A MICRO-GENETIC ALGORITHM APPROACH FOR SOFT CONSTRAINT SATISFACTION PROBLEM IN UNIVERSITY COURSE SCHEDULING

ABD. HALIM BIN BOHADEAN @ BOHARI
(88485)

MSc. IT (By Research)
UNIVERSITI UTARA MALAYSIA
2013
A MICRO-GENETIC ALGORITHM APPROACH FOR SOFT CONSTRAINT SATISFACTION PROBLEM IN UNIVERSITY COURSE SCHEDULING

This dissertation is submitted to the Centre for Graduate Studies to fulfill the requirement of Master of Science (Information Technology By Research)
Universiti Utara Malaysia

Abd. Halim Bin Bohadean @ Bohari
(88485)

© Abd Halim Bin Bohadean @ Bohari, July 2013. Copyright Reserved
Permission to Use

In presenting this thesis as a major requirement for a post-graduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may take it freely available for inspection after being submitted for a year. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or, in his absence, by the Director of Centre for Graduate Studies. It is understood that any copying or publication or use of this thesis or part thereof for financial gain shall not be allowed without my written permission. It is also understood that recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use, which may be made of any material from my thesis.

Request for permission to copy or to make other use of materials in this thesis, in whole or in part should be addressed to:

Director
Center for Graduate Studies
Universiti Utara Malaysia
06010 UUM Sintok
Kedah DarulAman
Abstrak

Kata kunci: Mikro Genetik, Kekangan lembut, Pengoptimuman, Penjadualan
Abstract

A university course timetabling problem is a combination of optimization problems. The problems are more challenging when a set of events need to be scheduled in the time slot, to be located to the suitable rooms, which is subjected to several sets of hard and soft constraints. All these constraints that exist as regulations within each resource for the event need to be fulfilled in order to achieve the optimum tasks. In addition, the design of course timetables for universities is a very difficult task because it is a non-deterministic polynomial, (NP) hard problem. This problem can be minimized by using a Micro Genetic Algorithm approach. This approach, encodes a chromosome representation as one of the key elements to ensure the infeasible individual chromosome produced is minimized. Thus, this study proposes an encoding chromosome representation using one-dimensional arrays to improve the Micro Genetic algorithm approach to soft constraint problems in the university course schedule. The research contribution of this study is in developing effective and feasible timetabling software using Micro Genetic Algorithm approach in order to minimize the production of an infeasible individual chromosome compared to the existing optimization algorithm for university course timetabling where UNITAR International University have been used as a data sample. The Micro Genetic Algorithm proposed has been tested in a test comparison with the Standard Genetic algorithm and the Guided Search Genetic algorithm as a benchmark. The results showed that the proposed algorithm is able to generate a minimum number of an infeasible individual chromosome. The result from the experiment also demonstrated that the Micro Genetic Algorithm is capable to produce the best course schedule to the UNITAR International University.

Keyword : Micro Genetic, Soft constraint, Optimization, Timetabling
Acknowledgements

I would like to express my appreciation and thank to my supervisor, Prof. Madya Dr. Azman bin Yasin for being a good advisor in providing assistance, guidelines and support throughout this thesis. I also would like to thank to Dr. Yuhanis bt Yusof for her encouragement and insightful comments. A special thank to my wife Hartini Mohd Ashikin and my mother Aloha Mohd Diah for their understanding, prayers and blessing.

In addition, thanks to my friends:

Roshidi bin Din

Hanizan Shaker bin Hussain

Baharudin bin Osman

For your helps, ideas and support to complete this thesis.

Finally to the people who are keen to knowledge, perhaps this thesis contributes to the body of knowledge and enriches the information hereto.
Table of Contents

Permission to Use .. ii

Abstrak .. iii

Abstract .. iv

Acknowledgements .. v

Table of Contents .. xi

List of Tables .. ix

List of Figures ... xi

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation ... 3

1.2 Background ... 4

1.3 Problem Statement .. 5

1.4 Research Objectives .. 6

1.5 Research Scope .. 7

1.6 Significance of This Study .. 7

1.7 Research Contribution ... 8

1.8 Thesis Organization .. 9

CHAPTER 2 LITERATURE REVIEW ... 11

2.1 Introduction ... 11

2.2 Approaches To Solve Timetabling Problems .. 17

2.3 The GA Generic Model ... 22

2.4 Genetic Operators .. 27

2.5 Application of GA in Timetabling Problem ... 30

2.6 Micro-GA .. 32

2.7 Conclusion .. 37
CHAPTER 3 RESEARCH METHODOLOGY ... 38

3.1 Introduction ... 38

3.2 Design of Study .. 39

3.2.1 Document Analysis Stage .. 39

3.2.2 Development Stage ... 40

a. Conceptual Model of MGAT system .. 40

b. Develop MGAT framework .. 41

c. Develop Chromosome modeling representation 42

 i. Chromosome Representation for MGAT system 42

 ii. Fitness Function for MGAT system .. 43

 iii. Soft constraint Value .. 44

 iv. Calculation of Fitness Function ... 46

 v. Generation of Initial Population ... 47

 vi. Calculation of penalties of lecturer clashes 48

 vii. Constructed Micro-GA .. 50

3.2.3 Evaluation Stage ... 55

a. System Environment Identification ... 56

 i. Types of University Courses .. 56

 ii. Availability of resources .. 57

 iii. Rules for time tabling in the university .. 58

 iv. University Timetabling Resources .. 59

 v. Requirement of GA, GSGA and Micro-GA Performances 62

b. Structure of Testing Performance ... 63

3.3 Conclusion ... 65
CHAPTER 4 ANALYSIS AND RESULT .. 66

4.1 Introduction .. 66
4.2 Comparative Testing .. 67
4.3 The Effectiveness of MGAT System .. 71
 a. Soft Constraint Performance of Micro-GA 71
 b. Testing of Fitness Performance for Micro-GA 77
 c. Testing of End-User Usability .. 81
4.4 Conclusion .. 85

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 86

5.1 Introduction .. 86
5.2 Contribution .. 89
5.3 Future works .. 89

REFERENCES .. 91

Appendix .. 99

 Appendix I: University Timetable System Interface 100
 Appendix II: Output for UNITAR Timetable System 104
 Appendix III: Sample Code .. 109
 Appendix IV: Sample Questionnaire ... 113
List of Tables

Table 3.1: Setting of Soft Constraints Value ... 45

Table 3.2: University Timetabling Resources ... 60

Table 3.3: Hard Constraints of the time tabling specification 61

Table 3.4: Soft Constraints of the time tabling specification 61

Table 3.5: The genetic algorithm parameters ... 62

Table 3.6: Group of Problem Instances .. 63

Table 3.7: Data set used .. 64

Table 3.8: Parameters Setting ... 65

Table 4.1: Phase of Testing .. 67

Table 4.2: Result of Objective Values of Micro-GA and GSGA with Different Crossover Rates ... 69

Table 4.3: Result of soft constraints performance over time taken 71

Table 4.4: Result of different crossover rate to objective value 74

Table 4.5: Result of different size of population time taken to generate with corresponding objective function ... 77
Table 4.6: Result of different iteration over the fitness of standard GA and fitness of Micro-GA .. 79

Table 5.1: Summary of the research ... 87
List of Figures

Figure 2.1: Basic Structure of GA ... 25
Figure 2.2: Crossover Operation ... 28
Figure 2.3: Mutation Operation ... 30
Figure 3.1: Research Framework ... 38
Figure 3.2: A Conceptual Model of MGAT System 40
Figure 3.3: MGAT Framework ... 41
Figure 3.4: One-dimensional array for chromosome representation 42
Figure 3.5: Process to produce Initial Population 48
Figure 3.6: Calculation of Penalties ... 49
Figure 3.7: The Techniques of Soft Constraint Evaluation 50
Figure 3.8: The Process Flow of Using Micro-GA 53
Figure 3.9: The pseude-code of Micro-GA .. 55
Figure 4.1: Objective Value Over Generation For Different Crossover Rate 70
Figure 4.2: Objective Function Over Generation For Different Varying Crossover Rate .. 75
Figure 4.3: Fitness comparison between GA and Micro-GA 80
Figure 4.4: System Aspect (Perceived Usefulness) .. 83
Figure 4.5: System Aspect (Perceived Ease of Use) 84
Figure 4.6: Overall Satisfaction (Usability) ... 84
CHAPTER 1

INTRODUCTION

In general, a university course timetabling problem usually refers to finding the exact allocated time within a limited time period for example a week, for a number of events (courses-lectures) and assignment of events to a number of resources (lecturers-rooms) in such a way that a number of constraints are satisfied.

Yang and Petrovic (2004) has defined the timetabling as the allocation of a set of subject into a classroom over a limited number of time periods to avoid the occurrence of conflicts of interests between two subjects or lecturers. A good scheduling technique that can lead to optimization is important to ensure it is able to produce all timetable for students and lecturers.

The main problem in the university timetable generation is to provide lecturers and lecture activities by matching all lectures involving the consumption a lot of time as well as the person responsible. The information required for the course schedule including room availability, time slots and several specific policy options. For example, information on room availability can be specified to the room capacity for certain events. In the domain of university timetable, it is often used to refer to the construction of schedule (with time slots) through the system by considering several numbers of constraints.
The contents of the thesis is for internal user only
REFERENCES

Davis F. D. (1989), Perceived usefulness, perceived ease of use, and user acceptance of Information Technology.: MIS Quarterly (13 : 3).

Lai Lien-Fu, Hsueh Nien-Lin, Huang Liang-Tsung and Chen Tien-Chun (2006), An Artificial Intelligence Approach to Course Timetabling, a publication from the Proceedings of the 18th IEEE International Conference on Tools and Artificial Intelligence (ICTAI’06), IEEE Computer Society, 0-7695-2728-0/06.

