COMPRESSING IMAGES USING MULTI-LEVEL WAVELET TRANSFORM ALGORITHM

(MWTA)

ALI AHMAD ALABD ABU ODEH

UNIVERSITI UTARA MALAYSIA

2012
COMPRESSING IMAGES USING MULTI-LEVEL WAVELET TRANSFORM ALGORITHM

(MWTA)

A project submitted to Dean of Kwang Haj Salleh Graduate School Office in partial Fulfillment of the requirements for the degree Master of Science (Information Technology) Universiti Utara Malaysia

By

ALI AHMAD ALABD ABU ODEH

807617

Copyright @ ALI AHMAD ALABD ABU ODEH, 2012. All rights reserved.
Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certifies that)

ALI AHMAD ALABD ABU ODEH
(807617)

calon untuk ijazah
(candidate for the degree of) **MSc. (Information Technology)**

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project of the following title)

COMPRESSING IMAGES USING MULTI-LEVEL WAVELET TRANSFORM ALGORITHM

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
and meliputi bidang ilmu dengan memuaskan.
(that this project is in acceptable form and content, and that a satisfactory
knowledge of the field is covered by the project).

Nama Penyelia
(Name of Supervisor) : **ASSOC. PROF. ABDUL GHANI GOLAMDIN**

Tandatangan
(Signature) : [Signature] Tarikh (Date) : 26/1/2012

Nama Penilai
(Name of Evaluator) : **DR. SITI SAKIRA KAMARUDDIN**

Tandatangan
(Signature) : [Signature] Tarikh (Date) : 26/1/2012
PERMISSION TO USE

In presenting this project in fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence by the Dean of the Graduate School. It is understood that any copying or publication or use of this project or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or to make other of materials in this project, in whole or in part, should be addressed to:

Dean of Kwang Haj Salleh Graduate School

College of Arts and Sciences

Universiti Utara Malaysia

06010 UUM, Sintok

Kedah DarulAman

Malaysia
ACKNOWLEDGEMENTS

In The Name of ALLAH, the Most Gracious and the Most Merciful

First of all, with this opportunity, thank to Almighty ALLAH for his bless that makes me healthy throughout completing this research paper. I also take this opportunity to thank all who have contributed, helped, and given me support in completing this study. Without their cooperation, encouragement, and suggestions, this study would not have been possible.

I would like to dedicate my sincere gratitude and appreciation to
my father, my mother, my brothers, and all of my sisters
for being with me throughout this work step by step

I would like to thank my supervisor Assoc. Prof. Abdul Ghani, who gives me full support, courage, advices, and knowledge. Million thanks for his knowledgeable supervision. With guidance, view, and suggestions from his throughout this study, I am able to complete this study. All his efforts in my study are much appreciated.

I would like to thank my brothers Mr. Moceheb Lazam, and Mr. Fadi Al-Khasawneh who gives me full support, advice, and knowledge.

I am also grateful for the help and cooperation from Dr. Siti Sakira, and Mr. Mustafa Alobaedy.
This study aims to use Wavelet Transform Algorithm for image compression. Multi-levels were used in this study with the aim to produce better results for compressing images. The Multi-level Wavelet Transform Algorithm (MWTA) consists of three phases namely, first level compression, second level compressing in the first level, and algorithm validation by compare. Therefore, Vaishnavi method is used to design and develop the prototype model. In this study, the experiment was conducted using different images (RGB). The algorithm and comparison was simulated using Matlab application. The results revealed that Multi-level Wavelet Transform Algorithm (MWTA) can be used in more than one level in this algorithm but the efficiency of this algorithm for compressing was found to be in the first level in terms of size.
TABLE OF CONTENTS

PERMISSION TO USE .. i
ACKNOWLEDGEMENTS ... ii
ABSTRACT .. iii
TABLE OF CONTENTS ... iv
LIST OF TABLES ... vi
LIST OF FIGURES ... vii
LIST OF APPENDICES .. ix

CHAPTER ONE

1.0 BACKGROUND OF THE STUDY .. 1
1.1 PROBLEM STATEMENT ... 2
1.2 RESEARCH OBJECTIVES .. 3
1.3 SIGNIFICANCE OF THE RESEARCH ... 3
1.4 SCOPE OF THE RESEARCH ... 3
1.5 ORGANIZATION OF THE RESEARCH .. 4
1.6 SUMMARY .. 5

CHAPTER TWO

2.0 INTRODUCTION .. 6
2.1 COLOR IMAGES ... 6
2.2 IMAGE COMPRESSION ... 7
2.3 WAVELET TRANSFORM ALGORITHM ... 7
2.4 TYPES OF WAVELET TRANSFORM ALGORITHM .. 9
 2.4.1 CONTINUOUS WAVELET TRANSFORM ... 9
LIST OF TABLES

Table 4.1: details Image compression in level 1 ..23
Table 4.2: details Image compression in level 2 ..25
Table 4.3: details Image compression in level 3 ..26
Table 4.4: details Image compression in level 4 ..27
Table 4.5: details Image compression in level 1 ..30
Table 4.6: details Image compression in level 2 ..31
Table 4.7: details Image compression in level 3 ..32
Table 4.8: details Image compression in level 1 ..36
Table 4.9: details Image compression in level 2 ..37
Table 4.10: details Image compression in level 338
Table 4.11: details Image compression in level 438
Table 4.12: Final Table Results ...41
LIST OF FIGURES

Figure 1.1: RGB Model .. 4
Figure 2.1: Scanning a Zerotree ... 14
Figure 3.1: The General Methodology of Design Research 15
Figure 3.2: Multi-level Compress ... 17
Figure 3.3: Flowchart Image Processing ... 18
Figure 3.4: Zerotree Structure ... 19
Figure 4.1: Fruits Image ... 21
Figure 4.2: Image Compression in Level 1 .. 22
Figure 4.3: Image Compression in Level 2 .. 24
Figure 4.4: Image Compression in Level 3 .. 26
Figure 4.5: Image Compression in Level 4 .. 27
Figure 4.6: Original Image VS. Compressed Image in Level 4 28
Figure 4.7: Boat Man Image .. 28
Figure 4.8: Image Compression in Level 1 .. 29
Figure 4.9: Image Compression in Level 2 .. 30
Figure 4.10: Image Compression in Level 2 ... 32
Figure 4.11: Original Image VS. Compressed Image in level 3 33
Figure 4.12: Petra Image .. 34
Figure 4.13: Image Compression in Level 1 ... 35
Figure 4.14: Image Compression in Level 2 ... 37
Figure 4.15: Image Compression in Level 3 ...38

Figure 4.16: Image Compression in Level 4 ...39

Figure 4.17: Original Image VS. Compressed Image in Level 440
LIST OF APPENDICES

APPENDIX A ..48

APPENDIX B ..53
CHAPTER ONE

INTRODUCTION

1.0 Background of the Study

Today, the importance of human perceptual properties to visualize information clearly and efficiently must be considered. Image quality assessments can be used to monitor image quality and optimize the compression performance and parameter settings (Wang, Sheikh, and Bovik, 2002). Digital images are available in uncompressed form, and usually very large in size. The digital image contains a fixed number of rows and columns of pixels require more storage space. Image compression is a method of using algorithms to decrease file size. The intention of image compression is to reduce redundancy of the image data in order to be able to store or transmit data efficiently. There are two types of image compression which are lossy and lossless (Meadows, 1997). A lossy compression achieves its effect at the cost of a loss in image quality, by removing some image information while lossless compression techniques reduce size with preserving all of the original image information and therefore without degrading the quality of the image (Brown, 2003).

Wavelets are functions which allow data analysis of signals or images, according to scales or resolutions. The processing of signals by wavelet algorithms Transform is in fact works much the same way the human eye does; or the way a digital camera processes visual scales of resolutions, and intermediates details. But the same principle also captures cell phone signals, and even digitized color images are used in medicine. Wavelets are of real use in these areas, for
The contents of the thesis is for internal user only
REFERENCES

