NOISE-INDUCED HEARING LOSS: A SENSELESS WORKPLACE HAZARD IN KILANG GULA FELDA PERLIS SDN. BHD.

. •

BADRUL BIN BAKAR

809049

UNIVERSITI UTARA MALAYSIA

06010 UUM SINTOK

KEDAH

PERMISSION TO USE

In presenting this project paper in partial fulfillment of the requirements for a Post Graduate degree from the Universiti Utara Malaysia (UUM), I agree that the Library of this university may make it freely available for inspection. I further agree that permission for copying this project paper in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or in their absence, by the Assistant Vice Chancellor of the College of Business where I did my project paper. It is understood that any copying or publication or use of this project paper or parts of it for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the Universiti Utara Malaysia (UUM) in any scholarly use which may be made of any material in my project paper.

Request for permission to copy or to make other use of materials in this project paper in whole or in part should be addressed to:

Dean Research and Innovation College of Business Universiti Utara Malaysia 06010 UUM Sintok Kedah

DISCLAIMER

The author is responsible for the accuracy of all opinion, technical comment, factual report, data, figures, illustrations and photographs in this dissertation. The author bears full responsibility for the checking whether material submitted is subject to copyright or ownership right. Universiti Utara Malaysia (UUM) does not accept any liability for the accuracy of such comment, report and other technical and factual information and the copyright or ownership rights claims.

The author declares that this dissertation is original and his own except those literatures, quotations, explanations and summarizations which are duly identified and recognized. The author here by granted the copyright of this dissertation to College of Business, Universiti Utara Malaysia (UUM) for publishing if necessary.

Date:

10.8.2012

Student Signature:

ii

ABSTRAK

Tujuan kajian ini adalah untuk menilai dan mengenalpasti faktor-faktor yang membawa kepada kehilangan pendengaran di kalangan para pekerja di Kilang Gula Felda Perlis Sdn. Bhd. Kajian ini telah dilakukan di kalangan 170 pekerja di Kilang Gula Felda Perlis Sdn. Bhd. Data dikumpulkan melalui soal selidik dan dianalisis dengan menggunakan *Statistical Package for Social Science* (SPSS). Sepanjang analisis statistik dilakukan - analisis korelasi, didapati terdapat hubungan yang signifikan antara tiga pembolehubah tidak bersandar iaitu Alam Sekitar, Kawalan Risiko, Tahap Kesedaran Diri dan Sokongan Sosial terhadap pembolehubah yang bersandar iaitu Kehilangan Pendengaran Akibat Bunyi Bising (NIHL) manakala satu lagi pembolehubah tidak bersandar (Jentera) tidak mempunyai hubungan yang signifikan dengan NIHL. Dalam masa yang sama, didapati bahawa tiada perbezaan yang dilaporkan bagi NIHL di antara pekerja lelaki dan pekerja perempuan. Kajian ini juga telah mengenalpasti hubungan yang signifikan antara NIHL dan tempoh perkhidmatan pekerja di Kilang Gula Felda Perlis Sdn.Bhd.

ABSTRACT

The purpose of this study is to evaluate and identify factors that lead to hearing loss to workers who works in the factory in Kilang Gula Felda Perlis Sdn. Bhd. This study was done among 170 workers in Kilang Gula Felda Perlis Sdn. Bhd. Data were gathered through questionnaires and was being analyzed by using Statistical Package for Social Science (SPSS). Throughout the statistical analysis – correlation analysis, it is found that there is a significant relationship between the three independent variables namely Environment, Risk Control, Self Awareness and Social Support with the dependent variables – Noise Induced Hearing Loss (NIHL) while another independent variables (Machinery) does not have significant relationship with NIHL. In the same time, it is also found that there is no difference in the NIHL reported between male and female workers. This study also identifies a significant relationship between NIHL and the length of service group at Kilang Gula Felda Perlis Sdn. Bhd.

ACKNOWLEDGEMENT

First, I would like to express my appreciation to Allah S.W.T, who has granted me the strength and ability to complete this study.

I would like to extend my gratitude to my project supervisor, Dr. Nor Azimah Chew Abdullah who has been very supportive and encouraging in guiding me to complete this research paper. Her professional advices given throughout the completion of this research will not be forgotten.

I am also grateful for the encouragement and cooperation that I received from the management of KGFP Sdn. Bhd. especially from En. Mohamad Amri b. Sahari, CEO of KGFP and also to my family for the unconditional love in supporting my quest for knowledge has been extraordinary. The journey in completion of this project paper is not lonely at all with the support from my dearest classmates who have shown me their support and assistance in the accomplishment of this educational endeavor.

Not forgetting all dearest lecturers throughout my master who has shared their knowledge throughout my study in UUM. I am sure that I could not have arrived at this stage without them.

Lastly, I would like to present my humble appreciation and gratefulness to all the people who made this journey possible. I am in debt to those who knowingly and unknowingly.

Thank you.

Badrul bin Bakar College of Business University Utara Malaysia

v

TABLES OF CONTENTS

PERMISSION TO USE	i
DISCLAIMER	ii
ABSTRAK	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF APPENDICES	xiv
ABBREVIATIONS	xv
CHAPTER 1 INTRODUCTION	1
1.0 Introduction	1
1.1 Information About Organization	5
1.2 Background of the Study	7
1.3 Problem Statement	8
1.4 Research Question	10
1.5 Research Objectives	11
1.6 The Scope of the Study	12
1.7 Summary and Organization of the Report	12

CHA	PTER 2	LITERATURE REVIEW	14
2.0	Introdu	iction	14
2.1	Definit	Definition of Key Terms	
	2.1.1	Machinery	14
	2.1.2	Environment	15
	2.1.3	Risk Control	16
	2.1.4	Self-Awareness and Social Support	16
	2.1.5	Noise Induced Hearing Loss (NIHL)	17
2.2	An Ov	erview of Health and Safety Legislation	17
2.3	Measu	ring Noise Level	19
2.4	Theory	Related to Research	19
	2.4.1	Herzberg's Motivation-Hygiene Theory (Two Factor Theory)	20
	2.4.2	Bandura's Social Learning Theory	20
	2.4.3	Behavioural Based Safety (BBS)	21
2.5	Review	w of Previous Research Studies	22
	2.5.1	Machinery	22
	2.5.2	Environment	22
	2.5.3	Self-Awareness and Social Support	23
	2.5.4	Risk Control	24
	2.5.5	Noise Induced Hearing Loss (NIHL)	26
	2.5.6	Disease Outcomes Related to the Risk Factor	27
2.6	Summ	ary	28

CHAPTER 3 METHODOLOGY 3.0 Introduction

vii

29

29

3.1	The Research Framework and the Hypothesis of the Study		
3.2	Resear	ch Design	32
3.3	The Sampling Procedure		33
	3.3.1	The Population of the Study	33
	3.3.2	The Sample of the Study	34
3.4	The De	evelopment of Survey Instruments	35
	3.4.1	Questionnaire Design	35
	3.4.2	Conducting Zoning of Area	38
	3.4.3	Reverse-scored Items and Back-translation	39
3.5	The Pi	lot Study	40
3.6	The Ac	dministration of the Survey Instruments	41
	3.6.1	The Data Collection Procedure	41
3.7	Analys	sis of the Data	42
	3.7.1	Data Screening	42
	3.7.2	The Reliability of the Instruments	42
	3.7.3	Descriptive Statistics	43
	3.7.4	Hypotheses Testing	43
3.8	Appro	val from Certain Organization	44
3.9	Summ	ary	44
CHA	APTER 4	4 RESEARCH FINDINGS	45
4.0	Introd	uction	45
4.1	Summ	nary of Data Collection	46
	4.1.1	Number of Return	46
	4.1.2	Normality Test	46

	4.1.3	Missing Data	46
4.2	The Demography of Respondents		46
	4.2.1	Department/Station	47
	4.2.2	Job Position	49
	4.2.3	Level of Education	50
	4.2.4	Length of Service	51
	4.2.5	Gender	52
	4.2.6	Age	52
	4.2.7	Marital Status	53
4.3	The Pi	lot Survey	54
4.4	The Re	eliability of the Instrument	54
4.5	Hypot	hesis Testing	55
	4.5.1	Relationship Analysis	55
	4.5.2	Analysis Between Genders and NIHL	58
	4.5.3	Analysis of the Mean Difference Between Length of Services and	60
		NIHL	
	4.5.4	Regression Between Dependent Variable and Independent Variables	62
4.6	Descri	iptive Statistics	64
	4.6.I	Gender and NIHL	64
	4.6.2	Length of Services and NIHL	65
	4.6.3	Gender and Risk Control	66
	4.6.4	Length of Services and Risk Control	67
	4.6.5	Noise Measurement Result	68
	4.6.6	Priority of Variables	70
4.7	Summ	nary of Hypothesis	70

ix

4.8	Conclu	sion	72
СНА	PTER 5	DISCUSSION AND CONCLUSION	73
5.0	Introdu	ction	73
5.1	Hypoth	neses Testing Results	73
5.2	Resear	ch Contributions	78
	5.2.1	Managerial Implications	78
5.3	Limita	tions and Future Research Directions	78
	5.3.1	Limitations	78
	5.3.2	Suggestions for Future Research	79
5.4	Recom	amendations	79
	5.4.1	Suggestions for Implementing	79
	5.4.2	An Overall Action Plan to Implement	81
5.5	Conclu	usion	84
	Refere	ences	85
	Appen	dices	90

х

LIST OF TABLES

Table 3.1	The Total Population and Sample of Workers According to Job Post	34
Table 3.2	Source for Questionnaire Design	37
Table 3.3	Reliability Scale	43
Table 4.1	Respondents by Department/Station	47
Table 4.2	Respondents by Position	49
Table 4.3	Respondents by Level of Education	50
Table 4.4	Respondents by Length of Service	51
Table 4.5	Respondents by Gender	52
Table 4.6	Respondents by Age	53
Table 4.7	Respondents by Marital Status	53
Table 4.8	Cronbach Alpha for the Pilot Study	54
Table 4.9	Cronbach Alpha for All Respondents	55
Table 4.10	Correlations between Independent Variables (IVs) and Dependent	56
	Variable (DV)	
Table 4.11	Result of t-test between Genders Towards NIHL	58
Table 4.12(a)	Test of Homogeneity of Variances	60
Table 4.12(b)	ANOVA	60
Table 4.12 (c)	Multiple Comparisons	61
Table 4.13 (a)	Model Summary of Multiple Regression	63
Table 4.13 (b)	ANOVA	63
Table 4.13 (c)	Coefficients	63
Table 4.14	Result of Cross Tabulation between Gender and NIHL	64

xi

	Table 4.15	Result of Cross Tabulation between Length of Services and NIHL	65
•	Table 4.16	Result of Cross Tabulation between Gender and Risk Control	66
	Table 4.17	Result of Cross Tabulation between Length of Services and Risk	67
		Control	
¥و	Table 4.18	Result of Noise Measurement	69
2	Table 4.19	Result of Descriptive Statistics of Variables	70
	Table 4.20	Summary of Hypothesis Testing on NIHL	71

LIST OF FIGURES

Figure 1.1	Attribute Fraction (%) of global disease and injury due to	2
	occupational risk factors	
Figure 1.2	Standard Audiogram with "speech banana" overlay demonstrating a	5
	"typical" occupationally-acquired noise induced hearing loss	
	(ONIHL) pattern at 4000 Hz	
Figure 1.3	Occupational Disease from Department of Occupational Safety and	8
	Health (DOSH)	
Figure 1.4	Noise Induced Hearing Loss Cases from year 1995-2004	9
Figure 3.1	Research Framework	30
Figure 3.2	Flow of the Study	33
Figure 3.3	Noise mapping of KGFP	38
Figure 4.1	Fractions of Respondents by Department/Station	48

LIST OF APPENDICES

Appendix A Questionnaire

Appendix B Approval letter from CEO

ABBREVIATIONS

ACGIH	American Conference of Government Industrial Hygienists
BBS	Behaviour-Based Safety
BLS	Bureau of Labour Statistics
СА	Cronbach Alpha
DALY	Disability-adjusted life years
DOSH	Department of Occupational Safety and Health
FMA	Factories and Machinery Act
KGFP	KilangGula Felda Perlis
NIHL	Noise Induced Hearing Loss
NIOSH	National Institute of Occupational Safety and Health
ONIHL	Occupational Noise Induced Hearing Loss
OSHA	Occupational Safety and Health Act
OSHA's	Occupational Safety and Health Administration's
PEL	Permissible Exposure Limit
TLV	Threshold Limit Values

CHAPTER 1

INTRODUCTION

1.0 INTRODUCTION

Noise is one of the physical environmental factors affecting people's health in today's world. Noise is generally defined as the unpleasant sounds which disturb the human being physically and physiologically and cause environmental pollution by destroying environmental properties (Melnick, 1979, pg. 721).

Noise-induced hearing loss (NIHL) is the leading cause of occupationally induced hearing loss in industrialized countries (Seidman, 2011). According to National Institutes of Health Consensus Development Conference Statement, sound levels of less than 75 dB(A) are unlikely to cause permanent hearing loss, while sound levels about 85 dB(A) with exposures of 8 hours per day will produce permanent hearing loss after many years. Although the precise mechanism involved in the destruction of cochlear hair cells is not known, there is compelling evidence that reactive oxygen metabolites and cochlear hypoprefusion are responsible. NIHL is preventable for most situations, but this requires education and training of the work force and employers. In addition, hearing protection should be mandatory at all sites where sound levels routinely exceed 85 dB (Seidman, 2011).

Figure 1.1 summarizes the occupational contribution to the global burden of injury and disease of the individual occupational risk factors. This substantial burden is due to largely preventable

1

The contents of the thesis is for internal user only

REFERENCES

- American Society of Interior Designers Armstrong World Industries, Inc. (1996). *Increasing* Office Productivity through Integrated Acoustic Planning and Noise Reduction Strategies. Washington D.C: Author.
- ACC. (2010). Deafness Epidemic. Retrieved May 7, 2011 http://www.acc.co.nz/nihl
- Ahmed, H.O., Dennis, J.H., Badran, O., Ismail, M., Ballal, S.G., Ashoor, A., & Jerwood, D. (2001). Occupational Noise Exposure and Hearing Loss of Workers in Two Plants in Eastern Saudi Arabia. *Annals of Occupational Hygiene*, 45(5), 371–380.
- Alidrisi, M., Jamil, A.T.M., Jiffry, M.S.A., Jefri, M.A., & Erturk F. (1990). Evaluation of noise stresses in Jeddah Industrial State. *Journal of Environment Science and Health*, A25(8), 873–896.
- Baker, T.L. (1994). Doing Social Research (2nd ed.). New York: McGraw-Hill Inc.
- Barnette, J.J. (2000). Effects of Stem and Likert Response Option Reversals on Survey Internal Consistency: If You Feel the Need, There Is a Better Alternative to Using Those Negatively Worded Stems. *Educational and Psychological Measurement*, 60, 361-370.
- Barrs, D.M., Althoff, L.K., Krueger, W.W., & Olsson, J.E. (1994). Work-related, noise induced hearing loss: evaluation including evoked potential audiometry. *Otolaryngol Head Neck Surg*, 110(2), 177–84.
- Cha, E.S. et al. (2007). Translation of scales in cross-cultural research: issues and techniques. Journal of Advanced Nursing, 58(4), 386–395.
- Cheung, C. K. (2004). Organizational influence on working people's occupational noise protection in Hong Kong. *Journal of Safety Research*, 35, 465.

Clemens, K., & Dirk, H. (1999). Noise and stress salivary as a noun invasive measure of allostatic load. *Noise Health International Jurnal*, 1, 57-69.

 World Health Organization. (2004). Occupational noise: assessing the burden of disease from work related hearing impairment at national and local levels (Environmental Burden of Disease Series, No. 9). Geneva:Concha-Barrientos M., Campbell-Lendrum D., Steenland K.

Cox, J.R. (1980). Hormonal influence on auditory function. Ear Hear, 1(4), 219-222.

World Health Organization.(2004). Environmental noise: an approach for estimating health impacts at national and local level. (Environmental Burden of Disease Series, in press).Geneva:de Hollander, A.E.M., Van Kempen, E.E.M.M., Houthuijs, D.J.M., Van Kamp, I., Hoogenveen, R.T., Staatsen, B.A.M.

De Vaus, D.A. (1993). Surveys in Social Research (3rd ed.). London: UCL Press.

- Atmaca, E., Peker, I., Altin, A. (2005). Industrial Noise and Its Effects on Humans. *Polish Journal of Environmental Studies*, 14(6), 721-726.
- Go Hear Technology. (2011). Audiogram with speech banana. Retrieved May 11, 2011 http://www.gohear.org/tech/audio.html
- Goelzer, B.I.F. (2001). Hazard prevention and control programmes. In: B.I.F. Goelzer, C.H.
 Hansen, G.A. Sehrndt (Eds.), *Occupational exposure to noise: evaluation, prevention* and control. Geneva: World Health Organization.
- Herche, J. & Engelland, B. (1996). Reversed-Polarity Items and Scale Unidimensionality, Journal of the Academy of Marketing Science, 24(4), 366-374.
- Horan, P. M., Di Stefano, C., & Motl, R. W. (2003). Wording Effects in Self-Esteem Scales: Methodological Artifact or Response Style?, *Structural Equation Modeling: A Multidisciplinary Journal*, 10(3), 435–455.
- Kerr, M.J., Lusk, S.L., & Ronis, D.L. (2002). Explaining Mexican American workers' hearing protection use with the health promotion model. *Nursing Res*, 51, 100-9.

- Maisarah, S.Z. & Said, H. (1993). The noise exposed Factories workers: The prevalence of sensori-neural hearing loss and their use of personal hearing protection devices. *Medical Journal*, 48, 280-285.
- Mc Fadden, D., & Plattsmier, H.S. (1983). Aspirin can potentiate the temporary hearing loss induced by intense sounds. *Hearing Research*, 9(3), 295-316.
- Melamed, S. & Bruhis, S. (1996). The effects of chronic industrial noise exposure on urinary cortisol, fatigue and irritability: a controlled field experiment. *Journal of Occupational Environment Medical*, 38, 252-6.
- Melamed, S., Fried, Y., & Froom, P. (2001). The interactive effect of chronic exposure to noise and job complexity on changes in blood pressure and job satisfaction: A longitudinal study of industrial employees, *Journal of Occupational Health Psychology*, 6, 182.
- Melnick, W. (1979). Hearing loss from noise exposure, *Handbook of Noise Control*. New York: Mc. Grow Hill, 15(1).
- Mika, S. (2003). Prioritising Occupational Safety-The National Occupational Accident Prevention Programme (2001–2005) In Finland, *Safety Science Monitor*, 7(1).
- Mook, J., Kleijn, W. C., & Van der Ploeg, H. M. (1991). Symptom-Positively and-Negatively Worded Items in Two Popular Self-Report Inventories of Anxiety and Depression, *Psychological Reports*, 69(2), 551-560.
- Motl, R. W., & Di Stefano, C. (2002). Longitudinal Invariance of Self-Esteem and Method
 Effects Associated with Negatively Worded Items, Structural Equation Modelling: A
 Multidisciplinary Journal, 9(4), 562–578.
- Nelson, D.I., Nelson, R.Y., Barrientos, M.C., Fingerhut, M. (2005). The global burden of occupational noise-induced hearing loss. *American Journal of Industrial Medicine*, 48, 446-458.
- NIOSH (1998). Criteria for a recommended standard: occupational noise exposure. Revised criteria 1998. Cincinnati, OH, National Institute for Occupational Safety and Health. Retrieved May 20, 2011 http://www.cdc.gov/niosh/98-126.html.

Nunnally, J.C. (1978). Psychometric Theory, (2nd Ed). New York: McGraw-Hill.

87

- Patel, D.S., Witte, K., Zuckerman, C., Murray-Johnson, L., Orrego, V., Maxfield, A.M., et al. (2001). Understanding barriers to preventive health actions for occupational noise induced hearing loss. *Journal of Health Communication*, 6, 155-68.
- Plog, B.A., et al. (1988). Fundamentals of Industrial Hygiene, (3rd Ed). National Safety Council: Illinois.
- Probst, T.M. (2004). Safety and insecurity: Exploring the moderating effect of organizational safety climate. *Journal of Occupational Health Psychology*, 9(1), 3-10.
- Ramsey, R.D. (1996). Managing noise in the workplace, 57(9).
- Rundmo, T. & Hale, A.R. (2003). Managers' attitudes towards safety and accident prevention. *Safety Science*, 41, 557-574.
- WHO-PDH Informal Consultation. (1997). *Safeguard Noise Control in the Workplace 2011*, Geneva.
- Schriesheim, C. A., Eisenbach, R. J., & Hill, K. D. (1991). The Effect of Negation and Polar Opposite Item Reversals on Questionnaire Reliability and Validity: An Experimental Investigation, *Educational and Psychological Measurement*, 51(1), 67-78.

Seidman, M. D. (2011). Noise-Induced Hearing Loss (NIHL). Volta Review, 101(1).

- Shaikh, G.H. (1996). Noise problem in a polyester fiber plant in Pakistan. *Industrial Health*, 34, 427–431.
- Suter, A. (2000). Standards and regulations. In: E.H. Berger, L.H. Royster, J.D. Rozster, D.P. Driscoll, M. Layne (Eds.), *The noise manual*, (5th Ed). American Industrial Hygiene Association, Fairfax: VA.

Teenant, C. (2001). Work related stress and depressive disorders. *Journal of Psychosom Resorce*, 51, 697-704.

- Tomas, J. M., & Oliver, A. (1999). Rosenberg's Self-Esteem Scale: Two Factors or Method Effects, *Structural Equation Modeling*, 6(1), 84-98.
- United States Environmental Protection Agency. (1974). Information on levels of environmental noise requisite to protect public health and welfare with adequate margin of safety.
- Vrendenburgh, A.G. (2002). Organizational safety: which management practices are most effective in reducing the employee injury rates? *Journal of Safety Research*, 33, 259-276.
- WHO (2001). Occupational and community noise, (Fact Sheet No. 258), Geneva.
- WHO/FIOSH (2001). In: B. Goelzer, C.H. Hansen, G.A. Sehrndt (Eds.) Occupational exposure to noise: evaluation, prevention and control: Geneva.
- Wong, N., Rindfleisch, A., & Burroughs, J. E. (2003). Do Reverse-Worded Items Confound Measures in Cross-Cultural Consumer Research? The Case of the Material Values Scale, *Journal of Consumer Research*, 30(1), 72-91.
- Zainul Abidin, M.H. (2010). Occupational Musculoskeletal Diseases: Current Trends, Diagnostic Criteria & Case Studies Socso's Perspective. Medical & Rehabilitation Division, SOCSO.