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ABSTRACT

The dynamics and the unpredictable behaviour of a wireless mobile ad hoc
network results in the hindrance of providing adequate reliability to network
connections. Frequent route changes in the network relatively introduce incessant
link failures which eventually degrade TCP performance considerably. In this
research, we are going to study the potential improvement of TCP performance
when Explicit Link Failure Notification is implemented as opposed to the standard
TCP mechanism. ELFN modifies the ‘slow start’ mechanism that is used in

standard TCP so that the throughput achieved from the network can be maximized.
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CHAPTER ONE

INTRODUCTION

Mobile ad hoc network has gained a lot of attention in recent years due to its
dynamic characteristics and its self-governing behaviour which does not require a fixed
infrastructure (Abduljalil et al., 2006). Numerous ongoing research are focusing on routing
protocols for example (Mittal, 2009), (Runcai et al, 2009), (Maan et al., 2011) and (Qian et
al., 2009). In this project, we are focusing towards the performance of TCP in mobile ad

hoc networks.

It is unavoidable to use TCP in mobile ad hoc network taking into account the applications
and services it can provide to the network users. Hence, this project is meant to bring
forward a specific issue related to TCP congestion control mechanism which is modified so

that it would give a better performance in mobile ad hoc network.

1.1. Introduction

The popularity of wireless network has been growing steadily. Wireless ad hoc networks
have been popular because they are very easy to implement without using base stations.
The wireless ad hoc networks are complex distributed systems that consist of wireless
mobile or static nodes that can freely and dynamically self-organize (Jain, et at., 2002).
The ad hoc networks allow nodes to seamlessly communicate in an area with no pre-
existing infrastructure. Future advanced technology of ad hoc network will allow the
forming of small ad hoc networks on campuses, during conferences and even in homes.

Furthermore, there is an increasing need for easily portable ad hoc networks in rescue



mission, especially for accessing rough terrains. However, the quick adaptation and ease of
configuration of ad hoc networks come at a price. In wireless ad hoc networks, route
changes and network partitions occur frequently due to the unconstrained network
topology changes. Moreover, this kind of network inherits the traditional problems of
wireless communication, such as unprotected outside signals or interferences, unreliable
wireless medium, asymmetric propagation properties of wireless channel, hidden and
exposed terminal phenomena, transmission rate limitation and blindly invoking congestion
control of transport layer. Although most of these limitations and complexities are due to
the lack of fixed backbone or infrastructure, building ad hoc network temporarily is not
only simple and easy to implement but also cost-effective and less time-consuming if
compared to an infrastructure network that needs to establish a based station and fixed
backbone. Among the above mentioned problems and limitations, the impact of transport
layer limitations is analyzed across ad hoc routing protocols throughout the network

topologies.

Transmission Control Protocol (TCP) (Postel, 1981) is the de facto standard designed to
provide reliable end-to-end delivery of data packet in the wired networks. Normally, TCP
is an independent protocol that is not related to the underlying network technology.
However, some assumptions of TCP, such as consideration of only static node, packet
losses due to congestion or buffer overflows are inspired from the features of wired
networks. In the wireless network, these assumptions may not be correct all the time due to
the rapid network topology changes, node movements and limited battery power. In order
to apply TCP to an ad hoc environment, TCP has to overcome many problems, such as
packet losses due to congestion, high bit errors, node mobility, longer delay and so on. The
following TCP versions, Tahoe (Stevens, 1997), Reno (Allman, 1999), NewReno (Floyd &

Fall, 1999), Vegas (Brakno et al., 1994) and Westwood (Gerla et al., 2002), are enhanced



versions of TCP and perform differently depending on how the routing protocols can

quickly adapt route changes due to link breaks in an ad hoc network environment.

1.2. IEEE 802.11 Challenges

The unique characteristics of ad-hoc designs impose several challenges in comparison
with single hop networks such as cellular networks or WLANS, when they run over 802.11
MAC protocol. The most serious challenge is the RTS/CTS handshaking implemented in
802.11, which is not efficient enough to prevent collisions due to large distribution of
mobile nodes and multi-hop function in ad-hoc networks. It has been proved through
analytical model and simulation experiments (Fu, et al., 2005) that RTS/CTS cannot
function well in topologies more than three hops (3 hop scenario) between sender and
receiver. For larger number of hops, the RTS/CTS exchange cannot prevent the existence
of famous hidden node problem. Mobile nature of ad-hoc networks, where each node may
experience different degree of channel contention and collision, is another problem, (Zhai
et al., 2006). The interaction between the MAC and higher layers has a significant effect

on the network performance.

1.3. Medium Contention and Spatial Reuse

The Hidden and Exposed terminals are defined based on transmission range and sensing
range of the nodes. Transmission range represents the range within which a packet is
successfully received if there is no interference from other radios. Sensing range is the
range within which a transmitter triggers carrier sense detection to sense an ongoing signal.
Spatial reuse facilitates maximum possible non-conflicting simultaneous transmissions in

MAC layer. A hidden terminal is the one that can neither sense the transmission of a



transmitter nor correctly receive the reservation packet (i.e. CTS control frame) from its
corresponding receiver (Zhai, et al., 2006). In other words, a hidden terminal is a node that
is within the transmission range of a receiver but out of the sensing range of an intended
transmitter. Therefore, it can interfere with an ongoing transmission at the receiver by
transmitting at the same time. Consider the scenario illustrated in Figure 1.1 to see the
cause of hidden nodes. Here node D is a hidden terminal while B is transmitting to C
because it is out of B’s sensing range. Therefore, D’s transmission collides with RTS
reception in C. After seven attempts, both B and D assume that C is unreachable and the
packets will be dropped (Armaghani & Jamuar, 2008), (Zhai, et al., 2006).This leads to

bandwidth wastage as both data transmissions are destroyed.

Figurel.l Hidden Terminal (Armaghani & Jamuar, 2008)

1.4. Problem Statements

The history of TCP begins when reliability in the network has become an important aspect
of a network performance and highly demanded. TCP is used mainly for wired network in
which frequent congestion is expected and congestion avoidance mechanism belongs to
TCP such as slow start and exponential back off is exercised. Relatively, when TCP is
being used in wireless environment, it still conceives that congestion is the cause of packet

loss, not bit errors (Nehme, Phillips, & Robertson, 2003), (Stangel & Bharghavan, 1998).



This confusion, will then temper the network performance as TCP will apply the
congestion control mechanism whenever it is experiencing packet loss in the network. The
congestion control mechanism in TCP will slows down the transfer rate unreasonably
causing the network to fall into a condition in which it is under utilizing the available

bandwidth (Chiasserini & Meo, 2001).

1.5. Research Questions

i.  How can we improve the performance of TCP given the dynamics of mobile ad hoc
networks?
ii.  Will TCP with Explicit Link Failure Notification (ELFN) increase the network

throughput?

1.6. Research Objectives

The main objective of this research is to enhance the performance of TCP in mobile ad hoc
network by incorporating Explicit Link Failure Notification into TCP’s mechanism. In
relation to this, other related objectives that worth pointing out are as follows:

1.  To implement the Explicit Link Failure Notification (ELFN) mechanism into TCP

using NS-2.

ii. To study the impact of using Explicit Link Failure Notification (ELFN) with TCP

in mobile ad hoc network.

iii. To compare the performance of TCP in mobile ad hoc network with and without

the implementation of Explicit Link Failure Notification (ELFN).



1.7. Research Scope

The scope of this study includes the implementation of Explicit Link Failure Notification
into the standard TCP mechanism currently being used in wireless networks. The
implementation of this mechanism into TCP will then be evaluated using three significant

performance metrics which are listed below:
» Packet Loss
» End to end delay
» Normalized Routing Load

The scope of this research also covers the evaluation of the modified TCP performance

under several wireless ad hoc network conditions presented below:
» Nodes density

» Speed of travelling nodes

1.8. Research Significance

The main significance of this research is to improve performance of TCP by adding a
mechanism called Explicit Link Failure (ELFN). This mechanism is added into TCP which

is then implemented in a wireless ad hoc network.

The standard TCP was built and was optimized on a wired network, hence there are some
modification needs to be done, in this case, the congestion control mechanism, in order to

enhance the TCP performance in wireless ad hoc network.



1.9. Organization of the Project Report

This project is organized in six chapters as follows:
Chapter 1 presents a brief background and introduction to TCP and its enhanced
version that is using Explicit Link Failure Notification (ELFN). The chapter also
presents the research problem, scope, objectives, and contributions of this project as
well.
Chapter 2 is a literature review that includes a background material on TCP and its
related characteristics. This chapter will also present the general framework for this
project. The TCP enhancement using Explicit Link Failure Notification (ELFN) will
also be presented in this chapter.
Chapter 3 presents the methodology followed in studying the performance of the TCP
using Explicit Link Failure Notification (ELFN) when it is being simulated in a mobile
ad hoc network. It covers network topology and settings used in the experiments.
Chapter 4 presents the development simulation settings for the performance evaluation
of the TCP with Explicit Link Failure Notification (ELFN) in network simulator 2 (ns-
2) using Tool Command Language (TCL).
Chapter 5 presents a detailed performance evaluation of TCP with Explicit Link
Failure Notification (ELFN), and discussed the results based on the numerical results
obtained from simulations.
Chapter 6 presents the conclusions of the research work presented in this project and

provide some suggestions for further research.



CHAPTER TWO

LITERATURE REVIEW

Chapter 1 described generally the wireless issues that cause degradation in the
performance of the TCP in mobile ad hoc networks. This chapter provides the
background on transmission transport protocol (TCP) that forms the general framework of
this research. This chapter presents phases of TCP congestion control, namely Slow Start
and Congestion Avoidance. It discusses how the link failure phenomenon affects the
performance of TCP in MANET. Also, this chapter describes how ELFN can increase the

TCP performance.

2.1. Introduction

As mentioned in Chapter one, It is a requirement for every network to have some form of
reliable communication where the delivery of the packets to the destination is guaranteed.
For wired networks and static wireless networks Transmission Control Protocol (TCP) is
the connection oriented transport layer protocol that guarantees this functionality. It assures
in-order delivery of the packet and uses flow control and congestion control mechanisms
(Holland & Vaidya, 1999), (Caceres & Iftode, 1995). For ad hoc networks however the
standard TCP does not give satisfactory performance. In the ad hoc network the nodes are
traveling and there are no base stations. In other words the topology of the network is
constantly changing. The communication between the sender and receiver nodes occur
through other nodes in the network and each of the intermediate nodes is acting as a router

for the communication. The connection can have multiple hops. This causes performance



losses due to the high error rate, network congestion and possible connection failure (Xu &

Saadawi, 2001).

2.1. Transmission Control Protocol (TCP)

The most well-known common transport protocol is the Transmission Control Protocol
(TCP) (Postel, 1981). It lent its name to the title of the entire Internet Protocol Suite,
TCP/IP. TCP is the more complex protocol, due to its stateful design incorporating

reliable transmission and data stream services.

According to Jon Postel, Transport Control Protocol (TCP) has known to be a reliable
transport protocol with congestion control for delivering data traffic. TCP can deliver best-
effort service for error-intolerant and delay-tolerant data such as web, email, file transport,
etc. All those features of TCP make it suitable for the delivery of important, mission
critical, and error-free data which require a reliable data connection. TCP is not well suited
for streaming media due to its reliable in-order delivery and congestion control that can
cause random long delays (Aditya & Anurag, 2005). Its reliable in-order delivery
mechanism has to retransmit the packet if there is a packet loss happen during transmission
in the network (Caceres & Iftode, 1995), (Eshak & Baba, 2003). Packet loss in TCP is
detected either by time out or three duplicated acknowledgments received by sender from
the network. For this reason, if the transmission of streaming media is affected so much by
delays, it can affect the quality of service provided to end users. Hence, TCP is only
suitable for applications that rely on the reliability and can tolerate the delay like
traditional web applications, file transfer and email (Yousefi'zadeh, Habibi, & Furmanski,
2006).

Most real-time traffic ranges from interactive applications such as Voice over Internet

Protocol (VolP) and video conferencing to non-interactive applications like audio and



video streaming commonly use unreliable transport protocol (UDP) as their transport
protocol. UDP provides the best transport platform to deliver error-tolerant and delay-
intolerant traffic. This is due to some features of UDP such as simpler connectionless
implementation, shorter packet header, no congestion control, no acknowledgment, no

retransmission, and etc.

Even UDP can serve real-time multimedia traffic very well; there is a friendliness issue
with other transport protocol like TCP which delivers reliable best-effort service for error-
intolerant and delay-tolerant data like World Wide Web, email, file transport, etc. In
competing with TCP traffic when there is bandwidth restriction, UDP traffic consumes
more and dominates all the bandwidth, and as a result, TCP traffic will be halted. The
same thing can happen when competing with other lower bandwidth applications, such as
wireless link, in which real-time traffic utilizing UDP would consume 100% of bandwidth

link utilization.

As mentioned in (Chydzinski & Brachman, 2010), nowadays, TCP Newreno is the most
commonly implemented algorithm while TCP SACK support is very common and is an
extension to TCP Reno and TCP New Reno. On the other hand, TCP CUBIC is a less
aggressive and more systematic derivative of TCP BIC, in which the window is a cubic
function of time since the last congestion event, with the inflection point set to the
window prior to the event. According to Y. Iwanaga et al. (Y. lwanaga, 2010), most
Linux operating systems use TCP CUBIC (Sangtae Ha, 2008) by default, while they

natively support many other TCP variants.

TCP header is shown in Figure 2.1. It consists of many fields such as source port,

destination port, sequence number, acknowledgment number, and window etc. the value
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in the “window” field determines the congestion window in a 16-bit field used to control

the congestion in the Internet (Mahbub & Raj, 2004).

Source port (16) ‘ Destination port (16)
Sequences (32)

Acknowledgment number (32)

Header Reserved Flags Receiver window size
length (6) (6)
Checksum (16) Urgent pointer data (16)
Options

Application data (variable length)

Figure 2.1 TCP Header (Mahbub & Raj, 2004)

TCP has received a lot of attention and fairly large number of researchers has tried to
optimize and improve TCP for different environments characterized by heterogeneous sub
networks with widely different bandwidths and latencies (for instance TCP over wireless
links, satellite links, slow serial links, etc.).

Experimental and analytical studies (Altman, et al. 2000) confirm that the current TCP
protocols have performance problems in networks with long propagation delay or long
delay link and relatively high link error rates, such as satellite networks (Durresi, et al.
2001), (Seungwan & Chulhyoe, 2004). From the view of TCP, the throughput is reciprocal
to the RTT of a connection, and it is approximately proportional to the congestion window
(cwnd) which represents the amount of unacknowledged data sender can have in transit
(Zhang, 1986). As a solution for the use of TCP over long delay link, some approaches
have been introduced as solutions, such as TCP-Peach and TCP-Hybla (Saad & Nitin,

2005).
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2.2. Phases of TCP Congestion Control

In TCP congestion control, there are two phases, i.e. slow-start and congestion avoidance
phases. Each phase has its own purpose. The two subsections below describe briefly about

slow-start and congestion avoidance phases.

2.2.1. Slow Start
The standard TCP mechanism uses ‘slow start’ method that temper the ongoing flow of
connections in the network (Rung-Shiang et al., 2005), (So-In, Jain, & Dommety, 2009).

Figure 2.2 presents the TCP congestion control mechanism.

Congestion Congestion occurs

avoidance

L

b

T

Congestion -
window ]

Qo

n
I T I |

=]
Y

Round-trip times

Figure 2.2 TCP Congestion Control Mechanism (So-In, Jain, & Dommety, 2009)

When packets are lost due to network congestion, TCP will enter a ‘slow start’ phase. In
this phase, TCP will sends out one packet and wait for the ACK. If nothing is received and
the timer expires, it will send again the same packet. In contrast, if the ACK is received, it
will sends out two packets, then it will wait for them to be acknowledged and increase

sending out the packet exponentially (Wing-Chung & Law., 2008).
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Slow-start is one of the algorithms that TCP uses to control congestion inside the network.
It is also known as the exponential growth phase. Slow-start works by increasing the TCP
congestion window each time the acknowledgment is received (Minseok & Sonia, 2004).
It increases the window size by the number of segments acknowledged. This happens until
either an acknowledgment is not received for some segment or a predetermined threshold
value is reached. If a loss event occurs, TCP assumes there is a congestion and takes steps
to reduce the offered load on the network. Once a loss event has occurred or the threshold
has been reached, TCP enters the linear growth in congestion avoidance phase. At this
point, the window is increased by one segment for each RTT. This happens until a loss
event occurs (Hassan & Raj, 2001).

The algorithm begins in the exponential growth phase initially with a congestion window
size of one or two segments and increases it by one segment size for each ACK received.
This behavior effectively doubles the window size each round trip of the network. This
behavior continues until the congestion window size reaches the size of the receiver’s
advertised window or until a loss occurs. Over long delay links, the slow-start algorithm
consumes too much time (Liang & Matta, 2001). It may take a number of RTTs in slow-
start before the connection begins to fully use the available bandwidth of the network. As a
solution to reduce the time consumed before achieving the available bandwidth is by using
aggressive exponential technique. Aggressive exponential can be used with TCP to request
a higher congestion window for long delay link networks (Hassan & Jain, 2004). In using
exponential, a host would indicate its desired rate in bytes per second using an Exponential
Option in the IP header of a packet. In Exponential, a TCP host, for example host A, would
indicate its desired sending rate in bytes per second, using an Exponential Option in the IP
header of a TCP packet. Each router along the path could, in turn; either approves the

requested rate, reduces the requested rate, or indicates that the Exponential Request is not
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approved. In approving an Exponential Request, a router does not give preferential
treatment to subsequent packets from that connection; the router is only asserting that it is
currently underutilized and believes there is a sufficient available bandwidth to
accommodate the sender’s requested rate. The Exponential mechanism can determine if
there are routers along the path that do not understand the Exponential Option, or have not

agreed to the Exponential rate request (Douglas, 2005).

TCP host B communicates the final rate request to TCP host A in a transport- level
Exponential Response in an answering TCP packet. If the Exponential Request is approved
by all routers along the path, then the TCP host can send at up to the approved rate for a
window of data. Subsequent transmissions will be governed by the default TCP congestion
control mechanisms of that connection. If the Exponential Request is not approved, then

the sender would use the default congestion control mechanisms.

2.2.2. Congestion Avoidance

TCP utilizes the congestion window which can grow or shrink depends on the condition of
the network. In normal case, the current congestion window is halved, i.e. it is dropped
50% from the current value during congestion avoidance phase when a congestion event
via packet loss is detected. During congestion avoidance phase, packet loss is detected
through three duplicate ACKs or ECN marked packets (Archan, 2000). Congestion
window is one of the key components in TCP’s congestion control, In TCP, congestion
window controls the number of packets a TCP flow may have in the network at any time.
However, long periods when the sender is idle or application-limited can lead to the
invalidation of the congestion window, in that the congestion window no longer reflects

current information about the state of the network (Ghazali, 2008).
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Basically, congestion window is a parameter in TCP which buffers the packets in the
network. In TCP, the congestion detection is done through a mechanism where timeout
occurs or three duplicate acknowledgments are received by the sender (Floyd & Fall,

1999).

2.3. TCP Performance over Mobile Ad Ho Networks

The performance of TCP degrades significantly when used over networks that exhibit a
large Bandwidth-Delay Product (BDP) or long delay link networks. At any given point in
time, TCP’s transmission rate cannot exceed the lesser of the congestion window (cwnd) or
the receiver’s advertised window (rwnd) per Round Trip Time (RTT). As a result, the
congestion window size needs to be equal or exceed the BDP before TCP can fully utilize
the available bandwidth. However, when a connection is reestablished, TCP does not know
what bandwidth is available within the network, hence it does not know what the BDP is
and in turn what size the congestion window should be. One or more window growth
functions are required to increase the congestion window, ideally to a level that allows all
available bandwidth to be utilized, but prevents network resources from becoming
oversubscribed. As mentioned before, TCP variants use two algorithms known as slow-

start and congestion-avoidance to probe the network or capacity (Postel,1981).

The slow-start algorithm implements exponential window growth, which is designed to
start off slowly and probe for network capacity, doubling the congestion window size each
one RTT. Once an effective congestion window size has been achieved the congestion-
avoidance algorithm continues to probe for additional bandwidth, increasing the congestion
window in a linear fashion (Anjum & Jain, 2000). This approach works well when a small

congestion window size is required, since slow-start quickly opens the congestion window,
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allowing the network capacity to be fully utilized. However, the performance of these
algorithms is degraded when the network exhibits a large BDP. Some research in TCP for
wireless networks was done to investigate the current transport protocols performance.
Current TCP protocols have lower throughput performance in satellite networks, mainly
due to the effects of long propagation delay and high link error rates. Both experimental
and analytical studies done by Lakshman et al. in (Lakshman, Upamanyu, & Bernhard,
2000) confirmed that the current TCP protocols have performance problems in networks
with long propagation delays and relatively high link error rates such as satellite networks.
From the view of TCP, the throughput is reciprocal to the RTT of a connection, and is
approximately proportional to the congestion window which represents the amount of
unacknowledged data the sender can have in transit to the receiver (Jiyong, Daedong,
Seongsoo, & Jungkeun, 2011).

In wireless environment, each time the base station (BS) detects a link failure or packet
loss, it sends back an ACK to the sender with a zero window size to drive the sender into
persist mode, and not drop it’s congestion window (Hamrioui & Lalam, 2011). The BS
relays ACKs back to the sender only when the receiver has ACKed data in order to
maintain end-to-end semantics. This can lead to problems: for instance, assume that the
sender has transmitted one widow full of packets and is waiting for ACKs. Suppose the
receiver receives them all and ACKSs the last transmission (TCP ACKs are cumulative) and
then immediately gets disconnected. If the BS relays back the ACK to sender, it will keep
transmitting eventually leading to packet loss and congestion window throttling. One could
send a duplicate ACK for the last segment, advertising a window size of zero, but such

duplicate ACKs may be ignored by the sender (Anjum & Jain, 2000).

Many factors should be taken into account in evaluating any TCP, they are as follows:
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e Inter-operation with the existing infrastructure: To realize this goal, ideally, there
should not be any change required at intermediate routers or the sender because these
are likely to belong to other organizations, making them unavailable
formodifications. All approaches that split the connection into two parts require
substantial modification and processing at an intermediate node (BS). Some schemes,
such as EBSN, also require modification at the sender side. This makes it difficult for

these schemes to inter-operate with the existing infrastructure.

e Encrypted traffic: As network security is taken more and more seriously, encryption is
likely to be adopted very widely. For instance, IPSEC is becoming an integral part of
IPv6, the next generation IP protocol. In such cases the whole IP payload is
encrypted, so that the intermediate nodes (be it the base station or another router)
may not even know that the traffic being carried in the payload is TCP (Fairhurst, et
al., 2001), (Jiwei, et al., 2006). Sometimes data and ACKSs can take different paths
(for instance, in ADHOC). Schemes based on “intermediary” involvement will have
serious problems.

Maintaining true end-to-end semantics: M-TCP does not maintain true end-to-end

semantics. But requires a substantial base-station involvement nonetheless. Thus there is a

need for true end-to-end signaling without involving any intermediary. If hundreds or

thousands of nodes are mobile in the domain of a base station, it could get overwhelmed
with the processing of traffic associated with each connection. When a mobile node moves
from the domain of one BS to another, the entire “state” of the connection (including any
data that was buffered for retransmissions) needs to be handed over to the new base station.

This can cause significant amount of overhead and might lead to the loss of some packets

and the sender dropping congestion window, which would defeat the original purpose

behind the whole endeavor (Ghanem, Elkilani, & Hadhoud, 2009).
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2.4. Related Researches

Many Ad hoc routing protocols have been developed and implemented and categorized

into different classes.

2.4.1. DSR Routing Protocol

DSR (Johnson, Maltz, & Broch, 2001) was developed by CMU researchers is an on-
demand’ routing protocol. It employs source routing wherein the source determines the
complete sequence of nodes through which a packet is to be routed. The TCP source
checks its route cache for a route to the destination, Whenever a TCP source has a packet
to transmit, a route request’ broadcast is initiated In case no route is found. On receiving
this request, each node again broadcasts this request by appending its address to the request
packet until this packet reaches the destination. Then the destination sends a route reply to
the source containing the route from the source to the destination. When the route reply
reaches the source, a connection is established and all subsequent packets contain the
complete route in the packet header. DSR will broadcasts ‘route error’ message when it
detects a route failure due to the motion of downstream neighbor. A packet which has no
suitable route to its destination temporarily will be reserved in send_buf during the route
discovery’ period until it is sent out or dropped by DSR for its remaining in send_buf

longer than SEND_TIMEOUT.

2.4.2. AODV Routing Protocol

AODV (Kai, Neng, & Ai-fang, 2005) is a popular route protocol for Ad hoc network. This
protocol is a reactive protocol. In other words, it uses an on-demand mechanism which

means that it discovers routes only when a source node needs them.
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It has ability to maintain routes even when the topology of the network is dynamic.
Reactive protocol like AODV is suited for MANET as it has low processing and memory
overhead and again it minimizes the overall network utilization. Moreover, this protocol
uses loop freedom mechanism through the use of sequence number for all routes. The way
AODV route request proceed in order to communicate throughout the network or desired
destination is as follows: Firstly, the source node initiates route discovery through
broadcasting Route Request (RREQ) packet then adjacent nodes will forward RREQ until
the packet either is reached at the destination or RREQ arrives at the node that has a new
fresh route to the destination. Secondly, a Route Reply (RREP) is sent by receiver to the
source (originated route). Once the sender-node receives a RREP, it can begin using this
path for data packet transmission. Upon link failure, Route Error (RERR) is sent back to
the source node. This important message is generated by the node that the link failure is
occurred at. The main difference between DSR-protocol and AODV protocol is that the
addresses of the intermediate node are accumulated on the DSR RREQ and RREP control
packets. To simplify more the way that DSR network exchanges the information, in the
network each node uses the information in the RREQ/RREP packets to know about routes
to other nodes in the network and store the routes information in their route caches. One
drawback of AODV protocol, and many other Ad hoc network protocols, is the single
route concept that requires a source node to establish a new route discovery process

whenever a link failure is come across in the current route (Abdule & Hassan, 2010).

2.4.3. TCP-F

TCP-F was proposed nodes to detect the route failures which rely on the network layer at
intermediate. In TCP-F, a TCP source can be in two states, active state and snooze state.

Transmission is controlled by the standard TCP when TCP source is in active state. The

19



intermediate node will explicitly send the TCP source a Route Failure Notification (RFN)
if it detects a link failure. After receiving the RFN, the TCP source will go into the snooze
state by stopping sending any further packet and freezing the value of TCP state variables
such as retransmission timer and congestion window size. The TCP source remains in the
‘snooze’ state until it is notified of the restoration of the route through a Route Re-
establishment Notification (RRN) from an intermediate node and then goes back to active

state (Chandran, el at, 1998).

2.4.4. ECP-ELFN

According to Monks, et al. (Monks, Sinha, & Bharghavan, 2000) ECP-ELFN is used the
feedback to notify source route failure too. But the congestion control mechanism of ECP-
ELFN is based on hop-by-hop rate control, not base on window control, which make it is
top-priority when a transmission require little jitter of sending rate. However, as other rate-
based congestion control algorithms, ECP-ELFN is slow-responsive to network
congestion, so it has more possibility to cause congestion or worsen the degree of network

congestion.

2.5. Explicit Link Failure Notification

Standard TCP misinterpret mobility loss in Ad hoc network as congestion loss, thus, it
reduce the TCP performance by invoking unnecessary congestion control action (King,
Phang, Ling, & Fong, 2007). Because of the reliable TCP that used in the wired networks
performs unsatisfactory and the overall throughput of the ad hoc network is low, so ELFN
play important role to increase the throughput. (Romanowicz, 2008). Chandran et al.
(Chandran, et al, 2001) propose a TCP-feed-back scheme that uses ELFN from the node

recently, Holland and Vaidya (Holland & Vaidya, 1999) revisit the properties of a TCP-
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ELFN scheme and have provided valuable insight into how the an explicit link failure
notification scheme can improve upon TCP’s performance.

ELFN is one mechanism to manage link failures with dynamic cache update scheme to
improve the TCP performance considerably (Romanowicz, 2008), that mean ELFN is a
way to make TCP better handle cases when there are link failures, which is common in
Adhoc networks. Since all nodes acting as routers have the full TCP/IP protocols stack,
they have access to the routing protocols of the IP layer. The routing protocol can detect
the link failure when the next node in the connection goes out of range, and the packet
cannot be delivered. It sends the route error notification (RRER), which is flooded to all of
the nodes including the source node. The TCP/IP protocols stack can be altered to use the
RRER packet as the link failure notification. After the modifications, when the RRER
packet is received, TCP can distinguish this link failure from the congestion. It can enter
the “standby” mode by freezing the regular transmission of the packets until the connection
is reestablished and then resume the transmission. The routing protocol can be modified to
carry additional information in RRER packets, similar to the “host unreachable” ICMP
message such as: sender address and port. This can identify at the sender of which
connection this message is for (Romanowicz, 2008), (Shinde, Vinayak, Ramesh, & J,
2010). When sender receives the RRER packet and it detects that it is the source of the
original message, it can notify the TCP layer about this link failure. TCP will stopping
any more transmissions until a new route is computed, thereby preventing those
packets from being lost along the broken route; and freezing the state of the TCP
connection, thereby preventing it from cutting down its window size to one and
entering the slow-start phase (Mahbub & Raj, 2004). When the acknowledgement packet

is received TCP can leave the “standby” mode and restore the communication at the state

as it was before the link failure (Shinde, Vinayak, Ramesh, & J, 2010).
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2.6. Summary

This chapter presented the related background of the topics covered in this project. This
chapter began with an overview of transmission control protocol TCP and its congestion

control mechanism. It discussed the issues of TCP congestion window control that are
related to this research. TCP issues in MANETS were discussed in this chapter as well.

It showed how link failure happens in MANET which degrades the performance of TCP
senders as the TCP source has to reinitiate a new global route discovery to all network
nodes which causes a significant network-overhead and congestion as well. That is the
reason for the motivation to address the main factors that can enhance the performance of
TCP in MANET. Furthermore, it covered ELFN technique developed to improve the TCP
performance.

In the next chapter, the experimental tool and the methodology used for carrying out this

research will be presented.
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CHAPTER THREE

RESEARCH METHODOLOGY

3.1. Introduction

Research methodology defines the research steps and procedures. This section will
present the general research methodology in network simulation. Simulation has been
chosen as our technique to study the network system in this research. The general research
methodology for network simulation has been adapted from (Mahbub & Raj, 2004) where
the steps of systematic simulation study is presented as shown in Figure 3.1. Hence, the

same framework will be used in implementing this project.

Construct model and set fixed

Define problem and objective parameters in software

|

Design reference network
model and select fixed
parameters

|

Select performance metrics

!

Select variable parameters

Presoftware Stage

9
9

|

Configure software procedure
relevant performance data

v

Execute simulation and collect
performance data

v

Present and interpret results

Software Stage

Figure 3.1 Steps of a systematic simulation study (Mahbub & Raj, 2004)
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3.2. Network Simulator 2 (NS-2)

Before presenting the steps that will be taken in conducting a systematic simulation study
as proposed previously, we have to choose the simulation tools in advance. There are

several tools available for simulating TCP/IP networks.

In this section, we will be classify these tools into three main categories namely general
purpose programming languages (GPPL), plain simulation language (PSL) and finally
simulation packages (SP). Simulation packages are the highest level of simulation tools.
Generally, all simulation packages provides built in libraries for TCP/IP networks. Among
the simulation packages we have chosen Network Simulation 2 (NS-2) to implement this

project.

Network Simulator 2 is a public domain simulation package which is a discrete event
network simulator. It has been developed at UC Berkeley. At this point of writing, NS-2
has becoming one of the top choices for researchers especially in computer networks. NS-2
is being known for its capability in simulating advanced TCP/IP algorithms (Issariyakul,
2009). NS-2 is also an object-oriented simulator that is capable to simulate realistic
network topologies and characteristics. NS-2 is constructed using C++ language and also

object oriented TCL scripts.

3.3. Research Steps and Procedure

In this section the steps that are followed in conducting this research are presented

3.3.1. Defining Problem and Objectives

Defining problem and objectives of a research carried out perhaps is the most important

part of this project. We have presented the problem statements and objectives of this
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research which can be referred to. The problem statements and objectives define the

purpose of the project’s implementation.

3.3.2. Design Reference Network Model and Select Fixed Parameters

It is an obligatory step to design the network model required of the simulation that will be
performed. The reference network model here refers to the network topology that will be
used. After the network topology has been selected, we are required to set fixed parameters
for the network that is going to be simulated such as the mobility model, traffic load and

other related parameters settings.

3.3.3. Selecting Performance Metrics

This section will present the performance metrics that will be used to evaluate the
performance of the networks in this research. These performance metrics are also referred
to as output or response variables which are observed at the end of the simulation. In NS-2,
in order to get the performance metrics values for example throughput, we have to use
other scripts for example in this study we are using AWK script. Other scripting language
for example, Perl, can also be used. The performance metrics that will be used in this are
packet loss, average end to end delay, and normalize routing load achieved by each

simulation settings.

3.3.4. Selecting Variable Parameters

Selecting variable parameters is the next step to setup the simulation environment. In this
research, the variable parameters include the number of nodes values and the speed of

travelling nodes, representing node densities. Simulations will be repeated using varying
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node density, and different speed of travelling nodes in order to evaluate the performance

of each simulation settings.

3.3.5. Construct Model and Set Fixed Parameters in Software

In this phase, we develop a constant setting to be used in the simulations to be applied with
all the variable parameters mentioned previously in NS-2. For this research, the fixed

parameters would be:

Channel Type

Propagation Model

Network Interface Type
MAC Type

Interface Queue Type
Antenna Model

Maximum Packet in IFQ
Simulation Time

The Size of Simulation Area

Routing Protocol

v Vv VY VYV Vv V¥V V VY V VYV V

Traffic Type

3.3.6. Configure Software to Produce Relevant Performance Data

This phase requires that the configuration and simulation settings done in NS-2 are relevant
to the objective of this research. Hence, the parameters specified as mentioned in section
3.5 and section 3.6 should be determined according to the objective of performance

evaluation conducted.
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3.3.7. Execute Simulation and Collect Performance Data

For this project, execution of the simulation using NS-2 is done repetitively using different
values of speed of travelling nodes and number of nodes. After the simulation has been
executed, NS-2 will generate a trace file that contains all the information of the simulation
which can be extracted later using an AWK or PERL script.

The figure 3.2 shows an example of a trace file generated by NS-2.

3 -t 0.267662078 -Ha 0 -Hd -1 -Ni 0 -Nx 5.00 -Ny 2.00 -Nz 0.00 -Ne
-1,000000 -NL RTR -Nw -—— -Ma 0 -Md 0 -M=z 0 -Mt 0 -Is 0.255 -Id -1.255 -It
message -I1 32 -If 0 -Ii 0 -Iv 32

3 -t 1,511681090 -Hs 1 -Hd -1 -Ni 1 -Nx 390.00 -Ny 385.00 -Nz 0.00 -Ne
-1,000000 -NL RIR -Nw --—- -Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 1.255 -Id -1.255 -It
message -I1 32 -If 0 -TIi 1 -Iv 32

Figure 3.2 Example of NS-2 Trace File

3.3.8. Present and Interpret Results

Result presentation for this research will be done using a tool called Microsoft Excel.
Microsoft Excel proposed as a tool allows to do software reconnaissance visually starting
from a set of trace files for different test cases. Microsoft Excel is a graphical tool for data
presentation . It has the ability to provide all matrices that are required for the network

performance study

3.4. Simulation Setup

The simulation will be carried out using the standard TCP and TCP that is enhanced with
Explicit Link Failure Mechanism. The scenarios consist of three different values for node

density with TCP and TCP-ELFN respectively, in addition to the three different values for
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the speed of travelling nodes for TCP and TCP-ELFN respectively. Hence, in total, there
will be 12 scenarios that will be simulated. The organization of the simulated scenarios is

presented in the Figure 3.3 below. The performance of the two will be compared and

analyzed.
Node
-50
Density
Standard 100
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5
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Speed
-20
Node
-50
Density
TCP 100
= s ]
5
" 10
Speed \\\\\‘
-20

Figure 3.3 Simulated Scenarios
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Table 1 and Table 2, presents two different scenarios that will be carried out. The details of

the simulation parameters are shown in Table 1 and Table 2 below.

Table 1 Varying Settings for TCP and TCP-ELFN Simulations with Node Density

Parameters
Channel Type
Propagation Model
Net Interface Type
MAC Type
Interface Queue Type
Antenna Model
Max Packet in IFQ
Transport Protocol
Simulation Time
Number of Nodes
Speed of Nodes
Max. Connections
Simulation Area
Mobility Model
Routing Protocol
Packet Size

MAC Type

Value
WirelessChannel
TwoRayGround
WirelessPhy
802.11
DropTail/PriQueue
OmniAntenna

50

TCP, TCP-ELFN
100s

100

5, 10,20 m/s

0.5

500x500m
Random Waypoint
AODV

512 bytes

802.11

Table 2 Settings for TCP and TCP-ELFN Simulations with Varying Speed

Parameters
Channel Type
Propagation Model
Net Interface Type
MAC Type
Interface Queue Type
Antenna Model
Max Packet in IFQ
Transport Protocol
Simulation Time
Number of Nodes
Max. Connections
Simulation Area
Mobility Model
Routing Protocol
Packet Size

MAC Type

Value
WirelessChannel
TwoRayGround
WirelessPhy
802.11
DropTail/PriQueue
OmniAntenna

50

TCP, TCP-ELFN
100s

30, 50, 100

0.5

500x500m
Random Waypoint
AODV

512 bytes

802.11
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3.5. Performance Metrics

In this subsection, the performance metrics that is used to evaluate the network

performance is presented. This metrics are calculated based on the equations given.

The performance of the standard TCP and TCP-ELFN in mobile ad hoc network will be
studied based on three performance metrics which are the packet loss, average end-to-end
delay and the normalized routing load. Each metric is calculated using a set of AWK script
that is parsed with the simulation trace file in order to get the result. The simulation result

will be presented and discussed in the following subsection.

3.5.1. Packet Loss

Measuring the performance of the network using packet loss is crucial in determining how
well the network reacts to congestion or in the case mobile ad hoc network, frequent link

failure. In order to measure the packet loss is calculated as follows:

PktDrop = Pktsent - Pktrecv

The AWK script that is used in order to calculate packet loss is as shown below:

BEGIN {
sends=0;
recvs=0;

droppedPackets=0;
}

{

time = $3;
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packet id = $41;
# CALCULATE PACKET DELIVERY FRACTION
if (($1 ="s") & ( $35 == "tcp" ) && ( $19=="AGT" ))

{ sends++;

}
if (C($1=="r") & ( $35 == "tcp" ) && ( $19=="AGT" ))

{ recvst++;

# DROPPED dfrp PACKETS
if ((§1 =="d") & ( $35 == "tcp" ) && ( $3>0))
{

droppedPackets=droppedPackets+1;

}

#find the number of packets in the simulation
if (packet id > highest packet id)

highest packet id = packet id;

END {
printf ("Packet Sent = %. 2f\n", sends) ;
printf ("Packet Receive = %.2f\n",recvs);

printf ("No. of dropped data (packets) = %d\n",droppedPackets);
}

3.5.2. Normalized Routing Load (NRL)

Normalized routing load is defined by the quantity of routing packets being transmitted per

packet sent to the destination. NRL also assumes that each forwarded packet as one
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transmission. NRL is immensely associated with the number of path or link changes or

disconnection that happened during the simulations.

Number of routing packets sent
NRL = -
Number of packets received

The Normalized Routing Load (NRL) calculation had been programmed into an AWK
script is presented below:
BEGIN {

recvs = 1;

routing packets = 1

if (($1 =="r") && (§35 =="tcp") && ($19=="AGT"))
recvstt;

if (($1 == "s" || $1 =="f") && ($19 == "RTR") && ($45 == "tcp"))

routing packets++;

END {
printf ("NRL = %. 3f",routing packets/recvs);

printf ("Routing packets = %. 3f\n",routing packets);
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printf ("Received packets = %.3f\n",recvs);

3.5.3. Average End-to-End Delay

When transmission of a packet between two nodes, the average delays between the
sending and the receiving is called the average end to end delay. Average end to end delay
depicts that, if the value is higher, it means that the network is experiencing congestion
hence causing the routing protocols not able to perform efficiently. The average end to end

delay is calculated as follows:

= timepacketrcvdi — timepacketsenti
AEED = z -
4 totalnumberofpacketsreceived
i

The end to end delay calculation had been programmed into an AWK script is presented
below:
BEGIN {

sends = 0;

recvs = 0;

routing packets = 0.0;

highest packet id = 0;

sum = 0;

recvnoum = 0;
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time = $3;

packet id = $41;

# CALCULATE PACKET DELIVERY FRACTION
if (($1 ="s") & ( $35 == "tcp" ) && ( $19=="AGT" )) { sends++; }

if (C$1 ="1r") & ( $35 == "tcp" ) && ( $19=="AGT" )) { recvstt;

# CALCULATE DELAY
if ( start timelpacket id] == 0 ) start time[packet id] = time;
if (($1 ="r") & ( $35 = "tcp" ) && ( $19=="AGT" ))

{ end timel[packet id] = time;

else { end timel[packet id] = -1;

#FIND THE NUMBER OF PACKETS IN THE SIMULATION
if (packet id > highest packet id)

highest packet id = packet id;

END {
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for (i in end time )

start = start_time[il;
end = end timeli];
packet duration = end — start;
if ( packet duration > 0 )
{ sum += packet duration;

recvnumt+;

delay = sum/recvnum;
printf ("Packet Sent = %.2f\n", sends);
printf ("Packet Receive = %.2f\n",recvs);

printf ("Average end-to—end Delay (ms)= %. 2f\n", delay*1000) ;
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3.6. Summary

In this chapter we have presented the research methodology being use in this project. This
chapter has also presented the simulation setup of the experiments that is carried out in
details including the settings being used in the NS-2. The following chapter will present the

design and implementation of this project.
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CHAPTER FOUR

DESIGN AND IMPLEMENTATION OF THE PERFORMANCE

EVALUATION MODEL

While Chapter 3 presents the research methodology used for designing and
implementing the performance evaluation model designated for evaluating the standard
TCP and TCP-ELFN in mobile ad hoc network, this chapter presents the design
requirements and the implementation details of the performance evaluation model that are

done to satisfy the first objective.

4.1. Introduction

In order to develop a performance evaluation model in computer network, every
component in the network simulation must be defined. This includes the number of nodes,
the type of connection, type of traffic and mobility model being used.

The following subsection of this chapter presents the performance evaluation model that is

used in this project.

4.2. The Model Implementation

In this section, the codes and files required to implement and run the performance

evaluation model are presented.
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4.2.1. Tool Command Language (TCL) Script

Tool Command Language (TCL) is utilized to implement the performance evaluation
model in Network Simulator 2 (ns-2). In the following, the details of TCL codes for

developing the performance evaluation model are provided.

e Define the type of the wireless channel

set val (chan) Channel/WirelessChannel

e Define the radio-propagation model

set val (prop) Propagation/TwoRayGround

e Define the network interface type

set val (netif) Phy/WirelessPhy

e Define the MAC type

set val (mac) Mac/802 11

e Define the queuing technique. The IF statement specify that, if the routing protocol
is DSR, the queuing technique will be CMUPriQueue.

if { $par1=="DSR"} {

set val (ifq) CMUPriQueue

} else {
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set val (ifq) Queue/DropTail/PriQueue

Define the link layer type

set val (11) LL

Define the antenna type

set val (ant) Antenna/OmniAntenna

Define the maximum number of packets in the interface queue

set val (ifglen) 50

Define the routing protocol. $parl refers to the value entered by user.

set val (rp) $parl

Define topography area by (x) and (y).

set val (x) 500
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set val (y) 500

Define the file for the trace file to written in.

set val (tr) n20. tr

Define the number of nodes. Example below shows number of node as 30.

set val (nn) 30

Specify the file name that has the traffic pattern of the simulation.

set val (cp) $par2

Specify the file name that has the traffic pattern of the simulation.

set val (sc) $par3

Specify time for the simulation to end.

set val (stop) 100. 0
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Instantiate the network simulator.

set ns_ [new Simulator]

To specify the file for the network simulator to write the trace on.

set tracefd [open $val (tr) w]

$ns  trace—all $tracefd

Use the new trace file format.

$ns  use—newtrace

Define the topography of the simulation.

set topo [new Topography]

$topo load flatgrid $val (x) $val (y)

Create and setup the general operation director (god).

set god [create—god $val (nn) ]
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e Redefined the variable for each node configuration.

$ns_ node—config —adhocRouting $val (rp) \

~11Type $val (11) \

-macType $val (mac) \

-ifqType $val (ifq) \

—-ifqLen $val (ifglen) \

—antType $val (ant) \

—propType $val (prop) \

—phyType $val (netif) \

—channel $chan 1\

—topolnstance $topo \

—agentTrace ON \

-routerTrace ON \

—-macTrace OFF

e For loop for the nodes.

for {set i 0} {Si < Sval(nn) } {incr i} {
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set node_(Si) [Sns_ node]

Snode_(S$i) random-motion 0

e Load the connection pattern or traffic file.

U

puts "Loading connection pattern...'

source $val (cp)

e Load the scenario file.

U

puts "Loading scenario file...'

source $val (sc)

e  Define the initial position of the nodes.

for {set i 0} {$i < $val(nn) } {incr i}

$ns_ initial node pos $node ($i) 20
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e Reset all the nodes when simulation ends.

for {set i 0} {$i < $val(nn) } {incr i} {

$ns_ at $val (stop). 000000001 "$node ($i) reset”;

Exit and stop the network simulator when simulation ends.

$ns at $val (stop). 000000001 "puts \"NS EXITING...\"; $ns halt"

Display ‘Start Simulation” for users when the simulation starts.

"

puts "Start Simulation...

Run the ns-2 simulator according the what is defined in the TCL script

$ns  run

4.2.2. Connection Pattern Script

In this project we due to very large number of nodes simulated, we have used the
connection pattern script to specify the generation and transferring of traffic in the

network. The full script is included in the Appendices section of this report.

44



To create connection file, run

ns tcpgen.tcl [-type cbr | tcp] [-nn nodes] [-seed seed] [-mc connections] [-rate rate] >

connection_file_name

These command represent:

-type : type of connection CBR or TCP

-nn : number of nodes

-seed : seed value for the random-number generator

-mc : number of connection

-rate : transmission rate

> : save output this file in

4.2.3. Mobility Generation Script

Another script that is used in this simulation is the mobility generation file in which in this
script we specifies the initial position of each node, its destination and their related speed.
The full script for the mobility generation pattern is included in the Appendices section of

this report.

To create mobile node movement file, run

Jsetdest —n <num_of_nodes> -p <pausetime> -s <maxspeed> -t <simtime> -X <maxx> -y

<maxy> > movement_file_name

These command represent:

-n : number of nodes
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-p : pause time for node to move again

-S . maximum speed

-t : simulation time

-X : maximum X dimension of the topography
-y : maximum Y dimension of the topography

> : save output this file in

4.3. Building TCL File

This section of coding we are indentified and set all data structure related with this work.
The code mentioned below represents an example of the code that should be put in the

TCL file.

#

# DEFINITION OF THE PHYSICAL LAYER

#

set val (chan) Channel/WirelessChannel
set val (prop) Propagation/TwoRayGround
set val (netif) Phy/WirelessPhy

set val (mac) Mac/802 11

set val (ifq) Queue/DropTail/PriQueue
set val(11) LL

set val (ant) Antenna/OmniAntenna

#

# SCENARIO PARAMETERS

#
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set val (x) 500 ;# X dimension of the topography

set val (y) 500 ;# Y dimension of the topography
set val (ifglen) 50 ;# max packet in queue
set val (seed) 1.0 ; frandom seed

set val (adhocRouting)  ELFN

set val (nn) 30 ;# how many nodes are simulated
set val (cp) "tcp—30"

set val (sc) "scenl-30"

set val (stop) 100 ;# simulation time

#

# SET UP SIMULATOR OBJECTS

#
# CREATE SIMULATOR INSTANCE
set ns_ [new Simulator]
# SETUP TOPOGRAPHY OBJECT
set topo [new Topography]
# CREATE TRACE OBJECT FOR NS AND NAM
set tracefd [open ELFN-60tcptraffic.tr w]
$ns_ use—newtrace ;# use the new wireless trace file format
set namtrace [open ELFN.nam w]
$ns  trace-all $tracefd
$ns_ namtrace—all-wireless $namtrace $val (x) $val (y)
# DEFINE TOPOLOGY
$topo load flatgrid $val (x) $val (y)
# CREATE GOD
set god [create—god $val (nn) ]
$ns_ node—config —adhocRouting $val (adhocRouting) \
-11Type $val (11) \

—macType $val (mac) \
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-ifqType $val (ifq) \
—-ifqlen $val (ifglen) \
—antType $val (ant) \
—propType $val (prop) \
—phyType $val (netif) \
—channelType $val (chan) \
—topolnstance $topo \
—agentTrace ON \
-routerTrace ON \

-macTrace ON \

CREATE THE SPECIFIED NUMBER OF NODES [$VAL(NN)] AND "ATTACH" THEM
TO THE CHANNEL.

H =T H =

for {set i 0} {$§i < $val(nn) } {incr i} f{
set node ($i) [$ns node]
$node ($i) random—motion 0; # disable random motion
}
# DEFINE NODE MOVEMENT MODEL
puts "Loading connection pattern..."
source $val (cp)
# DEFINE TRAFFIC MODEL

puts "Loading scenario file...'

source $val (sc)

DEFINE NODE INITIAL POSITION IN NAM
50 DEFINES THE NODE SIZE IN NAM, MUST ADJUST IT ACCORDING TO YOUR

H = = =

SCENARIO THE FUNCTION MUST BE CALLED AFTER MOBILITY MODEL IS DEFINED
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# PUTS "PROCESSING NODE $1"
#

for {set i 0} {$i < $val(nn)} {incr i} {
$ns_ initial node pos $node (§i) 50

}

#

# TELL NODES WHEN THE SIMULATION ENDS
#

for {set i 0} {$i < $val(nn) } {incr i} {
$ns_ at $val(stop).0 "$node (§i) reset";
}
$ns at $val(stop).0002 "puts \"NS EXITING...\" ; $ns halt"

#
# DUMP THE INITIAL SIMULATION INFO TO THE TRACE FILE
#

puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp

$val (adhocRouting) "

puts $tracefd "M 0.0 sc $val(sc) cp $val (cp) seed $val (seed)"
puts $tracefd "M 0.0 prop $val (prop) ant $val (ant)"

puts "Starting Simulation...'

$ns  run
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4.4. Summary

This chapter presented the implementation part for the performance evaluation of the
standard TCP and TCP-ELFN. The TCL code that is used in this project had been

presented in details.

The next chapter will present the performance evaluation of both TCP mechanisms so that
their performance can be analyzed based on the numerical result that is obtained from the

simulation.
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CHAPTER FIVE

EVALUATION AND RESULTS

While the previous chapter presents the design and implementation issues of the
performance evaluation setups developed to investigate the different performance between
the standard TCP and the TCP that is enhanced with ELFN, this chapter provides the
performance of these TCP based on the simulation results. It compares the performance of
TCP-ELFN, which includes an additional mechanism called explicit link failure
notification, to that of the standard TCP. The performance is compared in terms of the

packet loss, average end-to-end delay and normalized routing load.

5.1. Introduction

In this Chapter, we present the performance evaluation of both TCP mechanisms. First, we
run the simulations with the standard TCP and with TCP-ELFN to investigate their
performance when they are supplied with different number of nodes. This is important to
check how the performance of the network using the standard TCP and TCP-ELFN will be
when the node density is varied. For this experiment, we have set the speed of the
travelling nodes to a constant which is 10m/s. On the other hand, we have set the number

of nodes to be 30, 50 and 100 respectively for each simulation

Second, we run the simulations with the standard TCP and TCP-ELFN to investigate their
performance when the speed of the travelling nodes in the network is varied. In this
project, we have chosen the speed of 5 m/s, 10 m/s and 20 m/s to be studied. For this

experiment, we have set the number of nodes to a constant which is 100 nodes. On the
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other hand, we have set the speed of the travelling nodes are 5 m/s, 10 m/s and 20 m/s

respectively for each simulation.

As mentioned in Chapter 3, the performance evaluation of these TCP and TCP-ELFN will
be evaluated using three different performances metric which are packet loss, average end-
to-end delay and normalized routing load. The AWK script that is used in calculating these

metrics has also been presented in Chapter 3.

The numeric result from TCP and TCP-ELFN simulations will later be compared in order
to investigate how both TCP behave when they are supplied with different number of

nodes in one case and in another case when they are supplied with varying nodes speed.
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5.2. Performance of standard TCP with Varying Number of Nodes

In this part of the experiments, we run the simulations with the standard TCP and
investigate its performance when it is supplied with different number of nodes. For the case

of using different number of nodes with standard TCP 30, 50, and 100 nodes.

5.2.1. Packet Loss for Standard TCP with Varying Number of Nodes

Packet loss results is a very noticeable performance issues, as mentioned in Chapter 3.
Packet drops degrades the performance of the TCP applications significatly when the
packet loss is high. For the case of using different number of nodes with standard TCP (30,

50, 100), the packets loss recorded the highest when number of nodes is set to 100.

Packet Loss for TCP
600 g
s00 {7
n 400 |7
¥ 300 [ Tcp
&L o
200 -
100
0 —
30 50 Number of Nodes
TCP 311 324 517

Figure 5. 1 Packet Loss for TCP with Varying Node Density

Relatively, the result in Figure 5.1 shows an increasing pattern of packet loss when the

standard TCP is being used. The relevant behind this result is that, when the number of
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nodes is increased, the amount of data being transferred into the network will also increase

causing congestion and finally leads to packet loss.

5.2.2. Average End-to-End Delay for Standard TCP with Varying Number of
Nodes

As defined in Chapter 3, the average end-to-end delay is defined as the average delay
between the sending and receiving of packet between two nodes. Figure 5.2 shows that, the
average end to end delay increased when the number of nodes is increased. When 30 nodes
are supplied into the network, the average end to end delay is 769.17 milliseconds. This
value increased to 967.51 milliseconds when the number of nodes is 50, and finally when
the node density is 100, the delay increases to 1008.39 milliseconds. So, when using the
standard TCP, the average end to end delay will increase with respect to the number of
nodes. This is due to the reason that, when there are many nodes in the network, the time it
takes to send a packet to a destination will increase respectively because of the busy

transmission between nodes and the network.
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Figure 5. 2 Average end-to-end Delay for TCP with Varying Node Density
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5.2.3. Normalized Routing Load for Standard TCP with Varying Number of
Nodes

As mentioned in Chapter 3, normalized routing load is defined by the quantity of routing
packets being transmitted per packet sent to the destination. NRL also assumes that each
forwarded packet as one transmission. NRL is immensely associated with the number of
path or link changes or disconnection that happened during the simulations. Figure 5.3
presents the results of standard TCP performance when it is being simulated with different
number of nodes. The result shows a drastic decrease of normalized routing load when the
number of nodes is increased to 100. In relation to TCP, the performance of the network
will be as presented in the Figure 5.6. When the simulation is repeated using TCP with
Explicit Link Failure Notification, we are expecting that the result will improve. This will

be presented in the later section.
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Figure 5. 3 Normalized Routing Load for TCP with Varying Node Density
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5.3. Performance of TCP-ELFN with Varying Number of Nodes

In this part of the experiments, we run the simulations with the TCP-ELFN and investigate
its performance when it is supplied with different number of nodes. For the case of using

different number of nodes with TCP-ELFN are 30, 50, and 100 nodes.

5.3.1. Packet Loss for TCP-ELFN with Varying Number of Nodes

This section will present the results of TCP-ELFN performance when it is supplied with
different number of nodes. Figure 5.4 shows that the packet loss of TCP-ELFN is 218
when the number of nodes is set to 30, and increased when nodes is increased to 50.

Finally, the amount of packet loss is increase to be 364 when the node is increased to 100.

This result is gained due to the reason that although there are more exchanges of
information or packet in the network when the number of nodes is set to 100, however,

with the enhancement in TCP-ELFN, the network is capable to handle such cases better.
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Figure 5. 4 Packet Loss for TCP-ELFN with Varying Node Density



5.3.2. Average End-to-End Delay for TCP-ELFN with Varying Number of
Nodes

Figure 5.5 presents the result of the average end-to-end delay for TCP-ELFN with varying
node density. From the result we can see that as the number of nodes increased, the
average end to end delay also increases. With this result, we can deduced that, although
TCP-ELFN may reduce the number of packet loss as the number of node increases, the

average end to end delay remains increasing with respect to the number of nodes.

However, we are expecting that, the average end to end delay of TCP-ELFN will be lower
than the delay gained when the standard TCP is being used. This will be investigated in the

later section.
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Figure 5. 5 Average End-to-End Delay for TCP-ELFN with Varying Node Density
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5.3.3. Normalized Routing Load for TCP-ELFN with Varying Number of

Nodes

Figure 5.6 present the result in terms of the normalized routing load for TCP-ELFN with
varying node density. Here the simulation is performed similar to those before by

increasing number of nodes from 30 to 50 to 100.

In Figure 5.6 we can see that, the normalized routing load behavior is the same as in the

standard TCP in which it is increasing with respect to number of nodes.

However, this increasing pattern does not indicate that it has the same performance with
the standard TCP. The performance comparison of both TCP mechanisms will be

presented in later section.
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Figure 5. 6 Normalized Routing Load for TCP-ELFN with Varying Node Density
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5.4. Performance of standard TCP with Varying Nodes Speed

In this part of the experiments, we run the simulations with the standard TCP and
investigate its performance when the speed of the travelling nodes in the network is varied.

For case of using speed of the travelling nodes with standard TCP to be 5,10, and 20 m/s.

5.4.1. Packet Loss for Standard TCP with Varying Nodes Speed

Figure 5.7 presented the packet loss of the standard TCP when the speed of the travelling
nodes in the network is varied. In this project, we have chosen the speed of 5 m/s, 10 m/s
and 20 m/s to be studied. The result does not show a constant pattern, in other hand, the
amount of packet loss when the nodes is fixed to travel with the speed of 10 m/s has the

highest number of packet loss as compared to the network that the nodes moves at 5 m/s

and 20 m/s.
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Figure 5. 7 Packet Loss for Standard TCP with Varying Nodes Speed
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5.4.2. Average End-to-End Delay for Standard TCP with Varying Nodes Speed

Figure 5.8 presents the average end to end delay for the standard TCP when the node’s
speed is varied. Similar to the packet loss, the average end to end delay is slightly
increased when the node’s speed is increased to 10 m/s but is reduced when the speed is set
to 20 m/s. The relevant of this result is that, the fast movement of the nodes creates better

links for information to be transmitted.
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Figure 5. 8 Average End to End Delay for Standard TCP with Varying Nodes Speed
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5.4.3. Normalized Routing Load for Standard TCP with Varying Nodes Speed

Figure 5.9 present the result of the standard TCP in terms of normalized routing load when
it is supplied with networks of different node’s speed. From the figure we can deduced
that, as the number of speed increased, the frequency of link breakage is higher hence
higher routing load will be in the network. This is due to the reason that, as the node move
faster, one link will be disconnected from the other due to that movement, hence causing

the need to re-establish the route more frequently.

Normalized Routing Load for TCP

27

2.65

26

2.55

25

ETCP
245

Normalized Routing Load

24
2.35

23
5 10 20 Speed (m/s)
ETCP 2498 2431 2.661

Figure 5. 9 Normalized Routing Load for Standard TCP with Varying Nodes Speed
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5.5. Performance of standard TCP-ELFN with Varying Nodes Speed

In this part of the experiments, we run the simulations with the TCP-ELFN and investigate
its performance when the speed of the travelling nodes in the network is varied. For case of

using speed of the travelling nodes with TCP-ELFN to be 5,10, and 20 m/s.

5.5.1. Packet Loss for TCP-ELFN with Varying Nodes Speed

Figure 5.10 presents the packet loss for TCP-ELFN when the node’s speed in the network
is varied. We can deduce from the result that the packet loss is decreasing dramatically
when the speed of nodes in the network is increased to 20 m/s. This is due to the behaviour
of explicit link failure notification mechanism in which it provides the TCP sender with
information about link and route failures so that it can avoid responding to the failures as if

congestion occurred.
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Figure 5. 10 Packet Loss for TCP-ELFN with Varying Nodes Speed
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5.5.2. Average End-to-End Delay for TCP-ELFN with VVarying Nodes Speed

Figure 5.11 presents the average end to end delay for TCP-ELFN with varying nodes
speed. We can see that as the speed is increased to 10 m/s the delay increases dramatically
while when it is increased to 20 m/s the end to end delay decreased to 1042.17

milliseconds.
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Figure 5. 11 Average End to End Delay for TCP-ELFN with Varying Nodes Speed
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5.5.3. Normalized Routing Load for TCP-ELFN with Varying Nodes Speed

Figure 5.12 presents the normalized routing load for TCP-ELFN when the node’s speed is

varied by 5 m/s, 10 m/s and 20 m/s.

From the result shown in the figure, we can see an increasing pattern of the normalized

routing load. However, the difference is subtle.
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Figure 5. 12 Normalized Routing Load for TCP-ELFN with Varying Nodes Speed
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5.6. Comparative between Standard TCP and TCP-ELFN

The third objective of this research is to compare the performance of TCP in mobile ad hoc
network with and without the implementation of ELFN. Therefore, this section presents
comparison of the standard TCP to TCP with the TCP enhanced with Explicit Link Failure

Notification (ELFN).

5.6.1. Comparison of Packet Loss between Standard TCP and TCP-ELFN with
Varying Node Density

Figure 5.13 presents the performance comparison of the standard TCP and TCP-ELFN.
From all the three settings of node density (10, 30, 50), the result have shown that TCP-
ELFN performed better as it produced less packet losses with all the three node density.
Even though both TCP mechanisms shows an increasing pattern of packet loss as the
number of node increases, the amount of the packet losses at each value of node density

shows that TCP-ELFN has lower packet losses which is more preferable in any network.
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Figure 5. 13 Packet Loss of TCP vs TCP-ELFN with Different Node Density
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5.6.2. Comparison of Average End-to-End Delay between Standard TCP and
TCP-ELFN with Varying Node Density

Figure 4.14 presents the performance comparison of the standard TCP and TCP-ELFN in

terms of average end to end delay.

From the figure we can see that, regardless of the number of nodes being supplied into the

network, the average end to end delay of TCP-ELFN is much lower as compared to the

standard TCP.
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Figure 5. 14 Average End to End Delay of TCP vs TCP-ELFN with Different Node Density
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5.6.3. Comparison of Normalized Routing Load between Standard TCP and
TCP-ELFN with Varying Node Density

Figure 5.14 below presents the performance comparison of the standard TCP and TCP-

ELFN when it is supplied with different number of nodes. The figure shows an interesting

pattern of the normalized routing load of both TCP mechanisms.

When the nodes are set to 30 and 50, the normalized routing load for TCP-ELFN is much
higher than the standard TCP. However, when the number of nodes is 100, TCP-ELFN

exceeds the standard TCP performance by having lesser normalized routing load.
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Figure 5. 15 Normalized Routing Load of TCP vs TCP-ELFN with Different Node Density
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5.6.4. Comparison of Packet Loss between Standard TCP and TCP-ELFN
with Varying Node Speed

Figure 5.16 present the performance comparison of the standard TCP and TCP-ELFN in

terms of packet loss when the speed of the travelling nodes is varied. The figure presents a

very clear picture that TCP-ELFN performs better than the standard TCP when it comes to

packet losses.

The figure also shows that the packet loss decreases dramatically when TCP-ELFN is

being used. The reasons as to why such performance is gained will be discussed in the next

chapter.
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Figure 5. 16 Packet Loss of TCP vs TCP-ELFN with Different Nodes Speed
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5.6.5. Comparison of between Average End-to-End Delay between Standard
TCP and TCP-ELFN with Varying Node Speed

Figure 5.17 presents the performance comparison of the standard TCP and TCP-ELFN in

terms of average end to end delay when the network is set up to have different values for

node’s speed.

The figure presented that in all three cases where the node’s speed is set to 5 m/s, 10 m/s
and 20 m/s respectively, standard TCP perform much better by introducing lesser delay as

compared to the TCP-ELFN.
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Figure 5. 17 Average End to End Delay of TCP vs TCP-ELFN with Different Nodes Speed
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5.6.6. Comparison of Normalized Routing Load between Standard TCP and
TCP-ELFN with Varying Node Speed

Figure 5.18 presents the performance of the standard TCP and TCP-ELFN in terms of
normalized routing load when the network is supplied with different nodes speed. From the
figure we can deduced that TCP-ELFN managed to outperform the standard TCP with its

explicit link failure notification mechanism.
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Figure 5. 18 Normalized Routing Load of TCP vs TCP-ELFN with Different Nodes Speed
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5.7. Summary

In this chapter, we have presented a thorough performance result for the standard TCP and
TCP with explicit link failure notification. We have also presented the performance
comparison of these TCP mechanisms. The next chapter will discuss further on the

relevance of the performance results that we have gained in this chapter.
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CHAPTER SIX

CONCLUSION AND FUTURE WORK

While Chapter 5 dedicated for presenting the performance analysis of the standard
TCP and TCP enhanced with Explicit Link Failure Notification in terms of packet loss,
average end to end delay, and normalized routing load based on the numerical results
obtained from the simulation, this chapter provide the conclusion of the project as a whole.
This chapter will also include some suggestions for future work than can be done in the

related area.

6.1. Conclusion

In this project, we have studied the effects of mobility and node density on TCP
performance in mobile ad hoc network. We have chosen the standard TCP to be compared
with TCP-ELFN. Since TCP/IP is a standard network protocol on the Internet, its usage in
mobile ad hoc networks is something that is assured. It does not only support a good
number of applications but also allow us to seamlessly make use of the Internet. However,
many researches that had been carried out have shown that TCP suffers from performance
degradation when it is being use in wireless networks due to many factors. Therefore, this

project is presented in order to address this issue and to provide its share on this matter.

Additionally, this project was carried out to also address the issue of TCP which is used
mainly for wired network in which frequent congestion is expected and congestion
avoidance mechanism belongs to TCP such as slow start and exponential back off is

exercised. Relatively, when TCP is being used in wireless environment, it still conceives
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that congestion is the cause of packet loss, not bit errors. This confusion, will then temper
the network performance as the standard TCP will apply the congestion control
mechanism whenever it is experiencing packet loss in the network. The congestion control
mechanism in standard TCP will slow down the transfer rate unreasonably causing the
network to fall into a condition in which it is under utilizing the available bandwidth.
TCP-ELFN addresses the issue of the standard TCP in which the standard TCP treats losses

induced by route failures as signs of network congestion.

In order to achieve the objectives mentioned in Chapter one, we have presented this
project to fulfil these objectives which are to implement and study the impact of
comprising TCP-ELFN into mobile ad hoc network simulation, we have also presented the

performance comparison of these TCP mechanisms.

From the results presented in Chapter five, we may conclude that the better performance
of TCP-ELFN over the standard TCP is due to the reason that, TCP-ELFN provides the
TCP sender with information about link and route failures so that it can avoid responding
to the failures as if congestion occurred. This means that the TCP performance can be
improved by utilizing ELFN in mobile ad hoc. As from the evaluation performance study
we have found that TCP with ELFN provides more throughputs compared to standard

TCP.

We have seen a significant performance of the simulated mobile ad hoc network when it is
supplied with different mobility and node density when TCP-ELFN is in use instead of the

standard TCP.
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6.2. Suggestions for Future Work

For future work, we would like to suggest the inclusion of other mobile ad hoc routing
protocols on the performance of TCP. In addition to this, this project’s scalability can be
increased by including more number of nodes and more values for nodes speed so that the

overall behaviour of the TCP performance can be expanded and studied more thoroughly.

Furthermore, the impact of link layer on the performance of TCP can also be studied. This
includes aggregate delay which is caused by local retransmissions over multiple wireless
hops. More in depth research are required in order to thoroughly understand the complex
interaction between TCP and the lower layer protocols.

Further studies may also include the solutions to these problems in order to provide greater

improvement for TCP performance especially in mobile ad hoc networks.
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APPENDIX

A-  Connection Pattern Script

# nodes: 30, max conn: 0.5, send rate: 0.0, seed: 1

# 1 connecting to 2 at time 2.5b68388786897245

set tcp (0) [$ns_ create—connection TCP $node (1) TCPSink $node (2) 0]
$tep (0) set window 32

$tep (0) set packetSize 512

set ftp (0) [$tcp (0) attach-source FTP]

$ns_ at 2.5568388786897245 "$ftp (0) start”

# 4 connecting to b at time 56.333118917575632

set tep (1) [$ns_ create—connection TCP $node (4) TCPSink $node (5) 0]

$tep (1) set window 32

$tep (1) set packetSize 512

set ftp (1) [$tcp (1) attach—source FTP]
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$ns_ at 56.333118917575632 "$ftp (1) start”

# 4 connecting to 6 at time 146.96568928983328

set tep (2) [$ns  create—connection TCP $node (4) TCPSink $node (6) 0]
$tep (2) set window 32

$tep (2) set packetSize 512

set ftp (2) [$tep (2) attach—source FTP]

$ns_ at 146.96568928983328 "$ftp (2) start”

# 6 connecting to 7 at time bb.634230382570173

set tep (3) [$ns_ create—connection TCP $node (6) TCPSink $node (7) 0]
$tep (3) set window 32

$tep (3) set packetSize 512

set ftp (3) [$tcp (3) attach-source FTP]

$ns  at 55.634230382570173 "$ftp (3) start"

# 7 connecting to 8 at time 29.546173154165118

set tcp (4) [$ns_ create—connection TCP $node (7) TCPSink $node (8) 0]

$tep (4) set window 32
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$tep (4) set packetSize 512
set ftp (4) [$tcp (4) attach—source FTP]

$ns  at 29.546173154165118 "$ftp (4) start"

# 7 connecting to 9 at time 7.7030203154790309

set tecp (5) [$ns_ create—connection TCP $node (7) TCPSink $node (9) 0]
$tep (5) set window 32

$tcp (B) set packetSize 512

set ftp (5) [$tcp (5) attach—source FTP]

$ns_ at 7.7030203154790309 "$ftp_(5) start”

# 8 connecting to 9 at time 20.48548468411224

set tcp (6) [$ns  create—connection TCP $node (8) TCPSink $node (9) 0]

$tep (6) set window 32

$tep (6) set packetSize 512

set ftp (6) [$tcp (6) attach—source FTP]

$ns_ at 20.48548468411224 "$ftp (6) start”

# 9 connecting to 10 at time 76.258212521792487
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set tep (7) [$ns_ create—connection TCP $node (9) TCPSink $node (10) 0]
$tep (7) set window 32

$tcp (7) set packetSize 512

set ftp (7) [$tcp (7) attach—source FTP]

$ns  at 76.258212521792487 "$ftp (7) start"

# 9 connecting to 11 at time 31.464945688594575

set tep (8) [$ns  create—connection TCP $node (9) TCPSink $node (11) 0]
$tcp (8) set window 32

$tcp (8) set packetSize 512

set ftp (8) [$tcp (8) attach—source FTP]

$ns_ at 31.464945688594575 "$ftp (8) start”

# 11 connecting to 12 at time 62. 77338456491632

set tep (9) [$ns  create—connection TCP $node (11) TCPSink $node (12) 0]
$tep (9) set window 32

$tep (9) set packetSize 512

set ftp (9) [$tcp (9) attach—source FTP]

$ns_ at 62.77338456491632 "$ftp (9) start”
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# 11 connecting to 13 at time 46.455830739092008

set tep (10) [$ns  create—connection TCP $node (11) TCPSink $node (13) 0]
$tcp (10) set window 32

$tcp (10) set packetSize 512

set ftp (10) [$tcp (10) attach—source FTP]

$ns_ at 46.455830739092008 "$ftp (10) start"

# 13 connecting to 14 at time 83.900868549896813

set tep (11) [$ns  create—connection TCP $node (13) TCPSink $node (14) 0]
$tep (11) set window 32

$tep (11) set packetSize 512

set ftp (11) [$tcp (11) attach—source FTP]

$ns_ at 83.900868549896813 "$ftp (11) start”

# 14 connecting to 15 at time 155.17211061677529

set tep (12) [$ns  create—connection TCP $node (14) TCPSink $node (15) 0]
$tep (12) set window 32
$tep (12) set packetSize 512

set ftp (12) [$tep (12) attach-source FTP]
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$ns_ at 155.17211061677529 "$ftp (12) start”

# 15 connecting to 16 at time 39.088702704333095

set tep (13) [$ns  create—connection TCP $node (15) TCPSink $node (16) 0]
$tep (13) set window 32

$tep (13) set packetSize 512

set ftp (13) [$tcp (13) attach—source FTP]

$ns_ at 39.088702704333095 "$ftp (13) start"

# 15 connecting to 17 at time 43.420613009212822

set tcp (14) [$ns_ create—connection TCP $node (15) TCPSink $node (17) 0]
$tep (14) set window 32

$tep (14) set packetSize 512

set ftp (14) [$tep (14) attach-source FTP]

$ns_ at 43.420613009212822 "$ftp (14) start"

# 16 connecting to 17 at time 121.92280978985261

set tcp (15) [$ns_ create—connection TCP $node (16) TCPSink $node (17) 0]

$tep (15) set window 32
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$tep (15) set packetSize 512
set ftp (15) [$tcp (15) attach—source FTP]

$ns  at 121.92280978985261 "$ftp (15) start"

# 16 connecting to 18 at time 137.20174070317378

set tcp (16) [$ns_ create—connection TCP $node (16) TCPSink $node (18) 0]
$tep (16) set window 32

$tcp (16) set packetSize 512

set ftp (16) [$tcp (16) attach—source FTP]

$ns_ at 137.20174070317378 "$ftp_(16) start"

# 17 connecting to 18 at time 72.99343390995331

set tep (17) [$ns_ create—connection TCP $node (17) TCPSink $node (18) 0]

$tep (17) set window 32

$tep (17) set packetSize 512

set ftp (17) [$tcp (17) attach—source FTP]

$ns  at 72.99343390995331 "$ftp (17) start"

# 17 connecting to 19 at time 19.655724884781858
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set tcp (18) [$ns_ create—connection TCP $node (17) TCPSink $node (19) 0]
$tep (18) set window 32

$tcp (18) set packetSize 512

set ftp (18) [$tcp (18) attach—source FTP]

$ns  at 19.655724884781858 "$ftp (18) start"

# 20 connecting to 21 at time 170.32769159894795

set tep (19) [$ns  create—connection TCP $node (20) TCPSink $node (21) 0]
$tcp (19) set window 32

$tcp (19) set packetSize 512

set ftp (19) [$tcp (19) attach—-source FTP]

$ns_ at 170.32769159894795 "$ftp (19) start"

# 20 connecting to 22 at time 160.44260791523504

set tep (20) [$ns  create—connection TCP $node (20) TCPSink $node (22) 0]
$tep (20) set window 32

$tep (20) set packetSize 512

set ftp (20) [$tcp (20) attach—source FTP]

$ns_ at 160.44260791523504 "$ftp (20) start"
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# 24 connecting to 25 at time 60.419296464146719

set tep (21) [$ns  create—connection TCP $node (24) TCPSink $node (25) 0]
$tcp (21) set window 32

$tcp (21) set packetSize 512

set ftp (21) [$tcp (21) attach—source FTP]

$ns_ at 60.419296464146719 "$ftp (21) start”

# 26 connecting to 27 at time 46. 258873029732555

set tep (22) [$ns  create—connection TCP $node (26) TCPSink $node (27) 0]
$tep (22) set window 32

$tep (22) set packetSize 512

set ftp (22) [$tcp (22) attach—source FTP]

$ns_ at 46.258873029732555 "$ftp (22) start”

# 27 connecting to 28 at time 98.067954088592884

set tep (23) [$ns  create—connection TCP $node (27) TCPSink $node (28) 0]
$tep (23) set window 32
$tep (23) set packetSize 512

set ftp (23) [$tep (23) attach-source FTP]
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$ns_ at 98.067954088592884 "$ftp (23) start”

# 28 connecting to 29 at time 47.128346453946243

set tep (24) [$ns  create—connection TCP $node (28) TCPSink $node (29) 0]
$tep (24) set window 32

$tep (24) set packetSize 512

set ftp (24) [$tcp (24) attach—source FTP]

$ns_ at 47.128346453946243 "$ftp (24) start"

# 28 connecting to 30 at time 99.87114126788039

set tep (25) [$ns_ create—connection TCP $node (28) TCPSink $node (29) 0]

$tep (25) set window 32

$tep (25) set packetSize 512

set ftp (25) [$tep (25) attach-source FTP]

$ns  at 99.87114126788039 "$ftp (25) start"

#Total sources/connections: 17/26
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B- Scenario Generation Script

#

# nodes: 30, pause: 2.00, max speed: 10.00, max x: 500.00, max y: 500.00

$node_(0) set X_ 31.926988307576
$node_(0) set Y_ 197.246781440296
$node (0) set Z_ 0.000000000000

$node (1) set X  447.115668212077
$node (1) set Y_ 428.545421254227
$node_(1) set Z_ 0.000000000000

$node (2) set X_ 44. 838136603668
$node (2) set Y 201.169450847256
$node_(2) set Z_ 0.000000000000

$node (3) set X 427.665302868556
$node (3) set Y 272.534532516073
$node (3) set Z_ 0.000000000000

$node (4) set X_ 232.332119095391
$node (4) set Y_ 119.906267020969
$node_(4) set Z_ 0.000000000000

$node (5) set X 258.144871144121
$node (5) set Y 232.136260784311

$node (5) set Z 0.000000000000
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$node (6)

$node (6)

$node (6)

$node (7)

$node (7)

$node (7)

$node (8)

$node (8)

$node (8)

$node (9)

$node (9)

$node (9)

set

set

set

set

set

set

set

set

set

set

set

set

X_ 335.750015647151

Y_ 240. 990244114299

Z_ 0.000000000000

X_ 476. 802206638935

Y_ 155. 680072582666

Z_0.000000000000

X_ 46. 485622103561

Y 81.300723229197

Z_0.000000000000

X_ 62. 080091776480

Y_ 199. 247276164459

Z_0.000000000000

$node_(10) set X_ 166.759728963027

$node (10)

$node (10)

$node (11)

$node (11)

$node (11)

$node (12)

$node (12)

$node (12)

$node (13)

set

set

set

set

set

set

set

set

set

Y_ 391. 548965462061

Z_0.000000000000

X_ 354. 876316458516

Y 214.607784091127

Z_0.000000000000

X_ 30. 113759512003

Y_ 73.631237101578

Z_0.000000000000

X_ 436. 468665438118
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$node (13)

$node (13)

$node (14)

$node (14)

$node (14)

$node (15)

$node (15)

$node (15)

$node (16)

$node (16)

$node (16)

$node (17)

$node (17)

$node (17)

$node (18)

$node (18)

$node (18)

$node (19)

$node (19)

$node (19)

$node (20)

$node (20)

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

157.647610826116

0. 000000000000

63. 061016871755

425. 920973902466

0. 000000000000

268. 712966910633

289. 879060069761

0. 000000000000

98. 006801187390

51. 180205691020

0. 000000000000

438. 912066466573

239. 156324240499

0. 000000000000

162. 176087436412

482. 499850066371

0. 000000000000

294. 132893364793

132. 562380533892

0. 000000000000

228. 285449902381

30. 243940719110
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$node (20)

$node (21)

$node (21)

$node (21)

$node (22)

$node (22)

$node (22)

$node (23)

$node (23)

$node (23)

$node (24)

$node (24)

$node (24)

$node (25)

$node (25)

$node (25)

$node (26)

$node_(26)

$node_ (26)

$node (27)

$node (27)

$node (27)

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

Z_0.000000000000

X_ 469. 269940771197

Y_ 79.467547947832

Z_ 0.000000000000

X_ 353.722327988186

Y_ 97.452030929276

Z_0.000000000000

X 9.404743196486

Y_ 88.328530982215

Z_0.000000000000

X_ 11. 547222244978

Y 178.605442785176

Z_0.000000000000

X_ 432. 686769636080

Y_ 452.719993811510

Z_0.000000000000

X_ 194. 909069580279

Y 396. 282178449140

Z_0.000000000000

X_ 8.836704152179

Y_ 222. 408457370698

Z_0.000000000000

93



$node

$node

$node

$node

$node

$node

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

(28) set

(28) set

(28) set

(29) set

(29) set

(29) set

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

X_ 461. 428069038558

Y 417.129034936158

Z_ 0.000000000000

X_ 210. 255688227057

Y_ 113.155918786403

Z_0.000000000000

0121

013 2

0141

015 2

016 1
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$god

$god

$god_

$god_

$god_

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

$god

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

set—dist

17 2

18 2

19 2

20 2

21 2

22 2

23 1

24 1

25 3

26 2

27 1

28 3

29 1
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$god  set-dist 1 11 1

$god  set—-dist 18 25 2

$god  set—-dist 18 26 1

$god  set—-dist 18 27 2

$god  set—-dist 18 28 2

$god  set—-dist 18 29 2

$god  set—-dist 19 20 1

$god  set—-dist 19 21 1

$god  set-dist 19 22 1

$god  set-dist 19 23 2

$god  set-dist 19 24 2

$god  set—-dist 19 25 2

$god  set—-dist 19 26 2

$god  set-dist 19 27 2

$god  set-dist 19 28 2

$god  set-dist 19 29 1

$god  set—-dist 20 21 1

$god  set—-dist 20 22 1

$god  set—-dist 20 23 1

$god  set-dist 20 24 2

$god  set-dist 20 25 2

$god  set—-dist 20 26 2



$god  set—-dist 20 27 2

$god  set—-dist 20 28 2

$god  set—-dist 20 29 1

$god  set—-dist 21 22 1

$god  set—-dist 21 23 2

$god  set—-dist 21 24 2

$god  set—-dist 21 25 2

$ns_ at 92.436597949187 "$god_ set-dist 17 18 2"

$ns_ at 92.548596411188 "$node (24) setdest 181.087107669124 329.677617194351
2. 486345206192"

$ns_ at 92.644727459786 "$god set—dist 15 26 1"

$ns at 92.795371705417 "$god set—dist 5 19 2"

$ns at 93.293096386952 "$god set—dist 8 12 1"

$ns at 93.321191711099 "$god set—dist 3 23 2"

$ns at 93.440183836333 "$god set-dist 3 25 2"

$ns  at 93.629023985012 "$god set—dist 20 25 2"

$ns  at 93.842779672485 "$god set—dist 4 20 1"

$ns  at 94.164961121710 "$god set—dist 2 5 2"

$ns at 94.409117043416 "$god set—dist 15 17 2"

$ns  at 94.511008271171 "$god set—dist 4 22 1"

$ns  at 94.537273915403 "$god set—dist 2 28 1"

$ns_ at 94. 774415123399 "$god_ set—dist 9 21 1"

$ns_ at 94. 848365470711 "$god_ set—dist 2 17 2"
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$ns_ at 95.050234868142 "$god_ set—dist 5 10 2"

$ns_ at 95. 771008437172 "$god_ set—dist 14 15

$ns  at 96.113474325032 "$god set—dist 4 6 1"

1"

$ns_ at 96. 150110209805 "$god set—dist 1 25 2"

$ns  at 96. 192538705210 "$god set—dist 17 23

$ns_ at 96.219304902332 "$god_ set—dist 18 20

1"

1"

$ns_ at 96. 286366807687 "$god set-dist 1 15 1"

$ns_ at 96. 547254162272 "$god_ set—dist 17 27

2"

$ns_at 96.727313992721 "$god set—dist 9 17 2"

$ns_ at 96.944558814991 "$node (25) setdest 53.014235344473

0. 000000000000"

$ns at 97. 088345890550 "$god set—dist 2 24 1"

$ns at 97. 089805804361 "$god set—dist 21 22

$ns  at 97. 166464566684 "$node (17) setdest
0. 000000000000"

$ns  at 98.532815572419 "$node (7) setdest
0. 000000000000"

$ns  at 98.560974809807 "$god set—dist 10 26

$ns at 98.944558814991 "$node (25) setdest
9. 229589642434 "

$ns  at 99. 166464566684 "$node (17) setdest
8.301287413730"

$ns  at 99.571635006289 "$node (26) setdest
0. 000000000000 "
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1”

390. 643896361331

226. 043426086435

2"

254. 459907866004

483. 473752872679

218. 162163481519

136. 257788245943

194. 337828998051

288. 327608716707

305. 639650922513

269. 346610532164

311. 048963968219



$ns_ at 99. 786028756682 "$god_ set-dist 17 23 2"

$ns_ at 99.878211841276 "$node (9) setdest 216.340270009538 394. 061022429888
0. 000000000000"

$ns_ at 99.911538226694 "$god_ set—dist 2 10 2"

# Destination Unreachables: 0

# Route Changes: 578

# Link Changes: 483

# Node | Route Changes | Link Changes

# 0 | 33 | 20
#01 | 44 | 37
# 2| 33 | 31
# 3| 30 | 30
# 4 31 | 25
# 5| 23 | 23
# 6 | 25 | 25
# 7| 36 | 32
# 8 | 40 | 30
# 9 | 42 | 42
# 10 | 38 | 38
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11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

53

46

46

41

53

28

40

35

25

26

48

41

47

52

55

40

33

41

31

33

40

38

24

33

18

38

26

25

23

38

39

43

48

42

40

30

24

31
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