SIMULATION FOR PERFORMANCE OF CONTAINER OPERATIONS IN THE YARD OF WESTPORT KLANG

A thesis submitted to the Graduate School in partial fulfillment of the requirements for the degree Master of Science (Information Technology), Universiti Utara Malaysia

by

Jessica Tan Ming Kwan

Copyright © 2001 Jessica Tan Ming Kwan
Saya, yang bertandatangan, memperakukan bahawa

(I, the undersigned, certify that)

JESSICA TAN MING KWAN

calon untuk ijazah
(candidate for the degree of) Sarjana Sains (Teknologi Maklumat)

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

SIMULATION FOR PERFORMANCE OF CONTAINER OPERATIONS IN THE

YARD OF WESTPORT KLANG

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan,
dan meliputi bidang ilmu dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia
(Name of Supervisor) : Prof. Madya Dr. Razman bin Mat Tahar

Tanda tangan
(Signature) : [Signature]

Tarikh
(Date) : 15 Mei 2001
PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a post-graduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or, in his absence, by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due to recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Request for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Graduate School
Universiti Utara Malaysia
06010 Sintok
Kedah Darul Aman
ABSTRAK

Katakunci : simulasi, model, operasi kontena, utilasi, kesibukan, prestasi, prime movers, Rubber Tyre Gantrys, perisian simulasi, “What-If” analisis
ABSTRACT

Seaports and container terminal operation is one of the most important assets for a country because it can contribute income to develop a country. Furthermore, it can help to make a country well known in a world because trading with other country through ports. The performance of the container terminal operation is very important. As we know that the container operation is a very complex and dynamic system. This is because each operation requires different resources and equipment assigned to it. Therefore the efficiency in the assigning and utilization of this equipment and resources will determine the performance of container terminal operation. In this research, simulation and modeling is used to study the performance of the container terminal operation in Westport, Klang because simulation and modeling is the best tool to study dynamic and complex operations. Furthermore, it will reduce the cost of the company because the users can use the simulation model to do some experimentation before real implementation. The simulation software, which is used in this study is called Arena Simulation Software. The container operation in Westport, Klang will be model in this software. This model will measure the performance of this port from the aspect of utilization and the busiest of the prime movers and Rubber Tyre Gantry in the yard. Furthermore, this model can do a lot of experimentation or "What-If“ analysis so that the users can test it before real implementation is done. Therefore, this model will reduced the cost of the company.

Keywords: simulation, modeling, container operation, utilization, performance, busiest, Prime Movers, Rubber Tyre Gantry, yard, What-If analysis
ACKNOWLEDGEMENT

In doing this project, there are many difficulties and obstacles that I have to face. However, I learn a lot from this project especially on simulation and the Arena Simulation software. There are many peoples who have help and guide me through these challenging and hard times. Therefore, I would like to take this opportunity to thank them all. Firstly, I would like to thank my beloved parents for their fullest support, love and encouragement. Secondly, I would like to thank my supervisor, Prof. Madya Dr. Razman Mat Tahar for his guidance, support and his tremendous ideas. Thirdly, I would like to UUM lecturers who have guide and taught me well in the MSc IT program. Fourthly, I would like to thank the Universiti Utara Malaysia for their well equipped resources and facilities provided for me to do the research. I would also like to thank all Westport staffs who have given me their co-operation and support. I would also like to thank all my friends for their understanding, guidance, support and motivation and lastly to all the individuals who are involved in the establishment of this project.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER 1 : INTRODUCTION

1.1 Background 1
1.2 Problem Statement 2
1.3 Aims and Objectives 2
1.4 Methods of Analysis 2
1.5 Significance Of The Study 3
1.6 Scope Of Study 4
1.7 Definition Of Terms 4
1.8 Project Report Outline 6

CHAPTER 2 : LITERATURE REVIEW

2.1 Introduction 8
2.2 Modeling and Simulation 8
2.3 Application Of Simulation Modeling 12
2.4 Categories Of Computer Simulation 20
2.5 Seaports And Containers 23
 2.5.1 Management Of Container Terminal 26
 2.5.1.1 Berth Allocation 26
 2.5.1.2 Yard Planning 26
 2.5.1.3 Stowage Planning 28
 2.5.1.4 Logistic Planning 28

iv
CHAPTER 3: WESTPORT CONTAINER TERMINAL

3.1 Background 44
3.2 History 47
3.3 Mission 48
3.4 Vision 48
3.5 Westport Concepts 49
 3.5.1 The Fastport Concept 49
 3.5.2 The Flexiport Concept 49
 3.5.3 The Garden Port Concept 50
3.6 Container Operations 50
3.7 Conventional Operations 53
 3.7.1 Dry Bulk 55
 3.7.2 Liquid Bulk Terminal 55
 3.7.3 Break Bulk 56
 3.7.4 Cement 57
3.8 Facilities 57
 3.8.1 Westport Distripark 57
 3.8.2 Roads 59
 3.8.3 Haulage 59
 3.8.4 Vehicle Terminal Centre 60
 3.8.5 Westport Business Centre 60
 3.8.6 Computer Systems 61
 3.8.7 Free Commercial Zones 62
 3.8.8 Rail Link 63
 3.8.9 Quality Marine Services 64
 3.8.10 Feeder System 65
 3.8.11 Clean Sea Terminal Westport 65
 3.8.12 Bunkering Breakthrough 66
CHAPTER 4: METHODOLOGY
4.1 Introduction 67
4.2 Simulation Modeling Process 67
4.3 Simulation Methodology 68
4.3.1 Problem Formulation 68
4.3.2 Model Building 68
4.3.3 Data Collection 69
4.3.4 Model Translation 69
4.3.5 Verification and Validation 70
4.3.6 Experimental Design 70
4.3.7 Model Runs and Output Analysis 70
4.3.8 Documentation and Report Results 71
4.3.9 Implementation 71
4.4 Data Collection 72
4.4.1 Primary Data 72
4.4.2 Secondary Data 73
4.5 Modeling The System 73
4.6 Arena 73

CHAPTER 5: MODEL DEVELOPMENT
5.1 Process Flow 76
5.2 Model Description 78
5.3 Model Input 97

CHAPTER 6: OUTPUT AND VALIDATION
6.1 Model Limitations 112
6.2 Model Verification and Validation 112
6.2.1 Transporters Or Prime Movers 113
6.2.2 Cranes or RTGs 114
6-3 Model Results 114
6.3.1 Transporters or Prime Movers 114
6.3.1.1 Utilization 115
6.3.1.2 Busy 115
6.3.1.3 Summary Of Output 115
6.3.2 Cranes Or RTGs

CHAPTER 7: MODEL EXPERIMENTATION

7.1 Introduction 132
7.2 Scenarios 132

7.2.1 Scenario 1: Increase To Seven
Transporters For Each Set 132

7.2.2 Scenario 2: Reduced To Five
Transporters For Each Set 133

7.2.3 Scenario 3: Reduced 50% Of
The Process Time Of The Crane 135

CHAPTER 8: CONCLUSION 150
REFERENCES 151
GLOSSARY 163
APPENDIX
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1</td>
<td>Operational Process For Container Unloading At Port</td>
<td>4</td>
</tr>
<tr>
<td>Figure 5-1</td>
<td>Planning Operations For Discharge And Loading</td>
<td>79</td>
</tr>
<tr>
<td>Figure 5-2</td>
<td>Discharging Operations</td>
<td>80</td>
</tr>
<tr>
<td>Figure 5-3</td>
<td>Loading Operations</td>
<td>81</td>
</tr>
<tr>
<td>Figure 5-4</td>
<td>Layout Of The Model</td>
<td>82</td>
</tr>
<tr>
<td>Figure 5-5</td>
<td>Arrive Module</td>
<td>83</td>
</tr>
<tr>
<td>Figure 5-6</td>
<td>Transporter Module</td>
<td>84</td>
</tr>
<tr>
<td>Figure 5-7</td>
<td>Network Link Module</td>
<td>85</td>
</tr>
<tr>
<td>Figure 5-8</td>
<td>Enter Module</td>
<td>86</td>
</tr>
<tr>
<td>Figure 5-9</td>
<td>Choose Module</td>
<td>87</td>
</tr>
<tr>
<td>Figure 5-10</td>
<td>Process Module</td>
<td>88</td>
</tr>
<tr>
<td>Figure 5-11</td>
<td>Count Module</td>
<td>89</td>
</tr>
<tr>
<td>Figure 5-12</td>
<td>Store Module</td>
<td>90</td>
</tr>
<tr>
<td>Figure 5-13</td>
<td>Model For Discharging Operation</td>
<td>90</td>
</tr>
<tr>
<td>Figure 5-14</td>
<td>Signal Module</td>
<td>91</td>
</tr>
<tr>
<td>Figure 5-15</td>
<td>Wait Module</td>
<td>92</td>
</tr>
<tr>
<td>Figure 5-16</td>
<td>Assign Module</td>
<td>93</td>
</tr>
<tr>
<td>Figure 5-17</td>
<td>Delay Module</td>
<td>94</td>
</tr>
<tr>
<td>Figure 5-18</td>
<td>Unstore Module</td>
<td>95</td>
</tr>
<tr>
<td>Figure 5-19</td>
<td>Leave Module</td>
<td>96</td>
</tr>
<tr>
<td>Figure 5-20</td>
<td>Model For Loading Operation</td>
<td>96</td>
</tr>
<tr>
<td>Figure 5-21</td>
<td>Total Container For Discharging Operations (Import)</td>
<td>101</td>
</tr>
<tr>
<td>Figure 5-22</td>
<td>Time Between Arrival</td>
<td>102</td>
</tr>
<tr>
<td>Figure 5-23</td>
<td>Total Time For Quay Crane To Put Containers On Prime Mover</td>
<td>103</td>
</tr>
<tr>
<td>Figure 5-24</td>
<td>Total Time For RTG To Pick Containers From Prime Movers</td>
<td>104</td>
</tr>
<tr>
<td>Figure 5-25</td>
<td>Total Process Time Of The RTG For Discharging Operations</td>
<td>105</td>
</tr>
</tbody>
</table>
Figure 5-26: Total Time For The RTG To Put The Containers At The Block In The Yard 106
Figure 5-27: Total Container For Loading Operation (Export) 108
Figure 5-28: Total Process Time Of RTG For Loading Operations 109
Figure 5-29: Total Time For The RTG To Put The Containers On The Prime Mover 110
Figure 5-30: Total Time For The Quay Crane To Pick The Containers From The Prime Mover. 111
Figure 6-1: Formula For Percentage Of Utilization For Transporters Or Prime Movers. 113
Figure 6-2: Formula For Percentage Of Utilization For The Cranes Or RTGs 114
Figure 6-3: Percentage Of Utilization For Transporters Or Prime Movers (6 Units) 119
Figure 6-4: Number Of Busy Transporters Or Prime Movers (6 Units) 121
Figure 6-5: Percentage Of Utilization In Crane A 123
Figure 6-6: Percentage Of Utilization In Crane B 125
Figure 6-7: Percentage Of Utilization In Crane C 127
Figure 6-8: Percentage Of Utilization In Crane D 129
Figure 6-9: Percentage Of Utilization In Crane E 131
Figure 7-1: Percentage Of Utilization For Transporters Or Prime Movers (7 Units) 137
Figure 7-2: Percentage For Utilization Of Transporters Or Prime Movers (5 Units) 139
Figure 7-3: Percentage Of Utilization For Cranes In Zone A (50% Reduction) 141
Figure 7-4: Percentage Of Utilization For Cranes In Zone B (50% Reduction) 143
Figure 7-5: Percentage Of Utilization For Cranes In Zone C (50% Reduction) 145
Figure 7-6: Percentage Of Utilization For Cranes In Zone D (50% Reduction) 147
Figure 7-7: Percentage Of Utilization For Cranes In Zone A (50% Reduction) 149
CHAPTER 1
INTRODUCTION

1.1 Background
Seaports are considered as the link between seas to land transport, where goods from one place are transferred from one mode of transport to another. Ports are connected with ships, which bring import cargo, or load the export cargo on one side, and on the other side are linked by road or rail to move the cargo out, or bring in the cargo, as the case may be. A port is a very important asset for a country because it serves as the collection and distribution center for essential goods and cargo. Therefore, Malaysia is considered fortunate to have so many ports around it such as Kelang Port, Johor Port, Penang Port and et. al. Without efficient ports, Malaysia’s will not able to compete with other countries. Malaysia once used to rely heavily on Port of Singapore for trading activities, hence, Malaysia have to bear a high cost to support this activities. One of the most important ports that play a very important role in Malaysia is Kelang Multi Terminal Sdn Bhd, also known as Westport.

The goal of this study is to develop a simulation model that can be used to help the port management to evaluate the performance of port operations. The major goal of terminal planning is to increase the terminal throughput, reducing handling time and turnaround time and increasing the utilization of facilities, minimize traffic congestion, utilize the resources required; and at the same time to be able to minimize the operating costs.
The contents of the thesis is for internal user only
REFERENCES

About Stolthaven Malaysia. (2000). Stolthaven (Westport) Sendirian Berhad

Arnold Buss. Web-Based Simulation Modeling.
<http://ses.org/conferenc/wme98/websim/wbms/d36/bussA.html>

Associate Prof. Pawlikowski & Dale, T. (15 October, 1999). COSC410: Simulation
Modeling And Analysis.
<http://www.cosc.canterbury.ac.nz/prospectus/gradbook/node30.html>

Waste Isolation Pilot Plant. Proceedings Of The 2000 Winter Simulation
Conference.

Blue, J.L. (September 21, 1995). Modeling And Simulation. A NIST Multi-
Laboratory Strategic Planning Workshop Gaithersburg, MD.
<http://math.nist.gov/spw.html>

Bontempi G., Gambardella L.M., Rizzoli A.E. (June 1-4,1997). Simulation And
Optimization For Management Of Intermodal Terminals. European
Simulation Multiconference 1997, Instanbul.

Chan, S.C. Westport's Trans-Shipment Aspirations.

Chan, S.C. Port Alliances Urged.

Consulting Services : Solving Your Problems With Simulation.
http://www.arenasimulation.com/consulting/default.htm

152

 <http://www.cis.ufl.edu/~fishwick/paper/section3_2.html>

 <http://www.cis.ufl.edu/~fishwick/paper/subsection3_3_1.html>

 <http://www.cis.ufl.edu/~fishwick/paper/subsection3_3_2.html>

 <http://www.cis.ufl.edu/~fishwick/paper/subsection3_3_3.html>

 <http://www.cis.ufl.edu/~fishwick/paper/subsection3_3_4.html>

Fishwick, P.A. (April 15, 1994). “Simulations Are Created With A Specific Purpose In Mind”.
 <http://www.cis.ufl.edu/~fishwick/paper/subsection3_3_5.html>

Fishwick, P.A. (April 15, 1994). Conclusions

 <http://www.cis.ufl.edu/~fishwick/introSim/node7.html>

 <http://www.outsights.com/systems/simulation/contsim.htm>
Gene Bellinger. *Discrete Simulation*. OutSights

<http://www.outsights.com/systems/simulation/dissim.htm>

<http://www.outsights.com/systems/modsim/modsim.htm>

<http://www.outsights.com/systems/simulation/simnotta.htm>

<http://www.outsights.com/systems/simulation/simulation.htm>

<http://www.acm.org/pubs/toc/Abstracts/tomacs/203094.html>

Hiroyuki YAMATO, Takeo KOYAMA, Akira FUSHIMI, Tomohiro TSUNODA, Tomoko OGANE. *A Study On Simulation Based Design For Container Terminal*. University Of Tokyo.

<http://www.naka.t.u-tokyo.ac.jp/trans-sys/docs/SimCon/SimBasedDesignContT.html>

Introduction. <http://bob.nap.edu/readingroom/books/modeling/1.html>

Ming C. Lin. *COMP 290-072: Physically-Based Modeling, Simulation And Animation*. Department Of Computer Science, College Of Arts And Sciences, The University Of North Carolina At Chapel Hill

<http://www.cs.unc.edu/~lin/COMP290-72-S2K/>

<http://www.nap.edu/readingroom/books/modeling/index.html>

<http://www.usc.edu/dept/ATRIUM/Papers/JSS98/JSS98.html>

<http://www.tedc.com/dmehs/dmeth4htm>

160

Thompson, M. Malaysia - Port Of Klang. <http://www.intl.acec.org/overview/ThursdayCommunique/jan6/Malaysia_Port_Kland_txt>

WSC'00 Final Program Abstracts Business Process, Health Care and Service Industry Applications Track

WSC'00 Final Program Abstracts Analysis Methodology I Track

<http://www.cimnet.ncsu.edu/wsc2000/finalabstracts.asp?TID=AN>

WSC'00 Final Program Abstracts Analysis Methodology II Track

WSC'00 Final Program Abstracts Advanced Tutorials Track

<http://www.cimnet.ncsu.edu/wsc2000/finalabstracts.asp?TID=AT>
