EVALUATION OF THE EFFECTIVENESS OF ACK FILTERING AND ACK CONGESTION CONTROL IN MITIGATING THE EFFECTS OF BANDWIDTH ASYMMETRY

HAYDAR ABDULAMEER MARHOON

UNIVERSITI UTARA MALAYSIA

2012
EVALUATION OF THE EFFECTIVENESS OF ACK FILTERING
AND ACK CONGESTION CONTROL IN MITIGATING THE
EFFECTS OF BANDWIDTH ASYMMETRY

A project submitted to Dean of Awang Had Salleh Graduate School in
Partial Fulfilment of the requirement for the degree
Master of Science of Information and Communication Technology
University Utara Malaysia

BY

HAYDAR ABDULAMEER MARHOON
PERMISSION TO USE

In presenting this project in partial fulfilment of the requirements for a postgraduate degree from the University Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner in whole or in part, for scholarly purposes may be granted by my supervisor(s) or in their absence by the Dean of Postgraduate Studies and Research. It is understood that any copying or publication or use of this project or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to University Utara Malaysia for any scholarly use which may be made of any material from my project.

Requests for permission to copy or to make other use of materials in this project, in whole or in part, should be addressed to

Dean of Awang Had Salleh Graduate School
College of Arts and Sciences
University Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
Malaysia
Abstract

The user demand for high speed and ubiquitous connectivity has led to the development and deployment of many new technologies, such as DSL and satellite-based networks, for accessing the Internet network. The goal of these technologies is to mitigate the bottleneck. Other technologies, such as wireless and packet radio networks aimed at providing the user with unrestricted access to their mobile devices and the Internet. Given that these networks are increasingly being deployed as high-speed access networks, it is highly desirable to achieve good network performance over such networks. These technologies show different characteristics (asymmetry) in uplink and downlink directions. Network asymmetry (uneven bandwidth) can negatively affect the performance of feedback-based transport protocol such as Transmission Control Protocol (TCP). This is because that congestion in any direction can affect the flow of feedback in the other direction. ACK Filtering and ACK Congestion Control techniques are used to diminish the congestion on the upstream link. These techniques suffer from sender burstiness and a slowdown in congestion window growth problems. This project addresses the TCP performance problems caused by network asymmetry and discuss the reasons for the inapplicability between TCP and asymmetric networks. It studies the effectiveness of these techniques in mitigating the effects of bandwidth asymmetry in TCP/IP networks and provides suggestions to overcome the problems associated with these techniques. Based on the performance model presented in this project, achieving optimum TCP performance under different asymmetric conditions is described.
ACKNOWLEDGMENTS

Every praise is due to the Almighty Allah alone, the Merciful and peace be upon His prophet who is forever a torch of guidance and knowledge for humanity as whole.

I realize this project is cannot be completed without the help of wonderful and kind people. In the first I would like to record my gratitude to Dr. Mohammed M. Kadhum for his supervision, advice, and guidance from the very early stage of this research as well as giving me invaluable experiences throughout the work. Above all, he provides me unflinching encouragement and support in various ways. I shall always remember Dr. Mohammed for the efforts he has spent in strengthening my understanding about topics related to my research, and giving me enough leeway to help me in managing my research.

I am grateful to my evaluator Mr. Nurnasran B Puteh and other committee members as well, for spending time reviewing this research and giving valuable suggestions and comments on my work. I am also thankful to the Information Technology Department– the faculty and staff. Being a postgraduate student at UUM has been an incredible experience. I am thankful to all friends in Iraq and Malaysia, whose love, blessings and well wishes have shown me the success that I have achieved in the form of this master’s degree. Special thanks to my adorable parents. They deserve special mention
for their support and prayers. My father, in the first place is the person who put the fundamental effort of my learning character.

My mother is the one who sincerely raised me with her caring and gently love, I am thankful to my brother Firas. He introduced unlimited support for me.

Special thanks are due to my dear four sisters and faithful wife, and my kids, Hussein, Abdulameer and Ali. Without your love and support I am sure that I would not have been able to achieve so much throughout the two years of my study in the migration.

I wish to thank the Ministry of Higher Education of Iraq for their financial support awarded to me.

Finally, I would like to thank everybody who is contributed to the successful realization of this project, as well as expressing my apology that I could not mention personally one by one.

Thank you

Haydar Abdulameer Marhoon
TABLE OF CONTENTS

Contents

PERMISSION TO USE .. I

Abstract .. II

ACKNOWLEDGMENTS ... III

TABLE OF CONTENTS ... V

LIST OF FIGURES .. VIII

APPENDIX .. IX

CHAPTER ONE ... 1

INTRODUCTION ... 1

1.1. INTRODUCTION ... 1

1.2. ASYMMETRY CLASSIFICATION .. 3

1.3. SOLUTIONS TO IMPROVE TCP PERFORMANCE ... 4

1.3.1. MANAGING THE LINK BANDWIDTH .. 5

1.3.2. Handling Infrequent TCP ACKs ... 7

1.4. PROBLEM STATEMENTS ... 8

1.5. RESEARCH QUESTIONS .. 9

1.6. RESEARCH SCOPE .. 9

1.7. RESEARCH OBJECTIVES .. 10

1.8. RESEARCH SIGNIFICANCE ... 10

1.9. ORGANIZATION OF THE PROJECT REPORT .. 11

CHAPTER TWO ... 12

LITERATURE REVIEW ... 12

2.1. INTRODUCTION .. 12

2.2. IMPLICATIONS OF NETWORK ASYMMETRY ON TCP PERFORMANCE 14

2.2.1. Bandwidth Asymmetry ... 14
Unidirectional Data Transfer ... 14
Bidirectional Data Transfers ... 16

2.2.2. TCP - MAC Protocols Interactions .. 19

2.3. IMPROVING TCP PERFORMANCE ... 21

2.3.1. Modified delayed ACKs .. 21
2.3.2. Larger Maximum Segment Size (MSS) .. 22
2.3.3. ACK Congestion Control (ACC) .. 23
2.3.4. Acknowledgement based on CWND Estimation .. 24
2.3.5. TCP Sender Adaptation .. 25
2.3.6. Header Compression ... 26
2.3.7. ACK Filtering ... 27
2.3.8. Per-Flow Queuing on the Uplink Bottleneck Link .. 29
2.3.9. ACK Reconstruction .. 30

2.4. SUMMARY .. 32

CHAPTER THREE ... 34

RESEARCH METHODOLOGY ... 34

3.1. INTRODUCTION ... 34
3.2. AWARENESS OF A PROBLEM STEP .. 35
3.3. SUGGESTION STEP ... 36
3.4. DEVELOPMENT STEP ... 36
3.4.1. System Requirements .. 37
3.4.2. System Design .. 37
3.4.3. Implementation ... 38
3.5. EVALUATION STEP .. 38
3.6. SIMULATION SCENARIOS ... 39
3.7. PERFORMANCE METRICS ... 41
3.8. CONCLUSION STEP ... 43
3.9. SUMMARY .. 44
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig No.</th>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Wireless Cable Modem network</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Measurements of the downlink connection with a bandwidth</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Measurements of the uplink connection with a bandwidth</td>
<td>17</td>
</tr>
<tr>
<td>3.0</td>
<td>General Methodology for Design Science Research</td>
<td>35</td>
</tr>
<tr>
<td>5.2</td>
<td>The actual queue length of the uplink buffer using AF and ACC</td>
<td>75</td>
</tr>
<tr>
<td>5.23</td>
<td>The actual queue length of the uplink buffer using TCP NewReno</td>
<td>75</td>
</tr>
<tr>
<td>5.3</td>
<td>The actual queue length of the downlink buffer using AKC filtering and ACC</td>
<td>77</td>
</tr>
<tr>
<td>5.4</td>
<td>The actual queue length of the downlink buffer using TCP NewReno</td>
<td>77</td>
</tr>
<tr>
<td>5.5</td>
<td>Packets dropped at the uplink buffer using AKC filtering and ACC techniques</td>
<td>79</td>
</tr>
<tr>
<td>5.6</td>
<td>Packets dropped at the uplink buffer using TCP NewReno</td>
<td>79</td>
</tr>
<tr>
<td>5.7</td>
<td>Packets dropped at the downlink buffer using AKC filtering and ACC</td>
<td>80</td>
</tr>
<tr>
<td>5.8</td>
<td>Packets dropped at the downlink buffer using the TCP NewReno</td>
<td>81</td>
</tr>
<tr>
<td>5.9</td>
<td>The packets arrival rate at the uplink buffer using AKC filtering and ACC</td>
<td>82</td>
</tr>
<tr>
<td>5.50</td>
<td>The packets arrival rate at the uplink buffer using the TCP NewReno</td>
<td>83</td>
</tr>
<tr>
<td>5.11</td>
<td>The window size for the first five TCP Asym sources using AF and ACC</td>
<td>84</td>
</tr>
<tr>
<td>5.12</td>
<td>The window size for the first five TCP NewReno sources</td>
<td>85</td>
</tr>
<tr>
<td>5.13</td>
<td>Throughput gained for the first five TCP Asym sources using AF and ACC</td>
<td>86</td>
</tr>
<tr>
<td>5.14</td>
<td>Throughput gained for the first five TCP NewReno sources</td>
<td>87</td>
</tr>
</tbody>
</table>
APPENDIX

APPENDIX A ... 104

1- Semantic-Packetqueue.CC .. 104

2- Semantic-Packetqueue.h .. 115

3- TCP-ASYM.CC .. 119

4- TCP-ASYM.h .. 125
CHAPTER ONE

INTRODUCTION

This project is about examining effectiveness of ACK Filtering and ACK congestion control mechanisms in mitigating the effects of bandwidth asymmetry on the performance of TCP/IP network. The goal of this chapter is to place the project in its context. This chapter provides an introduction to network asymmetry and TCP performance over asymmetry networks in Sections 1.1. Asymmetry classification and the solutions proposed to improve the TCP performance in asymmetric environment are presented in Sections 1.2 and 1.3, respectively. The research problem is presented in Sections 1.4. Sections 1.5, 1.6, and 1.7 of this chapter, respectively, include the research questions, research scope, and objectives of the research presented in this project. The importance of the work done in this project is stated in Section 1.8 while the project organization is presented in Section 1.9 of this chapter.

1.1. INTRODUCTION

The increase in the user application that require high speed network with ubiquitous connection network has derived inventors to come up with many new technologies. According to Mahbub and Jain (Mahbub & Raj, 2003), some of these technologies, including cable modems, direct broadcast satellite with interactive return channels, Very Small Aperture satellite Terminals (VSAT), Asymmetric Digital
The contents of the thesis is for internal user only
REFERENCES

