRED is validated 

using ns-2 validation program, Run-time Trace, and Incremental Implementation. For every 

simulation, the Run-time Trace is checked to ensure it runs as expected. The detailed 

information regarding the development of the enhanced MRED is provided in Chapter four. 

3.5 Evaluation Step 

Evaluation is performed to ensure that the enhanced MRED is working properly and efficiently. 

The results gained from simulations are analyzed statistically to evaluate the performance of the 

enhanced MRED. The evaluation details are presented in Chapter five. 

3.5.1 Simulation Topology and Scenario 

The aim of this experiment is to show that it is possible to achieve prioritization of important 

packets without any use of information provided by transport layer, and to test and evaluate the 



modified version of MRED under different Committed Information Rate (CIR) levels varied at 

the source edge nodes. 

In this experiment, two priority levels are defined, the higher "In packets" or "green packets" 

and the lower "Out packets" or "red packets". We use the time-sliding window (TSW2CM) 

policer. For each edge router, a CIR is defined. All packets will be marked as high priority if the 

rate of the connection is below CIR. If the rate exceeds CIR, packets will be marked 

probabilistically such that the rate of packets marked with high priority corresponds to the CIR. 

The transmission rate is computed as the rate averaged over the "TSW window"; in this 

experiment, the simulation its duration is 20msec. 

We use the network topology shown in Figure 3.2 below. 
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Figure 3.2 Network Topology 

50 sources are connected to their edge nodes via links of lOOMbps bandwidth and O.5msec 

delay each. Links between the edge nodes and the bottleneck core node have 30Mbps 

bandwidth 2msec delay. The bandwidth of link between the core node and the edge router node 



toward the destination node is lOMbps with Smsec delay. The link between the edge node and 

the destination has 100Mbps bandwidth and O.5msec delay. 

Traffic coming from sources is marked according to parameters that are specified at their edge 

routers. The traffic represents a file that has a Pareto distribution with shape parameter 1.25 and 

an average size of 1Okbytes (average transferred file over the internet). And the average packet 

size is 1040 bytes, of which 1000 are data and 40 bytes are header. 

Files to be transmitted arrive at each source node according to a Poisson process with an 

average rate of five files per second. Many sessions from the same source node can be active at 

the same time. 

The size of the queue at the bottleneck router is 100 packets. Therefore, the queue management 

parameters at other routers will not have any affects on the results. The modified Multi-RED 

version queue management is used at the bottleneck core node queue. 

The same parameters for both priority levels are selected. The reason behind this selection is to 

create conditions that allow us to study the effect of the modified version of MRED on 

diminishing the loss probabilities of vulnerable packets, and on TCP performance in terms of 

delay and throughput. Giving the same parameters to both priorities, allows realizing the direct 

effect of protecting vulnerable packets on the TCP performance. 

For each color of packets (red, green), the averaged queue length is monitored (this is done 

using the standard exponential averaging with parameter w, = 0.01). Packets of a given color 

start to be dropped when the average number of queued packets of this color exceeds minth of 

15. This allows the drop probability to increase linearly with the averaged queue length until it 



reaches max,h value of 45, where the drop probability, maxp, is chosen to be 0.5. The drop 

probability will be equal to 1 whenever max, is exceeded. 

The average packet size is 1040 bytes, of which 1000 are data and 40 bytes are header. An 

average ftp file is assumed to contain lo4 bytes of data, which means that its total average size 

(including the headers) is about 1.04 x lo4 x 8 bits. After multiplying by the number of source 

nodes and dividing by the average time between amvals of files at a node, the packet amval 

rate to the bottleneck core node is 

Thus, it is obvious that the traffic rate is higher than the bottleneck link (which is 10 Mbps). 

Hence, the congestion is expected to occur, and therefore, it is required to have an active queue 

management mechanism. 

The simulation duration is chosen to be 100 seconds to discard warming up period and avoid 

overlapping phenomenon. 

When run the scenario, the behavior of MRED is recorded and examined by using performance 

metrics explained below. 

3.5.2 Performance Metrics 

The term metrics refers to the criteria used to evaluate the performance of the system as stated 

in (Jain, 1991). In this research, the following performance metrics are used for the quantitative 

performance comparison between the enhanced mechanism and standard LDP. This is to 

validate the new mechanism. 
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Outgoing Transmission Link Utilization 

Utilization of a link refers to an amount of data carried by a link relative to the link's maximum 

capacity. In this research, link utilization measures the ratio of time the link is utilized, it is 

defined as: 

L! = h.?~i.nre [seconds; . , 006 
Sin~lllar imTkie  [seconds: 

Packet Drop 

Packet loss results in very noticeable performance issues. Network applications such as voice 

over IP, online gaming, and videoconferencing experience quality of service degradation when 

the packet loss is high as mentioned in (Irnadud & Nazar Abbas, 2008). In this research, packet 

loss measures the ratio of the number of packets discarded at the bottleneck link to the total 

number of packets inserted into the bottleneck link buffer for all source, it is defined as: 

Queue Length 

Since the role of the proactive queue management mechanism is to keep the queue length as 

small as possible to provide space for accommodating temporary increases in the multimedia 

traffic to avoiding packet loss, queue length is an important metric through which the 

effectiveness of a queue management mechanism can be shown. In this research, statistical 

average (expected value (E(Q)) of the instantaneous queue length is used and defined as: 



• Throughput 

Throughput is defined as the rate (requests per unit of time) at which the requests can be 

serviced by the system. In data network, throughput is defined as the amount of data transferred 

successfully from host to another in a given time period. Throughput, which is essentially bound 

by the BDP, is measured in number of bits per second (bps). In this research, throughput is 

measured as the number of data packets received correctly at the server host in a unit of time (in 

bit per second). Throughput for of a connection is calculated using the following formula: 

thr = YR;  (3.5) 

where n is the number of bytes received by the server at the end of the simulation, and t is the 

simulation time. 

Analyze the results is typically done by post-analysis of the trace information produced by the 

ns-2 program execution. The trace files will usually have enough information to compute 

average link utilization on the communication links in the simulation, average queue sizes at the 

various queue, and drop rate in the queues, just to name a few. 

The Diffserv network efficiency, with which the network resources are utilized, can be 

measured based on the link utilization and packet loss values. This information is important to 

network owners and operators. They can maximize their profits by minimizing their cost based 

on this information. 

The average queue length identifies the average queuing delay experienced by the real time 

traffic passing through the DiffServ-capable router. The quality of service provided to the 

network users is indicated by the queuing delay and the packet loss. In other words, the queuing 



delay and the packet loss determine the reliability and response time offered by the DiffServ 

network. 

3.6 Conclusion Step 

This step is the final step in this research. The results gained from the simulations and the 

analysis of the results showed that the enhanced MRED is work properly and the expected 

performance is achieved. More details and potential future work are presented in Chapter six. 

3.7 Summary 

This chapter presented the research method that is used to conduct this project. It presented the 

steps that are followed in enhancing MRED for DifBerv networks. The simulation scenario 

used in this research and based on a particular network topology is presented in this chapter as 

well. Also, the performance metrics, which are utilized by well-known network researchers and 

previous research works, used for the quantitative performance evaluation of the enhanced 

MRED queue management mechanism are described in this chapter. With the intention of 

running a reliable simulation experiments, the network simulator (ns-2) and the newly 

implemented ns-2 module were validate and verified. 

After specifying the methodology and the experimental tool and scenario that are used to 

implement the enhanced MRED queue management mechanism in this chapter, the design and 

the implementation issues of the enhanced MRED will be presented in the next chapter. 



CHAPTER FOUR 
DESIGN AND IMPLEMENTATION OF ENHANCED MRED 

After setting up the research methodology for evaluating the performance of the enhanced 

MRED queue management mechanism in Chapter 3, this chapter introduces the design and the 

implementation of the enhanced MRED. 

4.1 Enhanced MRED Implementation Design 

The main objective of enhanced MRED is to ensure that packets get their right treatment while 

providing the routers with congestion control capabilities in order to improve DiffServ network. 

Enhanced MRED achieves this by controlling packet arrival rate and the average queue length 

at the router. Rate and queue control are exercised through early congestion detection & 

notification, rate reduction, and queue growth (increase in the queue level) avoidance by 

dropping lower priority packets randomly. 

The router should differentiate between different congestion levels and to practice congestion 

control of different levels, accordingly. The enhanced MRED mechanism controls the aggregate 

the packet arrival rate to maintain a higher average packet arrival rate at the router's buffer, with 

smaller rate variations, which assists to avoid congestion and improves link utilization and 

impose fairness between connections based on their packets priorities. Also, it controls the 

average queue length to decrease the queuing delay and avoid buffer overflows while 

maintaining high link utilization and low packet drop ratio generally. In addition, it provides 

early congestion detection and timely congestion notification by packet dropping or marking 

based on the value resulting from the packet droplmark probability computation, to instruct the 



traffic senders to reduce their transmission rates to help control the queue length. All this would 

help improving DiffServ. Enhanced MRED queue management monitors the average queue 

length to detect congestion and to compute the packet drop probability (P) which is applied to 

the amving packet. Enhanced MRED queue manager determines the rate at which packets are 

discarded from the network in order to reduce the average packet amval rate (R) at the router 

near the outgoing link capacity (C). When a packet is amved at the router, the average packet 

amval rate (R) will be computed by enhanced MRED queue manager. 

After the packet's amval, immediately, enhanced MRED makes a prediction of the expected 

changes in the queue length over a subsequent period of time, of length (T), presuming that the 

traffic amval characteristics will remain unchanged over this period. Based on this prediction, 

enhanced MRED computes the initial packet marking probability (Pini) as the fraction of traffic 

amval that needs to be dropped over this period taken into account high priority packets. 

4.1.1 Average Packet Arrival Rate Estimation 

In practice, a packet sliding window is used to calculate the average packet amval rate of the 

aggregate data traffic. The packet sliding window technique uses a sliding window of packets 

which moves forward upon every packet amval. A packet sliding window of size Ws packets 

calculates the average packet arrival rate based on the packet length and the interamval time for 

the last Ws packets. It computes the average packet amval rate as a fraction of the total amved 

packets over the total elapsed time. If the kth packet's anival instant is represented by tk, its 

interarrival time by Tk (= tk - tk-l), and its length by lk, the average packet amval rate is 

computed as: 



Which can be implemented as: 

A packet sliding window is easy to implement and using actual data points for computing the 

average packet amval rate. 

If the packet amval and queue states are stable and do not alter very much, it is worthwhile to 

drop lower priority packets at fairly regular intervals. It is important not to have too many 

packets dropped close to each other or to have long periods of time where no packets are 

dropped or marked. Too many droppedmarked packets close together can cause global 

synchronization, and also too long packet intermarking times between dropped packets can 

cause large queue sizes and congestion as mentioned in (Zheng & Atiquzzaman, 2005). 

According to (Floyd, November 1997), when the traffic and queue states are stable, the number 

of undroppedunmarked packets between two adjacent dropping would be exponentially 

distributed if the probability (Pini) is directly applied to individual amving packets 

independently. 

Therefore, if the initial packet droppinglmarking probability (Pini) is used directly to drop 

packets, packets could get dropped or marked in large numbers close to each other or not get 

dropped for very long periods of time. This is avoided by modifying the initial marking 

probability based on the number of undropped packets since the last droppedmarked packet 
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(count) to obtain a packet intermarking interval that is uniformly distributed over (1. 2, ..., 

2Pini) as in (Floyd, November 1997). This distributes the droppedlmarked packets consistently 

over the incoming packets. 

The pseudo code given in Figure 4.1 describes the enhanced MRED algorithm. 
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Figure 4 .1  Enhanced MRED Algorithm 



4.2 Enhanced MRED Implementation 

The Diffserv environment that we are implementing follows the "Assured forwarding" 

approach. A packet that belongs to a connection could receive three levels of priority within the 

connection. These levels are called "drop precedences". It can be used to provide a lower loss 

probability to sync packets in a TCP connection. According to Noureddine and Tobagi 

(Noureddine & Tobagi, 2002), the losses of sync packets result in very long time-outs. 

Implementing enhanced MRED for DiffServ required five modules to be compiled in ns2 

simulator. One for RED-based queuing, one for policing, one for the base DiffServ router 

functionality (dsRED), and one for each the edge and core routers. Each of these modules 

defines a single class. 

The essential module for the DiffJerv implementation is dsRED module. It is included in 

"dsred.h" and "dsred.cc files." The dsRED Queue class is the parent class for the edgeQueue 

and coreQueue classes as shown in Figure 4.2 below. 

--- -..-" ,/- - 1 
I-r 

i,. Queue 
---T- 

-el.2 

Figure 4.2 The class hierarchy of dsREDQueue 



In Difrjerv architecture, dsRED Queue responsible for implementing functionality and 

declaring the parameters that are common to edge and core routers. The edge router module is 

defined by edgeQueue class. It is included in "edge.h" and "edge.cc." files. It is responsible for 

marking the code point for each packet. Also, it defines and managing policies which determine 

the kind of dealing that a packet receives at edge router. In addition, maintaining multiple 

physical and virtual queues and setting parameters for each these queues are done by this 

module. The maximum bandwidth a queue can use over a link to the core router can be 

determined by this module as well. coreQueue class that defines the core router module 

forwards packets based on the value of the code points marked on each packet. Core module is 

included in the "c0re.h and "core.cc" files. 

While differentiation of packets can be within each connection, all connections can be classified 

to many classes (at most four) which can be given different dealing as well. 

Moreover, it is possible to differentiate between connections. Four classes of classes are defined 

(see Figure 4.3), and packets of a given class are queued in a class-dependent queue. To 

distinguish between packets that belong to the same class, in each of the four queues there are 

three internal virtual queues. To each of the 12 combinations of the four flow class and the three 

internal priority levels within a flow correspond a code point that a packet is given when 

entering the network. 



4 Physical Queues 

3 Virtual Queues per Physical Quew 

Figure 4.3 dsREDQueue illustration 

Rio Coupled RIO C is used in enhanced MRED, in which the probability of dropping low 

priority packets (called "out-of-profile packets") is based on the weighted average lengths of all 

virtual queues, whereas the probability of dropping a high priority ("in-profile") packet is based 

only on the weighted average length of its own virtual queue. 

4.2.1 Configuration of Enhanced MRED in Network Simulator 2 (ns-2) 

To simulate Diffserv using, the policy should be fully determined in the tcl script. To determine 

the number of physical queues, we use the following command: 

$dsredq set numQueues- $m 

where m can take values between 1 and 4. 

Configuring queue 0 to be a RIO-C is done with the following command: 

$dsredq setMREDMode RIO-C 0 



All queues are set to be RIO-C if the last argument is not given. Likewise, types other than RIO- 

C can be defined. To specify the number $n of virtual queues, we use the command: 

RED has 6 parameters: the parameter queue weight, queue number, virtual queue number, minth, 

maxth and maxp. If queue weight parameter, q,, is not stated then it is taken to be 0.002 by 

default. 

Red parameters can be configured using the following command: 

The DropTail queue can also be used with the following command: 

$dsredq se tMREDMode DROP 

The configuration then is given as before with only the first three parameters: 

All arriving packets are dropped when the minth value is reached. 

To compute the drop probability of RED, we need an estimate of the packet size. For a packet 

of size 1000 bytes, we can use the following command: 



Regarding the scheduling of packets, specific scheduling regimes can be defined. For example 

the weighted round robin with queue weights 5 and 1 respectively can be defined using the 

following command: 

$dsredq setSchedularMode WRR 

Other possible scheduling are Weighted Interleaved Round Robin (WIRR), Round Robin (RR) 

which is the default scheduling, and the strict priorities (PRI). 

The set of four queues along with the virtual queues is supplemented with a Per Hop Behavior 

(PHB) table. Its entries are defined by 

the code point, 

the class (physicalqueue), and 

a the "precedence" (virtual queue). 

An entry is assigned by using the following command 

which means that code point 11 is mapped to the virtual queue 1 of the physical queue 0. 

The following command results in bringing the PHB table: 



The number of physical and virtual queues can be brought using the following command: 

$dsredq printstats 

The following command can bring the RED weighted average size of the specified physical 

queues (0 in our case): 

4.2.2 Defining Enhanced MRED Policies 

All connections within the same source and going to same destination are subject to a regular 

policy. A policy defines many specific parameters such as policer type and target rate. It 

specifies at least two code points. The selection between them depends on the difference 

between the connection's current sending rate and its target, and possibly on the policy 

dependent parameters (such as burstiness). The policy specifies meter types that are used for 

measuring the relevant input traffic parameters. A packet arriving at the edge router causes the 

meter to update the state variables corresponding to the connection, and the packet is then 

marked according to the policy. The packet has an initial code point corresponding to the 

required service level; the marking can result in downgrading the service level with respect to 

the initial required one. 

A policy table is used in ns-2 to store the policy type of each connection. Information stored in 

the policy table include Source Node ID, Destination Node ID, Policer Type, Meter Type, 

Initial Code Point, CIR (Committed Information Rate), CBS (Committed Burst Size), C Bucket 
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(Current Size Of The Committed Bucket), EBS (Excess Burst Size), E Bucket (Current Size of 

the Excess Bucket), PIR (Peak Information Rate), PBS (Peak Burst Size), P bucket (current size 

of the peak bucket), Arrival Time of Last Packet, Average Sending Rate, and TSW Window 

Length (TSW). 

TSW is a policer based on average transmission rates and the averaging is performed over the 

window length, in seconds, of data. The default value is 1 sec. Possible policer types can be: 

It uses a CIR and two drop precedences as well. The used probabilistically when the CIR is 

exceeded. 

TS W3CM (TS W3CMPolicer) 

It uses a CIR, a PIR and three drop precedences. The medium priority level is used 

probabilistically when the CIR is exceeded, and the lowest one is used probabilistically when 

the PIR is exceeded. 

Token Bucket (TokenBucketPolicer) 

It uses CIR and a CBS, and two drop precedences. 

Single Rate Three Color Marker (srTCMPolicer) 

It uses CIR, CBS and EBS to choose fi-om three drop precedences. 

Two Rate Three Color Marker (trTCMPolicer) 

It uses CIR, CBS, EBS and PBS to choose fi-om three drop precedences. 
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Each of the policer type mentioned above defines the meter it uses. The initial code point and 

one or two downgraded code points are defined by a policer table for each policy type. The 

initial code point is called "green code" and the lowest downgraded code is "red". If there is 

another code point in-between, it is called "yellow". 

The configuration of the polices in ns-2 can be done through TCL. We can update the policy 

table by using the "addPolicyEntry" command which contains the edge queue variable 

denoting the edge queue, the source and destination nodes of the connection, the policer type, its 

initial code point, and then the values of the parameters that it uses; these are some or all of 

CIR, CBS, PIR and PBS as mentioned above. CIR and PIR are given in bps, and CBS, EBS and 

PBS in bytes. 

For example: 

$edgeQueue addPolicerEntry [$nl i d ]  [$n8 id] trTCM 10 200000 1000 300000 1000 

By doing this, a policy for the connection that originates in $nl and ends at $US is added. If the 

TSW policers are used, one can add at the end the TSW window length. If not added, it is taken 

to be 1 sec by default. 

We can use "addPolicyEntryW command specificcally to the policy and to the initial code 

point defines the downgraded code points which are same to all connections that use the policy 

with the common initial code point. It can be used as follows, 



The command that used in bringing the entire policer table is: 

$edgeQueue p r in tPo1  icyTable  

We can use the following command to bring the entire policer table: 

$edgeQueue p r  i n t P o l  i c e r T a b l e  

To get the current size of the C buckets in bytes, the following command can be used: 

$edgeQueue getBucket 

4.3 Summary 

This chapter presented the design and the implementation of the enhanced MRED queue 

management mechanism. It presented the droplmark probability function which is applied upon 

packet amval to address the state of congestion and decide the probability with which the 

packet should be denied entrance to the queue based on priorities. The chapter covered how 

enhanced MRED uses a packet sliding window technique for computing the average packet 

arrival rate of the aggregate data traffic upon every packet amval in order to take a proper 

decision and ensuring packet treatment. It show how enhanced MRED can be configured in 

NS2 for DiffServ networks. 



CHAPTER FIVE 
EVALUATION & RESULTS 

This chapter is dedicated to discuss the evaluation of the enhanced MRED enhanced designed 

for DiffServ networks. The chapter provides the performance of the enhanced MRED regarding 

the protection of vulnerable packets. The goal of this chapter is to show that, with the enhanced 

MRED, we can achieve prioritization of sensitive packets without any use of transport layer 

information. The chapter also shows the enhanced MRED performance in terms of Committed 

Information Rate (CIR), average queue length, packet loss, the packet amval rate, bandwidth 

utilization and throughput, based on the results obtained from the simulation. 

5.1 Introduction 

In TCPJIP networks, some packets are very important and the loss of them can affect the 

performance of TCP seriously. These packets include (i) packets responsible for TCP 

connection establishment, (ii) packets sent when the connection has a small window, and (iii) 

packets sent after a timeout or a fast retransmission. These packets are called "vulnerable" or 

"sensitive" packets. Marking those packets with a higher priority and implementing the priority 

using DiffServ architecture can help improve the performance of the TCP connection 

significantly. Marking those packets requires that network layer be aware of transport layer 

information such as the state of the TCP connection. The enhanced MRED presented in this 

project allows prioritizing the sensitive packets without the need for transport layer information. 

As mention in Chapter Three, two priority levels can be defined. The higher "In packets" and 

lower "Out packets" using Time-Sliding Window (TSWZCM). 



5.2 The Effect of the Committed Information Rate (CIR) Variation 

Committed Information Rate (CIR) is defined for each edge router. All packets are marked as 

high priority providing the TCP connection's rate is below CIR. Once the rate exceeds CIR, 

packets are marked probabilistically such that at the average, the rate of packets marked with 

high priority corresponds to the CIR. The transmitted rate is computed as the rate averaged over 

the "TSW window". 

In evaluating the enhanced MRED, many experimentations were conducted with different CIR 

levels at the source edge nodes to study the effect CIR variation on performance. The CIR 

variation is IOOKbps, 300Kbps, IMbps, and 10Mbps. 

We check the effect of the CIR marking rate on the loss probabilities of the SYN packets and of 

the first data in a connection, the effect is shown in Figures 5.1 to 5.4 below. In the figures, 

CP means Dimem code point; TotPkts means total packets; TxPkts means transmitted packets;. 

Ldrops means late drops; Edmps means early drops. 

CP TotPkts TxPkts ldrops edrops 
- - - - - -  - - - - - -  - - - - - -  

4898 4890 
33718 32558 112 1848 

Figure 5 . 1  CIR of lOOKbps 

I t s  TxPkts ldrops edropsl 
- - - - - - - - - - - - - - -  - - - - - -  - - - - - -  

A l l  37513 36573 9 2 848 
1 e 942 1 9421 e e 
11 28892 27152 9 2 848 

Figure 5.2 CIR of 300Kbps 



CP T o t P k t s  T x P k t s  l d r o p s  edrops  

Figure 5.3 CIR of lMbps 

CP T O t P k t s  T x P k t s  l d r o p s  edrops  
- - - - - -  - - - - - -  - - - - - -  

38861 36726 1328 

Figure 5.4 CIR of lOMbps 

While the performance of enhanced MRED was the best when the CIR is lMbps, the original 

MRED for the same CIR is considered for comparison. The performance of the original MRED 

when CIR equals to lMbps is illustrated in Figure 5.5 below. 

A l l  38822 36725 17 1288 
16 1476 1478 8 8 
11 36552 35255 17 1286 

Figure 5. 5 CIR of lMbps for Original MRED 

As mentioned in Chpater Three, the amount of packet loss results in very noticeable 

performance issues. It degrades the performance of the TCP applications significatly. From the 

figures we noticed that even with varied CIR levels, the losses of SYN packets is decreased as 

an implication of more packets transmitted and the better performance was achieved when CIR 

is 1Mbps. 



5.3 Average Queue Length 

This section provides the performance of enhanced MRED in terms of the average queue length 

compared to the original MRED. The average queue length can show how often the buffer is 

occupied which can help realizing how much it is controlled by the queue management 

employed at the router. The queue management mechanism used imposes its rules, such as 

packet drop or mark, to keep the queue length as small as possible to accommodate the sudden 

increases in the data traffic. 

Figure 5.6 shows the average queue length of the bottleneck buffer when using enhanced 

MRED while Figure 5.7 shows the average queue length of original MRED, respectively. 

0 10 20 30 40 S0 60 70 80 98 188 

Tine i n  seconds 

Figure 5 .6  The actual queue length of the enhanced MRED 



T i m  i n  seconds 

Figure 5.7 The actual queue length of the original MRED 

From the Figure 5.6, we can realize that enhanced MRED control the queue length efficiently 

compare to the case of the original MRED. As shown in Figure 5.6, the average queue size of 

the enhanced MRED is around 700 packets. Taking into account the packets size of 1000 and 

the bottleneck link bandwidth of 20Mbps, the average queuing delay equals: 

For the case of original MRED, as shown in Figure 5.7, the average queue size is around 2300 

packets. Therefore, the average queuing delay is: 



Which is much higher than the case of enhanced MRED. It is clear that enhanced MRED 

control the queue length efficiently which leads to better network performance. 

5.4 Outgoing Link Utilization 

It is well known that the proportion of time the buffer having packets waiting to be transmitted 

on the outgoing transmission link determines the level to which the outgoing transmission link 

capacity is utilized. Link utilization is affected by the packet arrival pattern and speed of the 

packet arrival reaching the router buffer. Therefore, the link utilizations obtained on the 

outgoing transmission link can be understood in the view of the averages of the packet arrival 

rate and average queue size. 

The link utilization obsereved throughout enhanced MRED and original MRED experiments are 

shown in Figure 5.8 and 5.9, respectively. 

Tine i n  seconds 

Figure 5.8 Link utilization using enhanced MRED 



T i n e  i n  seconds 

Figure 5.9 Link utilization using original MRED 

The figures show that enhanced MRED utilizes the bandwidth of bottleneck link somewhat 

better than original MRED even though there is a flactuation in the link utilization which can be 

due to the controlled amval rate by the drop probability function of enhanced MRED. 

5.5 Packet Arrival Rate 

The aggregated packet amval rate to the router buffer when using enhanced MRED is shown in 

Figure 5.10 while Figure 5.1 1 shows arrival rate for the case of original MRED. 



Tine in seconds 

Figure 5.10 Packet arrival using enhanced MRED 
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Tine in seconds 

Figure 5.11 Packet arrival using original MRED 



From Figures 5.10, it is clear that enhanced MRED apply tight control1 to direct the aggregated 

packet amval rate to managemable level which help controlling the queue size and reducing the 

packet loss. Figure 5.11 indicates that the amount of packets amved at the router was almost 

double than that of enhanced MRED, which justify the more packet drops that the sources 

experince over original MRED. 

5.6 Throughput 

In data network, throughput is defined as the amount of data transferred successfully fi-om host 

to another in a given time period. Throughput, which is essentially bound by the Bandwidth 

Delay Product (BDP), is measured in number of bits per second (bps). In this project, 

throughput is measured as the number of data packets received correctly at the server host in a 

unit of time (in bit per second). Throughput is the significant performance measure for short and 

long-lived TCP connections. 

Throughtout enhanced MRED expewriments, we have noticed that throughput is increased and 

packet loss is reduced. Tables 5.1 to 5.4 show that the number of data packets that where 

successfully transmitted during the simulations was quit independent on the CIR. This is due to 

the fact that arrival rate of sessions does not depend on the CIR. Figure 5.12 demonstrates the 

throughput gained when using enhanced MRED over CIR of 1Mbps. We can realize that with 

less packet losses and delay, the throughput is good as well, compared to that of original 

MRED. 
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Figure 5.12 Throughput using enhanced MRED 

Figure 5.13 illustrates the throughputs gained when using the original RED. 
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Figure 5.13 Throughput using original MRED 



From the figures, we can see that the average troughput in the use of enhanced MRED is better 

than original MRED. 

We can conclude that a significant improvement was made by enhancing MRED mechnism to 

improve TCPIIP network performance using DiffServ architerchture. The enhanced MRED was 

validated through several simulations experiments. It was applied on specific case which is the 

protection of sensitive packets mentioned earlier in this chapter. Sensitive packets worsen 

performance of TCP considerably since they cause long time-outs. This is particularly the case 

for the loss of a SYN that results in a timeout of 3sec or of 6sec. In high speed networks the 

duration of a file transfer is short (often the whole transfer is much shorter than timeout), so we 

can expect to gain much by applying enhanced MRED to eliminate these long timeouts. 

In simulation experiments, an average file size was chose to be IOkbytes, which is the 

avereaged measured file size in the Internet. Thus, approximately around 10% of the packets is 

a SYN packet and additionally, another 10% of the packets are first in a transfer. Therefore, in 

the absence of enhanced MRED mechnism, around 20% of lost packets would correspond to 

these types of sensitive packets. Thus, reducing these losses can result in a significant 

improvement in the TCP/IP performance. 



5.7 Summary 

This chapter presented the performance evaluation of the enhanced MRED and compared to the 

original MRED mechanism, used currently in DifBerv environment, based on the numerical 

results gained from simulation experiments. It studied the performance of the enhanced MRED 

in terms of the average queue length, the packet arrival rate, packet loss, the bottleneck link 

utilization, and the throughput gained. 

It showed that the enhanced MRED helps moderating and controlling the packet arrival rate 

where the bottleneck link bandwidth is the limiting factor and the average arrival rate remains 

relatively near the maximum link capacity. It was shown how enhanced MRED can protect the 

sensitive packets, such as SYN, fiom being dropped or lost. 

It was shown that the enhanced MRED offers less delay; and the packet loss is less compared 

to the case of using the original MRED, thus, it confirms the suitablity of the enhanced MRED 

for short TCP connections. 

In addition, in terms of throughput, it was shown that the enhanced MRED allows TCP to 

improve its throughput with comparable packet loss. Forthermore, the enhanced MRED system 

helps to avoid congestion and improving the TCP network overall. 

Finally, the enhanced MRED offers a superior performance to that of original MRED in terms 

of providing a lower queuing delay at a higher link utilization and a lower fraction of packet 

loss. 



CHAPTER SIX 
CONCLUSION AND FUTURE WORK 

As the performance of enhanced MRED queue management mechanism was analyzed in 

Chapter Five based on the numerical results obtained fiom simulations to verify and validate the 

enhanced MRED developed for DifPJerv networks, this chapter provides the conclusion of the 

research work presented in this project in Section 6.1 in addition to some suggestions for further 

studies in Section 6.2. 

6.1 Conclusion 

Recently, significant investments have been made in the planning and development of computer 

networks. The rapid growth of the applications over the Internet drives researchers to develop 

new mechanisms for internet infrastructure in order to guarantee the quality of service provided 

to user who use applications, such as web surfing, network monitoring, desktop sharing and 

video conferencing. The delay variations in network system affect in network applications. In an 

acknowledgement and time-out-based congestion control mechanism, e.g., TCP, performance is 

related to the delay-bandwidth product of the connections. In addition, TCP round-trip time 

(RTT) measurements are sensitive to delay variations, which may cause wrong timeouts and 

retransmissions. 

In the Internet, all sources are supposed to have same treatment. While network resources are 

limited, providing guarantees on performance measures requires rejecting new connections 

when network resources are not available. To assign resource to connections according to their 

class, we have to differentiate between connection classes. For that, the Diffserv has been 



proposed. Since Internet cames many different types of services, including voice, video, 

streaming data, web pages and email, many of the proposed QoS mechanisms that allowed these 

services to co-exist were both complex and failed to scale to meet the demands of the Internet. 

DifPJerv is a computer networking architecture that specifies a simple and scalable mechanism 

for classifying, managing network traffic and providing quality of service (QoS) guarantees on 

modem IP networks. For example, DifPJerv can be used to provide low-latency, guaranteed 

service to critical network traffic such as voice or video while providing simple best-effort 

traffic guarantees to non-critical services such as web traffic or file transfers. 

As Diffserv is based on marking data packets at the edge router of the network according to the 

performance level (quality of service) that the network wishes to provide, packets are handled 

differently at the network routers. This requires efficient and reliable buffering and scheduling 

mechanism to meet the user or subscriber requirements. 

By marking packets at the edge of the network according to the performance level that the 

network wishes to provide them, the network's nodes treat the packets differently. A general 

way to distinguish packets is by using RED buffers and use different parameters for different 

packets. Thus, applications over the internet could benefit of lesser delays and larger 

throughputs. 

A packet belonging to a flow may get three possible priority levels within the flow. This can be 

used to provide a lower loss probability to SYN packets in a TCP connection, as in contrast with 

other packets, the losses of SYN packets result in very long time-outs. Additional to 

differentiation within each connection, all connections are grouped to some classes (not more 

than four), and different treatment can be given to different classes. 



Furthermore, it is possible to differentiate between flows. Four classes of flows are defined, and 

packets of a given class are queued in a class-dependent queue. To differentiate between packets 

belonging to same class, three virtual queues are implemented in each of the four queues. To 

each of the 12 combinations of the four flow class and the three internal priority levels within a 

flow correspond a code point that a packet is given when entering the network. 

DiffServ-capable router utilizes MRED (mulit-RED) in each physical queue that allows creating 

dependencies between their operations. MRED probability of dropping each packet is based on 

the size of its virtual queue. MRED drop probability function uses the average queue length, 

which is collected over long period, to make its control decisions. However, the use the average 

queue length makes MRED reacts to congestion slowly. This results in large queue length 

variation and untimely congestion detection and notification which would cause performance 

degradation due to high queuing delays and high packet loss. MRED suffers from low 

bandwidth utilization, low throughput under poorly setting parameters, and large queuing delay 

variance ('jitter) because of the fluctuation of the queue level, being unable to handle 

unresponsive connections, and high number of consecutive drop. Thus, the quality of service 

observed by the end system is lowered significantly. Therefore, the goal of the research 

presented in this project was motivated by the need to improve the performance of differentiated 

service network by enhancing DiffServ-capable router scheduling mechanism. Thus, a new drop 

probability function for DiffServ-capable router that utilizes MRED was develops. The main 

objective of the enhanced MRED is to improve the throughput and decrease packet loss. 

Developing a drop probability function for MRED, which uses a measure of packet arrival rate 

with a measure of the queue length for its control decisions will provide good quality of service 

and show better ability in realizing the goals of controlling the packet arrival rate to the 



DiffServ-capable router, router queue lengths, and network congestion, while achieving a higher 

performance. Therefore, the enhanced MRED drop probability function presented in this project 

use the average queue length and the average packet arrival rate for making its dropping 

decision to accomplish the goal of providing good quality of service. The enhanced MRED was 

implemented in simulated differentiated service network by using Network Simulator 2 (ns- 

2).Enhanced MRED was studied to analyze its performance in terms of throughput, packet loss, 

queue length, and link utilization based on the results obtained fiom the simulations. 

We have concluded that a significant improvement was made by enhancing MRED mechnism 

to improve TCPIIP network performance using DiffServ architerchture. The enhanced MRED 

was validated through several simulations experiments. It was applied on specific case which is 

the protection of sensitive packets mentioned earlier in this chapter. Sensitive packets worsen 

performance of TCP considerably since they cause long time-outs. This is particularly the case 

for the loss of a SYN that results in a timeout of 3sec or of 6sec. In high speed networks the 

duration of a file transfer is short (often the whole transfer is much shorter than timeout), so we 

can expect to gain much by applying enhanced MRED to eliminate these long timeouts. 

In simulation experiments, an average file size was chose to be lokbytes, which is the 

avereaged measured file size in the Internet. Thus, around 10% of the packets is a SYN packet 

and additionally, another 10% of the packets are first in a transfer. Consequently, in the absence 

of enhanced MRED mechnism, approximately 20% of lost packets would correspond to these 

types of sensitive packets. Therefore, reducing these losses can result in a significant 

improvement in the TCPIIP performance. Enhanced MRED mechanism developed in this 

project can help improving Diffserv performance to ensure the user satisfaction regarding 

network traffic. 



6.2 Suggestions for Future Work 

For further research, we are going to investigate the performance of enhanced MRED over a 

TCPJIP network that involve ECN-capable sources. To enhance the performance further, the 

drop position should be changed to allow faster notification through ECN packets. Therefore, 

we are going to need to modify the packet drop position used by the enhanced MRED. We are 

going to deploy bigger network size than the one used in this project, in terms of number of 

nodes, router, and bottleneck links with different bandwidth and delays. Also, we are going to 

include different flavors of TCP to study the performance of the enhanced MRED in 

heterogonous network environment. 
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APPENDIX A: Differentiated Sewices (Core.cc) 

class coreclass 

static class coreclass : public TclClass I 

public: 

coreclass 0 : TclClass("Queue/dsRED/core") I) 

TclObject* create (int, const char*const*) { 

return (new coreQueue) ; 

J 

class-core; 

/ 

coreQueue () Constructor 

, -.- 
int command (int argc, const char*const* argv) 

Commands from the ns file are interpreted through this interface. 

.............................................................................. */ 



int coreQueue: :command(int argc, const char*const* argv) { 

return (dsREDQueue: : command (argc, argv) ) ; 

I 



APPENDIX B: Differentiated Sewices (C0re.h) 

#ifndef DS-CORE-H 

#define DS-CORE-H 

#include "dsred. h" 

class coreQueue 

This class specifies the characteristics for the core router. 

class coreQueue : public dsREDQueue { 

public : 

coreQueue 0 ; 

int command (int argc, const char*const* argv) ; 

protected: 



APPENDIX C: Differentiated Services (red.cc) 

#include <stdio. h> 

#include "ip. h" 

#include "dsred. h" 

#include "delay. h" 

#include "random. h" 

#include "flags. h" 

#include "tcp. h" 

#include "dsredq. h" 

dsREDClass declaration. 

Links the new class in the TCL heirarchy. 

static class dsREDClass : public TclClass { 

public: 

dsREDClass () : TclClass ("Queue/dsREDP') { )  

TclObject* create (int, const char*const*) 

return (new dsREDQueue) ; 

I 

1 class-dsred; 





// RED queues ini t i 1 izat ion 

void dsREDQueue: :reset 0 { 

int i ;  

// q to be dequed, initialized to 0 

for (i=O ; i<MAX-QUEUES ; i++) { 

queueAvgRate [il = 0.0; 

queue~rr~ime [ i 1 = 0.0 ; 

slicecount [iI=O; 

pktcount [i]=O; 

wirrTemp [i]=O; 

wirrqDone[iI=O; 

1 

stats. drops = 0; 

stats. edrops = 0; 

stats. pkts = 0; 

for (i=O; i<MAX-CP; i++) { 

stats. drops-CP[il=O; 

stats. edrops-CP [i]=O; 

stats. pkts-CP[i]=O; 

1 



for (i = 0  ; i < MAX-QUEUES ; i++) 

redq-[i].qlim = limit(); 

// Compute the "~acket time constant" if we know the link bandwidth. The ptc is 

the max number of (avg sized) 

// pkts per second which can be placed on the link. 

if (link-) 

for (int i = 0 ;  i < MAX-QUEUES; i++) 

Queue : :reset 0 ; 

1 

/*----------------------------------------------------------------------------- 

void edrop(Packet* pkt) 

This method is used so that flowmonitor can monitor early drops. 

............................................................................. */ 

void dsREDQueue : : edrop (Packet* p) 

{ 



else { 

drop (p) ; 

I 

I 

void applyTSWh4eter(int q-id, int pkt-size) 

Update the average rate for a physical Q (indicated by q-id). 

Pre: policy's variables avgRate, arrivalTime, and winLen hold valid values; 

pkt-size specifies the bytes just dequeued (0 means no packet dequeued) 

Post: Adjusts policy's TSW state variables avgRate and arrivalTime (also called 

tFront) according to the bytes sent. 

............................................................................. */ 

void dsREDQueue: :applyTSWMeter(int q-id, int pkt-size) { 

double now, bytesInTSW, newBytes; 

double winLen = 1.0; 

newBytes = bytesInTSW + pkt-size; 

// caculate the avarage packet arrival rate to the queue 

now = Scheduler: : instance 0. clock0 ; 



queue~vg~ate [q-id] = newBytes / (now - queue~rr~ime [q-id] + winLen) ; 

queueArrTime [q-id1 = now; 

/*----------------------------------------------------------------------------- 

void enque (Packet* pkt) 

The following method outlines the enquing mechanism for a Diffserv router. 

This method is not used by the inheriting classes; it only serves as an 

outline. 

............................................................................. */ 

void dsREDQueue: : enque (Packet* pkt) { 

int codePt, eq-id, prec; 

hdr - ip* iph = hdr-ip: :access (pkt) ; 

//extracting the marking done by the edge router 

codePt = iph->prio () ; 

int ecn = 0; 

//looking up queue and prec numbers for that codept 

lookupPHBTable(codePt, &exid, &prec) ; 

// code added for ECN support 

//hdr-flags* hf = (hdr-f lags*) (pkt->access (off-f lags-) ) ; 

hdr-f lags* hf = hdr-f lags : :access (pkt) ; 



i f  (ecn- && hf->ect 0) ecn = 1 ;  

s t a t s .  pkts-CP[codePtl++; 

s t a t s .  pkts++;  

swi tch (redq-[eq-id]. enque (pkt, prec,  ecn)) { 

case  PKT-ENQUEUED : 

break;  

case  PKT-DROPPED: 

s t a t s .  d r o p s - C ~ [ c o d e ~ t ]  ++; 

s t a t s .  drops++; 

drop (pkt) ; 

break ; 

case  PKT-EDROPPED: 

s t a t s .  edrops-CP[codePt] ++; 

s t a t s .  edrops++; 

edrop (pkt)  ; 

break ; 

case  PKT-MARKED: 

hf-)ce() = 1; // mark Congestion Experienced b i t  

break ; 

d e f a u l t  : 

break : 



// Dequing mechanism for both edge and core router. 

Packet* dsREDQueue: : deque 0 

Packet *p = NULL; 

int queue, prec; 

hdr-ip* iph; 

int fid; 

int dq-id; 

// Select queue to deque under the scheduling scheme specified. 

dq-id = selectQueueToDeque 0 ; 

// Dequeue a packet from the underlying queue: 

if (dq-id < numQueues-) 

p = redq-[dq-id] . deque 0 ; 

if (P) 1 

iph= hdr-i p: :access (p) ; 

fid = iph->flowid()/32; 

pktcount [dpid] +=I ;  

// update the average rate for pri-queue when there is a packet dequeued, update 
the average rate of each queue 0 



if (schedMode==schedModePRI) 

for (int i=0; i<numQueues-; i++) 

if (queueMaxRate [il) 

applyTSWMeter(i, (i == dq-id) ? hdr-cmn: :access(p)->size() : 0) ; 

/ /  Get the precedence level (or virtual queue id) for the packet dequeued. 

lookupPHBTable (getCodePt (PI, &queue, &prec) ; 

// decrement virtual queue length 

// Previously in updateREDStateVar, 

//redq-[dq-id]. q~aram-[precl. qlen--; 

redq - [dq-i dl. updateVREDLen (prec) ; 

/ /  update state variables for that "virtual" queue 

redq-[dq-id] . updateREDStateVar (prec) ; 

1 

// Return the dequed packet: 

return (P) ; 

// Extracts the code point marking from packet header 

int dsREDQueue : : getCodePt (Packet *p) { 

hdr-ip* iph = hdr-ip: :access (p) ; 

return (iph->prio 0 ) ; 



// Reutrn the id of physical queue to be dequeued 

int dsREDQueue : : selectQueueToDeque () { 

// If the queue to be dequed has no elements, 

// look for the next queue in line 

int i = 0: 

// Round-Rob in 

if (schedMode==schedModeRR) 

//printf ("RR\ne) ; 

qToDq = ( (qToDq + 1) % numQueues-) ; 

while ( (i < numQueues-) && (reds-[qToDql. getRealLength 0 == 0) ) 

qToDq = ((qToDq + 1) % numQueues-) ; 

it+; 

1 

1 

else if (schedMode==schedModeWRR) { // Weighted Round Robin 

if (wirrTemp [qToDql <=O) 

qToDq = ((qToDq + 1) % numQueues-) ; 

wirrTemp [qToDq] = queueweight [qToDq] - 1 ; 

1 else 



wirrTemp [qToDql = wirrTemp [qToDq] -1 ; 

while ( ( i  < numQueues-) && (redq-[qToDql. getRealLength() == 0)) { 

wirrTemp [qToDq] = 0 ; 

qToDq = ((qToDq + 1) % numQueues-) ; 

wirrTemp [qToDql = queueweight [qToDql - 1 ; 

i++; 

else if (schedMode==schedModeWIRR) { 

while ( (i<numQueues-) && ( (redq-[qToDq]. getRealLength () ==O) 1 1 
(w i rrqDone IqToDq] ) ) ) { 



w i rrTemp [qToDq] -=1 ; 

i f  (queuesDone >= numQueues-) 

{ 

queuesDone = 0 ;  

f o r  ( i = 0 ;  i<numQueues-; i++) 

{ 

wirrTemp[i]  = queueweight  [il  ; 

wirrqDone [ i]  =0;  

1 

I 

1 e l s e  

i f  (schedMode==schedModePRI) 

I 

// Find  t h e  queue w i t h  h i g h e s t  p r i o r i t y ,  which s a t i s f i e s :  

// 1. noze ro  queue l e n g t h ;  and  e i t h e r  

// 2.1. h a s  no MaxRate s p e c i f i e d ;  o r  

// 2.2. h a s  MaxRate s p e c i f i e d  and  

// i ts  a v e r a g e  r a t e  is n o t  beyond t h a t  limit. 

i = 0 ;  

w h i l e  ( i  < numQueues- && 

(redq-[ i] .  g e t ~ e a l ~ e n g t h  (1 == 0 1 1 

(queueMaxRate [ i 1 && queueAvgRat e [ i 1 >queueMaxRate [i 1 ) ) ) { 



qToDq = i ; 

/ / If no queue satisfies the condition above, 

// find the Queue with highest priority, 

// which has packet to dequeue. 

// NOTE: the high priority queue can still have its packet dequeued 

// even if its average rate has beyond the MAX rate specified! 

/ / Ideally, a NO-PACKET-TO-DEQUEUE should be returned. 

if (i == numQueues-) 

{ 

i = qToDq = 0; 

while ( (i < numQueues-) && (reds-[qToDql. getRealLength 0 == 0) ) { 

qToDq = ( (qToDq + 1) % numQueues-) ; 

i++; 

I 

I 

return (qToDq) ; 

I 



/*----------------------------------------------------------------------------- 

void 1ookupPHBTable (int codePt, int* queue, int* prec) 

Assigns the queue and prec parameters values corresponding to a given code 

point. The code point is assumed to be present in the PHB table. If it is 

not, an error message is outputted and queue and prec are undefined. 

............................................................................. */ 

void dsREDQueue: : lookupPHBTable (int codePt, int* queue, int* prec) 

for (int i = 0; i < phbEntries; i++) { 

if (phb-[i]. codePt- == codePt) { 

*queue = phb- [il . queue-; 

*prec = phb- [ i I. prec- ; 

return ; 

1 

1 

// quiet the compiler 

*queue = 0; 

*prec = 0; 

printf ("ERROR: No match found for code point %d in PHB Table. \n", codePt) ; 

assert (false) ; 

1 



void addPHBEntry (int codePt, int queue, int prec) 

Add a PHB table entry. (Each entry maps a code point to a queue-precedence pair.) 

............................................................................. * / 
void dsREDQueue: :addPHBEntry(int codePt, int queue, int prec) { 

if (phbEntries == MAX-CP) { 

printf ("ERROR: PHB Table size limit exceeded. \n") ; 

else 

{ 

phb-[phbEntries]. codePt- = codePt ; 

~hb-[~hbEntries]. queue- = queue ; 

phb-[phb~ntries]. prec- = prec; 

stats. valid-CP [codePtl = 1 ; 

phbEntries++; 

I 

I 

void addPHBEntry(int codePt, int queue, int prec) 

Add a PHB table entry. (Each entry maps a code point to a queue-precedence 

pair. ) 



double dsREDQueue: : g e t S t a t ( i n t  argc ,  cons t  char*const* argv) { 

i f  (argc  == 3) { 

i f  (strcmp (argv121, "drops") == 0) 

r e t u r n  ( s t a t s .  drops*l. 0) ; 

i f  (strcmp (argv[2], "edrops") == 0) 

r e t u r n  ( s t a t s .  edrops*l. 0) ; 

r e t u r n  ( s t a t s .  pkts*l. 0) ; 

I 

i f  (argc  == 4) i 

i f  (strcmp (argv 121, "drops") == 0) 

r e t u r n  ( s t a t s .  drops-CP[atoi (argv 131) 1*l. 0) ; 

i f  (strcmp (argv[2], "edrops") == 0) 

r e t u r n  ( s t a t s .  ed rops -C~[a to i  (argv [31) ]*l. 0) ; 

i f  (strcmp (argv121, "~k t s ' ' )  == 0) 

r e t u r n  ( s t a t s .  pkts-CP[atoi (argvI31) l*l. 0) ; 

1 

r e t u r n  -1 .0;  

I 

void setNumPrec ( i n t  ~ r e ~ )  

S e t s  t h e  c u r r e n t  number o f  drop precendences. The number o f  precedences i s  t h e  

number of v i r t u a l  queues pe r  phys ica l  queue. 



void dsREDQueue: : setNumPrec (int prec) { 

int i ;  

if (prec > MAX-PREC) 

{ 

p-intf ("ERROR: Cannot declare more than %d prcedence levels (as defined by 

MAX-PREC) \n", MAX-PREC) ; 

I else 

{ 

numPrec = prec; 

for (i = 0 ; i < MAX-QUEUES ; i++) 

redq- [il. numPrec = numPrec ; 

void setMREDMode (const char* mode) 

sets up the average queue accounting mode. 

............................................................................ */ 

void dsREDQueue : : setMREDMode (const char* mode, const char* queue) { 

int i ;  

mredModeType tempMode; 



tempMode = rio-c; 

else if (strcmp (mode, "RIO-D") == 0) 

tempMode = rio-d; 

else if (strcmp(mode, "WRED") == 0) 

tempMode = wred; 

else if (strcmp (mode, "DROP") == 0) 

tempMode = dropTai 1 ; 

else { 

printf ("Error: MRED mode %s does not exist\na, mode) ; 

return ; 

I 

if (!queue) 

for (i = 0 ; i < MAX-QUEUES ; i++) 

redq- [i] . mredMode = tempMode ; 

else 

redq-[atoi (queue) 1. mredMode = tempMode 

void printPHBTable () 

Prints the PHB Table, with one entry per line. 

.............................................................................. */ 

void dsREDQueue: :printPHBTable 

printf ("PHB Table: \nu) ; 



for (int i = 0; i < phbEntries; i++) 

printf("Code Point %d is associated with Queue %d, Precedence %d\n", 

phb-[il. codePt-, phb-[il . queue-, phb-[il . prec-) ; 

void printStats 

An output method that may be altered to assist debugging. 

void dsREDQueue: :printStats { 

printf ("\nPackets statistics\nU) ; 

printf (" CP TotPkts TxPkts ldrops edrops\n") ; 

printf ("All %81d %81d %81d %81d\ne, stats. pkts, stats. pkts-stats. drops- 

stats. edrops, stats. drops, stats. edrops) ; 

for (int i = 0; i < MAX-CP; i++) 

if (stats. pkts-CP[i] != 0) 

printf ("%3d %81d %81 d 

%81d\nP', i, stats. pkts-C~[i], stats. pkts-CP[i]-stats. drops-CP[i]- 

stats. edrops-CP[i], stats. drops-CP[i], stats. edrops-CP[i]) ; 

void dsREDQueue : : printWRRcount () { 

int i ;  

for (i = 0; i < numQueues-; i++) 



printf ("%d: %d %d %d. \n", i, slicecount[i], pktcount [il, queue~ei~htllil) ; 

/*------------------------------------------------------------------------------ 

void setSchedularMode (int schedtype) 

sets up the schedular mode. 

............................................................................ */ 

void dsREDQueue: : setSchedularMode (const char* schedt~pe) { 

if (strcmp(schedtype, "RR") == 0) 

schedMode = schedModeRR; 

else if (strcmp(schedtype, "WRR") == 0) 

schedMode = schedModeWRR; 

else if (strcmp(schedtype, "WIRR") == 0) 

schedMode = schedModeWIRR; 

else if (strcmp(schedtype, "PRI") == 0) 

schedMode = schedModePRI; 

else 

printf ("Error: Scheduler type %s does not exist\n", schedtype) ; 

void addQueueWeights (int queueNum, int weight) 

An input method to set the individual Queue Weights. 



void dsREDQueue: :addQueueWeights(int queueNum, int weight) { 

if (queueNum < MAX-QUEUES) 1 

queueweight [queueNuml =weight ; 

) else 1 

~rintf ("The queue number is out of range. \n") ; 

I 

1 

//Set the individual Queue Max Rates for Priority Queueing. 

void dsREDQueue : : addQueueRate (int queueNum, int rate) { 

if (queueNum < MAX-QUEUES) { 

// Convert to BYTE/SECOND 

queueMaxRate [queueNum]= (double) rate/8.0 ; 

I else { 

~rintf ("The queue number is out of range. \nu) ; 

I 

1 

int command (int argc, const char*const* argv) 

Commands from the ns file are interpreted through this interface. 

int dsREDQueue: :command (int argc, const char*const* argv) I 

if (strcmp (argv[ll, "configQ") == 0) { 

// modification to set the parameter q-w by Thilo 

redq-[atoi (argv[21)]. conf ig(atoi (argv [3]) ,  argc, argv) ; 



return (TCL-OK) ; 

1 

if (strcmp(argv[ll, "addPHBEntry") == 0) { 

addPHBEntry (atoi (argv [21), atoi (argv [31), atoi (argv [4])) ; 

return (TCL-OK) ; 

1 

if (strcmp(argv[ll, "meanPktSize") == 0) { 

for (int i = 0; i < MAX-QUEUES; i++) 

redq-[il . setMPS (atoi (argv [2] ))  ; 

re turn (TCL-OK) ; 

1 

if (strcmp(argv [ll, "setNumPrec") == 0) { 

setNumPrec (atoi (argv [2])) ; 

return (TCL-OK) ; 

1 

if (strcmp (argv [-I.], "getAverage") == 0) { 

Tclb tcl = Tcl: : instance () ; 

tcl. resultf ("%f", redq-Catoi (argv C21) I. getWeightedLength0) ; 

return (TCL-OK) ; 

1 



Tcl& tcl = Tcl : : instance 0 ; 

tcl. resultf ("%f", getstat (argc, argv)) ; 

return (TCL-OK) ; 

if (strcmp(argv[l], "getcurrent") == 0) { 

Tcl& tcl = Tcl: : instance() ; 

tcl. resultf ("%fm, redq-[atoi (argv [21) I. getRealLength0 *l. 0) ; 

return (TCL-OK) ; 

i 

if (strcmp(argv[l], "printStatsU) == 0) { 

printstats () ; 

return (TCL-OK) ; 

if (strcmp (argv [ l] ,  "printWRRcount") == 0) { 

printWRRcount 0 ; 

return (TCL-OK) ; 

1 

if (strcmp (argv [l], "printPHBTable") == 0) { 

printPHBTable 0 ; 

return (TCL-OK) ; 



if (strcrnp(argv[l], "link") == 0) { 

T c ~ &  tcl = Tcl: : instance () ; 

LinkDelay* del = (LinkDelay*) TclOb ject : : lookup (argv [21) ; 

if (del == 0) { 

tcl. resultf ("RED: no LinkDelay object %s", 

argv [21) ; 

return (TCL-ERROR) : 

link- = del; 

return (TCL-OK) ; 

if (strcrnp (argvC11, "early-drop-target") == 0) 

Tcl& tcl = Tcl: : instance() ; 

NsOb ject* p = (NsOb ject*) Tc10b ject : : lookup (argv [2]) ; 

if (p == 0) I 

tcl. resultf ("no object %s", argv [2]) ; 

return (TCL-ERROR) ; 



return (TCL-OK) ; 

1 

if (strcmp(argv 111, "setSchedularMode") == 0) { 

setSchedularMode (argv [2]) ; 

return (TCL-OK) ; 

I 

if (strcmp (argv[ll, "setMREDModeu) == 0) { 

if (argc == 3) 

setMREDMode (argv [2], 0) ; 

else 

setMREDMode (argv [2], argv [31) ; 

return (TCL-OK) ; 

if (strcmp(argv[ll, "addQueueWeightse) == 0) { 

addQueueWeights (atoi (argv [21), atoi (argv [31)) ; 

return (TCL-OK) ; 

I 

if (strcmp (argv [I.], "addQueueRateu) == 0) { 

addQueueRate (atoi (argv [21), atoi (argv [31) ) ; 

return (TCL-OK) ; 



// Returns the weighted RED queue length for one virtual queue in packets 

if (strcmp (argv [ll, "getAverageVf') == 0) { 

Tcl& tcl = Tcl: :instance0 ; 

tcl. resultf ("%f", redq-[atoi (argv [2l) I. getWeightedLength-v (atoi (argv [31))) 

return (TCL-OK) ; 

I 

// Returns the length of one virtual queue, in packets 

if (strcmp (argv [l], "getCurrentVU) == 0) { 

Tcl& tcl = Tcl: : instance0 ; 

tcl. resultf ("%fU, redq-[atoi (argv [21) 1. getRealLength-v (atoi (argvr31)) *l* 0) 

return (TCL-OK) ; 

1 

return (Queue : :command (argc, argv) ) ; 

I 



APPENDIX D: Differentiated Services (red.h) 

#ifndef dsred-h 

#define dsred-h 

#include "red. h" // need RED class specs (edp definition, for example) 

#include "queue. h" // need Queue class specs 

#include "dsredq. h" 

/* The dsRED class supports the creation of up to MAX-QUEUES physical queues at 

each network device, with up to MAX-PREC virtual queues in each queue. */ 

#define MAX-QUEUES 8// maximum number of physical RED queues 

#define MAX-PREC 3 // maximum number of virtual RED queues in one physical queue 

#define MAX-CP 40 // maximum number of code points in a simulation 

#define MEAN-PKT-SIZE 1000 // default mean packet size, in bytes, needed for 
RED calculations 

enum schedModeType {schedModeRR, schedModeWRR, schedModeWIRR, schedModePRI} ; 

#define PKT-MARKED 3 

#define PKT-ENQUEUED 1 

#define PKT-DROPPED 0 

struct phbParam 

This struct is used to maintain entries for the PHB parameter table, used to map 

a code point to a physical queue-virtual queue pair. 



struct phbParam 1 

int codePt-; 

int queue-; // physical queue 

int prec-; // virtual queue (drop precedence) 

struct statType { 

long drops; // per queue stats 

long edrops; 

long pkts; 

long valid-CP[MAX-CP] ; // per CP stats 

long drops-CP [MAX-CPI ; 

long edrops-CP [MAX-CPI ; 

long pkt s-CP [MAX-CPI ; 

1 :  

/*----------------------------------------------------------------------------- 

class dsREDQueue 

This class specifies the characteristics for a Diffserv RED router. 

class dsREDQueue : public Queue { 

pub1 ic : 

dsREDQueue () ; 

int command(int argc, const char*const* argv); // interface to ns scripts 

protected: 

redQueue ~~~Q[MAX-QUEUES]; // the physical queues at the router 



NsObject* de-drop-; // drop-early target 

statType stats; // used for statistics gatherings 

int qToDq; // current queue to be dequeued in a round robin manner 

int numQueues-; // the number of physical queues at the router 

int numPrec; // the number of virtual queues in each physical 
queue 

phbParam phb-[MAX-CP] ; // PHB table 

int phbEntries; // the current number of entries in the PHB table 

int ecn-; // used for ECN (Explicit Congestion Notification) 

LinkDelay* link-; // outgoing link 

int schedMode; // the Queue Scheduling mode 

int queueweight [MAX-QUEUES] ; // A queue weight per queue 

double queueMaxRate [MAX-QUEUES] ; // Maximum Rate for Priority Queueing 

double queueAvgRate [MAX-QUEUES] ; // Average Rate for Priority Queueing 

double queueArrTime [MAX-QUEUES] ; // Arrival Time for Priority Queueing 

int slicecount [MAX-QUEUES] ; 

int pktcount [MAX-QUEUES] ; 

int wirrTemp [MAX-QUEUES] ; 

unsigned char wirrqDone [MAX-QUEUES] ; 

int queuesDone; 

void reset 0 ; 

void edrop (Packet* p) ; // used so f lowmonitor can monitor early drops 

void enque (Packet *pkt) ; // enques a packet 

Packet *deque (void) ; // deques a packet 



int getCodePt(Packet *p) ; // given a packet, extract the code point marking from 
its header field 

int selectQueueToDeque ; // round robin scheduling dequing algorithm 

void lookupPHBTable(int codePt, int* queue, int* prec) ; // looks up queue and prec 
numbers corresponding to a code point 

void addPHBEntry(int codePt, int queue, int prec); // edits phb entry in the table 

void setNumPrec (int curPrec) ; 

void setM~ED~ode(const char* mode, const char* queue) ; 

void printstatso ; // print various stats 

double getstat (int argc, const char*const* argv) ; 

void printPHBTable0 ; // print the PHB table 

void setSchedularMode(const char* schedtype) ; / /  Sets the schedular mode 

// Add a weigth to a WRR or WlRR queue 

void addQueueWeights (int queueNum, int weight) ; 

// Add a maxRate to a PRI queue 

void addQueueRate(int queueNum, int rate) ; 

void printWRRcount ( )  ; // print various stats 

// apply meter to calculate average rate of a PRI queue 

void applyTSWMeter (int q-id, int pkt-size) 

1 ; 

#endif 


