

 ENHANCING TCP PERFORMANCE IN MOBILE AD HOC

NETWORK USING EXPLICIT LINK FAILURE NOTIFICATION

(ELFN)

RAAID N. ALABAEDY

UNIVERSITY UTARA MALAYSIA

 2012

ENHANCING TCP PERFORMANCE IN MOBILE AD HOC

NETWORK USING EXPLICIT LINK FAILURE NOTIFICATION

(ELFN)

A project submitted to Dean of Awang Had Salleh Graduate School in

Partial Fulfilment of the requirement for the degree

Master of Science of Information Technology

University Utara Malaysia

By

RAAID N. ALABAEDY

I

PERMISSION TO USE

In presenting this project in partial fulfilment of the requirements for a postgraduate

degree from the University Utara Malaysia, I agree that the University Library may make it

freely available for inspection. I further agree that permission for copying of this project in any

manner in whole or in part, for scholarly purposes may be granted by my supervisor(s) or in

their absence by the Dean of Postgraduate Studies and Research. It is understood that any

copying or publication or use of this project or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be given

to me and to University Utara Malaysia for any scholarly use which may be made of any

material from my project.

 Requests for permission to copy or to make other use of materials in this project, in

whole or in part, should be addressed to

Dean of Awang Had Salleh Graduate School

College of Arts and Sciences

University Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman

Malaysia

II

ABSTRACT

The dynamics and the unpredictable behaviour of a wireless mobile ad hoc

network results in the hindrance of providing adequate reliability to network

connections. Frequent route changes in the network relatively introduce incessant

link failures which eventually degrade TCP performance considerably. In this

research, we are going to study the potential improvement of TCP performance

when Explicit Link Failure Notification is implemented as opposed to the standard

TCP mechanism. ELFN modifies the ‘slow start’ mechanism that is used in

standard TCP so that the throughput achieved from the network can be maximized.

III

ACKNOWLEDGMENTS

In the Name of ALLAH, the Most Gracious and the Most Merciful. Peace is

upon to Muhammad S.A.W., the messenger sending to guide people for the truth

way.

First, all praises and thanks goes to almighty ALLAH for giving me the

patience, the health and the guidance in completing this thesis successfully as well

as giving me the chance to work in such an environment in Malaysia and in UUM

in particular.

Second, the first person I would like to express my deep and sincere gratitude

to is my supervisor Dr. Mohammed M. Kadhum, School of Computer Sciences,

Universiti Utara Malaysia. His wide knowledge and his logical way of thinking

have been of great value to me. His supports, motivations, guidance and incisive

advice have inspired me to generate fruitful approaches in achieving the objective

in this research. Furthermore, I would like to thank my evaluator Dr. Edy Santoso

to evaluate this work and give my very important nodes. Also, would like to thank

the School of Computer Sciences (lecturers and staff), Universiti Utara Malaysia

for supporting this study and for giving me an opportunity to express my ideas and

findings in the form of a dissertation.

Third, this thesis is especially dedicated to my beloved parents for their prey,

love and encouragement to see their son succeed. To my brothers and sisters, I love

you all. A special thank to my master and PhD friends, thank you for struggler,

laughter and share together with me before we finally reach the final steps. , Also, I

IV

would like to record a special word of thanks for the support given by Mr. Adib M.

Monzer Habbaland all lecturers; I know them during my study.

Last but not least, I especially wish to express my love for my wife who did

not only endure my manifold activities but also provided inspiration and support

for my inclination to perfectionism and my kids (AliAldur and Ratij), I love you all.

 Regards

Raaid N. Alabaedy

 2012

V

 CONTENTS

PERMISSION TO USE ... I

ABSTRACT .. II

ACKNOWLEDGMENTS ... III

CONTENTS .. V

LIST OF FIGURES .. VIII

LIST OF TABLES .. X

APPENDIX ..XI

LIST OF ABBREVIATION .. XII

CHAPTER ONE : INTRODUCTION

1.1. Introduction .. 1

1.2. IEEE 802.11 Challenges .. 3

1.3. Medium Contention and Spatial Reuse .. 3

1.4. Problem Statements ... 4

1.5. Research Questions ... 5

1.6. Research Objectives .. 5

1.7. Research Scope ... 6

1.8. Research Significance .. 6

1.9. Organization of The Project Report ... 7

CHAPTER TWO : LITERATURE REVIEW

2.1. Introduction .. 8

2.1. Transmission Control Protocol (TCP) ... 9

2.2. Phases of TCP Congestion Control ... 12

2.2.1. Slow Start .. 12

2.2.2. Congestion Avoidance .. 14

2.3. TCP Performance over Mobile Ad Ho Networks ... 15

2.4. Related Research ... 18

2.4. DSR Routing Protocol .. 18

2.4. AODV Routing Protocol ... 18

2.4. TCP-F .. 19

2.4. ECP-ELFN .. 20

VI

2.5. Explicit Link Failure Notification ... 20

2.6. Summary .. 22

CHAPTER THREE : RESEARCH METHODOLOGY

3.1. Introduction .. 23

3.2. Network Simulator 2 (NS-2) .. 24

3.3. Research Steps and Procedure .. 24

3.3.1. Defining Problem and Objectives ... 24

3.3.2. Reference Network Model and Fixed Parameters ... 25

3.3.3. Selecting Performance Metrics ... 25

3.3.4. Selecting Variable Parameters... 25

3.3.5. Construct Model and Set Fixed Parameters in Software ... 26

3.3.6. Configure Software to Produce Relevant Performance Data 26

3.3.7. Execute Simulation and Collect Performance Data .. 27

3.3.8. Present and Interpret Results ... 27

3.4. Simulation Setup ... 27

3.5. Performance Metrics ... 30

3.5.1. Packet Loss .. 30

3.5.2. Normalized Routing Load (NRL) ... 31

3.5.3. Average End-to-End Delay ... 33

3.6. Summary .. 36

CHAPTER FOUR : DESIGN AND IMPLEMENTATION OF THE

PERFORMANCE EVALUATION MODEL

4.1. Introduction .. 37

4.2. The Model Implementation .. 37

4.2.1. Tool Command Language (TCL) Script ... 38

4.2.2. Connection Pattern Script .. 44

4.2.3. Mobility Generation Script .. 45

4.3. Building TCL File ... 46

4.4. Summary .. 50

CHAPTER FIVE : EVALUATION AND RESULTS

5.1. Introduction .. 51

5.2. Performance of Standard TCP with Varying Number of Nodes .. 53

5.2.1. Packet Loss for Standard TCP with Varying Number of Nodes 53

5.2.2. Average End-to-End Delay for Standard TCP with Varying Number of Nodes 54

5.2.3. Normalized Routing Load for Standard TCP with Varying Number of Nodes 55

5.3. Performance of TCP-ELFN with Varying Number of Nodes .. 56

VII

5.3.1. Packet Loss for TCP-ELFN with Varying Number of Nodes 56

5.3.2. Average End-to-End Delay for TCP-ELFN with Varying Number of Nodes 57

5.3.3. Normalized Routing Load for TCP-ELFN with Varying Number of Nodes 58

5.4. Performance of Standard TCP with Varying Nodes Speed ... 59

5.4.1. Packet Lost for Standard TCP with Varying Nodes Speed 59

5.4.2. Average End-to-End Delay for Standard TCP with Varying Nodes Speed 60

5.4.3. Normalized Routing Load for Standard TCP with Varying Nodes Speed 61

5.5. Performance of Standard TCP-ELFN with Varying Nodes Speed 62

5.5.1. Packet Loss for TCP-ELFN with Varying Nodes Speed .. 62

5.5.2. Average End-to-End Delay for TCP-ELFN with Varying Nodes Speed 63

5.5.3. Normalized Routing Load for TCP-ELFN with Varying Nodes Speed 64

5.6. Comparative between TCP and TCP-ELFN .. 65

5.6.1. Comparison of Packet Loss Between Standard TCP and TCP -ELFN with Varying

Node Density .. 65

5.6.2.Comparison of Average End-to-End Delay Between Standard TCP and TCP-ELFN

with Varying Node Density ... 66

5.6.3.Comparison of Normalized Routing Load Between Standard TCP and TCP-ELFN

with Varying Node Density ... 67

5.6.4. Comparison o f Packet Loss Between Standard TCP and TCP-ELFN with Varying

Node Speed .. 68

5.6.5. Comparison of Between Average End-to-End Delay Between Standard TCP and

TCP-ELFN with Varying Node Speed ... 69

5.6.6. Comparison of Normalized Routing Load Between Standard TCP and TCP-ELFN

with Varying Node Speed .. 70

5.7. Summary .. 71

CHAPTER SIX : CONCLUSION AND FUTURE WORK

6.1. Conclusion ... 72

6.2. Suggestions For Future Work ... 74

REFERENCES ... 75

APPENDIX ... 80

VIII

LIST OF FIGURES

Chapter one

Figure1. 1 Hidden Terminal .. 4

Chapter two

Figure 2. 1 TCP Header ... 11

Figure 2. 2 Slow star mechanisum ... 12

Chapter three

Figure 3. 1 Steps of a systematic simulation study (Mahbub, 2004) .. 23

Figure 3. 2 Example of NS-2 Trace File ... 27

Figure 3.2 Simulated Scenarios ... 28

Chapter Five

Figure 5. 1 Packet Loss for TCP with Varying Node Density ... 53

Figure 5. 2 Average end-to-end Delay for TCP with Varying Node Density .. 54

Figure 5. 3 Normalized Routing Load for TCP with Varying Node Density .. 55

Figure 5. 4 Packet Loss for TCP-ELFN with Varying Node Density.. 56

Figure 5. 5 Average end-to-end Delay for TCP-ELFN with Varying Node Density .. 57

Figure 5. 6 Normalized Routing Load for TCP-ELFN with Varying Node Density ... 58

Figure 5. 7 Packet Loss for Standard TCP with Varying Nodes Speed ... 59

Figure 5. 8 Packet Loss for Standard TCP with Varying Nodes Speed ... 60

Figure 5. 9 Normalized Routing Load for Standard TCP with Varying Nodes Speed 61

Figure 5. 10 Packet Loss for TCP-ELFN with Varying Nodes Speed ... 62

Figure 5.11 Average end-to-end Delay for TCP-ELFN with Varying Nodes Speed ... 63

IX

Figure 5. 12 Normalized Routing Load for TCP-ELFN with Varying Nodes Speed .. 64

Figure 5. 13 Packet Loss of TCP vs TCP-ELFN with Different Node Density... 65

Figure 5. 14 Average end to end Delay of TCP vs TCP-ELFN with Different Node Density 66

Figure 5. 15 Normalized Routing Load of TCP vs TCP-ELFN with Different Node Density 67

Figure 5. 16 Packet Loss of TCP vs TCP-ELFN with Different Nodes Speed .. 68

Figure 5. 17 Average end to end Delay of TCP vs TCP-ELFN with Different Nodes Speed 69

Figure 5. 18 Normalized Routing Load of TCP vs TCP-ELFN with Different Nodes Speed 70

X

 LIST OF TABLES

Table 1 Varying Settings for TCP and TCP-ELFN Simulations with Node Density .. 29

Table 2 Settings for TCP and TCP-ELFN Simulations with Varying Speed .. 29

XI

APPENDIX

A- Connection Pattern Script ………………….……….……………………..………………………..80

B- Scenario Generation Script …………………………………………………….…………….…….….90

XII

LIST OF ABBREVIATION

ACK Acknowledgement

AODV Adhoc On-demand Distance Vector

BDP Bandwidth-Delay Product

BIC Binary Increase Congestion

BS Base Station

cwnd Congestion Window

DSR Dynamic Source Routing

ECN Explicit Congestion Notification

ELFN Explicit Link Failure Notification

GPPL General Purpose Programming Languages

GUI Graphical User Interface

IP Internet Protocol

IPSEC Internet Protocol Security

IPv6 Internet Protocol Version 6

LL Link Layer

MAC Media Access Control

MANET Mobile Ad Hoc Network

http://en.wikipedia.org/wiki/Explicit_Congestion_Notification
http://www.techterms.com/definition/manet

XIII

M-TCP Mobile TCP

NRL Normalized Routing Load

NS Network Simulator

PSL Plain Simulation Language

RREP Route Reply

RREQ Route Request

RTT Round Trip Time

rwnd Receiver Window

SACK Selective Acknowledgment

SP Simulation Packages

TCL Tool Command Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

http://discolab.rutgers.edu/mtcp/
http://en.wikipedia.org/wiki/User_Datagram_Protocol

1

CHAPTER ONE

INTRODUCTION

Mobile ad hoc network has gained a lot of attention in recent years due to its

dynamic characteristics and its self-governing behaviour which does not require a fixed

infrastructure (Abduljalil et al., 2006). Numerous ongoing research are focusing on routing

protocols for example (Mittal, 2009), (Runcai et al, 2009), (Maan et al., 2011) and (Qian et

al., 2009). In this project, we are focusing towards the performance of TCP in mobile ad

hoc networks.

It is unavoidable to use TCP in mobile ad hoc network taking into account the applications

and services it can provide to the network users. Hence, this project is meant to bring

forward a specific issue related to TCP congestion control mechanism which is modified so

that it would give a better performance in mobile ad hoc network.

1.1. Introduction

The popularity of wireless network has been growing steadily. Wireless ad hoc networks

have been popular because they are very easy to implement without using base stations.

The wireless ad hoc networks are complex distributed systems that consist of wireless

mobile or static nodes that can freely and dynamically self-organize (Jain, et at., 2002).

The ad hoc networks allow nodes to seamlessly communicate in an area with no pre-

existing infrastructure. Future advanced technology of ad hoc network will allow the

forming of small ad hoc networks on campuses, during conferences and even in homes.

Furthermore, there is an increasing need for easily portable ad hoc networks in rescue

2

mission, especially for accessing rough terrains. However, the quick adaptation and ease of

configuration of ad hoc networks come at a price. In wireless ad hoc networks, route

changes and network partitions occur frequently due to the unconstrained network

topology changes. Moreover, this kind of network inherits the traditional problems of

wireless communication, such as unprotected outside signals or interferences, unreliable

wireless medium, asymmetric propagation properties of wireless channel, hidden and

exposed terminal phenomena, transmission rate limitation and blindly invoking congestion

control of transport layer. Although most of these limitations and complexities are due to

the lack of fixed backbone or infrastructure, building ad hoc network temporarily is not

only simple and easy to implement but also cost-effective and less time-consuming if

compared to an infrastructure network that needs to establish a based station and fixed

backbone. Among the above mentioned problems and limitations, the impact of transport

layer limitations is analyzed across ad hoc routing protocols throughout the network

topologies.

Transmission Control Protocol (TCP) (Postel, 1981) is the de facto standard designed to

provide reliable end-to-end delivery of data packet in the wired networks. Normally, TCP

is an independent protocol that is not related to the underlying network technology.

However, some assumptions of TCP, such as consideration of only static node, packet

losses due to congestion or buffer overflows are inspired from the features of wired

networks. In the wireless network, these assumptions may not be correct all the time due to

the rapid network topology changes, node movements and limited battery power. In order

to apply TCP to an ad hoc environment, TCP has to overcome many problems, such as

packet losses due to congestion, high bit errors, node mobility, longer delay and so on. The

following TCP versions, Tahoe (Stevens, 1997), Reno (Allman, 1999), NewReno (Floyd &

Fall, 1999), Vegas (Brakno et al., 1994) and Westwood (Gerla et al., 2002), are enhanced

3

versions of TCP and perform differently depending on how the routing protocols can

quickly adapt route changes due to link breaks in an ad hoc network environment.

1.2. IEEE 802.11 Challenges

The unique characteristics of ad-hoc designs impose several challenges in comparison

with single hop networks such as cellular networks or WLANs, when they run over 802.11

MAC protocol. The most serious challenge is the RTS/CTS handshaking implemented in

802.11, which is not efficient enough to prevent collisions due to large distribution of

mobile nodes and multi-hop function in ad-hoc networks. It has been proved through

analytical model and simulation experiments (Fu, et al., 2005) that RTS/CTS cannot

function well in topologies more than three hops (3 hop scenario) between sender and

receiver. For larger number of hops, the RTS/CTS exchange cannot prevent the existence

of famous hidden node problem. Mobile nature of ad-hoc networks, where each node may

experience different degree of channel contention and collision, is another problem, (Zhai

et al., 2006). The interaction between the MAC and higher layers has a significant effect

on the network performance.

1.3. Medium Contention and Spatial Reuse

The Hidden and Exposed terminals are defined based on transmission range and sensing

range of the nodes. Transmission range represents the range within which a packet is

successfully received if there is no interference from other radios. Sensing range is the

range within which a transmitter triggers carrier sense detection to sense an ongoing signal.

Spatial reuse facilitates maximum possible non-conflicting simultaneous transmissions in

MAC layer. A hidden terminal is the one that can neither sense the transmission of a

4

transmitter nor correctly receive the reservation packet (i.e. CTS control frame) from its

corresponding receiver (Zhai, et al., 2006). In other words, a hidden terminal is a node that

is within the transmission range of a receiver but out of the sensing range of an intended

transmitter. Therefore, it can interfere with an ongoing transmission at the receiver by

transmitting at the same time. Consider the scenario illustrated in Figure 1.1 to see the

cause of hidden nodes. Here node D is a hidden terminal while B is transmitting to C

because it is out of B‟s sensing range. Therefore, D‟s transmission collides with RTS

reception in C. After seven attempts, both B and D assume that C is unreachable and the

packets will be dropped (Armaghani & Jamuar, 2008), (Zhai, et al., 2006).This leads to

bandwidth wastage as both data transmissions are destroyed.

Figure1.1 Hidden Terminal (Armaghani & Jamuar, 2008)

1.4. Problem Statements

The history of TCP begins when reliability in the network has become an important aspect

of a network performance and highly demanded. TCP is used mainly for wired network in

which frequent congestion is expected and congestion avoidance mechanism belongs to

TCP such as slow start and exponential back off is exercised. Relatively, when TCP is

being used in wireless environment, it still conceives that congestion is the cause of packet

loss, not bit errors (Nehme, Phillips, & Robertson, 2003), (Stangel & Bharghavan, 1998).

5

 This confusion, will then temper the network performance as TCP will apply the

congestion control mechanism whenever it is experiencing packet loss in the network. The

congestion control mechanism in TCP will slows down the transfer rate unreasonably

causing the network to fall into a condition in which it is under utilizing the available

bandwidth (Chiasserini & Meo, 2001).

1.5. Research Questions

i. How can we improve the performance of TCP given the dynamics of mobile ad hoc

networks?

ii. Will TCP with Explicit Link Failure Notification (ELFN) increase the network

throughput?

1.6. Research Objectives

The main objective of this research is to enhance the performance of TCP in mobile ad hoc

network by incorporating Explicit Link Failure Notification into TCP’s mechanism. In

relation to this, other related objectives that worth pointing out are as follows:

i. To implement the Explicit Link Failure Notification (ELFN) mechanism into TCP

using NS-2.

ii. To study the impact of using Explicit Link Failure Notification (ELFN) with TCP

in mobile ad hoc network.

iii. To compare the performance of TCP in mobile ad hoc network with and without

the implementation of Explicit Link Failure Notification (ELFN).

6

1.7. Research Scope

The scope of this study includes the implementation of Explicit Link Failure Notification

into the standard TCP mechanism currently being used in wireless networks. The

implementation of this mechanism into TCP will then be evaluated using three significant

performance metrics which are listed below:

 Packet Loss

 End to end delay

 Normalized Routing Load

The scope of this research also covers the evaluation of the modified TCP performance

under several wireless ad hoc network conditions presented below:

 Nodes density

 Speed of travelling nodes

1.8. Research Significance

The main significance of this research is to improve performance of TCP by adding a

mechanism called Explicit Link Failure (ELFN). This mechanism is added into TCP which

is then implemented in a wireless ad hoc network.

The standard TCP was built and was optimized on a wired network, hence there are some

modification needs to be done, in this case, the congestion control mechanism, in order to

enhance the TCP performance in wireless ad hoc network.

7

1.9. Organization of the Project Report

This project is organized in six chapters as follows:

Chapter 1 presents a brief background and introduction to TCP and its enhanced

version that is using Explicit Link Failure Notification (ELFN). The chapter also

presents the research problem, scope, objectives, and contributions of this project as

well.

Chapter 2 is a literature review that includes a background material on TCP and its

related characteristics. This chapter will also present the general framework for this

project. The TCP enhancement using Explicit Link Failure Notification (ELFN) will

also be presented in this chapter.

Chapter 3 presents the methodology followed in studying the performance of the TCP

using Explicit Link Failure Notification (ELFN) when it is being simulated in a mobile

ad hoc network. It covers network topology and settings used in the experiments.

Chapter 4 presents the development simulation settings for the performance evaluation

of the TCP with Explicit Link Failure Notification (ELFN) in network simulator 2 (ns-

2) using Tool Command Language (TCL).

Chapter 5 presents a detailed performance evaluation of TCP with Explicit Link

Failure Notification (ELFN), and discussed the results based on the numerical results

obtained from simulations.

Chapter 6 presents the conclusions of the research work presented in this project and

provide some suggestions for further research.

8

CHAPTER TWO

 LITERATURE REVIEW

 Chapter 1 described generally the wireless issues that cause degradation in the

performance of the TCP in mobile ad hoc networks. This chapter provides the

background on transmission transport protocol (TCP) that forms the general framework of

this research. This chapter presents phases of TCP congestion control, namely Slow Start

and Congestion Avoidance. It discusses how the link failure phenomenon affects the

performance of TCP in MANET. Also, this chapter describes how ELFN can increase the

TCP performance.

2.1. Introduction

As mentioned in Chapter one, It is a requirement for every network to have some form of

reliable communication where the delivery of the packets to the destination is guaranteed.

For wired networks and static wireless networks Transmission Control Protocol (TCP) is

the connection oriented transport layer protocol that guarantees this functionality. It assures

in-order delivery of the packet and uses flow control and congestion control mechanisms

(Holland & Vaidya, 1999), (Caceres & Iftode, 1995). For ad hoc networks however the

standard TCP does not give satisfactory performance. In the ad hoc network the nodes are

traveling and there are no base stations. In other words the topology of the network is

constantly changing. The communication between the sender and receiver nodes occur

through other nodes in the network and each of the intermediate nodes is acting as a router

for the communication. The connection can have multiple hops. This causes performance

9

losses due to the high error rate, network congestion and possible connection failure (Xu &

Saadawi, 2001).

2.1. Transmission Control Protocol (TCP)

The most well-known common transport protocol is the Transmission Control Protocol

(TCP) (Postel, 1981). It lent its name to the title of the entire Internet Protocol Suite,

TCP/IP. TCP is the more complex protocol, due to its stateful design incorporating

reliable transmission and data stream services.

According to Jon Postel, Transport Control Protocol (TCP) has known to be a reliable

transport protocol with congestion control for delivering data traffic. TCP can deliver best-

effort service for error-intolerant and delay-tolerant data such as web, email, file transport,

etc. All those features of TCP make it suitable for the delivery of important, mission

critical, and error-free data which require a reliable data connection. TCP is not well suited

for streaming media due to its reliable in-order delivery and congestion control that can

cause random long delays (Aditya & Anurag, 2005). Its reliable in-order delivery

mechanism has to retransmit the packet if there is a packet loss happen during transmission

in the network (Caceres & Iftode, 1995), (Eshak & Baba, 2003). Packet loss in TCP is

detected either by time out or three duplicated acknowledgments received by sender from

the network. For this reason, if the transmission of streaming media is affected so much by

delays, it can affect the quality of service provided to end users. Hence, TCP is only

suitable for applications that rely on the reliability and can tolerate the delay like

traditional web applications, file transfer and email (Yousefi'zadeh, Habibi, & Furmanski,

2006).

Most real-time traffic ranges from interactive applications such as Voice over Internet

Protocol (VoIP) and video conferencing to non-interactive applications like audio and

10

video streaming commonly use unreliable transport protocol (UDP) as their transport

protocol. UDP provides the best transport platform to deliver error-tolerant and delay-

intolerant traffic. This is due to some features of UDP such as simpler connectionless

implementation, shorter packet header, no congestion control, no acknowledgment, no

retransmission, and etc.

Even UDP can serve real-time multimedia traffic very well; there is a friendliness issue

with other transport protocol like TCP which delivers reliable best-effort service for error-

intolerant and delay-tolerant data like World Wide Web, email, file transport, etc. In

competing with TCP traffic when there is bandwidth restriction, UDP traffic consumes

more and dominates all the bandwidth, and as a result, TCP traffic will be halted. The

same thing can happen when competing with other lower bandwidth applications, such as

wireless link, in which real-time traffic utilizing UDP would consume 100% of bandwidth

link utilization.

As mentioned in (Chydzinski & Brachman, 2010), nowadays, TCP Newreno is the most

commonly implemented algorithm while TCP SACK support is very common and is an

extension to TCP Reno and TCP New Reno. On the other hand, TCP CUBIC is a less

aggressive and more systematic derivative of TCP BIC, in which the window is a cubic

function of time since the last congestion event, with the inflection point set to the

window prior to the event. According to Y. Iwanaga et al. (Y. Iwanaga, 2010), most

Linux operating systems use TCP CUBIC (Sangtae Ha, 2008) by default, while they

natively support many other TCP variants.

TCP header is shown in Figure 2.1. It consists of many fields such as source port,

destination port, sequence number, acknowledgment number, and window etc. the value

11

in the “window” field determines the congestion window in a 16-bit field used to control

the congestion in the Internet (Mahbub & Raj, 2004).

Source port (16) Destination port (16)

Sequences (32)

Acknowledgment number (32)

Header
length

Reserved
(6)

Flags
(6)

Receiver window size

Checksum (16)

Urgent pointer data (16)

Options

Application data (variable length)

Figure 2.1 TCP Header (Mahbub & Raj, 2004)

TCP has received a lot of attention and fairly large number of researchers has tried to

optimize and improve TCP for different environments characterized by heterogeneous sub

networks with widely different bandwidths and latencies (for instance TCP over wireless

links, satellite links, slow serial links, etc.).

Experimental and analytical studies (Altman, et al. 2000) confirm that the current TCP

protocols have performance problems in networks with long propagation delay or long

delay link and relatively high link error rates, such as satellite networks (Durresi, et al.

2001), (Seungwan & Chulhyoe, 2004). From the view of TCP, the throughput is reciprocal

to the RTT of a connection, and it is approximately proportional to the congestion window

(cwnd) which represents the amount of unacknowledged data sender can have in transit

(Zhang, 1986). As a solution for the use of TCP over long delay link, some approaches

have been introduced as solutions, such as TCP-Peach and TCP-Hybla (Saad & Nitin,

2005).

12

2.2. Phases of TCP Congestion Control

In TCP congestion control, there are two phases, i.e. slow-start and congestion avoidance

phases. Each phase has its own purpose. The two subsections below describe briefly about

slow-start and congestion avoidance phases.

2.2.1. Slow Start

The standard TCP mechanism uses „slow start‟ method that temper the ongoing flow of

connections in the network (Rung-Shiang et al., 2005), (So-In, Jain, & Dommety, 2009).

Figure 2.2 presents the TCP congestion control mechanism.

Figure 2.2 TCP Congestion Control Mechanism (So-In, Jain, & Dommety, 2009)

When packets are lost due to network congestion, TCP will enter a „slow start‟ phase. In

this phase, TCP will sends out one packet and wait for the ACK. If nothing is received and

the timer expires, it will send again the same packet. In contrast, if the ACK is received, it

will sends out two packets, then it will wait for them to be acknowledged and increase

sending out the packet exponentially (Wing-Chung & Law., 2008).

13

Slow-start is one of the algorithms that TCP uses to control congestion inside the network.

It is also known as the exponential growth phase. Slow-start works by increasing the TCP

congestion window each time the acknowledgment is received (Minseok & Sonia, 2004).

It increases the window size by the number of segments acknowledged. This happens until

either an acknowledgment is not received for some segment or a predetermined threshold

value is reached. If a loss event occurs, TCP assumes there is a congestion and takes steps

to reduce the offered load on the network. Once a loss event has occurred or the threshold

has been reached, TCP enters the linear growth in congestion avoidance phase. At this

point, the window is increased by one segment for each RTT. This happens until a loss

event occurs (Hassan & Raj, 2001).

The algorithm begins in the exponential growth phase initially with a congestion window

size of one or two segments and increases it by one segment size for each ACK received.

This behavior effectively doubles the window size each round trip of the network. This

behavior continues until the congestion window size reaches the size of the receiver‟s

advertised window or until a loss occurs. Over long delay links, the slow-start algorithm

consumes too much time (Liang & Matta, 2001). It may take a number of RTTs in slow-

start before the connection begins to fully use the available bandwidth of the network. As a

solution to reduce the time consumed before achieving the available bandwidth is by using

aggressive exponential technique. Aggressive exponential can be used with TCP to request

a higher congestion window for long delay link networks (Hassan & Jain, 2004). In using

exponential, a host would indicate its desired rate in bytes per second using an Exponential

Option in the IP header of a packet. In Exponential, a TCP host, for example host A, would

indicate its desired sending rate in bytes per second, using an Exponential Option in the IP

header of a TCP packet. Each router along the path could, in turn; either approves the

requested rate, reduces the requested rate, or indicates that the Exponential Request is not

14

approved. In approving an Exponential Request, a router does not give preferential

treatment to subsequent packets from that connection; the router is only asserting that it is

currently underutilized and believes there is a sufficient available bandwidth to

accommodate the sender‟s requested rate. The Exponential mechanism can determine if

there are routers along the path that do not understand the Exponential Option, or have not

agreed to the Exponential rate request (Douglas, 2005).

 TCP host B communicates the final rate request to TCP host A in a transport- level

Exponential Response in an answering TCP packet. If the Exponential Request is approved

by all routers along the path, then the TCP host can send at up to the approved rate for a

window of data. Subsequent transmissions will be governed by the default TCP congestion

control mechanisms of that connection. If the Exponential Request is not approved, then

the sender would use the default congestion control mechanisms.

2.2.2. Congestion Avoidance

TCP utilizes the congestion window which can grow or shrink depends on the condition of

the network. In normal case, the current congestion window is halved, i.e. it is dropped

50% from the current value during congestion avoidance phase when a congestion event

via packet loss is detected. During congestion avoidance phase, packet loss is detected

through three duplicate ACKs or ECN marked packets (Archan, 2000). Congestion

window is one of the key components in TCP‟s congestion control, In TCP, congestion

window controls the number of packets a TCP flow may have in the network at any time.

However, long periods when the sender is idle or application-limited can lead to the

invalidation of the congestion window, in that the congestion window no longer reflects

current information about the state of the network (Ghazali, 2008).

15

Basically, congestion window is a parameter in TCP which buffers the packets in the

network. In TCP, the congestion detection is done through a mechanism where timeout

occurs or three duplicate acknowledgments are received by the sender (Floyd & Fall,

1999).

2.3. TCP Performance over Mobile Ad Ho Networks

The performance of TCP degrades significantly when used over networks that exhibit a

large Bandwidth-Delay Product (BDP) or long delay link networks. At any given point in

time, TCP‟s transmission rate cannot exceed the lesser of the congestion window (cwnd) or

the receiver‟s advertised window (rwnd) per Round Trip Time (RTT). As a result, the

congestion window size needs to be equal or exceed the BDP before TCP can fully utilize

the available bandwidth. However, when a connection is reestablished, TCP does not know

what bandwidth is available within the network, hence it does not know what the BDP is

and in turn what size the congestion window should be. One or more window growth

functions are required to increase the congestion window, ideally to a level that allows all

available bandwidth to be utilized, but prevents network resources from becoming

oversubscribed. As mentioned before, TCP variants use two algorithms known as slow-

start and congestion-avoidance to probe the network or capacity (Postel,1981).

The slow-start algorithm implements exponential window growth, which is designed to

start off slowly and probe for network capacity, doubling the congestion window size each

one RTT. Once an effective congestion window size has been achieved the congestion-

avoidance algorithm continues to probe for additional bandwidth, increasing the congestion

window in a linear fashion (Anjum & Jain, 2000). This approach works well when a small

congestion window size is required, since slow-start quickly opens the congestion window,

16

allowing the network capacity to be fully utilized. However, the performance of these

algorithms is degraded when the network exhibits a large BDP. Some research in TCP for

wireless networks was done to investigate the current transport protocols performance.

Current TCP protocols have lower throughput performance in satellite networks, mainly

due to the effects of long propagation delay and high link error rates. Both experimental

and analytical studies done by Lakshman et al. in (Lakshman, Upamanyu, & Bernhard,

2000) confirmed that the current TCP protocols have performance problems in networks

with long propagation delays and relatively high link error rates such as satellite networks.

From the view of TCP, the throughput is reciprocal to the RTT of a connection, and is

approximately proportional to the congestion window which represents the amount of

unacknowledged data the sender can have in transit to the receiver (Jiyong, Daedong,

Seongsoo, & Jungkeun, 2011).

In wireless environment, each time the base station (BS) detects a link failure or packet

loss, it sends back an ACK to the sender with a zero window size to drive the sender into

persist mode, and not drop it‟s congestion window (Hamrioui & Lalam, 2011). The BS

relays ACKs back to the sender only when the receiver has ACKed data in order to

maintain end-to-end semantics. This can lead to problems: for instance, assume that the

sender has transmitted one widow full of packets and is waiting for ACKs. Suppose the

receiver receives them all and ACKs the last transmission (TCP ACKs are cumulative) and

then immediately gets disconnected. If the BS relays back the ACK to sender, it will keep

transmitting eventually leading to packet loss and congestion window throttling. One could

send a duplicate ACK for the last segment, advertising a window size of zero, but such

duplicate ACKs may be ignored by the sender (Anjum & Jain, 2000).

Many factors should be taken into account in evaluating any TCP, they are as follows:

17

 Inter-operation with the existing infrastructure: To realize this goal, ideally, there

should not be any change required at intermediate routers or the sender because these

are likely to belong to other organizations, making them unavailable

formodifications. All approaches that split the connection into two parts require

substantial modification and processing at an intermediate node (BS). Some schemes,

such as EBSN, also require modification at the sender side. This makes it difficult for

these schemes to inter-operate with the existing infrastructure.

 Encrypted traffic: As network security is taken more and more seriously, encryption is

likely to be adopted very widely. For instance, IPSEC is becoming an integral part of

IPv6, the next generation IP protocol. In such cases the whole IP payload is

encrypted, so that the intermediate nodes (be it the base station or another router)

may not even know that the traffic being carried in the payload is TCP (Fairhurst, et

al., 2001), (Jiwei, et al., 2006). Sometimes data and ACKs can take different paths

(for instance, in ADHOC). Schemes based on “intermediary” involvement will have

serious problems.

Maintaining true end-to-end semantics: M-TCP does not maintain true end-to-end

semantics. But requires a substantial base-station involvement nonetheless. Thus there is a

need for true end-to-end signaling without involving any intermediary. If hundreds or

thousands of nodes are mobile in the domain of a base station, it could get overwhelmed

with the processing of traffic associated with each connection. When a mobile node moves

from the domain of one BS to another, the entire “state” of the connection (including any

data that was buffered for retransmissions) needs to be handed over to the new base station.

This can cause significant amount of overhead and might lead to the loss of some packets

and the sender dropping congestion window, which would defeat the original purpose

behind the whole endeavor (Ghanem, Elkilani, & Hadhoud, 2009).

18

2.4. Related Researches

Many Ad hoc routing protocols have been developed and implemented and categorized

into different classes.

2.4.1. DSR Routing Protocol

DSR (Johnson, Maltz, & Broch, 2001) was developed by CMU researchers is an on-

demand‟ routing protocol. It employs source routing wherein the source determines the

complete sequence of nodes through which a packet is to be routed. The TCP source

checks its route cache for a route to the destination, Whenever a TCP source has a packet

to transmit, a route request‟ broadcast is initiated In case no route is found. On receiving

this request, each node again broadcasts this request by appending its address to the request

packet until this packet reaches the destination. Then the destination sends a route reply to

the source containing the route from the source to the destination. When the route reply

reaches the source, a connection is established and all subsequent packets contain the

complete route in the packet header. DSR will broadcasts „route error‟ message when it

detects a route failure due to the motion of downstream neighbor. A packet which has no

suitable route to its destination temporarily will be reserved in send_buf during the route

discovery‟ period until it is sent out or dropped by DSR for its remaining in send_buf

longer than SEND_TIMEOUT.

2.4.2. AODV Routing Protocol

AODV (Kai, Neng, & Ai-fang, 2005) is a popular route protocol for Ad hoc network. This

protocol is a reactive protocol. In other words, it uses an on-demand mechanism which

means that it discovers routes only when a source node needs them.

19

It has ability to maintain routes even when the topology of the network is dynamic.

Reactive protocol like AODV is suited for MANET as it has low processing and memory

overhead and again it minimizes the overall network utilization. Moreover, this protocol

uses loop freedom mechanism through the use of sequence number for all routes. The way

AODV route request proceed in order to communicate throughout the network or desired

destination is as follows: Firstly, the source node initiates route discovery through

broadcasting Route Request (RREQ) packet then adjacent nodes will forward RREQ until

the packet either is reached at the destination or RREQ arrives at the node that has a new

fresh route to the destination. Secondly, a Route Reply (RREP) is sent by receiver to the

source (originated route). Once the sender-node receives a RREP, it can begin using this

path for data packet transmission. Upon link failure, Route Error (RERR) is sent back to

the source node. This important message is generated by the node that the link failure is

occurred at. The main difference between DSR-protocol and AODV protocol is that the

addresses of the intermediate node are accumulated on the DSR RREQ and RREP control

packets. To simplify more the way that DSR network exchanges the information, in the

network each node uses the information in the RREQ/RREP packets to know about routes

to other nodes in the network and store the routes information in their route caches. One

drawback of AODV protocol, and many other Ad hoc network protocols, is the single

route concept that requires a source node to establish a new route discovery process

whenever a link failure is come across in the current route (Abdule & Hassan, 2010).

2.4.3. TCP-F

TCP-F was proposed nodes to detect the route failures which rely on the network layer at

intermediate. In TCP-F, a TCP source can be in two states, active state and snooze state.

Transmission is controlled by the standard TCP when TCP source is in active state. The

20

intermediate node will explicitly send the TCP source a Route Failure Notification (RFN)

if it detects a link failure. After receiving the RFN, the TCP source will go into the snooze

state by stopping sending any further packet and freezing the value of TCP state variables

such as retransmission timer and congestion window size. The TCP source remains in the

„snooze‟ state until it is notified of the restoration of the route through a Route Re-

establishment Notification (RRN) from an intermediate node and then goes back to active

state (Chandran, el at, 1998).

2.4.4. ECP-ELFN

According to Monks, et al. (Monks, Sinha, & Bharghavan, 2000) ECP-ELFN is used the

feedback to notify source route failure too. But the congestion control mechanism of ECP-

ELFN is based on hop-by-hop rate control, not base on window control, which make it is

top-priority when a transmission require little jitter of sending rate. However, as other rate-

based congestion control algorithms, ECP-ELFN is slow-responsive to network

congestion, so it has more possibility to cause congestion or worsen the degree of network

congestion.

2.5. Explicit Link Failure Notification

Standard TCP misinterpret mobility loss in Ad hoc network as congestion loss, thus, it

reduce the TCP performance by invoking unnecessary congestion control action (King,

Phang, Ling, & Fong, 2007). Because of the reliable TCP that used in the wired networks

performs unsatisfactory and the overall throughput of the ad hoc network is low, so ELFN

play important role to increase the throughput. (Romanowicz, 2008). Chandran et al.

(Chandran, et al, 2001) propose a TCP-feed-back scheme that uses ELFN from the node

recently, Holland and Vaidya (Holland & Vaidya, 1999) revisit the properties of a TCP-

21

ELFN scheme and have provided valuable insight into how the an explicit link failure

notification scheme can improve upon TCP‟s performance.

 ELFN is one mechanism to manage link failures with dynamic cache update scheme to

improve the TCP performance considerably (Romanowicz, 2008), that mean ELFN is a

way to make TCP better handle cases when there are link failures, which is common in

Adhoc networks. Since all nodes acting as routers have the full TCP/IP protocols stack,

they have access to the routing protocols of the IP layer. The routing protocol can detect

the link failure when the next node in the connection goes out of range, and the packet

cannot be delivered. It sends the route error notification (RRER), which is flooded to all of

the nodes including the source node. The TCP/IP protocols stack can be altered to use the

RRER packet as the link failure notification. After the modifications, when the RRER

packet is received, TCP can distinguish this link failure from the congestion. It can enter

the “standby” mode by freezing the regular transmission of the packets until the connection

is reestablished and then resume the transmission. The routing protocol can be modified to

carry additional information in RRER packets, similar to the “host unreachable” ICMP

message such as: sender address and port. This can identify at the sender of which

connection this message is for (Romanowicz, 2008), (Shinde, Vinayak, Ramesh, & J,

2010). When sender receives the RRER packet and it detects that it is the source of the

original message, it can notify the TCP layer about this link failure. TCP will stopping

any more transmissions until a new route is computed, thereby preventing those

packets from being lost along the broken route; and freezing the state of the TCP

connection, thereby preventing it from cutting down its window size to one and

entering the slow-start phase (Mahbub & Raj, 2004). When the acknowledgement packet

is received TCP can leave the “standby” mode and restore the communication at the state

as it was before the link failure (Shinde, Vinayak, Ramesh, & J, 2010).

22

2.6. Summary

This chapter presented the related background of the topics covered in this project. This

chapter began with an overview of transmission control protocol TCP and its congestion

control mechanism. It discussed the issues of TCP congestion window control that are

related to this research. TCP issues in MANETs were discussed in this chapter as well.

It showed how link failure happens in MANET which degrades the performance of TCP

senders as the TCP source has to reinitiate a new global route discovery to all network

nodes which causes a significant network-overhead and congestion as well. That is the

reason for the motivation to address the main factors that can enhance the performance of

TCP in MANET. Furthermore, it covered ELFN technique developed to improve the TCP

performance.

In the next chapter, the experimental tool and the methodology used for carrying out this

research will be presented.

23

CHAPTER THREE

RESEARCH METHODOLOGY

3.1. Introduction

Research methodology defines the research steps and procedures. This section will

present the general research methodology in network simulation. Simulation has been

chosen as our technique to study the network system in this research. The general research

methodology for network simulation has been adapted from (Mahbub & Raj, 2004) where

the steps of systematic simulation study is presented as shown in Figure 3.1. Hence, the

same framework will be used in implementing this project.

Figure 3.1 Steps of a systematic simulation study (Mahbub & Raj, 2004)

6 Configure software procedure

relevant performance data

5 Construct model and set fixed

parameters in software

7 Execute simulation and collect

performance data

3 Select performance metrics

4 Select variable parameters

8 Present and interpret results

Presoftware Stage Software Stage

1

Define problem and objective

2

Design reference network

model and select fixed

parameters

24

3.2. Network Simulator 2 (NS-2)

Before presenting the steps that will be taken in conducting a systematic simulation study

as proposed previously, we have to choose the simulation tools in advance. There are

several tools available for simulating TCP/IP networks.

 In this section, we will be classify these tools into three main categories namely general

purpose programming languages (GPPL), plain simulation language (PSL) and finally

simulation packages (SP). Simulation packages are the highest level of simulation tools.

Generally, all simulation packages provides built in libraries for TCP/IP networks. Among

the simulation packages we have chosen Network Simulation 2 (NS-2) to implement this

project.

Network Simulator 2 is a public domain simulation package which is a discrete event

network simulator. It has been developed at UC Berkeley. At this point of writing, NS-2

has becoming one of the top choices for researchers especially in computer networks. NS-2

is being known for its capability in simulating advanced TCP/IP algorithms (Issariyakul,

2009). NS-2 is also an object-oriented simulator that is capable to simulate realistic

network topologies and characteristics. NS-2 is constructed using C++ language and also

object oriented TCL scripts.

3.3. Research Steps and Procedure

In this section the steps that are followed in conducting this research are presented

3.3.1. Defining Problem and Objectives

Defining problem and objectives of a research carried out perhaps is the most important

part of this project. We have presented the problem statements and objectives of this

25

research which can be referred to. The problem statements and objectives define the

purpose of the project‟s implementation.

3.3.2. Design Reference Network Model and Select Fixed Parameters

It is an obligatory step to design the network model required of the simulation that will be

performed. The reference network model here refers to the network topology that will be

used. After the network topology has been selected, we are required to set fixed parameters

for the network that is going to be simulated such as the mobility model, traffic load and

other related parameters settings.

3.3.3. Selecting Performance Metrics

This section will present the performance metrics that will be used to evaluate the

performance of the networks in this research. These performance metrics are also referred

to as output or response variables which are observed at the end of the simulation. In NS-2,

in order to get the performance metrics values for example throughput, we have to use

other scripts for example in this study we are using AWK script. Other scripting language

for example, Perl, can also be used. The performance metrics that will be used in this are

packet loss, average end to end delay, and normalize routing load achieved by each

simulation settings.

3.3.4. Selecting Variable Parameters

Selecting variable parameters is the next step to setup the simulation environment. In this

research, the variable parameters include the number of nodes values and the speed of

travelling nodes, representing node densities. Simulations will be repeated using varying

26

node density, and different speed of travelling nodes in order to evaluate the performance

of each simulation settings.

3.3.5. Construct Model and Set Fixed Parameters in Software

In this phase, we develop a constant setting to be used in the simulations to be applied with

all the variable parameters mentioned previously in NS-2. For this research, the fixed

parameters would be:

 Channel Type

 Propagation Model

 Network Interface Type

 MAC Type

 Interface Queue Type

 Antenna Model

 Maximum Packet in IFQ

 Simulation Time

 The Size of Simulation Area

 Routing Protocol

 Traffic Type

3.3.6. Configure Software to Produce Relevant Performance Data

This phase requires that the configuration and simulation settings done in NS-2 are relevant

to the objective of this research. Hence, the parameters specified as mentioned in section

3.5 and section 3.6 should be determined according to the objective of performance

evaluation conducted.

27

3.3.7. Execute Simulation and Collect Performance Data

For this project, execution of the simulation using NS-2 is done repetitively using different

values of speed of travelling nodes and number of nodes. After the simulation has been

executed, NS-2 will generate a trace file that contains all the information of the simulation

which can be extracted later using an AWK or PERL script.

The figure 3.2 shows an example of a trace file generated by NS-2.

Figure 3.2 Example of NS-2 Trace File

3.3.8. Present and Interpret Results

Result presentation for this research will be done using a tool called Microsoft Excel.

Microsoft Excel proposed as a tool allows to do software reconnaissance visually starting

from a set of trace files for different test cases. Microsoft Excel is a graphical tool for data

presentation . It has the ability to provide all matrices that are required for the network

performance study

3.4. Simulation Setup

The simulation will be carried out using the standard TCP and TCP that is enhanced with

Explicit Link Failure Mechanism. The scenarios consist of three different values for node

density with TCP and TCP-ELFN respectively, in addition to the three different values for

28

the speed of travelling nodes for TCP and TCP-ELFN respectively. Hence, in total, there

will be 12 scenarios that will be simulated. The organization of the simulated scenarios is

presented in the Figure 3.3 below. The performance of the two will be compared and

analyzed.

Figure 3.3 Simulated Scenarios

Standard

TCP

Node

Density

Node

Speed

30

50

100

5

10

20

TCP

ELFN

Node

Density

Node

Speed

30

50

100

5

10

20

29

Table 1 and Table 2, presents two different scenarios that will be carried out. The details of

the simulation parameters are shown in Table 1 and Table 2 below.

Table 1 Varying Settings for TCP and TCP-ELFN Simulations with Node Density

Table 2 Settings for TCP and TCP-ELFN Simulations with Varying Speed

Parameters Value

Channel Type WirelessChannel
Propagation Model TwoRayGround
Net Interface Type WirelessPhy
MAC Type 802.11
Interface Queue Type DropTail/PriQueue
Antenna Model OmniAntenna
Max Packet in IFQ 50
Transport Protocol TCP, TCP-ELFN
Simulation Time 100s
Number of Nodes 100
Speed of Nodes 5, 10,20 m/s
Max. Connections 0.5
Simulation Area 500x500m
Mobility Model Random Waypoint
Routing Protocol AODV
Packet Size 512 bytes
MAC Type 802.11

Parameters Value

Channel Type WirelessChannel
Propagation Model TwoRayGround
Net Interface Type WirelessPhy
MAC Type 802.11
Interface Queue Type DropTail/PriQueue
Antenna Model OmniAntenna
Max Packet in IFQ 50
Transport Protocol TCP, TCP-ELFN
Simulation Time 100s
Number of Nodes 30, 50, 100
Max. Connections 0.5
Simulation Area 500x500m
Mobility Model Random Waypoint
Routing Protocol AODV
Packet Size 512 bytes
MAC Type 802.11

30

3.5. Performance Metrics

 In this subsection, the performance metrics that is used to evaluate the network

performance is presented. This metrics are calculated based on the equations given.

The performance of the standard TCP and TCP-ELFN in mobile ad hoc network will be

studied based on three performance metrics which are the packet loss, average end-to-end

delay and the normalized routing load. Each metric is calculated using a set of AWK script

that is parsed with the simulation trace file in order to get the result. The simulation result

will be presented and discussed in the following subsection.

3.5.1. Packet Loss

 Measuring the performance of the network using packet loss is crucial in determining how

well the network reacts to congestion or in the case mobile ad hoc network, frequent link

failure. In order to measure the packet loss is calculated as follows:

PktDrop = Pktsent – Pktrecv

The AWK script that is used in order to calculate packet loss is as shown below:

BEGIN {

 sends=0;

 recvs=0;

 droppedPackets=0;

 }

 {

 time = $3;

31

 packet_id = $41;

CALCULATE PACKET DELIVERY FRACTION

 if (($1 == "s") && ($35 == "tcp") && ($19=="AGT"))

 { sends++;

 }

 if (($1 == "r") && ($35 == "tcp") && ($19=="AGT"))

 { recvs++;

 }

 # DROPPED dfrp PACKETS

 if (($1 == "d") && ($35 == "tcp") && ($3 > 0))

 {

 droppedPackets=droppedPackets+1;

 }

 #find the number of packets in the simulation

 if (packet_id > highest_packet_id)

 highest_packet_id = packet_id;

 }

 END {

 printf("Packet Sent = %.2f\n",sends);

 printf("Packet Receive = %.2f\n",recvs);

 printf("No. of dropped data (packets) = %d\n",droppedPackets);

 }

3.5.2. Normalized Routing Load (NRL)

Normalized routing load is defined by the quantity of routing packets being transmitted per

packet sent to the destination. NRL also assumes that each forwarded packet as one

32

transmission. NRL is immensely associated with the number of path or link changes or

disconnection that happened during the simulations.

𝑵𝑹𝑳 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒓𝒐𝒖𝒕𝒊𝒏𝒈 𝒑𝒂𝒄𝒌𝒆𝒕𝒔 𝒔𝒆𝒏𝒕

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒂𝒄𝒌𝒆𝒕𝒔 𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅

The Normalized Routing Load (NRL) calculation had been programmed into an AWK

script is presented below:

BEGIN {

 recvs = 1;

 routing_packets = 1

 }

{

if (($1 =="r") && ($35 =="tcp") && ($19=="AGT"))

recvs++;

if (($1 == "s" || $1 =="f") && ($19 == "RTR") && ($45 == "tcp"))

routing_packets++;

}

}

END{

printf("NRL = %.3f",routing_packets/recvs);

printf("Routing packets = %.3f\n",routing_packets);

33

printf("Received packets = %.3f\n",recvs);

}

3.5.3. Average End-to-End Delay

 When transmission of a packet between two nodes, the average delays between the

sending and the receiving is called the average end to end delay. Average end to end delay

depicts that, if the value is higher, it means that the network is experiencing congestion

hence causing the routing protocols not able to perform efficiently. The average end to end

delay is calculated as follows:

𝑨𝑬𝑬𝑫 =
𝒕𝒊𝒎𝒆𝒑𝒂𝒄𝒌𝒆𝒕𝒓𝒄𝒗𝒅𝒊 − 𝒕𝒊𝒎𝒆𝒑𝒂𝒄𝒌𝒆𝒕𝒔𝒆𝒏𝒕𝒊

𝒕𝒐𝒕𝒂𝒍𝒏𝒖𝒎𝒃𝒆𝒓𝒐𝒇𝒑𝒂𝒄𝒌𝒆𝒕𝒔𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅

𝒏

𝒊−𝟎

The end to end delay calculation had been programmed into an AWK script is presented

below:

BEGIN {

 sends = 0;

 recvs = 0;

 routing_packets = 0.0;

 highest_packet_id = 0;

 sum = 0;

 recvnum = 0;

 }

34

 {

 time = $3;

 packet_id = $41;

 # CALCULATE PACKET DELIVERY FRACTION

 if (($1 == "s") && ($35 == "tcp") && ($19=="AGT")) { sends++; }

 if (($1 == "r") && ($35 == "tcp") && ($19=="AGT")) { recvs++;

}

 # CALCULATE DELAY

 if (start_time[packet_id] == 0) start_time[packet_id] = time;

 if (($1 == "r") && ($35 == "tcp") && ($19=="AGT"))

 { end_time[packet_id] = time;

 }

 else { end_time[packet_id] = -1;

 }

 #FIND THE NUMBER OF PACKETS IN THE SIMULATION

 if (packet_id > highest_packet_id)

 highest_packet_id = packet_id;

 }

 END {

35

 for (i in end_time)

 {

 start = start_time[i];

 end = end_time[i];

 packet_duration = end - start;

 if (packet_duration > 0)

 { sum += packet_duration;

 recvnum++;

 }

 }

 delay = sum/recvnum;

 printf("Packet Sent = %.2f\n",sends);

 printf("Packet Receive = %.2f\n",recvs);

 printf("Average end-to-end Delay (ms)= %.2f\n",delay*1000);

 }

36

3.6. Summary

In this chapter we have presented the research methodology being use in this project. This

chapter has also presented the simulation setup of the experiments that is carried out in

details including the settings being used in the NS-2. The following chapter will present the

design and implementation of this project.

37

CHAPTER FOUR

DESIGN AND IMPLEMENTATION OF THE PERFORMANCE

 EVALUATION MODEL

While Chapter 3 presents the research methodology used for designing and

implementing the performance evaluation model designated for evaluating the standard

TCP and TCP-ELFN in mobile ad hoc network, this chapter presents the design

requirements and the implementation details of the performance evaluation model that are

done to satisfy the first objective.

4.1. Introduction

In order to develop a performance evaluation model in computer network, every

component in the network simulation must be defined. This includes the number of nodes,

the type of connection, type of traffic and mobility model being used.

The following subsection of this chapter presents the performance evaluation model that is

used in this project.

4.2. The Model Implementation

In this section, the codes and files required to implement and run the performance

evaluation model are presented.

38

4.2.1. Tool Command Language (TCL) Script

Tool Command Language (TCL) is utilized to implement the performance evaluation

model in Network Simulator 2 (ns-2). In the following, the details of TCL codes for

developing the performance evaluation model are provided.

 Define the type of the wireless channel

 set val(chan) Channel/WirelessChannel

 Define the radio-propagation model

 set val(prop) Propagation/TwoRayGround

 Define the network interface type

 set val(netif) Phy/WirelessPhy

 Define the MAC type

 set val(mac) Mac/802_11

 Define the queuing technique. The IF statement specify that, if the routing protocol

is DSR, the queuing technique will be CMUPriQueue.

 if { $par1=="DSR"} {

 set val(ifq) CMUPriQueue

 } else {

39

 set val(ifq) Queue/DropTail/PriQueue

 }

 Define the link layer type

 set val(ll) LL

 Define the antenna type

 set val(ant) Antenna/OmniAntenna

 Define the maximum number of packets in the interface queue

 set val(ifqlen) 50

 Define the routing protocol. $par1 refers to the value entered by user.

 set val(rp) $par1

 Define topography area by (x) and (y).

 set val(x) 500

40

 set val(y) 500

 Define the file for the trace file to written in.

 set val(tr) n20.tr

 Define the number of nodes. Example below shows number of node as 30.

 set val(nn) 30

 Specify the file name that has the traffic pattern of the simulation.

 set val(cp) $par2

 Specify the file name that has the traffic pattern of the simulation.

 set val(sc) $par3

 Specify time for the simulation to end.

 set val(stop) 100.0

41

 Instantiate the network simulator.

 set ns_ [new Simulator]

 To specify the file for the network simulator to write the trace on.

 set tracefd [open $val(tr) w]

 $ns_ trace-all $tracefd

 Use the new trace file format.

 $ns_ use-newtrace

 Define the topography of the simulation.

 set topo [new Topography]

 $topo load_flatgrid $val(x) $val(y)

 Create and setup the general operation director (god).

 set god_ [create-god $val(nn)]

42

 Redefined the variable for each node configuration.

 $ns_ node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -channel $chan_1_ \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace OFF

 For loop for the nodes.

 for {set i 0} {$i < $val(nn) } {incr i} {

43

 set node_($i) [$ns_ node]

 $node_($i) random-motion 0

 }

 Load the connection pattern or traffic file.

 puts "Loading connection pattern..."

 source $val(cp)

 Load the scenario file.

 puts "Loading scenario file..."

 source $val(sc)

 Define the initial position of the nodes.

 for {set i 0} {$i < $val(nn) } {incr i}

 {

 $ns_ initial_node_pos $node_($i) 20

 }

44

 Reset all the nodes when simulation ends.

 for {set i 0} {$i < $val(nn) } {incr i} {

 $ns_ at $val(stop).000000001 "$node_($i) reset";

}

 Exit and stop the network simulator when simulation ends.

 $ns_ at $val(stop).000000001 "puts \"NS EXITING...\"; $ns_ halt"

 Display „Start Simulation‟ for users when the simulation starts.

 puts "Start Simulation..."

 Run the ns-2 simulator according the what is defined in the TCL script

 $ns_ run

4.2.2. Connection Pattern Script

In this project we due to very large number of nodes simulated, we have used the

connection pattern script to specify the generation and transferring of traffic in the

network. The full script is included in the Appendices section of this report.

45

To create connection file, run

ns tcpgen.tcl [-type cbr | tcp] [-nn nodes] [-seed seed] [-mc connections] [-rate rate] >

connection_file_name

These command represent:

-type : type of connection CBR or TCP

-nn : number of nodes

-seed : seed value for the random-number generator

-mc : number of connection

-rate : transmission rate

> : save output this file in

4.2.3. Mobility Generation Script

Another script that is used in this simulation is the mobility generation file in which in this

script we specifies the initial position of each node, its destination and their related speed.

The full script for the mobility generation pattern is included in the Appendices section of

this report.

To create mobile node movement file, run

./setdest –n <num_of_nodes> -p <pausetime> -s <maxspeed> -t <simtime> -x <maxx> -y

<maxy> > movement_file_name

These command represent:

-n : number of nodes

46

-p : pause time for node to move again

-s : maximum speed

-t : simulation time

-x : maximum X dimension of the topography

-y : maximum Y dimension of the topography

> : save output this file in

4.3. Building TCL File

This section of coding we are indentified and set all data structure related with this work.

The code mentioned below represents an example of the code that should be put in the

TCL file.

#---

DEFINITION OF THE PHYSICAL LAYER

#---

set val(chan) Channel/WirelessChannel

set val(prop) Propagation/TwoRayGround

set val(netif) Phy/WirelessPhy

set val(mac) Mac/802_11

set val(ifq) Queue/DropTail/PriQueue

set val(ll) LL

set val(ant) Antenna/OmniAntenna

#---

SCENARIO PARAMETERS

#---

47

set val(x) 500 ;# X dimension of the topography

set val(y) 500 ;# Y dimension of the topography

set val(ifqlen) 50 ;# max packet in queue

set val(seed) 1.0 ;#random seed

set val(adhocRouting) ELFN

set val(nn) 30 ;# how many nodes are simulated

set val(cp) "tcp-30"

set val(sc) "scen1-30"

set val(stop) 100 ;# simulation time

#---

SET UP SIMULATOR OBJECTS

#---

CREATE SIMULATOR INSTANCE

 set ns_ [new Simulator]

SETUP TOPOGRAPHY OBJECT

 set topo [new Topography]

CREATE TRACE OBJECT FOR NS AND NAM

 set tracefd [open ELFN-60tcptraffic.tr w]

 $ns_ use-newtrace ;# use the new wireless trace file format

 set namtrace [open ELFN.nam w]

 $ns_ trace-all $tracefd

 $ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

DEFINE TOPOLOGY

 $topo load_flatgrid $val(x) $val(y)

CREATE GOD

 set god_ [create-god $val(nn)]

 $ns_ node-config -adhocRouting $val(adhocRouting) \

 -llType $val(ll) \

 -macType $val(mac) \

48

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -channelType $val(chan) \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace ON \

CREATE THE SPECIFIED NUMBER OF NODES [$VAL(NN)] AND "ATTACH" THEM

TO THE CHANNEL.

for {set i 0} {$i < $val(nn) } {incr i} {

 set node_($i) [$ns_ node]

 $node_($i) random-motion 0; # disable random motion

 }

DEFINE NODE MOVEMENT MODEL

 puts "Loading connection pattern..."

 source $val(cp)

DEFINE TRAFFIC MODEL

 puts "Loading scenario file..."

 source $val(sc)

#--

DEFINE NODE INITIAL POSITION IN NAM

50 DEFINES THE NODE SIZE IN NAM, MUST ADJUST IT ACCORDING TO YOUR

SCENARIO THE FUNCTION MUST BE CALLED AFTER MOBILITY MODEL IS DEFINED

49

PUTS "PROCESSING NODE $I"

#---

 for {set i 0} {$i < $val(nn)} {incr i} {

 $ns_ initial_node_pos $node_($i) 50

 }

TELL NODES WHEN THE SIMULATION ENDS

for {set i 0} {$i < $val(nn) } {incr i} {

 $ns_ at $val(stop).0 "$node_($i) reset";

 }

$ns_ at $val(stop).0002 "puts \"NS EXITING...\" ; $ns_ halt"

#---

DUMP THE INITIAL SIMULATION INFO TO THE TRACE FILE

--

puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp

$val(adhocRouting)"

puts $tracefd "M 0.0 sc $val(sc) cp $val(cp) seed $val(seed)"

puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)"

puts "Starting Simulation..."

$ns_ run

50

 4.4. Summary

This chapter presented the implementation part for the performance evaluation of the

standard TCP and TCP-ELFN. The TCL code that is used in this project had been

presented in details.

The next chapter will present the performance evaluation of both TCP mechanisms so that

their performance can be analyzed based on the numerical result that is obtained from the

simulation.

51

CHAPTER FIVE

EVALUATION AND RESULTS

While the previous chapter presents the design and implementation issues of the

performance evaluation setups developed to investigate the different performance between

the standard TCP and the TCP that is enhanced with ELFN, this chapter provides the

performance of these TCP based on the simulation results. It compares the performance of

TCP-ELFN, which includes an additional mechanism called explicit link failure

notification, to that of the standard TCP. The performance is compared in terms of the

packet loss, average end-to-end delay and normalized routing load.

5.1. Introduction

In this Chapter, we present the performance evaluation of both TCP mechanisms. First, we

run the simulations with the standard TCP and with TCP-ELFN to investigate their

performance when they are supplied with different number of nodes. This is important to

check how the performance of the network using the standard TCP and TCP-ELFN will be

when the node density is varied. For this experiment, we have set the speed of the

travelling nodes to a constant which is 10m/s. On the other hand, we have set the number

of nodes to be 30, 50 and 100 respectively for each simulation

Second, we run the simulations with the standard TCP and TCP-ELFN to investigate their

performance when the speed of the travelling nodes in the network is varied. In this

project, we have chosen the speed of 5 m/s, 10 m/s and 20 m/s to be studied. For this

experiment, we have set the number of nodes to a constant which is 100 nodes. On the

52

other hand, we have set the speed of the travelling nodes are 5 m/s, 10 m/s and 20 m/s

respectively for each simulation.

As mentioned in Chapter 3, the performance evaluation of these TCP and TCP-ELFN will

be evaluated using three different performances metric which are packet loss, average end-

to-end delay and normalized routing load. The AWK script that is used in calculating these

metrics has also been presented in Chapter 3.

The numeric result from TCP and TCP-ELFN simulations will later be compared in order

to investigate how both TCP behave when they are supplied with different number of

nodes in one case and in another case when they are supplied with varying nodes speed.

53

5.2. Performance of standard TCP with Varying Number of Nodes

 In this part of the experiments, we run the simulations with the standard TCP and

investigate its performance when it is supplied with different number of nodes. For the case

of using different number of nodes with standard TCP 30, 50, and 100 nodes.

5.2.1. Packet Loss for Standard TCP with Varying Number of Nodes

Packet loss results is a very noticeable performance issues, as mentioned in Chapter 3.

Packet drops degrades the performance of the TCP applications significatly when the

packet loss is high. For the case of using different number of nodes with standard TCP (30,

50, 100), the packets loss recorded the highest when number of nodes is set to 100.

Figure 5. 1 Packet Loss for TCP with Varying Node Density

Relatively, the result in Figure 5.1 shows an increasing pattern of packet loss when the

standard TCP is being used. The relevant behind this result is that, when the number of

54

nodes is increased, the amount of data being transferred into the network will also increase

causing congestion and finally leads to packet loss.

5.2.2. Average End-to-End Delay for Standard TCP with Varying Number of

Nodes

As defined in Chapter 3, the average end-to-end delay is defined as the average delay

between the sending and receiving of packet between two nodes. Figure 5.2 shows that, the

average end to end delay increased when the number of nodes is increased. When 30 nodes

are supplied into the network, the average end to end delay is 769.17 milliseconds. This

value increased to 967.51 milliseconds when the number of nodes is 50, and finally when

the node density is 100, the delay increases to 1008.39 milliseconds. So, when using the

standard TCP, the average end to end delay will increase with respect to the number of

nodes. This is due to the reason that, when there are many nodes in the network, the time it

takes to send a packet to a destination will increase respectively because of the busy

transmission between nodes and the network.

Figure 5. 2 Average end-to-end Delay for TCP with Varying Node Density

55

5.2.3. Normalized Routing Load for Standard TCP with Varying Number of

Nodes

As mentioned in Chapter 3, normalized routing load is defined by the quantity of routing

packets being transmitted per packet sent to the destination. NRL also assumes that each

forwarded packet as one transmission. NRL is immensely associated with the number of

path or link changes or disconnection that happened during the simulations. Figure 5.3

presents the results of standard TCP performance when it is being simulated with different

number of nodes. The result shows a drastic decrease of normalized routing load when the

number of nodes is increased to 100. In relation to TCP, the performance of the network

will be as presented in the Figure 5.6. When the simulation is repeated using TCP with

Explicit Link Failure Notification, we are expecting that the result will improve. This will

be presented in the later section.

Figure 5. 3 Normalized Routing Load for TCP with Varying Node Density

56

5.3. Performance of TCP-ELFN with Varying Number of Nodes

In this part of the experiments, we run the simulations with the TCP-ELFN and investigate

its performance when it is supplied with different number of nodes. For the case of using

different number of nodes with TCP-ELFN are 30, 50, and 100 nodes.

5.3.1. Packet Loss for TCP-ELFN with Varying Number of Nodes

This section will present the results of TCP-ELFN performance when it is supplied with

different number of nodes. Figure 5.4 shows that the packet loss of TCP-ELFN is 218

when the number of nodes is set to 30, and increased when nodes is increased to 50.

Finally, the amount of packet loss is increase to be 364 when the node is increased to 100.

This result is gained due to the reason that although there are more exchanges of

information or packet in the network when the number of nodes is set to 100, however,

with the enhancement in TCP-ELFN, the network is capable to handle such cases better.

Figure 5. 4 Packet Loss for TCP-ELFN with Varying Node Density

57

5.3.2. Average End-to-End Delay for TCP-ELFN with Varying Number of

Nodes

Figure 5.5 presents the result of the average end-to-end delay for TCP-ELFN with varying

node density. From the result we can see that as the number of nodes increased, the

average end to end delay also increases. With this result, we can deduced that, although

TCP-ELFN may reduce the number of packet loss as the number of node increases, the

average end to end delay remains increasing with respect to the number of nodes.

However, we are expecting that, the average end to end delay of TCP-ELFN will be lower

than the delay gained when the standard TCP is being used. This will be investigated in the

later section.

Figure 5. 5 Average End-to-End Delay for TCP-ELFN with Varying Node Density

58

5.3.3. Normalized Routing Load for TCP-ELFN with Varying Number of

Nodes

Figure 5.6 present the result in terms of the normalized routing load for TCP-ELFN with

varying node density. Here the simulation is performed similar to those before by

increasing number of nodes from 30 to 50 to 100.

In Figure 5.6 we can see that, the normalized routing load behavior is the same as in the

standard TCP in which it is increasing with respect to number of nodes.

However, this increasing pattern does not indicate that it has the same performance with

the standard TCP. The performance comparison of both TCP mechanisms will be

presented in later section.

Figure 5. 6 Normalized Routing Load for TCP-ELFN with Varying Node Density

59

5.4. Performance of standard TCP with Varying Nodes Speed

In this part of the experiments, we run the simulations with the standard TCP and

investigate its performance when the speed of the travelling nodes in the network is varied.

For case of using speed of the travelling nodes with standard TCP to be 5,10, and 20 m/s.

5.4.1. Packet Loss for Standard TCP with Varying Nodes Speed

Figure 5.7 presented the packet loss of the standard TCP when the speed of the travelling

nodes in the network is varied. In this project, we have chosen the speed of 5 m/s, 10 m/s

and 20 m/s to be studied. The result does not show a constant pattern, in other hand, the

amount of packet loss when the nodes is fixed to travel with the speed of 10 m/s has the

highest number of packet loss as compared to the network that the nodes moves at 5 m/s

and 20 m/s.

Figure 5. 7 Packet Loss for Standard TCP with Varying Nodes Speed

60

5.4.2. Average End-to-End Delay for Standard TCP with Varying Nodes Speed

Figure 5.8 presents the average end to end delay for the standard TCP when the node‟s

speed is varied. Similar to the packet loss, the average end to end delay is slightly

increased when the node‟s speed is increased to 10 m/s but is reduced when the speed is set

to 20 m/s. The relevant of this result is that, the fast movement of the nodes creates better

links for information to be transmitted.

Figure 5. 8 Average End to End Delay for Standard TCP with Varying Nodes Speed

61

5.4.3. Normalized Routing Load for Standard TCP with Varying Nodes Speed

Figure 5.9 present the result of the standard TCP in terms of normalized routing load when

it is supplied with networks of different node‟s speed. From the figure we can deduced

that, as the number of speed increased, the frequency of link breakage is higher hence

higher routing load will be in the network. This is due to the reason that, as the node move

faster, one link will be disconnected from the other due to that movement, hence causing

the need to re-establish the route more frequently.

Figure 5. 9 Normalized Routing Load for Standard TCP with Varying Nodes Speed

62

5.5. Performance of standard TCP-ELFN with Varying Nodes Speed

In this part of the experiments, we run the simulations with the TCP-ELFN and investigate

its performance when the speed of the travelling nodes in the network is varied. For case of

using speed of the travelling nodes with TCP-ELFN to be 5,10, and 20 m/s.

5.5.1. Packet Loss for TCP-ELFN with Varying Nodes Speed

Figure 5.10 presents the packet loss for TCP-ELFN when the node‟s speed in the network

is varied. We can deduce from the result that the packet loss is decreasing dramatically

when the speed of nodes in the network is increased to 20 m/s. This is due to the behaviour

of explicit link failure notification mechanism in which it provides the TCP sender with

information about link and route failures so that it can avoid responding to the failures as if

congestion occurred.

Figure 5. 10 Packet Loss for TCP-ELFN with Varying Nodes Speed

63

5.5.2. Average End-to-End Delay for TCP-ELFN with Varying Nodes Speed

Figure 5.11 presents the average end to end delay for TCP-ELFN with varying nodes

speed. We can see that as the speed is increased to 10 m/s the delay increases dramatically

while when it is increased to 20 m/s the end to end delay decreased to 1042.17

milliseconds.

Figure 5. 11 Average End to End Delay for TCP-ELFN with Varying Nodes Speed

64

 5.5.3. Normalized Routing Load for TCP-ELFN with Varying Nodes Speed

Figure 5.12 presents the normalized routing load for TCP-ELFN when the node‟s speed is

varied by 5 m/s, 10 m/s and 20 m/s.

From the result shown in the figure, we can see an increasing pattern of the normalized

routing load. However, the difference is subtle.

Figure 5. 12 Normalized Routing Load for TCP-ELFN with Varying Nodes Speed

65

5.6. Comparative between Standard TCP and TCP-ELFN

The third objective of this research is to compare the performance of TCP in mobile ad hoc

network with and without the implementation of ELFN. Therefore, this section presents

comparison of the standard TCP to TCP with the TCP enhanced with Explicit Link Failure

Notification (ELFN).

5.6.1. Comparison of Packet Loss between Standard TCP and TCP-ELFN with

Varying Node Density

Figure 5.13 presents the performance comparison of the standard TCP and TCP-ELFN.

From all the three settings of node density (10, 30, 50), the result have shown that TCP-

ELFN performed better as it produced less packet losses with all the three node density.

Even though both TCP mechanisms shows an increasing pattern of packet loss as the

number of node increases, the amount of the packet losses at each value of node density

shows that TCP-ELFN has lower packet losses which is more preferable in any network.

Figure 5. 13 Packet Loss of TCP vs TCP-ELFN with Different Node Density

66

5.6.2. Comparison of Average End-to-End Delay between Standard TCP and

TCP-ELFN with Varying Node Density

Figure 4.14 presents the performance comparison of the standard TCP and TCP-ELFN in

terms of average end to end delay.

From the figure we can see that, regardless of the number of nodes being supplied into the

network, the average end to end delay of TCP-ELFN is much lower as compared to the

standard TCP.

Figure 5. 14 Average End to End Delay of TCP vs TCP-ELFN with Different Node Density

67

5.6.3. Comparison of Normalized Routing Load between Standard TCP and

TCP-ELFN with Varying Node Density

Figure 5.14 below presents the performance comparison of the standard TCP and TCP-

ELFN when it is supplied with different number of nodes. The figure shows an interesting

pattern of the normalized routing load of both TCP mechanisms.

When the nodes are set to 30 and 50, the normalized routing load for TCP-ELFN is much

higher than the standard TCP. However, when the number of nodes is 100, TCP-ELFN

exceeds the standard TCP performance by having lesser normalized routing load.

Figure 5. 15 Normalized Routing Load of TCP vs TCP-ELFN with Different Node Density

68

5.6.4. Comparison of Packet Loss between Standard TCP and TCP-ELFN

with Varying Node Speed

Figure 5.16 present the performance comparison of the standard TCP and TCP-ELFN in

terms of packet loss when the speed of the travelling nodes is varied. The figure presents a

very clear picture that TCP-ELFN performs better than the standard TCP when it comes to

packet losses.

The figure also shows that the packet loss decreases dramatically when TCP-ELFN is

being used. The reasons as to why such performance is gained will be discussed in the next

chapter.

Figure 5. 16 Packet Loss of TCP vs TCP-ELFN with Different Nodes Speed

69

5.6.5. Comparison of between Average End-to-End Delay between Standard

TCP and TCP-ELFN with Varying Node Speed

Figure 5.17 presents the performance comparison of the standard TCP and TCP-ELFN in

terms of average end to end delay when the network is set up to have different values for

node‟s speed.

 The figure presented that in all three cases where the node‟s speed is set to 5 m/s, 10 m/s

and 20 m/s respectively, standard TCP perform much better by introducing lesser delay as

compared to the TCP-ELFN.

Figure 5. 17 Average End to End Delay of TCP vs TCP-ELFN with Different Nodes Speed

70

5.6.6. Comparison of Normalized Routing Load between Standard TCP and

TCP-ELFN with Varying Node Speed

Figure 5.18 presents the performance of the standard TCP and TCP-ELFN in terms of

normalized routing load when the network is supplied with different nodes speed. From the

figure we can deduced that TCP-ELFN managed to outperform the standard TCP with its

explicit link failure notification mechanism.

Figure 5. 18 Normalized Routing Load of TCP vs TCP-ELFN with Different Nodes Speed

71

5.7. Summary

In this chapter, we have presented a thorough performance result for the standard TCP and

TCP with explicit link failure notification. We have also presented the performance

comparison of these TCP mechanisms. The next chapter will discuss further on the

relevance of the performance results that we have gained in this chapter.

72

CHAPTER SIX

CONCLUSION AND FUTURE WORK

 While Chapter 5 dedicated for presenting the performance analysis of the standard

TCP and TCP enhanced with Explicit Link Failure Notification in terms of packet loss,

average end to end delay, and normalized routing load based on the numerical results

obtained from the simulation, this chapter provide the conclusion of the project as a whole.

This chapter will also include some suggestions for future work than can be done in the

related area.

6.1. Conclusion

In this project, we have studied the effects of mobility and node density on TCP

performance in mobile ad hoc network. We have chosen the standard TCP to be compared

with TCP-ELFN. Since TCP/IP is a standard network protocol on the Internet, its usage in

mobile ad hoc networks is something that is assured. It does not only support a good

number of applications but also allow us to seamlessly make use of the Internet. However,

many researches that had been carried out have shown that TCP suffers from performance

degradation when it is being use in wireless networks due to many factors. Therefore, this

project is presented in order to address this issue and to provide its share on this matter.

Additionally, this project was carried out to also address the issue of TCP which is used

mainly for wired network in which frequent congestion is expected and congestion

avoidance mechanism belongs to TCP such as slow start and exponential back off is

exercised. Relatively, when TCP is being used in wireless environment, it still conceives

73

that congestion is the cause of packet loss, not bit errors. This confusion, will then temper

the network performance as the standard TCP will apply the congestion control

mechanism whenever it is experiencing packet loss in the network. The congestion control

mechanism in standard TCP will slow down the transfer rate unreasonably causing the

network to fall into a condition in which it is under utilizing the available bandwidth.

TCP-ELFN addresses the issue of the standard TCP in which the standard TCP treats losses

induced by route failures as signs of network congestion.

In order to achieve the objectives mentioned in Chapter one, we have presented this

project to fulfil these objectives which are to implement and study the impact of

comprising TCP-ELFN into mobile ad hoc network simulation, we have also presented the

performance comparison of these TCP mechanisms.

From the results presented in Chapter five, we may conclude that the better performance

of TCP-ELFN over the standard TCP is due to the reason that, TCP-ELFN provides the

TCP sender with information about link and route failures so that it can avoid responding

to the failures as if congestion occurred. This means that the TCP performance can be

improved by utilizing ELFN in mobile ad hoc. As from the evaluation performance study

we have found that TCP with ELFN provides more throughputs compared to standard

TCP.

We have seen a significant performance of the simulated mobile ad hoc network when it is

supplied with different mobility and node density when TCP-ELFN is in use instead of the

standard TCP.

74

6.2. Suggestions for Future Work

For future work, we would like to suggest the inclusion of other mobile ad hoc routing

protocols on the performance of TCP. In addition to this, this project‟s scalability can be

increased by including more number of nodes and more values for nodes speed so that the

overall behaviour of the TCP performance can be expanded and studied more thoroughly.

Furthermore, the impact of link layer on the performance of TCP can also be studied. This

includes aggregate delay which is caused by local retransmissions over multiple wireless

hops. More in depth research are required in order to thoroughly understand the complex

interaction between TCP and the lower layer protocols.

Further studies may also include the solutions to these problems in order to provide greater

improvement for TCP performance especially in mobile ad hoc networks.

75

REFERENCES

Abdule, S. M., & Hassan, S. (2010). Divert Failure Route Protocol Based on AODV.

Network Applications Protocols and Services (NETAPPS), 2010 Second

International Conference on , p.p 67 - 71.

Abduljalil, F. M., Bodhe, S. K. (2006). Integrated routing protocol (IRP) for integration of

cellular IP and mobile ad hoc networks. Sensor Networks, Ubiquitous, and

Trustworthy Computing, 2006. IEEE International Conference on , vol.1, no., pp.4

pp.

Aditya, K., & Anurag, K. (2005). Performance of TCP congestion control with explicit

rate feedback. IEEE/ACM Trans. Netw., 13(1), 108-120.

Allman, M. (1999). TCP Congestion Control, Request for comment 2581.

Altman, E., Barakat, C., Laborde, E., Brown, P., & Collange, D. (2000). Fairness analysis

of TCP/IP. Paper presented at the Decision and Control, 2000. Proceedings of the

39th IEEE Conference on.

Anjum, F., & Jain, R. (2000). Performance of TCP over lossy upstream and downstream

links with link-level retransmissions. Paper presented at the Networks, 2000.

(ICON 2000). Proceedings. IEEE International Conference on.

Archan, M. (2000). Dynamics of tcp congestion avoidance with random drop and random

marking queues. University of Maryland at College Park.

Armaghani, F. R., & Jamuar, S. S. (2008). TCP-MAC Interaction in Multi-hop Ad-hoc

Networks.

Bakre, A., & Badrinath, B. R. (1995). I-TCP: indirect TCP for mobile hosts. Paper

presented at the Distributed Computing Systems, 1995. Proceedings of the 15th

International Conference on.

Brakno, L. S., O'Malley, S. W., & Peterson, L. L. (1994). TCP Vegas: new techniques for

congestion detection and avoidance, ACM SIGCOMM Computer Communication

Review, Vol. 24, No. 4, pp. 24-35.

Caceres, R., & Iftode, L. (1995). Improving the performance of reliable transport protocols

in mobile computing environments. Selected Areas in Communications, IEEE

Journal on, 13(5), 850-857.

Chandran, K., Raghunathan, S., Venkatesan, S., & Prakash, R. (2001). A Feedback Based

Scheme for Improving TCP Performance in Ad-hoc Network. 18th International

Conference on Distributed Computing Systems 1998 (pp. 34-39). IEEE 2001.

Chiasserini, C. F., & Meo, M. (2001). Improving TCP over wireless through adaptive link

layer setting. Global Telecommunications Conference, 2001. GLOBECOM '01.

IEEE , vol.3, no., pp.1766-1770

76

Chydzinski, A., & Brachman, A. (2010). Performance of AQM Routers in the Presence of

New TCP Variants. Paper presented at the Advances in Future Internet (AFIN),

2010 Second International Conference on.

Douglas, E., C. (2005). Internetworking with TCP/IP (5nd ed.), vol. I: Prentice-Hall, Inc.

Durresi, A. A., Sridharan, M., Chunlei, L., Goyal, M., & Jain, R. (2001). Congestion

control using multilevel explicit congestion notification in satellite networks. Paper

presented at the Computer Communications and Networks, 2001. Proceedings.

Tenth International Conference on.

Eshak, N., & Baba, M. D. (2003). Improving TCP performance in mobile ad hoc networks.

Paper presented at the Communications, 2003. APCC 2003. The 9th Asia-Pacific

Conference on.

Fairhurst, G., Samaraweera, N. K. G., Sooriyabandara, M., Harun, H., Hodson, K., &

Donadio, R. (2001). Performance issues in asymmetric TCP service provision

using broadband satellite. Communications, IEE Proceedings-, 148(2),pp. 95-99.

Floyd, S., & Fall, K. (1999). Promoting the use of end-to-end congestion control in the

Internet. Networking, IEEE/ACM Transactions on, 7(4),pp. 458-472.

Fu, Z., Luo, H., Zerfos, P., Lu, S., Zhang, L., & Gerla, M. (2005). The impact of multihop

wireless channel on TCP performance. IEEE Transactions on Mobile Computing,

4(2), pp. 209-221.

Gerla, M., Sanadidi, M. Y., Zanella, R. W., Casetti, A., & Mascolo, S. (2002). TCP

Westwood: congestion window control using bandwidth estimation. IEEE Global

Telecommunications Conference, pp. 1698-1702, 0-7803-7206-9, San Antonio,

August 2002, IEEE Computer Society,TX.

Ghanem, T. F., Elkilani, W. S., & Hadhoud, M. M. (2009). Improving TCP performance

over Mobile Ad Hoc Networks using an adaptive backoff response approach.

Paper presented at the Networking and Media Convergence, 2009. ICNM 2009.

International Conference on.

Ghazali, O. (2008). Scaleable and Smooth TCP-friendly receiver-based layered multicast

protoco. Ph.D. Thesis, Universiti Utara Malaysia

Hamrioui, S., & Lalam, M. (2011). IB-MAC: Improvement of the backoff algorithm for

better MAC - TCP protocols interactions in MANET. Paper presented at the

Programming and Systems (ISPS), 2011 10th International Symposium on.

Hassan, M., & Jain, R. (2004). High Performance TCP/IP Networking: Concepts, Issues,

and Solutions: Pearson Prentice Hall.

Hassan, M., & Raj, J. (2001). TCP performance. Communications Magazine, IEEE, 39(4),

pp.51-51.

Holland, G., & Vaidya, N. (1999). Analysis of tcp performance over Mobile Ad-Hoc

Network. Proceedings of ACM MOBIOM 1999, pp. 257-261 .

77

Issariyakul, T., Hossain, E. (2009). Introduction to Network Simulator NS2, US:Springer.

Jain, A., Pruthi, A., Thakur, R. C., & Bhatia, M. P., S. (2002). TCP analysis over wireless

mobile ad hoc networks. Paper presented at the Personal Wireless

Communications, 2002 IEEE International Conference on.

Jiwei, C., Yeng Zhong, L., Gerla, M., & Sanadidi, M. Y. (2006). TCP with Delayed Ack

for Wireless Networks. Paper presented at the Broadband Communications,

Networks and Systems, 2006. BROADNETS 2006. 3rd International Conference

on.

Jiyong, P., Daedong, P., Seongsoo, H., & Jungkeun, P. (2011). Preventing TCP

performance interference on asymmetric links using ACKs-first variable-size

queuing. Comput. Commun., 34(6), pp.730-742.

Johanson, D., Maltz, D. A., & Broch, J. (2001). The Dynamic Source Routing Protocol for

Mobile Ad Hoc Networks (draft-ietf-manet-dsr-06.txt). Mobile Ad-hoc

Network(MANET) Working Group, IETF .

Kai, Z., Neng, W., & Ai-fang, L. (2005). A new AODV based clustering routing protocol.

Wireless Communications, Networking and Mobile Computing, International

Conference on 2005 , vol 2, pp 728 - 731.

Lakshman, T. V., Upamanyu, M., & Bernhard, S. (2000). TCP/IP performance with

random loss and bidirectional congestion. IEEE/ACM Trans. Netw., 8(5), pp. 541-

555.

Liang, G., & Matta, I. (2001). The war between mice and elephants. Paper presented at the

Network Protocols, 2001. Ninth International Conference on.

Maan, F.; Mazhar, N. (2011). MANET routing protocols vs mobility models: A

performance evaluation. Ubiquitous and Future Networks (ICUFN), 2011 Third

International Conference on , vol., no., pp.179-184, 15-17

Mahbub, H., Raj, J. (2004). High Performance TCP/IP Networking: Concept, Issues and

Solution. Pearson Prentice Hall.

Minseok, K., & Sonia, F. (2004). On TCP reaction to Explicit Congestion Notification. J.

High Speed Netw., 13(2), pp.123-138.

Mittal, S. & Kaur, P. (2009). Performance Comparison of AODV, DSR and ZRP Routing

Protocols in MANET'S. Advances in Computing, Control, & Telecommunication

Technologies, 2009. ACT '09. International Conference on , vol., no., pp.165-168.

Monks, J. P., Sinha, P., & Bharghavan, V. (2000). Enhancements and Limitations of TCP-

ELFN for Ad Hoc Networks. Proceedings of The 7th International Workshop on

Mobile Multimedia Communications. MoMuC 2000.

78

Nehme, A., Phillips, W., & Robertson, W. (2003). The effect of reordering and dropping

packets on TCP over a slow wireless link. Electrical and Computer Engineering,

2003. IEEE CCECE 2003. Canadian Conference on , vol.3, no., pp. 1555- 1558.

Postel, J. (1981). Transmission Control Protocol. RFC 0793, Internet Engineering Task

Qian Feng, Zhongmin Cai, Jin Yang, & Xunchao Hu. (2009). A Performance Comparison

of the Ad Hoc Network Protocols. Computer Science and Engineering, 2009.

WCSE '09. Second International Workshop on , vol.2, no., pp.293-297.

Romanowicz, E. (2008). TCP with Explicit Link Failure Notification. Department of

Computer Science, York University, Toronto, Canada ,page 1-9.

Rung-Shiang Cheng, Hui-Tang Lin, Wen-Shyang Hwang, & Ce-Kuen Shieh. (2005).

Improving the ramping up behavior of TCP slow start. Advanced Information

Networking and Applications, 2005. AINA 2005. 19th International Conference

on , vol.1, no., pp. 807- 812.

Saad, B., & Nitin, H. V. (2005). "De-randomizing" congestion losses to improve TCP

performance over wired-wireless networks. IEEE/ACM Trans. Netw., 13(3), pp.

596-608.

Sangtae Ha, I. R., & Lisong Xu (2008). CUBIC: A New TCP-Friendly High-Speed TCP

Variant. ACM SIGOPS Operating Systems Review - Research and Developments

in the Linux Kernel, pp. 64–74.

Seungwan, R., & Chulhyoe, C. (2004). PI-PD-Controller for Robust and Adaptive Queue

Management for Supporting TCP Congestion Control. Paper presented at the

Proceedings of the 37th annual symposium on Simulation.

Stangel, M., & Bharghavan, V. (1998). Improving TCP performance in mobile computing

environments. Paper presented at the Communications, 1998. ICC 98. Conference

Record.1998 IEEE International Conference on.

Shinde, S. C., Vinayak, J., Ramesh, N., & J, H. (2010). AN EXPLICIT LINK FAILURE

NOTIFICATION WITH DYNAMIC CACHE UPDATE SCHEME TO

IMPROVE TCP PERFORMANCE USING DSR PROTOCOL IN MANET.

Suneel C Shinde et. al. / International Journal of Engineering Science and

Technology Vol. 2(6), 2010, pp. 2263-2271.

So-In, C., Jain, R., & Dommety, G. (2009). PETS: Persistent TCP using Simple Freeze.

First International Conference on Future Information Networks, October 14-17,

Beijing, China .

Stevens, W. (1997). TCP Slow Start, Congestion Avoidance, Fast Retransmit, Request for

comment 2001.

Wing-Chung, H., & Law, K.L.E. (2008). Simple slow-start and a fair congestion

avoidance for TCP communications. Electrical and Computer Engineering, 2008.

CCECE 2008. Canadian Conference on , vol., no., pp.001771-001774.

79

Xu, S., & Saadawi, T. (2001). Revealing and solving the TCP instability problem in

802.11 based multi-hop mobile ad hoc networks. Vehicular Technology

Conference, 2001. VTC 2001 Fall. IEEE VTS (pp. vol. (1), pp 257-261). IEEE.

Y. Iwanaga, K. D. Cavendish, M.Tsuru, and Y. Oie. (2010). High-speed tcp performance

characterization under various operating systems. Paper presented at the 5th

International Conference on Mobile Computing and Ubiquitous Networking

(ICMU 2010), Seattle USA.

Yousefi'zadeh, H., Habibi, A., & Furmanski, W. (2006). A Performance Comparison

Study of End-to-End Congestion Control Protocols over MIMO Fading Channels.

Paper presented at the Military Communications Conference, 2006. MILCOM

2006. IEEE.

Zhai, H., Wang, J., Chen, X., & Fang, Y. (2006). Medium access control in mobile ad hoc

networks: challenges and solutions. Wireless Communications and Mobile

Computing, 6(2), 151-170.

Zhang, L. (1986). Why TCP timers don't work well. Paper presented at the Proceedings of

the ACM SIGCOMM conference on Communications architectures \&

protocols.

Zhou, J., Shi, B., Zou, L., & Shen, H. (2003). Improve TCP Performance in Ad Hoc

network.

80

APPENDIX

A- Connection Pattern Script

nodes: 30, max conn: 0.5, send rate: 0.0, seed: 1

1 connecting to 2 at time 2.5568388786897245

set tcp_(0) [$ns_ create-connection TCP $node_(1) TCPSink $node_(2) 0]

$tcp_(0) set window_ 32

$tcp_(0) set packetSize_ 512

set ftp_(0) [$tcp_(0) attach-source FTP]

$ns_ at 2.5568388786897245 "$ftp_(0) start"

4 connecting to 5 at time 56.333118917575632

set tcp_(1) [$ns_ create-connection TCP $node_(4) TCPSink $node_(5) 0]

$tcp_(1) set window_ 32

$tcp_(1) set packetSize_ 512

set ftp_(1) [$tcp_(1) attach-source FTP]

81

$ns_ at 56.333118917575632 "$ftp_(1) start"

4 connecting to 6 at time 146.96568928983328

set tcp_(2) [$ns_ create-connection TCP $node_(4) TCPSink $node_(6) 0]

$tcp_(2) set window_ 32

$tcp_(2) set packetSize_ 512

set ftp_(2) [$tcp_(2) attach-source FTP]

$ns_ at 146.96568928983328 "$ftp_(2) start"

6 connecting to 7 at time 55.634230382570173

set tcp_(3) [$ns_ create-connection TCP $node_(6) TCPSink $node_(7) 0]

$tcp_(3) set window_ 32

$tcp_(3) set packetSize_ 512

set ftp_(3) [$tcp_(3) attach-source FTP]

$ns_ at 55.634230382570173 "$ftp_(3) start"

7 connecting to 8 at time 29.546173154165118

set tcp_(4) [$ns_ create-connection TCP $node_(7) TCPSink $node_(8) 0]

$tcp_(4) set window_ 32

82

$tcp_(4) set packetSize_ 512

set ftp_(4) [$tcp_(4) attach-source FTP]

$ns_ at 29.546173154165118 "$ftp_(4) start"

7 connecting to 9 at time 7.7030203154790309

set tcp_(5) [$ns_ create-connection TCP $node_(7) TCPSink $node_(9) 0]

$tcp_(5) set window_ 32

$tcp_(5) set packetSize_ 512

set ftp_(5) [$tcp_(5) attach-source FTP]

$ns_ at 7.7030203154790309 "$ftp_(5) start"

8 connecting to 9 at time 20.48548468411224

set tcp_(6) [$ns_ create-connection TCP $node_(8) TCPSink $node_(9) 0]

$tcp_(6) set window_ 32

$tcp_(6) set packetSize_ 512

set ftp_(6) [$tcp_(6) attach-source FTP]

$ns_ at 20.48548468411224 "$ftp_(6) start"

9 connecting to 10 at time 76.258212521792487

83

set tcp_(7) [$ns_ create-connection TCP $node_(9) TCPSink $node_(10) 0]

$tcp_(7) set window_ 32

$tcp_(7) set packetSize_ 512

set ftp_(7) [$tcp_(7) attach-source FTP]

$ns_ at 76.258212521792487 "$ftp_(7) start"

9 connecting to 11 at time 31.464945688594575

set tcp_(8) [$ns_ create-connection TCP $node_(9) TCPSink $node_(11) 0]

$tcp_(8) set window_ 32

$tcp_(8) set packetSize_ 512

set ftp_(8) [$tcp_(8) attach-source FTP]

$ns_ at 31.464945688594575 "$ftp_(8) start"

11 connecting to 12 at time 62.77338456491632

set tcp_(9) [$ns_ create-connection TCP $node_(11) TCPSink $node_(12) 0]

$tcp_(9) set window_ 32

$tcp_(9) set packetSize_ 512

set ftp_(9) [$tcp_(9) attach-source FTP]

$ns_ at 62.77338456491632 "$ftp_(9) start"

84

11 connecting to 13 at time 46.455830739092008

set tcp_(10) [$ns_ create-connection TCP $node_(11) TCPSink $node_(13) 0]

$tcp_(10) set window_ 32

$tcp_(10) set packetSize_ 512

set ftp_(10) [$tcp_(10) attach-source FTP]

$ns_ at 46.455830739092008 "$ftp_(10) start"

13 connecting to 14 at time 83.900868549896813

set tcp_(11) [$ns_ create-connection TCP $node_(13) TCPSink $node_(14) 0]

$tcp_(11) set window_ 32

$tcp_(11) set packetSize_ 512

set ftp_(11) [$tcp_(11) attach-source FTP]

$ns_ at 83.900868549896813 "$ftp_(11) start"

14 connecting to 15 at time 155.17211061677529

set tcp_(12) [$ns_ create-connection TCP $node_(14) TCPSink $node_(15) 0]

$tcp_(12) set window_ 32

$tcp_(12) set packetSize_ 512

set ftp_(12) [$tcp_(12) attach-source FTP]

85

$ns_ at 155.17211061677529 "$ftp_(12) start"

15 connecting to 16 at time 39.088702704333095

set tcp_(13) [$ns_ create-connection TCP $node_(15) TCPSink $node_(16) 0]

$tcp_(13) set window_ 32

$tcp_(13) set packetSize_ 512

set ftp_(13) [$tcp_(13) attach-source FTP]

$ns_ at 39.088702704333095 "$ftp_(13) start"

15 connecting to 17 at time 43.420613009212822

set tcp_(14) [$ns_ create-connection TCP $node_(15) TCPSink $node_(17) 0]

$tcp_(14) set window_ 32

$tcp_(14) set packetSize_ 512

set ftp_(14) [$tcp_(14) attach-source FTP]

$ns_ at 43.420613009212822 "$ftp_(14) start"

16 connecting to 17 at time 121.92280978985261

set tcp_(15) [$ns_ create-connection TCP $node_(16) TCPSink $node_(17) 0]

$tcp_(15) set window_ 32

86

$tcp_(15) set packetSize_ 512

set ftp_(15) [$tcp_(15) attach-source FTP]

$ns_ at 121.92280978985261 "$ftp_(15) start"

16 connecting to 18 at time 137.20174070317378

set tcp_(16) [$ns_ create-connection TCP $node_(16) TCPSink $node_(18) 0]

$tcp_(16) set window_ 32

$tcp_(16) set packetSize_ 512

set ftp_(16) [$tcp_(16) attach-source FTP]

$ns_ at 137.20174070317378 "$ftp_(16) start"

17 connecting to 18 at time 72.99343390995331

set tcp_(17) [$ns_ create-connection TCP $node_(17) TCPSink $node_(18) 0]

$tcp_(17) set window_ 32

$tcp_(17) set packetSize_ 512

set ftp_(17) [$tcp_(17) attach-source FTP]

$ns_ at 72.99343390995331 "$ftp_(17) start"

17 connecting to 19 at time 19.655724884781858

87

set tcp_(18) [$ns_ create-connection TCP $node_(17) TCPSink $node_(19) 0]

$tcp_(18) set window_ 32

$tcp_(18) set packetSize_ 512

set ftp_(18) [$tcp_(18) attach-source FTP]

$ns_ at 19.655724884781858 "$ftp_(18) start"

20 connecting to 21 at time 170.32769159894795

set tcp_(19) [$ns_ create-connection TCP $node_(20) TCPSink $node_(21) 0]

$tcp_(19) set window_ 32

$tcp_(19) set packetSize_ 512

set ftp_(19) [$tcp_(19) attach-source FTP]

$ns_ at 170.32769159894795 "$ftp_(19) start"

20 connecting to 22 at time 160.44260791523504

set tcp_(20) [$ns_ create-connection TCP $node_(20) TCPSink $node_(22) 0]

$tcp_(20) set window_ 32

$tcp_(20) set packetSize_ 512

set ftp_(20) [$tcp_(20) attach-source FTP]

$ns_ at 160.44260791523504 "$ftp_(20) start"

88

24 connecting to 25 at time 60.419296464146719

set tcp_(21) [$ns_ create-connection TCP $node_(24) TCPSink $node_(25) 0]

$tcp_(21) set window_ 32

$tcp_(21) set packetSize_ 512

set ftp_(21) [$tcp_(21) attach-source FTP]

$ns_ at 60.419296464146719 "$ftp_(21) start"

26 connecting to 27 at time 46.258873029732555

set tcp_(22) [$ns_ create-connection TCP $node_(26) TCPSink $node_(27) 0]

$tcp_(22) set window_ 32

$tcp_(22) set packetSize_ 512

set ftp_(22) [$tcp_(22) attach-source FTP]

$ns_ at 46.258873029732555 "$ftp_(22) start"

27 connecting to 28 at time 98.067954088592884

set tcp_(23) [$ns_ create-connection TCP $node_(27) TCPSink $node_(28) 0]

$tcp_(23) set window_ 32

$tcp_(23) set packetSize_ 512

set ftp_(23) [$tcp_(23) attach-source FTP]

89

$ns_ at 98.067954088592884 "$ftp_(23) start"

28 connecting to 29 at time 47.128346453946243

set tcp_(24) [$ns_ create-connection TCP $node_(28) TCPSink $node_(29) 0]

$tcp_(24) set window_ 32

$tcp_(24) set packetSize_ 512

set ftp_(24) [$tcp_(24) attach-source FTP]

$ns_ at 47.128346453946243 "$ftp_(24) start"

28 connecting to 30 at time 99.87114126788039

set tcp_(25) [$ns_ create-connection TCP $node_(28) TCPSink $node_(29) 0]

$tcp_(25) set window_ 32

$tcp_(25) set packetSize_ 512

set ftp_(25) [$tcp_(25) attach-source FTP]

$ns_ at 99.87114126788039 "$ftp_(25) start"

#Total sources/connections: 17/26

90

B- Scenario Generation Script

nodes: 30, pause: 2.00, max speed: 10.00, max x: 500.00, max y: 500.00

$node_(0) set X_ 31.926988307576

$node_(0) set Y_ 197.246781440296

$node_(0) set Z_ 0.000000000000

$node_(1) set X_ 447.115668212077

$node_(1) set Y_ 428.545421254227

$node_(1) set Z_ 0.000000000000

$node_(2) set X_ 44.838136603668

$node_(2) set Y_ 201.169450847256

$node_(2) set Z_ 0.000000000000

$node_(3) set X_ 427.665302868556

$node_(3) set Y_ 272.534532516073

$node_(3) set Z_ 0.000000000000

$node_(4) set X_ 232.332119095391

$node_(4) set Y_ 119.906267020969

$node_(4) set Z_ 0.000000000000

$node_(5) set X_ 258.144871144121

$node_(5) set Y_ 232.136260784311

$node_(5) set Z_ 0.000000000000

91

$node_(6) set X_ 335.750015647151

$node_(6) set Y_ 240.990244114299

$node_(6) set Z_ 0.000000000000

$node_(7) set X_ 476.802206638935

$node_(7) set Y_ 155.680072582666

$node_(7) set Z_ 0.000000000000

$node_(8) set X_ 46.485622103561

$node_(8) set Y_ 81.300723229197

$node_(8) set Z_ 0.000000000000

$node_(9) set X_ 62.080091776480

$node_(9) set Y_ 199.247276164459

$node_(9) set Z_ 0.000000000000

$node_(10) set X_ 166.759728963027

$node_(10) set Y_ 391.548965462061

$node_(10) set Z_ 0.000000000000

$node_(11) set X_ 354.876316458516

$node_(11) set Y_ 214.607784091127

$node_(11) set Z_ 0.000000000000

$node_(12) set X_ 30.113759512003

$node_(12) set Y_ 73.631237101578

$node_(12) set Z_ 0.000000000000

$node_(13) set X_ 436.468665438118

92

$node_(13) set Y_ 157.647610826116

$node_(13) set Z_ 0.000000000000

$node_(14) set X_ 63.061016871755

$node_(14) set Y_ 425.920973902466

$node_(14) set Z_ 0.000000000000

$node_(15) set X_ 268.712966910633

$node_(15) set Y_ 289.879060069761

$node_(15) set Z_ 0.000000000000

$node_(16) set X_ 98.006801187390

$node_(16) set Y_ 51.180205691020

$node_(16) set Z_ 0.000000000000

$node_(17) set X_ 438.912066466573

$node_(17) set Y_ 239.156324240499

$node_(17) set Z_ 0.000000000000

$node_(18) set X_ 162.176087436412

$node_(18) set Y_ 482.499850066371

$node_(18) set Z_ 0.000000000000

$node_(19) set X_ 294.132893364793

$node_(19) set Y_ 132.562380533892

$node_(19) set Z_ 0.000000000000

$node_(20) set X_ 228.285449902381

$node_(20) set Y_ 30.243940719110

93

$node_(20) set Z_ 0.000000000000

$node_(21) set X_ 469.269940771197

$node_(21) set Y_ 79.467547947832

$node_(21) set Z_ 0.000000000000

$node_(22) set X_ 353.722327988186

$node_(22) set Y_ 97.452030929276

$node_(22) set Z_ 0.000000000000

$node_(23) set X_ 9.404743196486

$node_(23) set Y_ 88.328530982215

$node_(23) set Z_ 0.000000000000

$node_(24) set X_ 11.547222244978

$node_(24) set Y_ 178.605442785176

$node_(24) set Z_ 0.000000000000

$node_(25) set X_ 432.686769636080

$node_(25) set Y_ 452.719993811510

$node_(25) set Z_ 0.000000000000

$node_(26) set X_ 194.909069580279

$node_(26) set Y_ 396.282178449140

$node_(26) set Z_ 0.000000000000

$node_(27) set X_ 8.836704152179

$node_(27) set Y_ 222.408457370698

$node_(27) set Z_ 0.000000000000

94

$node_(28) set X_ 461.428069038558

$node_(28) set Y_ 417.129034936158

$node_(28) set Z_ 0.000000000000

$node_(29) set X_ 210.255688227057

$node_(29) set Y_ 113.155918786403

$node_(29) set Z_ 0.000000000000

$god_ set-dist 0 1 3

$god_ set-dist 0 2 1

$god_ set-dist 0 3 2

$god_ set-dist 0 4 1

$god_ set-dist 0 5 1

$god_ set-dist 0 6 2

$god_ set-dist 0 7 2

$god_ set-dist 0 8 1

$god_ set-dist 0 9 1

$god_ set-dist 0 10 1

$god_ set-dist 0 11 2

$god_ set-dist 0 12 1

$god_ set-dist 0 13 2

$god_ set-dist 0 14 1

$god_ set-dist 0 15 2

$god_ set-dist 0 16 1

95

$god_ set-dist 0 17 2

$god_ set-dist 0 18 2

$god_ set-dist 0 19 2

$god_ set-dist 0 20 2

$god_ set-dist 0 21 2

$god_ set-dist 0 22 2

$god_ set-dist 0 23 1

$god_ set-dist 0 24 1

$god_ set-dist 0 25 3

$god_ set-dist 0 26 2

$god_ set-dist 0 27 1

$god_ set-dist 0 28 3

$god_ set-dist 0 29 1

$god_ set-dist 1 2 2

$god_ set-dist 1 3 1

$god_ set-dist 1 4 2

$god_ set-dist 1 5 2

$god_ set-dist 1 6 1

$god_ set-dist 1 7 2

$god_ set-dist 1 8 3

$god_ set-dist 1 9 2

$god_ set-dist 1 10 2

96

$god_ set-dist 1 11 1

$god_ set-dist 18 25 2

$god_ set-dist 18 26 1

$god_ set-dist 18 27 2

$god_ set-dist 18 28 2

$god_ set-dist 18 29 2

$god_ set-dist 19 20 1

$god_ set-dist 19 21 1

$god_ set-dist 19 22 1

$god_ set-dist 19 23 2

$god_ set-dist 19 24 2

$god_ set-dist 19 25 2

$god_ set-dist 19 26 2

$god_ set-dist 19 27 2

$god_ set-dist 19 28 2

$god_ set-dist 19 29 1

$god_ set-dist 20 21 1

$god_ set-dist 20 22 1

$god_ set-dist 20 23 1

$god_ set-dist 20 24 2

$god_ set-dist 20 25 2

$god_ set-dist 20 26 2

97

$god_ set-dist 20 27 2

$god_ set-dist 20 28 2

$god_ set-dist 20 29 1

$god_ set-dist 21 22 1

$god_ set-dist 21 23 2

$god_ set-dist 21 24 2

$god_ set-dist 21 25 2

$ns_ at 92.436597949187 "$god_ set-dist 17 18 2"

$ns_ at 92.548596411188 "$node_(24) setdest 181.087107669124 329.677617194351

2.486345206192"

$ns_ at 92.644727459786 "$god_ set-dist 15 26 1"

$ns_ at 92.795371705417 "$god_ set-dist 5 19 2"

$ns_ at 93.293096386952 "$god_ set-dist 8 12 1"

$ns_ at 93.321191711099 "$god_ set-dist 3 23 2"

$ns_ at 93.440183836333 "$god_ set-dist 3 25 2"

$ns_ at 93.629023985012 "$god_ set-dist 20 25 2"

$ns_ at 93.842779672485 "$god_ set-dist 4 20 1"

$ns_ at 94.164961121710 "$god_ set-dist 2 5 2"

$ns_ at 94.409117043416 "$god_ set-dist 15 17 2"

$ns_ at 94.511008271171 "$god_ set-dist 4 22 1"

$ns_ at 94.537273915403 "$god_ set-dist 2 28 1"

$ns_ at 94.774415123399 "$god_ set-dist 9 21 1"

$ns_ at 94.848365470711 "$god_ set-dist 2 17 2"

98

$ns_ at 95.050234868142 "$god_ set-dist 5 10 2"

$ns_ at 95.771008437172 "$god_ set-dist 14 15 1"

$ns_ at 96.113474325032 "$god_ set-dist 4 6 1"

$ns_ at 96.150110209805 "$god_ set-dist 1 25 2"

$ns_ at 96.192538705210 "$god_ set-dist 17 23 1"

$ns_ at 96.219304902332 "$god_ set-dist 18 20 1"

$ns_ at 96.286366807687 "$god_ set-dist 1 15 1"

$ns_ at 96.547254162272 "$god_ set-dist 17 27 2"

$ns_ at 96.727313992721 "$god_ set-dist 9 17 2"

$ns_ at 96.944558814991 "$node_(25) setdest 53.014235344473 136.257788245943

0.000000000000"

$ns_ at 97.088345890550 "$god_ set-dist 2 24 1"

$ns_ at 97.089805804361 "$god_ set-dist 21 22 1"

$ns_ at 97.166464566684 "$node_(17) setdest 390.643896361331 194.337828998051

0.000000000000"

$ns_ at 98.532815572419 "$node_(7) setdest 226.043426086435 288.327608716707

0.000000000000"

$ns_ at 98.560974809807 "$god_ set-dist 10 26 2"

$ns_ at 98.944558814991 "$node_(25) setdest 254.459907866004 305.639650922513

9.229589642434"

$ns_ at 99.166464566684 "$node_(17) setdest 483.473752872679 269.346610532164

8.301287413730"

$ns_ at 99.571635006289 "$node_(26) setdest 218.162163481519 311.048963968219

0.000000000000"

99

$ns_ at 99.786028756682 "$god_ set-dist 17 23 2"

$ns_ at 99.878211841276 "$node_(9) setdest 216.340270009538 394.061022429888

0.000000000000"

$ns_ at 99.911538226694 "$god_ set-dist 2 10 2"

Destination Unreachables: 0

Route Changes: 578

Link Changes: 483

Node | Route Changes | Link Changes

0 | 33 | 20

1 | 44 | 37

2 | 33 | 31

3 | 30 | 30

4 | 31 | 25

5 | 23 | 23

6 | 25 | 25

7 | 36 | 32

8 | 40 | 30

9 | 42 | 42

10 | 38 | 38

100

11 | 53 | 33

12 | 46 | 40

13 | 46 | 38

14 | 41 | 24

15 | 53 | 33

16 | 28 | 18

17 | 40 | 38

18 | 35 | 26

19 | 25 | 25

20 | 26 | 23

21 | 48 | 38

22 | 41 | 39

23 | 47 | 43

24 | 52 | 48

25 | 55 | 42

26 | 40 | 40

27 | 33 | 30

28 | 41 | 24

29 | 31 | 31

