USER PERCEPTIONS OF WI-FI SECURITY SERVICE IN UNIVERSITI UTARA MALAYSIA

ARIF RIDHO LUBIS

UNIVERSITI UTARA MALAYSIA

USER PERCEPTIONS OF WI-FI SECURITY SERVICE IN UNIVERSITI UTARA MALAYSIA

A project submitted to Dean of Research and Postgraduate Studies Office in partial

Fulfillment of the requirement for the degree

Master of Science (Information Technology)

Universiti Utara Malaysia

PERMISSION TO USE

In presenting this project in partial fulfillment of the requirements for a postgraduate degree from the Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner in whole or in part, for scholarly purposes may be granted by my supervisor(s) or in their absence by the Dean of Awang Had Salleh Graduate School. It is understood that any copying or publication or use of this project or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project.

Requests for permission to copy or to make other use of materials in this project, in whole or in part, should be addressed to

Dean of Awang Had Salleh Graduate School
College of Arts and Sciences
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
Malaysia

ABSTRAK

Pada era teknologi dan maklumat, pembangunan teknologi berkembang

selaras dengan keperluan pengguna itu sendiri. Akses internet sangat penting untuk

mendapatkan pelbagai maklumat yang dikehendaki di seluruh dunia. Sebagaimana

internet, berkembang pesat. Mobiliti yang tinggi oleh pengguna dalam pengunakan

pelayaran pada setiap masa untuk peralatan elektronik yang dimiliki oleh pengguna.

Akses tanpa wayar adalah salah satu penyelesaian yang diapplikasikanpada masa

sekarang. Satu rangkaian keselamatan adalah perlu untuk menjaga hak-hak pengguna

akses tanpa wayar dan keselamatan adalah salah satu keutamaan yang paling penting.

Keselamatan boleh digunakan oleh pengguna atau pembekal perkhidmatan

komunikasi itu sendiri. Kerana bahaya mungkin berada di mana-mana sahaja.

Terdapat banyak faktor yang boleh mengganggu keselamatan rangkaian. Dalam

projek ini, saya akan cuba untuk menggunakan kaedah soal selidik kepada pengguna-

pengguna Wi-Fi di Universiti Utara Malaysia, khususnya pengguna di bangunan

SOC, untuk mengetahui persepsi pengguna terhadap keselamatan Wi-Fi terhadap

perkhidmatan yang disediakan oleh Universiti Utara Malaysia. Semua peserta adalah

pelajar SOC dengan jumlah 873 populasi. Saiz sampel yang digunakan dalam projek

ini adalah 109 orang pelajar. Tahap keyakinan yang dinyatakan adalah 92% yang

mewakili kerahsiaan tinggi. Kajian ini mendapati bahawa aspek pengguna

mempunyai hubungan yang positif dengan aspek keselamatan.

Kata kunci: Wi-Fi, keselamatan, persepsi pengguna

ABSTRACT

At the time of information technology, the development of technology runs

rapidly for the needs of the users themselves. Internet access is very important to

obtain any desired information around the world. As well as the internet, it develops

rapidly. High mobility of the users is in need of access that can be connected all the

time to the electronic device which is owned by the user. A wireless access is one of

the exact solutions being applied at the present time. A security network is necessary

to keep the rights of the wireless access user and security is one of the most important

priorities. Security can be applied by the user or provider of communication services

themselves. Because of the danger's security could be from anywhere. There are many

factors that can disturb the network security. This project attempt to use the

questionnaire methodology to the users of Wi-Fi in the Universiti Utara Malaysia,

particularly at SOC building, to find out the perception of the users toward Wi-Fi

security service provided by Universiti Utara Malaysia. All participants were SOC

students with the total of 873 populations. The sample size used in this project was

109 students. The confidence level stated was 92% which represent a high

confidentiality. This study found that the user aspect has a positive relation with the

security aspect.

Key words: Wi-Fi, security, users' perception

ACKNOWLEDGEMENT

Alhamdulillah, all praise to Allah SWT for providing grace and gift to all of us. The title of this study is USER PERCEPTIONS OF Wi-Fi SECURITY SERVICE IN UNIVERSITI UTARA MALAYSIA. With this study we will get a new knowledge, which hopefully can be input to other people, especially for the Universiti in improving the security performance of Wi-Fi. Hopefully, this study can also be the subject of study for other research that will be conducted in the future.

Special thanks and deepest appreciation to the supervisor Assoc. Prof. Hatim Mohamad Tahir for his valuable time spent in giving the guidance in completing this study. Thanks to the evaluator En Rosmadi B Bakar and En Ahmad Tajudin bin Baharin for the input on this topic that I get the expected result.

A special devotion is directed to my mother, Hj. Arneny who always supports me to be a useful and well behaved child. A big thanks to my father, H. DR. Asmin Lubis, Sp.An. Who is always being a role model of my life. Your prayers and support are very meaningful to my life ever. Thanks to my big family who are always glad to support the members whenever they are in sad condition.

Thanks to Dira Wahyuni Siregar, you are always exist in all my life. Thanks to all friends for helping and supporting me.

Thanks to the SOC, computer center and those who cannot be mentioned here for their help, Thanks to those who have supported directly or indirectly involved in this study.

TABLE OF CONTENTS

PERMISSION TO USEi
ABSTRAKii
ABSTRACTiii
ACKNOWLEDGEMENTiv
TABLE OF CONTENTSv
LIST OF TABLEix
LIST OF FIGURESxii
LIST OF ABREVIATIONxiii
CHAPTER I: INTRODUCTION1
1.1 BACKGROUND1
1.2 PROBLEM STATEMENTS4
1.3 RESEARCH QUESTIONS4
1.4 RESEARCH OBJECTIVES4
1.5 SCOPE OF PROJECT
1.6 SIGNIFICANCE OF PROJECT5
1.7ORGANIZATION OF PROJECT5
1.8 SUMMARY6
CHAPTER II: LITERATURE REVIEW7
2.1 INTRODUCTION7
2.2 TYPES OF WLANS11
2.2.1 INFRASTRUCTURE MODE11
2.2.2 AD HOC NETWORK MODE11

2.2.3 MIXED NETWORK MODE	12
2.3 WI-FI NETWORK TOPOLOGY	12
2.4 WIRELESS SECURITY PROBLEMS	13
2.4.1SECURITY THREATS OF WI-FI	15
2.4.1.1 DENIAL OF SERVICE (DoS)	15
2.4.1.2 SNIFFER, SOOFING AND SESSION HIJACKING	16
2.4.1.3 EAVESDROPPING	18
2.5 WIRELESS SECURITY BEST PRACTICES	19
2.5.1 WIRED EQUIVALENT PRIVACY (WEP)	20
2.5.2 WI-FA PROTECTED ACCESS (WPA)	20
2.5.3 WI-FA ACCESS PROTECTUION, VERSION 2 (WPA2/802.11.I)	21
2.6 THEORETICAL FRAMEWORK	22
2.7 CONCLUSION	23
CHAPTER III: METHODOLOGY	24
3.1 DESIGN OF METHODOLOGY	24
3.1.1 EXPERIMENTAL DESIGN	24
3.1.2 DESIGNING AN EXPERIMENT	25
3.2 SAMPLING DESIGN	26
3.2.1 SAMPLING DESIGN BASED ON HARY KING CONCEPT	26
3.2.2 SAMPLING TECHNIQUE	27
3.2.3 SAMPLE SIZE	28
3.3 DESIGN INSTRUMENT	28
3.3.1 SECTION A	28
3.3.2 SECTION B	28
3.4 TYPES OF ANALYSIS	29

3.4.1 RESEARCH INSTRU	MENT	29
3.5 DATA COLLECTION		30
3.5.1 PRIMARY DATA		30
3.5.2 SECONDARY DATA	.	31
3.6 HYPOTHESIS		31
3.7 PILOT TEST		31
3.8 IMPLEMENTATION AN	ND RESULT	33
3.9 CONCLUSIONS		34
CHAPTER IV: FINDING AND	PRESULT	37
4.1 SOC BULDING TOPOL	OGY WI-FI	35
4.2 SECURITY WI-FI ISSUI	E IN UNIVERSITI UTARA MALAYSIA	38
4.3 DESCRIPTIVE ANALYS	SIS STATISTICS	40
4.3.1 GENDER		40
4.3.2 AGE		40
4.3.3 QUALIFICATION		41
4.3.4 FREQUENCY OF US	ING INTERNET	41
4.3.5 SURFING TIME WI-I	FI IN SOC BULDING	42
4.3.6 SECURITY BREACH	IES OVER INTERENTE WI-FI	43
4.3.7 CAUSING FACTOR (OF WORELESS CONNECTION SECURITY	44
4.3.8 THE EFFECT OF UN	ENCRYPTED TRAFFIC	44
4.3.9 TYPE ELECTRONIC	ATTACK	45
4.3.10 WIRELESS NETWO	ORK SECURITY TECHNOLOGY	46
4.4 FREQUENCEY TABLE	FROM SECURITY AWARENESS	46
4.5 RELIABILITY ANALYS	SIS	57
A C DESCRIPTIVES ANALY	VCIC	50

4.7 CORRELATIONS ANALYSIS	59
4.8 CONCLUSION	60
CHAPTER V: CONCLUSION AND RECOMMENDATIONS	62
5.1 CONCLUSION	62
5.2 CONTRIBUTION OF RESEARCH	64
5.3 LIMITATION AND RECOMENDATION	65
REFERENCES	66
APPENDICES A: QUESTIONNAIRE USER PERCEPTION OF WI-	7 I
SECURITY SERVICE IN SOC UNIVERSITY UTARA MALYASIA	72
APPENDICES B: SPSS RESULT OF PILOT TEST	78
APPENDICES C: SPSS RESULT OF OUESTIONER	80

LIST OF TABLES

TABLE		PAGE
Table 1.1	Classes of attacks	2
Table 2.1	Wireless local area network standards	10
Table 2.2	Wireless Protocols Compared	22
Table 3.1	Structure of Questioners	29
Table 3.2	Reliability Statistics User Aspect	32
Table 3.3	Validity of User Aspects	32
Table 3.4	Reliability Statistics Security Aspect	32
Table 3.5	Validity of Security Aspects	33
Table 4.1	Gender Of Respondests	40
Table 4.2	Age of Respondents	41
Table 4.3	Qualification of Respondents	41
Table 4.4	Frequency of using Internet	42
Table 4.5	surfing time	42
Table 4.6	security breaches over internet Wi-Fi	43
Table 4.7	Causing factor of wireless connection security	44
Table 4.8	The Effect unencrypted traffic	45
Table 4.9	Type electronic attack	45
Table 4.10	Wireless network security techology	46
Table 4.11	Expert internet user	47
Table 4.12	Change in UUM Wi-Fi's connectivity	47
Table 4.13	Speed at SOC bulding	47
Table 4.14	Signal at SOC bulding	48

Table 4.15	Download speed at SOC	48
Table 4.16	Wireless communication over the internet is safer than	49
	communication through cables	
Table 4.17	Wi-Fi access points at SOC building is closed enough to	49
	fulfill your needs	
Table 4.18	Faced some electronic attacks in the last 12 months	50
Table 4.19	You are aware of today's most common security threats in	50
	Wi-Fi	
Table 4.20	Protect my computer from harm, if I take good care of	51
	computer security	
Table 4.21	The information that I keep on my computer is not	51
	interesting enough for people to try and hack into my	
	computer	
Table 4.22	I never download/install a software from the free	52
	downloads web because it not secure	
Table 4.23	I do not like to use the Internet for financial transactions	52
Table 4.24	SOC Wi-Fi security worries me	53
Table 4.25	A good network security can increase the efficiency of Wi-	53
	Fi	
Table 4.26	A bad quality of Wi-Fi which caused by unauthorized	54
	access, can be improved by the use of Firewall	
Table 4.27	A Firewall effective way to prevent hackers attacks that	54
	can harm the Wi-Fi	
Table 4.28	Activities on the network which can result in damage to	55
	Wi-Fi can be detected by Intrusion Detection System (IDS)	

Table 4.29	Attacks on Wi-Fi can be detected early by the Intrusion	55
	Detection System (IDS), thereby reducing the risk of	
	damage	
Table 4.30	Update signature of Intrusion Detection System (IDS)	56
	regularly may reduce the risk of damage	
Table 4.31	Confidentiality guarantees provided by the Virtual Private	56
	Network (VPN) can reduce the damage to Wi-F	
Table 4.32	The guarantee of data can be received when delivered	57
	exactly as provided by Virtual Private Network (VPN) can	
	reduce the damage to Wi-Fi	
Table 4.33	Non-repudiation guarantees provided by Virtual Private	57
	Network (VPN) will enhance the quality of Wi-Fi	
Table 4.34	User Aspect reliability	58
Table 4.35	Security Aspect reliability	58
Table 4.36	Descriptive Statistics	58
Table 4.37	Correlations Analysis	59

LIST OF FIGURE

Figure		PAGE
Figure 2.1	Generation of Wi-Fi	7
Figure 2.2	Sample of devices using Wi-Fi	8
Figure 2.3	Wireless Network Architecture	9
Figure 2.4	Infrastructure Mode	11
Figure 2.5	Ad Hoc Network Mode	11
Figure 2.6	Mixed Network mode	12
Figure 2.7	Typical of wireless LAN	13
Figure 2.8	The level of attack on network	15
Figure 2.9	Ilustrasion DoS attack	16
Figure 2.10	Connection before Spoofing	17
Figure 2.11	Connections after Spoofing	17
Figure 2.12	The Implementation of Eavesdro	18
Figure 2.13	802.11 and OSI MODELL	19
Figure 2.14	WEP Encryption process	20
Figure 2.15	TKIP process	21
Figure 2.16	Theoretical framework	23
Figure 3.1	Harry King concept	27
Figure 4.1	Universiti Utara Malaysia Overview Schematic Design	36
Figure 4.2	Universiti Utara Malaysia Wi-Fi Topology	37
Figure 4.3	SOC building Wi-Fi Topology	38
Figure 4.4	Top attacks with percentage in Universiti Utara Malaysia	39
Figure 4.5	Top attacks with diagram in University Utara Malaysia	39

LIST OF ABBREVIATIONS

IEEE = Institute of Electrical and Electronics Engineers

MAC = Media Access Control

PSK = Pre-Shared Key

SOC = School of Computing

UUM = University Utara Malaysia

WEP = Wired Equivalent Privacy

Wi-Fi = Wireless Fidelity

WLAN = Wireless Local Area Network

WPA = Wi-Fi Protected Access

CHAPTER I

INTRODUCTION

This chapter discusses in detail about the Background, Problem Statements, Research Questions, Research Objectives, Scope of Project, Significance of Project, Organization of Project, and Summary.

1.1 BACKGROUND

Nowadays, any kinds of information can be quickly and widely spread just in seconds. One of them is so called Internet. Human daily activities cannot get rid of it, such as sending all any types of urgent data to a company, sending emails, even to administer any kinds of transactions and other activities. The existence of wireless internet is also quite important for human activities. Along with Internet, activities which are usually time-consuming can be quickly performed.

Wi-Fi is the abbreviation of Wireless Fidelity [1]. It means a standard plot used for Wireless Local Area Networks (WLAN) based on the specification of IEEE 802.11. The most recent standard specifications of 802.11a or b, such as 802.11 g, are currently installed. That new specification provides many improvements ranging from wide coverage to the speed of transfer.

The contents of the thesis is for internal user only

REFERENCES

- [1] D. D. Coleman & D. A. Westcott, CWNA Certified Wireless Network Administrator Official Study Guide: Exam PW0-104: John Wiley & Sons, 2009.
- [2] K. Beaver & P. T. Davis, *Hacking Wireless Networks For Dummies*. USA: John Wiley & Sons, 2011.
- [3] Frank Ohrtman, & Konrad Roeder, "Wi-Fi H&book Building 802.11B Wireless Networks," McGraw-Hill 2003.
- [4] M. Gast, 802.11 Wireless Networks: The Definitive Guide: O'Reilly Media, 2011.
- [5] Willinsky, "Oxford Dictionary," ed: Oxford University Press, 2010.
- [6] Anthony Reyes, Cyber Crime Investigations. USA: Syngress, 2008.
- [7] A. H. Lashkari, M. M. S. Danesh, & B. Samadi, "A Survey on Wireless Security protocols (WEP, WPA & WPA2/802.11i)," p. 5, 2009.
- [8] A.-M. A. Al-Abdullah, "Wi-Fi Communication System," Electromagnetic 2009.
- [9] Patrick LaRoche & A. N. Zincir-Heywood, "Genetic Programming Based Wi-Fi Data Link Layer Attack Detection," p. 8, 2006.
- [10] EEE-SA St&ards Board, *ANSI/IEEE Std 802.11, 1999 Edition (R2003)*. New York: IEEE, 1999.
- [11] M. RudyantoArief, "Wireless Security," TeknikInformatika, STMIK AMIKOM, 2009.

- [12] C. C. McGeoch, *Design of Experiment for Computer Science & Mathematics*.

 Amherst: Amherst College, 2009
- [13] Telecommunication, "Telecommunications Services Satisfaction Survey of Residence Halls Spring 2011," Michigan Tech University, 2011.
- [14] S. Miller, Experimental Design & Statistics: New Essential Psychology 2 vol.1: Routledge, 2006.
- [15] H. Redwan & K.-H. Kim, "Survey of Security Requirements, Attacks & Network Integration in Wireless Mesh Networks," *Department of Information & Communication Engineering*, p. 5, 2008.
- [16] A. H. Lashkari, F. Towhidi, & R. S. Hoseini, "Wired Equivalent Privacy (WEP)," 2009.
- [17] A. C. Ijeh, A. J. Brimicombe, D. S. Preston, & C. O. Imafidon, "Security Measures in Wired & Wireless Networks," 2009.
- [18] Broadcom, "Wi-Fi for the Mobile & Video Generation," *Broadcom Corporation* p. 6, 2012.. All rights reserved.
- [19] McAfee, "Network Protection Industry-Leading Network Security Solutions,"

 Network Security Platform Version 5.1, 2010.
- [20] D. Fischer & B. Markscheffel, "State of the Art in Wireless LAN Security Results & Implications of an Empirical Study concerning German Companies & Federal Authorities," *Institute of Electrical & Electronics Engineers*, *Ilmenau University of Technology*, 2009.
- [21] A. Makanju, A. N. Zincir-Heywood, & E. E. Milios, "Adaptability of a GP Based IDS on Wireless Networks," p. 9, 2008, DOI 10.1109/ARES.2008.50

- [22] C. Y. Jeong, B. H. Chang, & J. C. Na, "A Survey on Visualization for Wireless Security," Fourth International Conference on Networked Computing & Advanced Information Management, IEEE, p. 4, 2008, DOI 10/1109/NCM.2008.187
- [23] Y. Zhiyu, Z. Linwei, & L. Wenna, "Study on Security Strategy of Wireless Mobile Office System," First International Workshop on Education Technology & Computer Science, p. 4, 2009.
- [24] Z. Zheng, J. Wang, & J. Wang, "A Study of Network Throughput Gain in Optical-Wireless (FiWi) Networks Subject to Peer-to-Peer Communications," Communications Society subject matter experts for publication in the IEEE, p. 6, 2009.
- [25] S. Misra, P. V. Krishna, H. Agarwal, A. Saxena, & M. S. Obaidat, "A Learning Automata Based Solution for Preventing Distributed Denial of Service in Internet of Things " *IEEE International Conferences on Internet of Things*, & Cyber, Physical & Social Computing, p. 9, 2011.
- [26] M. M. Aye, "A Queuing Analysis of Tolerating for Denial-of-Service (DoS)

 Attacks with a Proxy Network" *International Conference on Computer Engineering & Technology, IEEE*, p. 3, 2009.
- [27] S.karthik, R.M.Bhavadharini, & D. V. P. Arunachalam, "Analyzing Interaction Between Denial Of Service (Dos) Attacks & Threats," *IEEE International Conferences on Internet of Things, & Cyber, Physical & Social Computing*, p. 9, 2008.
- [28] J. Bi, P. Hu, & P. Li, "Study on Classification & Characteristics of Source Address Spoofing Attacks in the Internet," *Ninth International Conference on Networks*, p. 5, 2010.

- [29] P. Noiumkar & T. Chomsiri, "Top 10 Free Web-Mail Security Test Using Session Hijacking " *Third 2008 International Conference on Convergence & Hybrid Information Technology*, 2008
- [30] J. J. Pauli, P. H. Engebretson, M. J. Ham, & M-C. J. Zautke, "Cookie Monster: Automated Session, Hijacking, Archival, & Analysis", *Eighth International Conference on Information Technology: New Generations*, 2011
- [31] Y. Zhang, X. Liao, S. Ji, C. Lin & Y. Wang, "Research of FWM Eavesdropping Attack Detection Method Based on the Comparison of OSNR", *IEEE*, 2011
- [32] Dushuqin & Qin Yi, "WLAN Security System based on the 802.1 & AES"

 International Conference on Computer Application & System Modeling

 (ICCASM), 2010
- [33] Z. Wang, Meizhen Liu, Qixian Cai & Jie Li, "Improving Project for Security & Secrecy's Risk of WLAN Management" Proceedings Of 2008 3rd International Conference On Intelligent System & Knowledge Engineering, 2008
- [34] D. Shiyang, "Compare of New Security Strategy With Several Others in WLAN" College of computer & communications engineering of Weifang University, IEEE, 2010
- [35] Dr. Muhammad Idrus, Metode Penelitian Ilmu Social Pendekatan Kualitatif

 Dam Kuantitatif Edisi Kedua. Jakarta: Penerbit Erlangga, 2012
- [36] T. Hassinen, "Overview of WLAN security", TKK T-110.5290 Seminar on Network Security, 2006

- [37] NIST Computer Security Division, *Advanced Encryption St&ard*, Retrieve from http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 2012
- [38] C. R. Kothari, *Research Methodology: Methods & Techniques*. New Delhi: New Age International, 2008.
- [39] S. Gayal & Dr. S. A. V. Manickam, "Wireless LAN Security Today & Tomorrow" Center for Information & Network Security Pune University, 2009
- [40] V. Wekh&e, "Wi-Fi Technology: Security Issues," *Rivier Academic Journal*, vol. 2(2), p. 17, 2006.
- [41] Zhenzhen Gao, Yu-Han Yang& K. J. Ray Liu, "Anti-Eavesdropping Space-Time Network Coding for Cooperative Communications", *IEEE*, 2011
- [42] F. C. V. Bennekom, *Customer Surveying: A Guidebook for Service Managers*:

 Customer Service Press, 2002.
- [43] Adel Ismail Al-Alawi, "WiFi Technology: Future Market Challenges & Opportunities" *Journal of Computer Science*, 2006
- [44] P. LaRoche & A. N Z-Heywood, "Genetic Programming Based WiFi Data Link Layer Attack Detection", *Faculty of Computer Science*, 2006
- [45] R. A. Kent, Data Construction & Data Analysis For Survey Research:

 Palgrave Macmillan, 2001.
- [46] L.L. Khine, "A New Variant of RC4 Stream Cipher" World Academy of Science, Engineering & Technology, 2009
- [47] J. Pallant, SPSS Survival Manual: A Step by Step Guide to Data Analysis

 Using the SPSS Program: Allen & Unwin, 2011.

- [48] J. A. Gliem & R. R. Gliem, Calculating, Interpreting, & Reporting

 Cronbach's Alpha Reliability Coefficient for Likert-Type Scales. Colombus:

 The Ohio State University, 2003.
- [49] G. R. Walden, *Polling & Survey Research Methods*, 1935-1979: An Annotated Bibliography: Greenwood Publishing Group, 1996.
- [50] E. R. Babbie, *The Practice of Social Research*: Cengage Learning, 2010.
- [51] U. Sekaran, , & R. Bougie, "Research Methods for Business: A Skill Building Approach , 2003
- [52] S. B. Green, N. J. Salkind, & T. M. Akey, *Using SPSS for Windows:*Analyzing & Understanding Data, New York: Prentice Hall, 1997.