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Abstrak

Pengoptimuman koloni semut (ACO) adalah pendekatan metaheuristik yang
diilhamkan daripada tingkah laku semulajadi semut dan boleh digunakan untuk
menyelesaikan pelbagai masalah pengoptimuman kombinatorik. Masalah
penginduksian petua klasifikasi telah diselesaikan dengan algoritma Ant-miner, satu
varian ACO, yang diketengahkan oleh Parpinelli dalam tahun 2001. Kajian lepas
menunjukkan bahawa ACO adalah teknik mesin pembelajaran yang berkesan untuk
menjana petua klasifikasi. Walau bagaimanapun, Ant-miner kurang pemfokusan
terhadap kelas kerana petua untuk kelas diberi selepas petua dibina. Terdapat juga
kes di mana Ant-miner tidak dapat mencari sebarang penyelesaian optima bagi
sesetengah set data. Oleh itu, tesis ini mencadangkan dua algoritma varian hibrid
ACO dengan simulasi penyepuhlindapan (SA) untuk menyelesaikan masalah induksi
petua pengelasan. Algorithm pertama menggunakan SA untuk mengoptimumkan
penemuan peraturan oleh setiap semut. Set data tanda aras dari pelbagai bidang telah
digunakan untuk menguji algoritma yang dicadangkan. Keputusan eksperimen yang
diperolehi daripada algoritma yang dicadangkan ini adalah setanding dengan
keputusan Ant-miner dan beberapa algorithma induksi petua terkenal yang lain dari
segi ketepatan petua, dan menunjukkan keputusan lebih baik dari segi saiz petua.
Algoritma kedua pula menggunakan SA untuk mengoptimumkan pemilihan istilah
semasa pembinaan petua. Algoritma ini juga menetapkan kelas sebelum pembinaan
setiap petua. Penetapan awal kelas membolehkan penggunaan fungsi heuristik dan
fungsi kecergasan yang lebih mudah. Keputusan eksperimen algoritma kedua adalah
lebih baik berbanding dengan algoritma lain yang diuji, dari segi ketepatan ramalan.
Kejayaan dalam menghibridkan algoritma ACO dan SA telah membawa kepada
peningkatan keupayaan pembelajaran ACO untuk pengelasan. Oleh itu, model
klasifikasi dengan kebolehan ramalan yang lebih tinggi untuk pelbagai bidang boleh
dijana.

Kata Kunci: Pengoptimuman koloni semut, Simulasi penyepuhlindapan, Ant-miner,
Penginduksian petua



Abstract

Ant colony optimization (ACO) is a metaheuristic approach inspired from the
behaviour of natural ants and can be used to solve a variety of combinatorial
optimization problems. Classification rule induction is one of the problems solved by
the Ant-miner algorithm, a variant of ACO, which was initiated by Parpinelli in
2001. Previous studies have shown that ACO is a promising machine learning
technique to generate classification rules. However, the Ant-miner is less class
focused since the rule’s class is assigned after the rule was constructed. There is also
the case where the Ant-miner cannot find any optimal solution for some data sets.
Thus, this thesis proposed two variants of hybrid ACO with simulated annealing
(SA) algorithm for solving problem of classification rule induction. In the first
proposed algorithm, SA is used to optimize the rule's discovery activity by an ant.
Benchmark data sets from various fields were used to test the proposed algorithms.
Experimental results obtained from this proposed algorithm are comparable to the
results of the Ant-miner and other well-known rule induction algorithms in terms of
rule accuracy, but are better in terms of rule simplicity. The second proposed
algorithm uses SA to optimize the terms selection while constructing a rule. The
algorithm fixes the class before rule's construction. Since the algorithm fixed the
class before each rule's construction, a much simpler heuristic and fitness function is
proposed. Experimental results obtained from the proposed algorithm are much
higher than other compared algorithms, in terms of predictive accuracy. The
successful work on hybridization of ACO and SA algorithms has led to the improved
learning ability of ACO for classification. Thus, a higher predictive power
classification model for various fields could be generated.

Keywords: Ant colony optimization, Simulated annealing, Ant-miner, Rule
induction
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CHAPTER ONE
INTRODUCTION

The tremendous growth in computing power and storage capacity, the availability of
increased access to data from Web navigation and intranets, the explosive growth in
data collection, the storing of the data in data warehouses, and the competitive
pressure to increase market share in globalized economy stimulated the development
of data mining. Data mining acts as a tool to extract or yield important information

from raw data.

Classification is a data mining task of finding the common properties among
different objects and classifying the objects into classes. Figure 1.1 depicts the
general framework of classification task. The classification model contains a set of
classification rules. The classification model categorizes new unseen example data,
by predicting a class label for the example. One way of presenting the classification
model is by representing the information as a set of IF-THEN rules (classification

rules).

Attribute Set mmmmp |  Classification Model | mmmmmp Class Label

Figure 1.1: Classification Task General Framework



Rule induction technique (Han, Kamber, & Pei, 2011; Witten, Frank, & Mark A.,
2011; Tan, Steinbach, & Kumar, 2006) generates the set of classification rules, for
the classification model. Each rule in the classification model consists of conditions
and class. The condition part includes one or more terms. Each term is a triple
<attribute, operator, value>, where value is one of the values belonging to the
domain of attribute. One of the emerging approaches for rule induction is through the
use of ant colony optimization (ACO) (Dorigo & Stutzle, 2004), specifically the Ant-

miner algorithm (Parpinelli, Lopes, & Freitas, 2002a, 2002b).

In ACO, each ant incrementally constructs a candidate solution, associated with a
path, to a given optimization problem. As each ant follows a path, it deposits
pheromone onto that path. Therefore, the amounts of pheromone level for
components that make up that path are increased. An ant will choose the next
component for the current partial solution based on the density of the pheromone and

heuristic function associated with the components to choose.

In Ant-miner algorithm, each ant will create an artificial path, which represents a
candidate of classification rule. The original experiment conducted by Parpinelli et
al. (2002a, 2002b) fixed one ant for each ant colony. Ant-miner creates each rule by
adding one term each time. When there are no more possible terms left, terms
addition will stop. A fitness function will determine the quality of a rule. Next, a
pruning procedure will remove the irrelevant terms from the rule. Rule pruning
avoids the problem of over-fitting to the training data set, and improves the

simplicity of the rule. The rule pruning procedure will iteratively remove one term at



a time from the rule while the rule's quality increases. Hence, rule pruning will

improve the rule's quality.

The better the quality of a rule constructed by the ant, the higher the pheromone level
to the selected terms for that rule. Therefore, the best term will have higher
pheromone level. Since ants tend to choose term with higher probability, the chances
for the consequent ants to choose the best term increase. The next ant colony repeats
the same processes as the previous ant colony, but with new level of pheromones

based on the discovered rule by the previous ant colony.

In order to discover more rules, Ant-miner removes all the examples covered by the
current discovered rule. Ant-miner repeated these processes until the total number of
examples in the training set is less than a threshold value, which is predefined
beforehand. Ant-miner uses rule-based ordering scheme. Rule based ordering
scheme orders the individual rules by some quality measure. Ant-miner uses the
order of rule's discovery to order the rules. After each rule discovery, Ant-miner
appends the new rule to the end of the list of discovered rules. Finally, when Ant-
miner has discovered all the rules, Ant-miner appends a default rule to the end of the
discovered rules list. The default rule is a rule that contains only class without the
condition part. The class for the default rule is a class with the majority counts of the

left uncovered examples.

Ant-miner used a rule discovery method based on sequential covering algorithm. The
sequential covering algorithm is a common technique used to extract rules directly

from data. Even though rules are grown in a greedy fashion based on an evaluation

3



measure, the used of pheromones will potentially increase the quality of the
discovered rule. In order to classify new unseen example, Ant-miner compares the
set of discovered rules, in the order of the rule’s discovery, with the new unseen
example. If a rule covers the new unseen example, Ant-miner sets the rule’s class as
the predicted class for the new unseen example. Else, if there is no rule covers the
new example, a default rule is applied. Hence, the predicted class of the new unseen

example used the class of the default rule.

The first version of Ant-miner can only cope with categorical (discrete) attributes.
Hence, the operator for the term in conditions for the discovered rule will always be
a “=". If there is any continuous attributes exist, before Ant-miner can discover rules,
the continuous attributes is discretized (Dougherty, Kohavi, & Sahami, 1995) in the

pre-processing step.

Ant-miner (Parpinelli et al., 2002a, 2002b) has been compared to two rule induction
algorithms in several UCI public domain data sets (Asuncion & Newman, 2007),
which are CN2 and C4.5 (Quinlan, 1993) algorithms. The results, showed that the
predictive accuracy of Ant-miner is not only at least at par with both compared

algorithm, but also produced much more comprehensive rules.

1.1 Problem Statement

Rule induction extracted a set of IF-THEN rules from training data using a
sequential covering algorithm (Tan et al., 2006). A sequential covering algorithm
learns each rule sequentially, one at a time; by choosing terms that cover a class or

by choosing interrelated terms and later on assign a most suitable class for the set of
4



terms using a greedy search. In greedy search, while constructing a rule, term that
appears to be the best choice at the moment is added to the partial rule heuristically.
The problem with greedy search is that the heuristic measure does not ensure
whether the term chosen is the best choice. The usage of ACO, which consists of an
element of memory called the pheromone, can lessen the chance of this happening.
However, rule induction algorithm that is based on ACO also has some drawbacks
that may reduce the prediction ability of the classification model constructed. The

problems were discussed in the following paragraphs.

The first Ant-miner algorithm introduced by Parpinelli et al. (2002a, 2002b) assigned
the class after each ant constructs the rule antecedent. In other words, the class is
unknown during rule’s construction. Since the class is unknown during the rule
construction, two problems arose. First, the constructed rule might contain
antecedent that are not highly related, since the algorithm calculates the heuristic
based on the relationship between terms, but disregarding the class. Second, the
pheromone level for each term is based on the differences amount from all classes,
rather than to a specific class. These two factors make the original Ant-miner less
focused relevance. Therefore, many researchers (Galea & Shen, 2006; Martens, De
Backer, Haesen, Baesens, & Holvoet, 2006; Smaldon & Freitas, 2006) proposed that

the class should be fixed initially.

There is also the case where the Ant-miner sometimes cannot find any optimal
solution for some data. For example, Parpinelli et al. (2002a, 2002b) reported that
only four out of seven data sets tested were better than C4.5 algorithm. This shows

that for some data sets, the ants may face the local optimization problem, because
5



Ant-miner does not use local search. Simulated annealing algorithm (SA) is a well-
known algorithm, statistically guaranteed, to find an optimal solution. Therefore, this
thesis suggested the used of SA algorithm to improve the current implementation of

ACO in rule induction.

1.2 Research Objectives

The main objective of this research is to develop enhanced Ant-miner algorithms for

rule induction. The specific objectives of the research are:

i. to determine the best attribute selection methods for dimensionality

reduction,

ii.  to formulate a technique in optimizing the rules constructed by each ant, and

iii.  to construct a new method in optimizing terms selection.

1.3 Significance of the Research

Data mining classification task is a form of data analysis that extracts classification
models to categorize future data trends. A classification model helps human to
understand data better, especially a large data. For example, a classification model

can help a finance bank manager to categorize a loan application into safe or risky.

A rule induction algorithm must generate an efficient classification model with a set
of simple, comprehensible, and accurate rules. Hence, the work done in this thesis is

important in the sense that this thesis develops classification rules induction



algorithm that combines the robust ACO with the efficiency of SA to improve the

efficiency of the resultant classification model.

1.4 Scope, Assumptions and Limitations of the Research

This thesis focused on using ACO as the learn-one-rule function to construct
classification rules. The enhanced proposed algorithm used simulated annealing (SA)
to reduce the problem of local optimization. This research however, not in all means
to optimize the SA itself. In addition, this research developed rule induction

algorithm that can only classify examples with single class.

All experiments in Chapter Five and Six were carried out using seventeen data sets
from Asuncion & Newman (2007) from various fields. The tested data sets include
Balance Scale, Breast Cancer (Ljubljana), Breast Cancer (Wisconsin), Credit-a,
Credit-g, Diabetes, Heart (Cleveland), Heart (Statlog), Hepatitis, lonosphere, Iris,
Lymphography, Mushroom, Segment, Sonar, Tic-Tac-Toe and Vehicle. The
proposed methods were compared with the original Ant-miner (Parpinelli et al.,
2002a, 2002b) and PART (Frank & Witten, 1998) in terms of classification accuracy
and simplicity of the constructed rules. A ten cross folds validation method (Kohavi,
1995a) measure the classification accuracy and simplicity of the constructed rules.
However, this thesis does not measure and optimize the efficiency of the proposed

algorithm in terms of time taken for training and prediction.

Like the original Ant-miner, proposed by Parpinelli et al (2002a, 2002b), both
proposed methods cannot directly handle data sets with non-discrete attributes. This

thesis uses the words “new” and “proposed” interchangeably, to represent the new
7



algorithms. A discretization method (Dougherty et al., 1995) discretized the non-

discrete attributes, and was discussed in Chapter Three.

1.5 Structure of the Thesis
This thesis has seven chapters, including the introductory chapter, which covers the
background information that inspires the enhancement of ACO classification

modelling.

Chapter Two covers the literature review of the related studies on ACO. The second
section of this chapter focuses on various studies on the usage of ACO. The third
section discussed the usage of ACO in rule induction. Finally, a review on SA, its

applications and the hybrid of ACO and SA were given.

Chapter Three presents the methodology used in conducting this research, divided
into two main sections. The first section is on how to pre-process the data sets, while

the second section is on the validation process of the experiments.

Chapter Four discusses the experiments and results on determining the best attribute
selection for high dimension data. Ant-miner algorithm (Parpinelli et al., 2002a,
2002Db) constructed the classification model for this chapter. The large data set used
was based on Web->KB project (http://www.cs.cmu.edu/~webkb/) from four (4)
universities namely Cornell (867 pages), Texas (827 pages), Washington (1205
pages) and Wisconsin (1263 pages) as well as 4,120 miscellaneous pages collected
from other universities. This chapter also tested the performance of Ant-miner on
several data sets from UCI database after applying the reduction method.
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Chapter Five presents a new hybrid algorithm of ACO and SA. This chapter
introduces a local search algorithm using SA, to optimize the rules constructed by
each ant. The proposed algorithm in this chapter follows specific-to-general rule-
growing strategy to grow classification rule. The algorithm ordered the discovered
rules in the order of their discovery. This chapter compares the results with the
original Ant-miner and other several well-known rule induction algorithms, in terms
of classification accuracy and simplicity, using the original and also attributes

reduced data sets.

Chapter Six presents the second proposed hybrid algorithm. Differ from the
algorithm proposed in Chapter Five; this algorithm instead uses SA to optimize
terms selections while each ant grows one rule. The proposed algorithm in this
chapter fixes the class while growing classification rules. The algorithm ordered the
discovered rules in descending order according to the quality its quality. This chapter
compares the results with the original Ant-miner and other several well-known rule
induction algorithms, in terms of classification accuracy and simplicity, using the

original and also attributes reduced data sets, as in Chapter Five.

Finally, Chapter Seven gives the concluding remarks on the two proposed hybrid
algorithms. The concluding remarks include the description of features, capabilities
and the weaknesses of the two proposed methods. The chapter presents some
recommendations as guidelines for further research for using ACO for rule

induction.



CHAPTER TWO
LITERATURE REVIEW

This chapter reviews the literature related to the research field considered in the
thesis. Section 2.1 introduces data mining and classification problem, while Section
2.2 presented several well-known and established rule induction algorithms. Section
2.3 presents ant colony optimization (ACO), while Section 2.4 discussed the
applications of ACO. Section 2.5 discussed on the variations of the implementation
of ACO for rule induction. Section 2.6 discussed on simulated annealing (SA)
algorithm and its applications. Section 2.7 discussed on the implementation of hybrid

ACO for rule induction. Finally, Section 2.8 underlay the summary for this chapter.

2.1 Data Mining and Classification

Data mining is a multidisciplinary field whose core is at the intersection of machine
learning, statistics and databases that refers to extracting or “‘mining' knowledge from
large amounts of data (Han et al., 2011). Cabena et al. (1998) defined data mining as
an interdisciplinary field bringing together techniques from machine learning, pattern
recognition, statistics, databases, and visualization to address the issue of
information extraction from large data bases. According to Larose (2005), data
mining development has been stimulated by various factors: the explosive growth in
data collection, the storing of the data in data warehouses, the competitive pressure
to increase market share in globalized economy, the tremendous growth in
computing power and storage capacity, and the availability of increased access to

data from Web navigation and intranets.
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There are several tasks in data mining such as classification, clustering, association
rules and attribute selection (Han et al., 2011; Larose, 2005). The tasks should be
chosen based on the problem that arise, and will be solved by using an appropriate

algorithm.

A classification task uses a classification algorithm to a set of training examples to
construct a prediction model. The prediction model can predict a class for a given
unknown example. Rule induction is a popular classification technique to construct a
prediction model from a set of data. The prediction model constructed by rule

induction is comprehensible to users and is presented in a high level language.

2.2 Classification Using Rule Induction

Rule induction technique (Han et al., 2011; Witten et al., 2011; Tan et al., 2006)
generates a set of classification rules, for the prediction model. The prediction model
consists of a set of IF-THEN rules. The set of IF-THEN rules is called the

classification rules.

A classification rule is represented in the form of “IF <condition> THEN <class>".
A condition consists of a set of attribute terms “<attribute, operator, value>". The
operator is an equal sign “=" and the class is the predicted value for example that
satisfies the condition. Each attribute consists of more than one value, but can only

assigned one value in each rule.

For example, a weather data set might contain a few attributes: outlook, temperature,
humidity and a class. This data set will predict whether we should go out and play or
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not based on the weather. Figure 2.1 depicts an example of a classification rules for

weather data set.

If outlook = overcast then yes

If humidity = normal and windy = false then yes

If temperature = mild and humidity = normal then yes
If outlook = rainy and windy = false then yes

If outlook = sunny and humidity = high then no

If outlook = rainy and windy = true then no

Figure 2.1: An Example of a Classification Rules.

A well-known and established rule induction algorithms are OneR (Holte, 1993),
ridor (Gaines & Compton, 1995), PART (Frank & Witten, 1998), JRip (Cohen,
1995), decision table (Kohavi, 1995b), DTNB (M. Hall & Frank, 2008) and

conjunctive rule (Witten et al., 2011).

OneR algorithm (Holte, 1993), also known as one rule algorithm is a simple
algorithm that builds one rule for each of the attributes in the training examples. This
algorithm selects the rule with the smallest error rate as its ‘one rule’ and creates a
rule by calculating the most frequent class for each attribute (the class that appears
most often for that attribute value). In other words, a rule is a set of attribute values
bound to their majority class, and has the lowest error rate. If there are more than one

rules that have the same error rate, the rule is chosen at random.

Ridor algorithm (Gaines & Compton, 1995) is the implementation of a Rlpple-
DOwn Rule learner (Compton & Jansen, 1990). This algorithm generates a default

rule first and then the exceptions for the default rule with the least (weighted) error

12



rate. Then it generates the “best” exceptions for each exception and iterates until
pure. Thus, it performs a tree-like expansion of exceptions. The exceptions are a set

of rules that predict classes other than the default.

PART (Frank & Witten, 1998) is a separate-and-conquer rule learner. This algorithm
use a set of ordered of rules to predict the class of a new unseen example. A new
example is compared to each rule in the list one by one until a rule is found satisfies
the new example. If there is no rule that satisfy the new example, a default rule is
used. PART builds a partial C4.5 (Quinlan, 1993) decision tree in each iteration. The
best tree leaf is taken and converted into a rule in order of discovery. The algorithm

Is a combination of C4.5 and RIPPER rule learning.

JRip algorithm (Cohen, 1995) implements a propositional rule learner, Repeated
Incremental Pruning to Produce Error Reduction (RIPPER), as an optimized version
of IREP. Ripper builds a rule set by repeatedly adding rules to an empty rule set until
all positive examples are covered. Rules are formed by greedily adding conditions to
the antecedent of a rule (starting with empty antecedent) until no negative examples
are covered. After a rule set is constructed, the algorithm optimizes the rule to reduce

its size and improve the accuracy.

Decision table algorithm (Kohavi, 1995b) builds and using a simple decision table
majority classifier to build the classification model. This algorithm summarizes the
examples in the data set using a ‘decision table’ which contains the same number of
attributes as the original data set. In order to predict the class for a new example, this

algorithm finds the line in the decision table that matches the non-class values of the

13



new example. Decision table employs the wrapper method to find a good subset of
attributes for inclusion in the table. The algorithm reduces the likelihood of over-
fitting and creates a smaller and condensed decision table, by eliminating attributes

that contribute little or nothing to a model of the data set.

DTNB (M. Hall & Frank, 2008) is a decision table/naive Bayes hybrid classifier. At
each point in the search, the algorithm evaluates the merit of dividing the attributes
into two disjoint subsets: one for the decision table, the other for naive Bayes. A
forward selection search is used, where at each step, naive Bayes model selected
attributes and the remainder by the decision table and all attributes are modelled by
the decision table initially. At each step, the algorithm also considers dropping an

attribute entirely from the model.

Finally, conjunctive rule (Witten et al., 2011) is a rule induction algorithm which
uses a single conjunctive rule learner that can predict for numeric and nominal class
labels. The consequent in this algorithm using the distribution of the available
classes in the data set. When predicting new example, if the test example is not
satisfied by any rules, the test example is predicted using the default class
distributions. The default class distribution is class defined from the examples that
are not covered by any rules during training phases. During training phases, an
antecedent is selected by computing information gain of each antecedent. The
information of one antecedent is the weighted average of the entropies of both the
examples covered and not covered by the rule. Each constructed partial rule, which

contains antecedent only, is pruned afterwards using Reduced Error Prunning (REP)
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procedure by calculating a weighted average of the accuracy rates on the pruning

data, apart from a simple pre-pruning based on a number of antecedents.

One of the emerging approaches for rule induction is through the use of ant colony
optimization (ACO) (Dorigo & Stutzle, 2004), specifically the Ant-miner algorithm

(Parpinelli et al., 2002a, 2002b).

2.3 Ant Colony Optimization Metaheuristic

ACO Metaheuristic is a branch of an artificial intelligence technique called swarm
intelligence, introduced in the early 1990s (Dorigo, Maniezzo, & Colorni, 1991,
1996). It is a probabilistic technique for solving combinatorial optimizations
problem, which was inspired by the behaviour of cooperating ants in finding path
from its nest to the food source (Dorigo & Stitzle, 2004). Hence, the purpose of
ACO metaheuristic is to find the best solution using a set of artificial ants that

communicates indirectly using an item called the pheromone.

Ants, which are blind or almost blind creatures, are capable to find the shortest path
between the nest and the food source, and they have the capability to adapt to
environment change. Ants tend to follow a trail, used by the majority ants, although
they initially move at random. According to the double bridge experiments
(Deneubourg, Aron, Goss, & Pasteels, 1990; Goss, Aron, Deneubourg, & Pasteels,
1989), performed on the Argentine ant species I, communication between ants is
established through the use of chemical substances called pheromone, which was
deposited as each ant move. The amount of pheromone on one of the trails used by

the majority ants will increase as time passed by and will decrease on the less used
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trails. As a consequent, since ants tend to follow the pheromones, all or most of the
ants will finally converge to the best trail, with the high density of pheromones,

which happened to be the shortest trail from the nest to the food source.

Figure 2.2(a) is a schematic diagram of the double bridge experiment set up with two
branches of equal length. The double bridge experiment released ants from the nest
and let them freely moved to the food source. Initially, each ant chooses any branch
at random since it has no preference on any branch. While walking, ants will deposit
pheromones. After some time, pheromones density on one of the branches will be
greater than the other one, and will stimulate ants to use it. Eventually, all ants will
use only one of the branches. The chosen branch is the one with the highest density
of pheromones. This experiment proved that ants would follow each other based on a

communication instrument, called the pheromone.

On the other hand, in Figure 2.2(b), the double bridge is set up with one of the
branch is twice the length of the other branch. The experiment found that, finally,
most of the ants used the shorter branch, since the pheromones accumulate faster in
the shorter branch. However, there are a small number of ants still using the longer
branch. This is the effect of “path exploration”, where the density of the pheromone

will not bias some of the ants.

The experiment by Goss et al. (1989) also found that even though the pheromones
evaporate, it evaporates too slowly to allow the ant colony to forget the current
branch that they are using. For example, the ant colony will still favour the longer

branch instead of the short branch, even though the shorter branch was added long
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after the ant colony has been using the longer branch,. Hence, it shows that
pheromone plays an important role in determining which branch the ant colony will
choose. The path exploration cannot defeat the power of pheromone, at least in

shorter time.

12 cm

N

Nest ‘ Food

(a) (b)

Figure 2.2: Experimental Setup for the Double Bridge Experiment.
(a) Branches have equal length. (b) Branches have different length.
Adapted from Dorigo & Stitzle (2004)

2.4 Applications of Ant Colony Optimization

There are various problems of using ACO for optimization. Some of the examples
are routing, assignment, scheduling, subset and machine learning. The following
subsection will discuss generally, the implementation of ACO on routing,

assignment, scheduling, subset, and machine learning.

Routing is a process of sending objects to appropriate destinations via a specific

route. The routing problem that has been solved by ACO includes travelling
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salesman (Dorigo & Gambardella, 1997; Dorigo et al., 1996), vehicle routing
(Reimann, Doerner, & Hartl, 2002) and sequential ordering (Gambardella & Dorigo,

1997, 2000).

The Travelling Salesman Problem (TSP) is a problem to find the shortest possible
trip, for travelling from a city to its destination. In this problem, each ant, which is
located to a random start city, initially, will develop the solution by visiting all cities

in its tour.

The vehicle routing problem is an extension to the TSP problem. The objective of
this problem is to determine a fleet of vehicles, each vehicle served customers, and in

what order each vehicle should visit the customers assigned to.

The sequential ordering problem is a problem to find a minimum weight
Hamiltonian path on a directed graph with weights on the arcs and the nodes, subject
to precedence constraints between nodes. The solutions built by ants iteratively are
by adding, step-by-step, new unvisited nodes to become the partial solution. The ant

added new nodes by using pheromone trails, heuristic, and constraint information.

Besides TSP, vehicle routing, sequential ordering and telecommunication network
routing problems have also been using ACO. In telecommunication network, routing
is a process of moving packets of data from source node to the destination node.
Hence, telecommunication network routing is a problem of finding minimum cost
paths among all pairs of nodes in the network. In this type of problem, the algorithm

assigned each ant a source and destination node. Each ant will move to the

18



destination node by moving from one node to another. At each node, the ant will
choose to move to the next node using a probabilistic decision rule, which is a

function of the ant’s memory, of local pheromones, and heuristic information.

Examples of ACO applications that have been applied to the problem of network
routing are connection-oriented network routing (Bonabeau et al., 1998),
connectionless network routing (Caro & Dorigo, 1997) and optical network routing

(Varela & Sinclair, 1999).

The second problem type is assignment. The assignment problem is one of the
fundamental combinatorial optimization problems in the branch of optimization or
operations research in mathematics. It consists of finding a maximum weight

matching in a weighted bipartite graph.

For example, in quadratic assignment problem of n order, the objective is to find the
best allocation of n activities to n locations. Generally, ACO will solve this kind of
problem by choosing the components to add to the partial solution by using the

pheromone trails and heuristic information.

Some examples of the assignment problem include graph colouring (Bui & Nguyen,
2006), quadratic assignment (Maniezo, Colorni, & Dorigo, 1994; Maniezzo &
Colorni, 1999), generalized assignment (Lourenco & Serra, 1998), frequency
assignment (Maniezzo & Carbonaro, 2000), and university course timetabling

(Socha, Knowles, & Sampels, 2002).
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Scheduling is a process of assigning priorities to processes in a priority queue. An
example of the application of ACO in scheduling problem is job shop (Teich,
Fischer, Vogel, & Fischer, 2001). The job shop scheduling problem is part of
production planning. The ACO decides which operation is scheduled next, where

each ant will generate a feasible solution under the use of a transition rule.

Other examples of the used of ACO in scheduling problem include open shop (Blum
& Sampels, 2002), flow shop (Stitzle, 1998), total tardiness (Bauer, Bullnheimer,
Hartl, & Strauss, 2000), group shop (Blum, 2002a), project scheduling (Merkle,
Middendorf, & Schmeck, 2002) and total weighted tardiness (Besten, Stiitzle, &

Dorigo, 2000).

Subset is a problem in complexity theory and cryptography. Some examples of the
used of ACO in subset problem includes multiple knapsack (Leguizamoén &
Michalewicz, 1999), max independent set, redundancy allocation (Liang & Smith,
1999), set covering (Silva & Ramalho, 2001), weight constraint graph tree partition,
edge-weighted k-cardinality tree (Blum, 2002b) and maximum clique (Fenet &

Solnon, 2003).

For example, in the edge-weighted k-cardinality tree problem, ants will construct a
solution by building a path on construction graph, and does a number of construction
steps. In each step, ACO added edge to the partial k-cardinal tree, based on the
transition probabilities. The pheromone plays an important role in the generation of

the transition probabilities.
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Finally, machine learning, a method for creating computer programs by the analysis
of data sets, is an area of artificial intelligence concerned with the development of
techniques, which allow computers to “learn”. The major focus of machine learning
Is to extract information from data automatically, by computational or statistical
methods. For example, an inductive machine learning methods extract rules and

patterns out of massive data sets.

Since the fields of statistics also study the analysis of data, machine learning must
intersect with statistic field. Nevertheless, machine learning is pertained to the

algorithmic complexity of computational implementations, as compared to statistics.

Some examples of machine learning that is based on the ACO include classification
rules for data mining (Parpinelli, Lopes, & Freitas, 2001; Parpinelli et al., 2002a,
2002b; Parpinelli, Lopes, & Freitas, 2002c, 2005; Freitas, Parpinelli, & Lopes, 2008;
Oliverio, S&, & Parpinelli, 2009), Bayesian networks and fuzzy systems (Cordon,

Casillas, & Herrera, 2000).

This thesis focused on the development and enhancement of the rule induction
technique for extracting classification rules from data using ACO. Parpinelli initially
introduced this kind of problem in the early 2000s, called the Ant-miner (Parpinelli

et al., 2002a, 2002b).

The next section discussed on the variations of implementations of ACO for rule

induction.
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2.5 Ant Colony Optimization for Rule Induction

Parpinelli et al. (2002a, 2002b) proposed Ant-miner algorithm in 2002. The
Sequential Covering algorithm is the based for Ant-miner algorithm, that extract
rules directly from data. According to Tan et al. (2006), Sequential Covering
algorithm discovers rules in greedy fashion based on a certain evaluation measure. In
other words, this algorithm select terms using some heuristic. Ant-miner uses a
heuristic measure as evaluation measure to fill in the antecedent part of the rule, by
selecting the best term to be included into the partial rule. The heuristic measure is
the normalization of entropy measures between terms. The algorithm selects one best
rule from a set of discovered rules, based on a quality measure using some fitness

function.

Ant-miner differs from other Sequential Covering algorithms implementation
because this algorithm also depends on a value called the pheromone, which
contributes to the behaviour of exploration of the algorithm. Hence, Ant-miner uses a
probability that is proportional to the product of heuristic value and pheromone level
for that term, to add terms to a rule. Dorigo & Stiitzle (2004), called this transition

rule, random proportional transition rule.

Ant-miner updated the pheromone level after each ant colony has selected the best
rule from a set of rules constructed by many ants in a colony. For the next ant
colony, terms in the rule antecedent that have been selected by the previous ant
colony will have a higher level of pheromone and will probably are more favoured

than other terms.
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Ant-miner selects the best rule after each ant colony has created a set of rules, based
on rule's quality. This algorithm measures rule's quality using a fitness function that
depends on the product of sensitivity and specificity, which were adapted from the

field of information retrieval (IR).

Since the class for rules constructed Ant-miner will only be determined after the
creation of each rule, the selected terms are not focused relevance. In other words,
this algorithm will select a term that may be high in relevancy with the current set of
previously selected terms, but not for the later assigned class. Therefore, like other
ACO implementations for other fields, Ant-miner might face the problem of
stagnation, where optimized rule cannot be found, and thus make the program to run
forever. Consequently, many researchers had proposed variations of modification for
the original Ant-miner by Parpinelli et al. (2002a, 2002b). The following subsections

discussed variations of modification for the original Ant-miner.

2.5.1 Train by Fixing Classes

The original Ant-miner (Parpinelli et al., 2002a, 2002b) determines the class after
each rule's construction, and thus may affect the rule's quality. Several researchers
(Galea & Shen, 2006; Martens et al., 2006; Smaldon & Freitas, 2006) have proposed
that the class should be predefined earlier. If the algorithm uses a predefined class,

the algorithm must use a new heuristic function and pheromone update methods.
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2.5.2 New Heuristic Functions

The original Ant-miner uses the entropy measure between terms to calculate the
heuristic value for each term. Most researches (Galea & Shen, 2006; B. Liu, Abbass,
& McKay, 2004; Martens et al., 2006; Smaldon & Freitas, 2006; Z. Wang & Feng,
2005) who predefined the class before each rule’s construction, used a simpler
heuristic function instead. The new heuristic function uses the frequency of the terms

related to the predefined class.

This simpler heuristic function is more computationally efficient since the
calculation will only base on the frequency, unlike the original heuristic function,
which depends on the calculation of entropy. The heuristic function uses frequency
of examples. The researchers who use this simpler heuristic function claimed that
even though the heuristic is simple, the use of pheromones would help to optimize

the constructed rules.

2.5.3 New Pheromone Updating Procedure

The Ant-miner evaporates pheromone level for all terms implicitly by normalizing
them. This happened after the algorithm had increased the pheromone level on all
selected terms. However, this procedure sometimes faced problem in updating
pheromone level with low quality rules, since the updating procedure depends on the
rule’s quality. If the quality is very small, the new pheromone level will almost be

the same as the previous one.

Hence, Liu et al. (2004), Wang & Feng (2005) and Smaldon & Freitas (2006) have

proposed a different equations for updating pheromone level, that could cope with
24



rule’s quality that is close to zero. Furthermore, Liu et al. (2004), Wang & Feng
(2005) and Martens et al. (2006) also proposed that the updating procedure should
use an explicit evaporation rate, which is predefined. More interestingly, Wang &

Feng (2005) had made the parameter self-adaptive.

2.5.4 Pseudorandom Proportional Transition Rule

Instead of random proportional transition rule, some researchers (Liu et al., 2004;
Wang & Feng, 2005) have used pseudorandom proportional transition rule.
Pseudorandom proportional transition rule defines a new probability. This
probability is used to control the effect of exploration and exploitation, based on a

predefined constant parameter value, q,. If the probability number generated is less
than q,, the term to be added will be determined using the same function as random

proportional transition rule which depends on the maximum value from the product
of heuristic value and pheromone level from all terms. Otherwise, a random
proportional rule will probabilistically select terms, based on the product of heuristic

value and pheromone level only.

The disadvantage of this transition is that the researcher needs to optimize

empirically the predefined constant parameter value, qj .

2.5.5 Remove Pruning Procedure

Pruning procedure is a computational expensive procedure in rule induction, as well

as the Ant-miner algorithm. Hence, in 2006, Martens et al. proposed that pruning

25



procedure removal is possible. Martens et al. (2006) claimed that the removal of rule

pruning procedure improve the speed of the proposed algorithm.

2.6 Simulated Annealing Algorithm

SA is an algorithm developed by Kirkpatrick et al. (1983). The process of heating
and gradually cooling process to hardened metal, and combinatorial optimization
inspired the concept of SA. SA is an algorithm that has the ability to reduce the
problem of local optimum. A local optimum problem is a problem where a solution
is optimal within a neighbouring set of solutions. However, considering all set of

solutions, this local optimal solution might not be the optimal solution.

SA is a local search strategy that tries to avoid local optimal problem. SA starts at a
very high temperature and it gradually cool down to a lower bound temperature.
During the cooling process, SA accepts not only good solution, but also worst
solution, with some probability. As the temperature reduced, the probability of
accepting worst solution also reduced. SA ability to accept the worst solution with

some probability helps to reduce the problem of local optimal.

The main problem with SA is its slow speed for convergence (Nikolaev & Jacobson,
2010; Henderson, Jacobson, & Johnson, 2003). However, many researchers have
suggested improvement on SA in order to increase its convergence speed.
Approaches to improve the SA’s speed include combining SA with evolutionary
algorithm, fixing the temperature cooling schedule, implementing two-staged SA

and using an adaptive temperature control scheme.
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The first approach is to combine SA with evolutionary algorithms. Delport (1998)
combines SA with evolutionary algorithm by adjusting the cooling schedule using
fast recognition of the thermal equilibrium in terms of selection intensity. Another
approach that combines SA with evolutionary algorithm is by linking SA with
genetic algorithm (GA) using generalized hill-climbing algorithm (Sullivan &

Jacobson, 2000, 2001).

The second approach to improve SA’s speed is by fixing the temperature cooling
schedule. Fielding (2000) suggested a fix temperature cooling schedules. The
researcher tested his suggestion on traveling salesman problem, the quadratic
assignment problem and the graph partitioning problem. Experiments by Fielding
shows that a fixed temperature cooling schedule can improve the speed of SA. In
addition, Orosz & Jacobson (2002a, 2002b) have suggested a finite-time
performance measures for SA with fixed temperature cooling schedules. The

measures used randomly generated instances of the traveling salesman problem.

The third approach to speed up SA is to implement a two-staged SA algorithm,
which are high temperature and low temperature. At the high temperature stage, a
fast heuristic is used. At the low temperature, the algorithm works as traditional SA.
Varanelli & Cohoon (1999) have proposed a method for determining the initial

temperature for two-staged SA.

The forth approach is to use an adaptive temperature control scheme. An adaptive
temperature control scheme changes temperature based on the number of

consecutive improving moves. For example, Azizi & Zolfaghari (2004) have tested
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SA with an adaptive temperature control scheme for job shop scheduling problem.

According to Azizi & Zolfaghari (2004), SA speeds have improved.

2.6.1 Applications of Simulated Annealing

Many researchers have used SA to solve many discretes and continuous variable
problems. Chen et al. (2007) implemented five conversions of SA from sequential-
to-parallel forms on high-performance computers and applied them to a set of
standard function optimization problems in order to test their performances. The
performance analyses of the best algorithm among the five implemented algorithms
shows that a hybrid version of a genetic algorithm combined with SA has proven to

be most efficient.

Steinhdfel et al. (2002) uses logarithmic cooling schedules of SA to solve flow shop
scheduling problem. The implementation uses an objective to minimize the overall
completion time (called the makespan). Steinhofel et al. (2002) prove that a lower
bound for the number of steps that are sufficient to approach an optimal solution

with a certain probability.

Chen & Luk (1999) proposed an adaptive SA (ASA) to solve difficult non-linear
optimization problems of signal processing. Chen & Luk have applied the proposed
algorithm to three signal processing applications: maximum likelihood (ML) joint
channel and data estimation, infinite-impulse-response (IIR) filter design, and
evaluation of minimum symbol-error-rate decision feedback equalizer (MSER DFE).

ASA is found to perform better than genetic algorithm.
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Abramson et al. (1999) have used SA for solving the school timetabling problems.
Six different SA cooling schedules were compared for solving the school timetabling:
the basic geometric cooling schedule, a scheme that uses multiple cooling rates,
geometric reheating, enhanced geometric reheating, non-monotonic cooling, and
reheating as a function of cost. Experiments performed by Abramson et al. (1999)
show that the scheme, which uses the phase transition temperature in combination

with the best solution quality found to date, produced the best results.

Emden-Weinert & Proksch (1999) report about a study of SA for the airline crew
pairing problem based on a run-cutting formulation. It is found that that run time can
be saved and solution quality can be improved by using a problem specific initial
solution, by relaxing constraints “as far as possible”, by combining SA with a

problem specific local improvement heuristic and by multiple independent runs.

Koulamas et al. (1994) have found that SA provides a better performance, in terms
of number of iterations and neighbourhood functions, for operation research

problems. Thus, increase the probability of converging to the optimal solution.

Johnson et al. (1989, 1991) have used SA to solve discrete problems, the graph
partitioning problems (Johnson et al., 1989), and graph colouring and number
partitioning problems (Johnson et al., 1991). Johnson et al. (1991) have found that

SA performs better for the long run lengths to solve graph colouring problems.
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2.6.2 Hybrid ACO and SA Algorithm Variants
Researchers have hybrid SA with ACO for many types of problems. Mostly, ACO
used SA as a booster. In other words, SA tries to improve the solutions found by

ACO implicitly.

Anghinolfi & Paolucci (2008) proposed a hybrid ACO and SA to solve single
machine total weighted tardiness with sequence-dependent setups (STWTSDS)
problem. SA works as intensification to validate solutions by all ants after each ant
colony runs, and select one best solution for the current ant colony run. Experiments
show that the effectiveness of ACO increased with the usage of SA as an
intensification mechanism. Thus, combining swarm intelligence algorithm such as
ACO with SA is a viable strategy to produce in a simple way high quality

metaheuristics.

Wang et al. (2011) solved the target assignment problem (TAP) applied to the air
defense (AD) command and control (C2) system of surface to air missile (SAM)
tactical unit using a hybrid ACO and SA algorithm. The simulation examples show
that the model and algorithms can meet the solving requirement of TAP in AD
combat. Wang et al. (2011) found that by using ACO can achieves solution quickly,
but the solution is sometimes local minimal value, SA needs more time to get the
optimal solution. However, the hybrid optimization strategy based on ACO and SA

algorithm can meet the need of solving the TAP.

Olamaei et al. (2010) proposed a hybrid of ACO and SA algorithm for solving for

distribution feeder reconfiguration (DFR) considering Distributed Generators (DGS).
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DGs is used to minimize the real power loss, the deviation of nodes voltage and the
number of switching operations. Experiments on a real distribution feeder show that
the proposed hybrid ACO and SA algorithm performs better as compared to ACO,

particle swarm optimization (PSO) and genetic algorithm (GA).

In 2011, Olamaei et al. enhanced the proposed hybrid of ACO and SA algorithm
(Olamaei, Niknam, Arefi, & Mazinan, 2011) to minimize the cost of distributed
network operation including the cost of the active power generated by DGs. This
algorithm used a cost based compensation method to encourage DGs in active and
reactive power generation due to private ownership of DGs. The experiments were
done on a real distribution feeder. Olamaei et al. (2011) claimed that this algorithm
minimizes the number of the switches. The small number of switches reduced the
required space and computation time. The proposed algorithm also reaches a much
better optimal solution in comparison with others and has the small standard

deviation for different trials.

Ghanbari et al. (2010) predicts short term electricity load using a hybrid ACO and
SA algorithm. The hybrid approach consists of two general stages. First, the
algorithm fed time series inputs into ACO to perform a global search that find a
globally optimum solution. Second, the algorithm used the solution by ACO as
initial solution for SA. SA starts local search around the ACO’s global optimum and
performs the tuning process on the initial solution. Ghanbari et al. (2010) conducted
experiments on Iranian monthly load prediction problem and compared the results

with ACO, SA and artificial neural network (ANN). Results show that the proposed
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algorithm performs better than the compared algorithms regarding to prediction

accuracy.

T'Kindt et al., (2000) solved a 2-machine flowshop bicriteria scheduling problem
using a hybrid ACO and SA algorithm. The proposed algorithm uses a variant of
ACO called the Max-Min Ant System (MMAS) proposed by Stutzle (1998). Each
ant builds a permutation schedule that has an optimal value of the makespan at each
iteration. The proposed algorithm uses a wheel selection method to choose the next
job. SA works as intensification to the solution by ACO. Furthermore, the proposed
algorithm used a 2-opt local search algorithm to improve the solution furthermore.
T'Kindt et al., (2000) have found that the proposed algorithm is able to reduce the

resolution time of the hardest problem.

Researchers have also proposed a hybrid of ACO and SA algorithm the problem of
cluster analysis (Niknam, Bahmani, & Nayeripour, 2008; Niknam, Olamaei, &
Amiri, 2008). The proposed algorithm uses SA to find the best local position for
each ant colony runs. The experimental results show that the proposed algorithm
performs at least comparable to SA, ACO and k-means in terms of function

evaluations and standard deviations for partitional clustering problem.

2.7 Hybrid ACO for Rule Induction

Most recent trends to improve the earlier implementation of ACO for rule induction
(Ant-miner) are by hybrid ACO with other algorithm. The other algorithm will try to
solve the problematic, less efficient or lack of features parts of ACO in inducting

rules, such as the lack of ability to directly cope with continuous attributes.
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Particle swarm optimisation (PSO) based classification algorithms perform well in
data sets that contain continuous attributes since it has the ability to convert nominal
attributes into numerical values. This feature is lacked from the originally proposed
ACO based classification algorithm by Parpinelli et al. (2002a). Hence, Holden &
Freitas (2008) have proposed a hybrid particle swarm optimisation with ACO
(PSO/ACO?2) algorithm for the discovery of classification rules that can directly
cope with both continuous attributes. Experiments show that PSO/ACO2 is very
competitive in terms of accuracy as compared to PART (Frank & Witten, 1998) and

produces simpler rule sets.

However, PSO does not guarantee for local optimal solution. To solve this problem,
Nalini & Balasubramnaie (2010) proposed the use of Tabu search (TS) in PSO to
improve the search capability and integrate the pheromone concept of ACO. Besides,
the proposed algorithm also runs two tasks simultaneously in parallel machines.
Experiments have shown that the proposed algorithm is competitive against existing
classification algorithms in terms of predictive accuracy and rule’s simplicity. As an
addition, Nalini & Balasubramnaie (2010) also claimed that since this algorithm runs

in parallel, the execution time is reduced.

Shahzad & Baig (2011) proposed a hybrid classification algorithm called ACO-AC.
This algorithm integrates classification with association rule mining technique to
discover high quality rules. ACO is used to mine only the appropriate subset of class
association rules, and not all possible rules. Shahzad & Baig (2011) compared ACO-
AC against eight other classification algorithms on twenty six data sets and found

that this algorithm achieves higher accuracy rates.
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Sequential covering strategy used in the first implementation of ACO for
classification, Ant-miner (Parpinelli et al., 2002a) has a drawback of not coping with
the problem of rule interaction where the outcome of a rule affects the rules that can
be discovered subsequently since the search space is modified due to the removal of
examples covered by previous rules. Hence, Otero et al. (2012) proposed a new
sequential covering strategy for ACO classification algorithms to lessen the problem
of rule interaction. The proposed algorithm implicitly encoded the rules as
pheromone values and guides the search using the quality of a candidate list of rules.
Experiments using eighteen publicly available data sets show that the proposed
algorithm gained a significantly higher predictive accuracy as compared to other rule

induction classification algorithms.

Last but not least, Mangat (2012) proposed a hybrid of genetic algorithm (GA), PSO
and ACO algorithm to mine rules in the medical domain that can handle all types of
attributes. According to Mangat (2012), GA is used to feature selection, and provides
inputs for ACO, PSO and/or Shuffled frog-leaping algorithm (SFLA). The major
advantage of the usage GA in the discovery of prediction rule is that GA performs a
global search based on a greedy approach. Mangat (2012) however, has not test the
algorithm, but suggested that a data set like the heart disease data set available at the
UCI machine learning repository may be used as input to check the effectiveness of

the proposed algorithm in the medical domain.

34



2.8 Summary

Many researchers have applied ACO in many fields of optimization research, as well
as machine learning for data mining. Most researchers in this field claimed that the
performance of this kind of algorithm is at least at par when compared to the existing

algorithms for classification such as C4.5, CN2 and PART.

The common problem with ACO is the stagnation (Dorigo & Stitzle, 2004). Ant-
miner (Parpinelli et al., 2002a, 2002b) also faced the same problem when the
construction of high quality rule is not possible. Even though many researchers have
made improvements to the Ant-miner, a perfect algorithm for data from all domains
of problems is not possible. Some improvements may increase the predictive power,

but not the simplicity of the constructed rule, and vice versa.

SA is an algorithm that is able to reduce the problem of local optimal. The usage of
SA as local search algorithm in ACO could help to improve the ability of ACO to
converge to an optimal solution. In other words, most of the researchers used SA to
intensify the solutions discovered by each ant colony. For various problems, these
hybrid solutions have shown better (or at least comparable) to other standard
algorithms for each specific problem. The main idea for the hybrid ACO and SA
algorithm is to use SA as a mechanism to improve solutions discovered by ACO
since SA is an algorithm that has the ability to reduce the problem of local optimum.
Hence, this thesis proposed two variants of hybrid ACO and SA algorithms to

generate classification model using rule induction technique.
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CHAPTER THREE
RESEARCH METHODOLOGY

This chapter presents the approach to develop techniques to classify Web documents
and data sets using ACO algorithm. The development of the new Ant-miner used the
same experimental research methodology as Parpinelli et al. (2002a, 2002b). Figure
3.1 depicts the phases of the research, which include the data sets development, the
formulation of the algorithm for rule classification and the evaluation of the

constructed rules.

Data Set
Development

\ 4

Formulating Algorithm
for Rule Classification

h 4

Validation of
Constructed Rule

Figure 3.1: Research Phases

The following sections explain the phases of the research.
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3.1 Data Set Development

The data set used in Chapter Four has been developed based on CMU World Wide
Knowledge Base (Web->KB) project (http://www.cs.cmu.edu/~webkb/).
Experiments in Chapter Four use this data set to determine the best attributes
reduction methods, for Ant-miner (Parpinelli et al., 2002a, 2002b). Web->KB consist
of manually pre-classified 8282 Web pages of computer science departments from
four (4) universities namely Cornell (867 pages), Texas (827 pages), Washington
(1205 pages) and Wisconsin (1263 pages) as well as 4120 miscellaneous pages
collected from other universities, into seven (7) categories. The classes for these
Web pages include student (1641 pages), faculty (1124 pages), staff (137 pages),
department (182 pages), course (930 pages), project (504 pages) and other (3764
pages). The “other” category consists of Web pages that do not apply to the other six
categories, such as publications list, vitae and research interests pages. A folder
structure is used to organize each Web pages file by category, one folder for each
category. Each of these seven (7) folders contains five (5) subfolders, one for each of

the four (4) universities and one for the miscellaneous pages.

In order to build the data set, a set of words from the Web pages for each category
was collected. The extracted words will only contain the twenty-six (26) English
letters. Next, remove all the punctuations and spaces. As a result, a set of words that
occurred in a Web page for a particular category presented in a simple word-based
representation, called the bag-of-words. The bag-of-words presents a Web page
(document) as a collection of words. Each word occurs in a document for at least

once. Paragraph structure, punctuation and the meaning of the word were not taken
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into consideration. For each word, information about the count of its occurrences

was included. An example of the final data set was presented in Appendix C.

Chapter Five and Six experiments used a collection of seventeen (17) data sets from
UCI repository (Asuncion & Newman, 2007). The data sets involved were Balance
Scale, Breast Cancer (Ljubljana), Breast Cancer (Wisconsin), Credit-a, Credit-g,
Diabetes, Heart (Cleveland), Heart (Statlog), Hepatitis, lonosphere, Iris,
Lymphography, Mushroom, Segment, Sonar, Tic-Tac-Toe and Vehicle. Table 3.1

summarized the main characteristic for these data sets.

Balance Scale is a data set that models psychological experimental results with 625
examples. Each example is classified as having the balance scale tip to the right
(288 examples), tip to the left (288 examples), or at balanced (49 examples). There
are four numeric attributes includes the left weight, the left distance, the right weight

and the right distance.

The University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia by M.
Zwitter and M. Soklic created breast cancer (Ljubljana) data set. This 286 examples
data set includes 201 examples of one class (no-recurrence-events) and 85 examples
of another class (recurrence-events). The examples are described by 9 categorical

attributes.

Clinical Sciences Center, University of Wisconsin created the Breast cancer

(Wisconsin) data set. The data set consists of 699 examples separated into two
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classes: benign (458 examples) and malignant (241 examples). All the nine attributes

in this data set are non-discrete.

Table 3.1: Data Sets Used in the Experiments

Data Sets Number of Number of Number of Number of
Examples Categorical Continuous Classes
Attributes Attributes
Balance Scale 625 0 4 3
Breast Cancer 282 9 0 2
(Ljubljana)
Breast Cancer 683 0 9 2
(Wisconsin)
Credit-a 690 9 6 2
Credit-g 1000 13 7 2
Diabetes 768 0 8 2
Heart (Cleveland) 303 8 5 5
Heart (Statlog) 270 0 13 2
Hepatitis 155 13 6 2
lonosphere 351 0 34 2
Iris 150 0 4 3
Lymphography 148 15 3 4
Mushroom 8124 22 0 2
Segment 2310 0 19 7
Sonar 208 0 60 2
Tic-Tac-Toe 958 9 0 2
Vehicle 846 0 18 4

Credit-a data set is about credit card applications. There are 690 examples with 15

attributes, divided into two classes: positive (307 examples) and negative (383

examples). Nine of the attributes are discrete, while the rest are non-discrete.
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Professor Dr. Hans Hofmann developed credit-g data set about German credit. This
data set consists of 1000 examples divided into two classes: good (700 examples)

and bad (300 examples). Thirteen out of twenty attributes in this data set are discrete.

Diabetes data set is a data set collected from Pima Indian heritage females' patients
with the age range of at least 21 years old. It is used to investigate whether the
patient shows signs of diabetes according to World Health Organization criteria. It
consists of 768 numeric examples and divided into two classes: tested positive for

diabetes (268 examples) and not tested positive for diabetes (500 examples).

Cleveland Clinic Foundation collected heart (Cleveland) data set. This data set
consists of 303 examples divided into five classes: '<50' (164 examples), '>50_1' (55
examples), >50_2' (36 examples), >50_3' (35 examples) and ">50_4' (13 examples).

There are thirteen attributes with eight discrete attributes.

Heart (Statlog) data set is a heart disease data set that contains 270 examples. All the
thirteen attributes are non-discrete, and the examples are divided into two classes:

absent (150 examples) and present (120 examples).

Hepatitis data set is a data set developed by Gail Gong from Carnegie-Mellon
University. This data set consists of 155 examples divided into 2 classes: DIE (32

examples) and LIVE (123 examples). 6 attributes out of 19 attributes are continuous.

lonosphere data set is a radar data, collected by a system in Goose Bay, Labrador.
The data set consists of 351 examples, divided into 2 classes: good (225 examples)

and bad (126 examples). All the 34 attributes in this data set are of continuous type.
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Iris data set contains 3 classes of 50 instances each. Each class refers to a type of iris
plant. All the four attributes for this data set are continuous. R.A. Fisher developed

this data set in July 1988.

M. Zwitter and M. Soklic developed Lymphography data set, which was obtained
from the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia.
This data set consists of 148 examples divided into four classes: normal find (2
examples), metastases (81 examples), malign lymph (61 examples), and fibrosis (4

examples). 3 out of 18 attributes in this data set are continuous.

Mushroom data set includes descriptions of hypothetical samples corresponding to
the species of gilled mushrooms in the agaricus and lepiota family. The data set
consists of 8124 examples divided into 2 classes: edible (4208 examples) and

poisonous (3916 examples). All the 22 attributes in this data set are continuous.

Vision Group, University of Massachusetts, developed segment data set with 2310
examples. All the 19 attributes are continuous. The examples in this data set were
divided equally into seven classes: brickface, sky, foliage, cement, window, path,

and grass.

The Sonar data set has 208 examples, used to discriminate between sonar signals
bounced off a metal cylinder and those bounced off a roughly cylindrical rock,
developed by Gorman and Sejnowski. All the 60 attributes for this data set are
continuous. This data set is divided into 2 classes: Rock (97 examples) and Mines

(111 examples).

41



David W. Aha developed tic-tac-toe data set that encodes the complete set of
possible board configurations at the end of tic-tac-toe games. There are 958
examples divided into 2 classes: negative (332 examples) and positive (626

examples). From the nine attributes for this data set, none are of continuous type.

The last data set used in this thesis is the vehicle data set, developed by Turing
Institute, Glasgow, Scotland. Vehicle data set consists of 846 examples. This data set
classifies a given silhouette as one of four types of vehicle, using a set of features
extracted from the silhouette. All the 18 attributes are continuous and the examples
are divided into 4 classes: opel (212 examples), saab (217 examples), bus (218

examples), and van (199 examples).

Many rule induction algorithms, including Ant-miner (Parpinelli et al., 2002a,
2002b) do not support continuous attributes. Discretization is a method to convert
continuous attributes into categorical attributes. Typically, the data for the

continuous attribute is partitioned into K ranges with equal length, or K % of the

total data with equal frequencies (Clarke & Barton, 2000). For example, consider a
data set that contains attribute that represent an age of persons. Attribute age is
discretized into categorical values by transform it into ranges, such as "less than 15

years", "16 to 30 years", and so on.

This thesis used a discretization method called the Fayyad & Irani's MDL method
(Fayyad & Irani, 1993) to discretize all the data set with non-discrete attributes. This
discretization method uses information gain to recursively defines the best ranges.

Dougherty et al. (1995) has given a detailed discussion on discretization methods for
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continuous attributes. This thesis used WEKA software (M. A. Hall et al., 2009) to

implement the discretization method on non-discrete attributes.

3.2 Algorithm Formulation

This study developed two hybrid algorithms based on the original Ant-miner
proposed by Parpinelli et al. (2002a, 2002b) and SA. The main components of the
Ant-miner are rule transaction, pheromone updates, heuristic function and rule
pruning. The first proposed algorithm, presented in Chapter Five, used SA to
optimize the rule discovered by an ant. The second proposed algorithm presented in
Chapter Six, fixed the class before an ant discovers a rule. Besides, the optimization
of the terms selection process while an ant constructing a rule, used the SA. The
second proposed algorithm uses a simpler heuristic and fitness functions as
compared to the first algorithm, which used the same heuristic and fitness functions

as the Ant-miner (Parpinelli et al., 2002a, 2002b).

3.3 Rule Validation

This study used stratified ten-fold cross-validation method, depicted by Figure 3.2, to
evaluate the performance of the classifiers. Cross-validation (Kohavi, 1995a) is a
method for estimating how well a classifier performs on new data. Generally, this
technique divides data set into almost equal size of ten (10) sets (or folds). Appendix
B listed a Bash script to automate the process of creating the train/test sets. To
evaluate the performance of a classifier, take the i-th set as a test set, and the rest of

the sets as training sets. The classifier trained the training set to yield ordered

43



contains only the consequent part.

classification rules, R=1, ..., e |- The default rule, ry, is a rule that

Fold 1 Fold 2 Fold k
Test Set 1 Test Set 2 Test Set k
o
Rule Set 1 Rule Set 2 Rule Set k
Evaluate Evaluate Evaluate
Rule Set 1 Rule Set 2 Rule Set k

Average Predictive Accuracy
Average Number of Rules
Average Number of Terms

Figure 3.2: k-fold Cross Validation Procedure

Later, the classification rules were evaluated against the test set for predictive

accuracy, acc;. This process repeats k times by taking the next set as a test set, and

the rest set as the training set. Each run uses different set as a test set. Finally, the
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procedure calculates the average predictive accuracy, by dividing the total of all

predictive accuracies by the total number of sets, as

K
average predictiveaccuracy, acc,,, = % Z acc; (3.1)
i=1

where acc; is the predictive accuracy for training the training set i.

The predictive accuracy for each test set i is the average of the number of correctly
classified examples in the test set, by the classification rules. In other words, average
predictive accuracy for each test set, is the count of the numbers of correctly
classified rules, n(c,q) =c¢, ), i=1 ..., m, where m is the total number of examples

in test set i, c,;) is the consequent for example i, and c, is the consequent for the

rule with antecedent that covered the antecedent of example i. In order to measure

the predictive accuracy, first, selects the first example, e(l) in the test set. Second,
select a rule one by one, in order, until reach a rule that covers the antecedent of e(l)

, say r;. If no rule cover e(1), use the default rule, ryg,,. Third, compare the

consequent of j-th rule's consequent, ¢, , with the consequent of e(l), Cow)- If the

I’]- !
consequent of r, and e(l) is equal, increase the count of correctly classified

examples, n(ce(l) :cr), by one. The algorithm calculate the predictive accuracy,

after all the examples in the test set have been tested against the classification rules,

by calculating the average number of correctly classified rules, n(ce(l) =Cy, ) as
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acc; = %i n(ce(i) =Cy, ) (3.2)

i=1

where acc; is the predictive accuracy for test set i, and m is the total number of

examples in test set i .

Ant-miner (Parpinelli et al., 2002a, 2002b) is the first ACO based algorithm for rule
induction, and was credited by the founder of ACO, in his book (Dorigo & Stiitzle,
2004). Hence, this thesis compares the performance of the proposed algorithms with
the Ant-miner (Parpinelli et al., 2002a, 2002b). As a control, this thesis also
compares the performance of the proposed algorithms with PART (Frank & Witten,
1998) and some other rule induction algorithms discussed in Section 2.2. PART is
known as an industrial standard classification algorithm (Witten et al., 2011), which
is an improvement of C4.5 (Quinlan, 1993) included in WEKA software (M. A. Hall
et al., 2009). PART builds a partial C4.5 tree in each iteration and makes the best
leaf into the rule. In other words, PART extracts the path with the highest coverage
to form the first rule. The instances covered by this rule are removed from the
training examples and the process is then repeated to generate the second rule, and so
on. Hence, a set of C4.5 trees are grown on increasingly smaller subsets of the

training examples.

3.4 Summary
In formulating the hybrid Ant-miner, it is important to determine the best attribute
selection methods for dimensionality reduction, a technique in optimizing the rules

constructed by each ant, and a method for optimizing terms selection. These steps
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are important so that the newly formulated algorithms can produce classification

model that could help human to understand data better, especially for large data.
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CHAPTER FOUR
ATTRIBUTE SELECTION METHODS FOR DIMENSIONALITY
REDUCTION

According to a Web Server Survey by Netcraft (http://www.netcraft.com), there are
about 677 million Web sites, with rate of growth of 5.1% in April 2012 as compared
to March 2012, and thus contributing to the enormous size of information on the
Web. Consequently, information searching from the Web is not an easy task. Web
directories are Web sites that list other Web sites according to category and

subcategory.

Categorizing Web documents into Web directories could facilitate information
retrieval. Before committing a search, the user will select a specific category, such as
“Arts”, “Business”, “Computers”, or “Sports”, resulting in more accurate and related
information to the search engine results. DMOZ Open Directory Project (ODP)
(http://www.dmoz.org) is an example of Web directory. A huge number of human
editors mainly construct the ODP. However, as the Web is constantly changing and
expanding, this manual approach will sooner became less effective. Hence, due to
the enormous size of the Web, it would be good to have an automatic classier that

will categorized Web pages, to help the development of a Web directory.

The development of Web directories can benefit from the help of an intelligent
computer system. Classification is a data mining task of assigning objects to one of
several predefined classes. It is an important task in many information management

and retrieval tasks on the Web. Examples include helping Web spider to focus crawl,
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improve the quality of Web search, and assisting in the development of Web

directories.

Web text categorization problem, defines attributes as the words that occur in the
Web pages (documents). The number of attributes could be tens or even hundreds of
thousands, even for small size Web pages. According to the study conducted by
Yang & Pederson, removing up to 98% of the attributes improved the text

categorization performance (Yang & Pedersen, 1997).

This chapter presented a study on the performance of various attribute selection
methods for reducing the dimension of data set. Next, Ant-miner classifies to see the
performance in terms of predictive accuracy and the number of rules generated. This
chapter compares the results of classification model to C4.5, as done by Parpinelli

(Parpinelli et al., 2002a, 2002b).

4.1 Attribute selection method

Attribute selection is done by searching the space of attributes for a set of attributes
that would best predict the class. Several search methods such as Best-First,
Exhaustive Search, Genetic Search (Goldberg, 1989), Greedy Stepwise, Race Search
(Moore & Lee, 1994) and Random Search (H. Liu & Setiono, 1996) are constantly
used by researchers for attribute selection activities. The function for each search

method is as listed in Table 4.1.

49



Table 4.1: Search Methods for Attribute Selection

Search Methods Function

Best-First Searches the space of attribute subsets by greedy hill climbing
augmented with a backtracking facility.
Exhaustive Search Performs an exhaustive search through the space of attribute subsets

starting from the empty set of attributes.

Genetic Search Search using simple genetic algorithm.

Greedy Stepwise Searches the space of attribute subsets by greedy hill climbing
augmented without a backtracking facility.

Race Search Using race search methodology.

Random Search Search randomly.

Table 4.2: Attribute Evaluation Methods for Attribute Selection

Evaluation Methods Function

Correlation-based Evaluates the worth of a subset of attributes by considering the
individual predictive ability of each feature along with the

degree of redundancy between them.

Classifier-based Use classifier to evaluate attribute set.
Consistency subset Measure consistency in class values for a chosen subset of
attributes.

Evaluation method such as Correlation-based attribute subset selection (Hall, 1999),
Classifier-based attribute subset selection and Consistency subset (H. Liu & Setiono,
1996) were used by many researchers to select the attributes in the process of
evaluating the attributes subset found by search method. Table 4.2 lists all the

functions for each evaluation method.
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In this chapter, the performance of three attributes selection evaluation methods
against Ant-miner and C4.5 has been undertaken. This chapter compares the
performance of the attributes selection methods according to the predictive accuracy
and the number of discovered rules, discussed in Section 4.2. Section 4.3 gives the

summary.

4.2 Best Attribute Selection Method

This chapter uses the pre-classified Web pages of four Universities data sets (Craven
et al., 1998), as mentioned in Section 1.1. The data set contains 8282 manually
classified Web pages. The classes are student, faculty, staff, department, course and
project. For this project, only two classes were chosen which are student and course,
leaving only 2571 Web pages. Figure 4.1 depicts the whole process of the rules

generation.

From those documents, a set of binary attributes (words) was extracted, leaving the
html tags, numbers, stop words and punctuations (pre-process). Stop words are
words that give very little contribution or none to the meaning of the text. Examples
of stop words are “the”, “and”, “he”. For each attribute, a value of one (1) will be
given if the attribute occurs in the document and zero (0) otherwise. The list of stop

words used for this experiment is listed in Appendix A.

The words “car” and “cars” come from the same word root “car”. Instead of keeping
both words “car” and “cars”, the number of words will be reduced using stemming
algorithm if only the root word is used. Therefore, each word extracted was stemmed

using Porter’s stemming algorithm (Porter, 1980).
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Figure 4.1: The Process of Generating Rules
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According to Hull (1996), there is no difference between the stemmers in terms of
average performance. However, Porter's stemming algorithm (Porter, 1980) is the
most common algorithm for stemming English. Attributes that occur less than a
hundred (100) in the whole set of documents were also removed, and for each

category, only twenty (20) attributes were chosen.

This chapter compares three different attribute evaluation methods with seven search
methods, to reduce the number of attributes. The evaluation methods are Correlation-
based attribute subset selection (M. A. Hall, 1999), Classifier-based attribute subset
selection and Consistency subset (H. Liu & Setiono, 1996). The search methods used
include Best-First, Exhaustive Search, Genetic Search (Goldberg, 1989), Greedy
Stepwise, Race Search (Moore & Lee, 1994) and Random Search (H. Liu & Setiono,
1996). The attribute selection was done using WEKA software (M. A. Hall et al.,
2009) which generates a number of new sets of data. Table 4.3 shows the number of

attribute selected for each attribute selection run.

For each set generated by the attribute selection, classification of documents was
performed. The experiment compared these results with C4.5 (Quinlan, 1993). A 10-
fold cross validation procedure (Kohavi, 1995a) measures the accuracy of the
discovered rules. The experiment consists of 10 folds (iterations), where each fold

uses a different set of data as a test set.

The parameters for the Ant-miner are the same as were used by Parpinelli (Parpinelli

et al., 2002a, 2002b), which are as follows:
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e Number of ants: 3000

e Minimum number of examples per rule: 10

e Maximum number of uncovered examples: 10

e Number of identical for convergence: 10

Table 4.3: The Numbers of Attributes Generated by Various Attribute Selection

Methods
Evaluation Methods Search Method Number of Attributes
Classifier-based Best-First 8
Exhaustive Search 8
Genetic Search 8
Greedy Stepwise 6
Race Search 6
Random Search 9
Correlation-based Best-First 16
Exhaustive Search 16
Genetic Search 16
Greedy Stepwise 16
Random Search 17
Consistency subset Best-First 20
Genetic Search 19
Greedy Stepwise 20

To evaluate the rules generated by each fold, at the end of each fold run, statistics
such as predictive accuracy of the rule set and the number of rules in the rule set are
calculated. Table 4.4 reported the average predictive accuracy in the test set over the

ten (10) iterations of the cross validation procedure for each new data set created by
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the attribute selection in terms of average predictive accuracy, while Table 4.5 list
out the average number of rules generated by each classifier for different attribute

selection methods. The number after the “+” sign is the standard deviation.

Table 4.4: Comparison Between C4.5 and Ant-miner for Average Predictive
Accuracy

Evaluation Methods Search Method Average Predictive Accuracy

C4.5 (%) Ant-miner (%)
Classifier-based Best-First 92.29 £ 1.63 88.77 £ 1.66
Exhaustive Search 92.29+1.63 88.77 £ 1.66
Genetic Search 9229 +1.63 88.77 £ 1.66
Greedy Stepwise 92.38+1.63 89.94 + 0.86
Race Search 92.38 £ 1.63 89.94 £ 0.86
Random Search 92.31+1.62 89.63 £ 0.87
Correlation-based Best-First 93.74 £ 1.58 91.30+£1.45
Exhaustive Search 93.74 + 1.58 91.30+1.45
Genetic Search 93.74 +1.58 91.30+1.45
Greedy Stepwise 93.74 £ 1.58 91.30+1.45
Random Search 93.92 +1.49 93.36 £ 0.67
Consistency subset Best-First 94.03+1.42 88.96 + 1.38
Genetic Search 93.89+1.41 88.80 + 1.67
Greedy Stepwise 94.03+1.42 91.02 £0.99

Table 4.4 and Table 4.5 show that Correlation-based evaluation with Random Search
is the best attribute selection method for Ant-miner, with the highest predictive
accuracy and lowest number of rules. As for the C4.5 case, it seems like C4.5
performs slightly better (with Consistency subset evaluation method) than Ant-miner
(with Correlation-based attribute subset selection) in terms of predictive accuracy.

However, the number of rules generated is more than double the number of rules
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generated by Ant-miner. As for the number of attributes concerned, it shows that the
lesser the number of attributes slightly decrease the predictive accuracy, but
increases the knowledge comprehension (the number of rules). However, if the
attribute selection reduces too many attributes, like in the Classifier-based evaluation

method case, the predictive accuracy will slightly reduce.

Table 4.5: Comparison Between C4.5 and Ant-miner for Average Number of Rules

Evaluation Methods Search Method Average Number of Rules

C4.5 Ant-miner

Classifier-based Best-First 8.27+0.94 8.70£0.21
Exhaustive Search 8.27+0.94 8.70£0.21

Genetic Search 8.27+0.94 8.70£0.21

Greedy Stepwise 7.00 £ 0.00 7.70£0.15

Race Search 7.00 £0.00 7.70+0.15

Random Search 7.4 +0.85 9.10+0.46

Correlation-based Best-First 18.93+2.61 7.40 £0.27
Exhaustive Search 18.93+2.61 7.40 £0.27

Genetic Search 18.93+2.61 7.40+£0.27

Greedy Stepwise 18.93+2.61 7.40 £0.27

Random Search 19.83 £2.45 7.00£0.15

Consistency subset Best-First 20.20 £ 1.63 7.30£0.33
Genetic Search 20.94 £ 1.88 8.00£0.26

Greedy Stepwise 20.20 £ 1.63 7.80+0.33

Eventually, Correlation-based evaluation with Random Search attribute selection,
which contributes the best predictive accuracy as well as the number of rules for
Ant-miner, does not provide the best number of attributes removed. The number of

attributes selected for this attribute selection method is 100%, which is higher than
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the one generated by Classifier-based attribute subset selection. Even though
predictive accuracy depends on the attributes selected, the choice of classifiers also
plays a critical role. Classifier will perform differently for different domain of data

sets.

4.3 Performance of Ant-miner on Reduced Attributes Data Sets

Experiments conducted in the previous section have shown that the best attribute
selection method to be used in Ant-miner is the combination of Correlation-based
evaluation with Random Search as the search method. This section studies the
performance of Ant-miner when the number of attributes of the data sets were
reduced using the best combination of evaluation method and search method on
several UCI data sets (Asuncion & Newman, 2007). Table 4.6 listed the number of
attributes before and after reduction using Correlation-based evaluation with

Random Search as the search method.

Table 4.7 shows the average predictive accuracy of Ant-miner (Parpinelli et al.,
2002a, 2002b) tested on sixteen UCI data sets. It is found that the average predictive
accuracy was improved on about 68 % of all tested data sets. For the simplicity of
the discovered rules, according to Table 4.8 and Table 4.9, the average number of
rules was reduced on 50 % of the sixteen data sets while the average number of

terms was reduced on 68 % of the sixteen data sets.

The experiment performs in this section shows that not all attributes occur in data
sets are important and can be removed. By removing unnecessary attributes, the

performance of a classifier in terms of the prediction power increased. As an
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addition, the removal of unnecessary attributes will also increase the simplicity of
the discovered rules. The simplicity of the discovered rules is important to the human

where complex rules are harder for human to understand.

Table 4.6: The Number of Attributes Before and After Reduction

Data Sets Before Reduction After Reduction
Balance Scale 4 3
Breast Cancer (Ljubjana) 9 6
Credit-a 15 7
Credit-g 20 4
Diabetes 8 5
Heart (Cleveland) 13 7
Heart (Statlog) 13 7
Hepatitis 19 8
lonosphere 34 13
Iris 4 2
Lymphography 18 11
Mushroom 22 4
Segment 19 6
Sonar 60 19
Tic-tac-toe 9 5
Vehicle 18 9

Table 4.7: Comparison of The Average Predictive Accuracy for Models Constructed
by Ant-miner on Original and Reduced UCI Data Sets

Data Sets Before Reduction After Reduction
Balance Scale 71.27+£1.54 75.17+1.84
Breast Cancer (Ljubjana) 73.74 £ 2.69 76.5+2.76
Credit-a 84.93+1.21 86.09+1.11
Credit-g 70.5+2.01 73.7+151
Diabetes 73.55+1.85 74712
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Heart (Cleveland)
Heart (Statlog)
Hepatitis
lonosphere

Iris
Lymphography
Mushroom
Segment

Sonar
Tic-tac-toe
Vehicle

76.78 £ 2.09
77.04 +2.64
83.07 £ 2.63
89.25+1.65
95.33+1.42
76.92 +3.94
97.45+0.62
83.94+1
78.27 +3.36
71.17+£1.74
58.29 +1.39

80.64 + 2.47
80+2.6
76.31+3.59
86.25 + 2.04
95.33+1.42
70.92 +2.82
98.52 +0.17
86.23 + 1.27
78.88 + 2.35
70.79 + 2.05
58.98 + 1.64

Table 4.8: Comparison of The Average Number of Rules for Models Constructed by

Ant-miner on Original and Reduced UCI Data Sets

Data Sets

Before Reduction

After Reduction

Balance Scale

Breast Cancer (Ljubjana)

Credit-a
Credit-g
Diabetes

Heart (Cleveland)
Heart (Statlog)
Hepatitis
lonosphere

Iris
Lymphography
Mushroom
Segment

Sonar
Tic-tac-toe
Vehicle

78+0.2
6.1+0.18
7.4+0.22
9.1+0.18
9.3+0.21
6.4 +0.27
5.9+0.18
48+0.2
6.2+0.2
42+0.2
6.3+ 0.26
7.7+0.33
17.7 £0.47
6+0.15
7.9+ 0.55
12 +0.33

6+0
6.3+0.15
8.1+0.31
9+0.21
9.3+0.15
6.1+0.18
6.1+0.18
5.1+0.18
6.1+0.23
4+0
6+0.26
10+£0
20.4 £ 0.96
6+0.15
9+0.63
10.9+0.41
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Table 4.9: Comparison of The Average Number of Terms for Models Constructed by
Ant-miner on Original and Reduced UCI Data Sets

Data Sets Before Reduction After Reduction
Balance Scale 10.6+0.4 70
Breast Cancer (Ljubjana) 7.9+0.38 8.3+0.42
Credit-a 10.6 £ 0.45 9.8+0.29
Credit-g 156 +0.4 9.1+0.38
Diabetes 10.3+0.54 9.1+0.43
Heart (Cleveland) 10.1 £ 0.66 83+0.3
Heart (Statlog) 8.8+0.53 8.7+0.37
Hepatitis 8.5+0.48 79x0.6
lonosphere 9.1+0.78 8.9+0.41
Iris 3.2+0.2 3+0
Lymphography 10+ 0.68 8.2+ 0.68
Mushroom 8.1+£0.46 9+0
Segment 23.7+0.91 258+ 1.72
Sonar 11.7+0.37 12.6 + 0.56
Tic-tac-toe 95+141 9.8+£1.15
Vehicle 245+ 1.17 19.2+1.26

4.4 Summary

The best attribute selection method to be used in Ant-miner is the combination of
Correlation-based evaluation with Random Search as the search method. However,
this attribute selection method will not give the best performance in attributes
reduction. Using classifier-based attribute subset selection will reduce more
attributes, but sacrifice the performance of the classifier. This experiments in this
chapter shows that Ant-miner performed better than C4.5 for Web texts

categorization.
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Since this thesis only focuses on two classes of Web data set, it is suggested to test
the performance of attribute selection on higher dimension of Web data sets, with
more classes. On the other hand, a study on reducing the size of attributes dimension
could also be done in relation to the linguistic relationship to generalize words, as a

manual preliminary step before performing the attribute selection method.

Tests on several reduced data sets from various fields from UCI data sets using
Correlation-based evaluation with Random Search as the search method were also
conducted in this thesis on Ant-miner (Parpinelli et al., 2002a, 2002b). It is found
that using a reduced attributes data sets improve the performance of Ant-miner in

terms of prediction power as well as the simplicity of the discovered rules.
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CHAPTER FIVE
SIMULATED ANNEALING AS LOCAL SEARCH IN ANT
COLONY OPTIMIZATION FOR RULE INDUCTION

This chapter proposed a hybrid of ACO and SA algorithm for rule induction. The
hybrid algorithm is part of the sequential covering algorithm, which is the commonly
used algorithm to extract classification rules directly from data. SA acted as local
search algorithm while each ant discover rule. The usage of SA as a local search
algorithm will minimize the problem of low quality discovered rule by an ant in a
colony, where the rule discovered by an ant is not the best quality rule. In the
experiments, seventeen (17) data sets which consist of discrete and continuous data
from UCI repository (Asuncion & Newman, 2007) were used to evaluate the
performance of the proposed algorithm. This chapter compares the experiments’
results to the Ant-miner and some other rule induction algorithms discussed in
Section 2.2. In addition, this chapter also tested the proposed algorithm with the
reduced Web data set from Chapter Four, in order to test the credibility of the

proposed algorithm on Web pages classification.

5.1 Simulated Annealing as Local Search

The proposed hybrid algorithm follows Sequential Covering algorithm, in order to
discover rules from the data set. Figure 5.1 depicts the flowchart for the sequential
covering algorithm. Generally, the algorithm starts with an empty discovered rules

list. This algorithm will extract rule, in IF < conditions > THEN < class > form, one

at a time from the training data set using Learn-One-Rule function. The Learn-One-

Rule function contains a set of ant colonies, which will discover a set of rules. The
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algorithm selects one best rule from this set of rules, and then remove examples from
the training data set that were covered (disregard the class) by this best rule. The best
rule refers to the highest quality rule among all the ants from each ant colony. The
algorithm appends this rule to the end of the list of discovered rule list, according to

the discovery order, called the ordered discovered rules list.

Training Data
Sets

A 4

A

Learn-One-Rule

Remove Examples
Covered by the Rule

A 4

Append Rule to List of
Discovered Rules

Stopping
Condition?

Y

Append Default Rule

l

List of
Discovered Rules

Figure 5.1: Sequential Covering Algorithm
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After each ant colony has discovered the rules, the algorithm updates the pheromone

level. Initially, the pheromone level for all terms were initialized using

(5.1)

where
e a is the total number of attributes, and

e by is the total number of values for attribute i.

After each rule discovery, by each ant colony, the algorithm increases the pheromone
level for terms used in the discovered rule. The algorithm updates pheromone level

at time t using
7ij(t) = 1+ Q) 7j; (t -1) (5.2)
where

* Tjj is the pheromone level for term with attribute i and value j, and

e Q isthe quality of the current discovered rule, defined by Equation 5.4.
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The algorithm evaporates pheromone level for all terms by dividing the pheromone
level for each term with the total of pheromone level. This normalization procedure

Is done after the increased of pheromone level for all used terms.

The rules discovery processes repeat until the total number of data set is less than or
equal to a predefined threshold value (the maximum number of uncovered data).
Finally, the algorithm adds a default rule to the set of discovered rules. A default rule
is a rule without the antecedent part, but contains a class with majority examples

from the set of uncovered examples.

In order to improve the rule’s quality discovered by each ant, this algorithm uses SA
as a local search in Learn-One-Rule function. The algorithm applied the local search
algorithm iteratively to each ant while each ant is discovering rule, in each ant
colony using the Learn-One-Rule function. Figure 5.2 depicts the implementation of

SA as a local search algorithm in ACO for rule induction.

Each ant in each colony uses the SA to discover one rule. SA depends on the
temperature variable. The temperature starts very high with a predefined value, and
gradually gets lower, by a factor of a predefined threshold value. Iteration in the SA
will create one rule using a terms selection method, which depends on a probability.
Iterations will stop when the temperature has reduced to a predefined lower limit

temperature. Figure 5.3 depicts these processes.
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Figure 5.2: SA as Local Search in ACO Flow Chart
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The algorithm evaluates the rule based on its quality, and selects the new rule as the
best rule for iteration, if the new rule’s quality is better than the previous quality.
However, rule with lower quality also has a chance to be selected using the

probability

p= exp(_qlT—_qzj (5.3)

where
e (; and g, are the quality for the previous and current rules respectively, and

e T isthe temperature for the current iteration.

The temperature starts very high. Therefore, p will almost be one, and all rules have

almost the same probability to be chosen. As the temperature decreases, the
difference between the previous and current quality become more significant. Hence,

rule with slightly lower quality will be preferred over much lower ones.
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Figure 5.3: SA Flow Chart to Construct Best Rule for an Ant
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After each ant discovers a rule, the algorithm performs pruning procedure. The
pruning procedure iteratively removes one term at a time while rule’s quality is

improved. The rule quality is calculated using fitness function

TP TN

= : (5.4)
TP+FN TN+FP

Q

where

e TP is the number of examples covered by the rule and having the same class

from the class predicted by the rule,

e FP is the number of examples covered by the rule and having a different

class from the class predicted by the rule,

e FN is the number of examples that are not covered by the rule, but have the

same class with the class predicted by the rule, and

e TN is the number of examples that are not covered by the rule, and have a

different class with the class predicted by the rule.

In the terms selection procedure (depicted by Figure 5.4), terms will be added to the
partial rule until there is no more possible terms left. A new selected term’s attribute
is an unused previously attribute. In other words, a rule cannot have an attribute with
more than one value. It is a one to one mapping of an attribute and its value. After

terms addition process has finished, the algorithm adds a consequent to the partial
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rule. The consequent is the class with the majority examples, from all examples

covered by the rule. The term selection method uses the following probability:

Tij X 77jj
a fi

2. 2 Tij ¥ 70

i=1 j=1

Pij = (5.5)

where

°  7jj is the heuristic value for term with attribute i and value j,

* zjj isthe pheromone level for term with attribute i and value j, and

e fj is the number of values for attribute i.

The probability depends on the heuristic value, 7;; (t) and current pheromone level,
7ij (t) for each term, term;j. By time, after each ant colony has selected one best

rule, the pheromone level for the higher quality terms will increase, and hence
increases the chances of selecting those terms. The heuristic value for terms remains

the same.

The heuristic function uses the entropy for preferring a term to the others, as

log, k —infoj;
mj =73 b J (5.6)
D> log; k —infoj;
i—1 j—1
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where

e infoj; is the entropy value for term with attribute i and value j,

e Kk isthe total number of classes,

e Tijj is the total number of examples for attribute i with value f;,

e a is the total number of attributes, and

e by is the total number of values for attribute i .

The entropy is calculated using Equation 5.7.
) K
info, =—> P(c| A =V; )elog,P(c| A =V;) (5.7)
c=1

where
e C isthe class value,
e Kk isthe total number of class values, and

o Pl(c|A =V;) is the probability of observing class ¢ conditional on observing

attribute i having value V;; , A =V
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5.2 Experiment and Results

The chapter tested the proposed algorithm on 17 data sets from UCI repository
(Asuncion & Newman, 2007), as well as the reduced Web data set from Chapter
Four, using a ten-fold cross-validation technique (Kohavi, 1995a). Each data set is
randomly shuffled and split into ten approximately equally sized subsets using
WEKA software (M. A. Hall et al., 2009). First, the experiment takes one subset as
the testing set, while the rest subsets become the training set. After the proposed
algorithm trained the training set, the proposed algorithm evaluated the discovered
rules against the test subset. The experiment repeats this processes ten times,
producing ten individual sets of performance statistics, such as predictive accuracy,
number of rules and number of terms in the rules. Finally, the experiment averages
these performance statistics and calculates the standard deviations for each

performance statistics.

The proposed hybrid algorithm, cannot cope with non-discrete attributes, but only
nominal attributes. Hence, the experiment discretizes non-discrete attributes in the
first place, using the discretization method proposed by Fayyad & Irani (1993), as
discussed in Chapter Three. All the experiments use 100 ant colonies with 5 ants

each.

5.2.1 Classification of 17 Data Sets from UCI Repository

The performance of the proposed algorithm is evaluated by comparing it with Ant-
miner (Parpinelli et al., 2002a, 2002b). Table 5.1-5.3 summarized the performance

statistics for Ant-miner (Parpinelli et al., 2002a, 2002b), and the proposed algorithm.
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Figure 5.5-5.7 visualized the performance statistics laid out by Table 5.1-5.3,

respectively.

Table 5.1 and Figure 5.5 compare the predictive accuracy between Ant-miner
(Parpinelli et al., 2002a, 2002b) and the proposed algorithm. Compared to the Ant-
miner, the proposed algorithm achieves almost similar predictive accuracy. It is
found that the proposed algorithm only performed better than the Ant-miner on only
35% (6 out of 17) of the data sets. For the data sets where the Ant-miner wins, the
differences are very small. However, when it comes to simplicity, the proposed
algorithm performed a significant different where the proposed algorithm construct
fewer number of rules for 82% (15 out of 17) of the data sets, as shown in Table 5.2
and Figure 5.6. Moreover, the proposed algorithm produced rule with fewer number
of terms on all data sets, compared to the Ant-miner, as shown in Table 5.3 and

Figure 5.7.
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Table 5.1: Average Predictive Accuracy (%) of Ant-miner and Proposed Algorithm 1

Data Sets Ant-miner Proposed Algorithm 1
Balance Scale 71.27+1.54 63.68 + 6.19
Breast Cancer (Ljubljana) 73.74 £ 2.69 74.11+£3.95
Breast Cancer (Wisconsin) 94.99 £ 0.49 93.99+3.71
Credit-a 8493+1.21 84.64 £ 4.31
Credit-g 70.50 £ 2.01 7290+ 4.13
Diabetes 73.55+1.85 74.62 £ 4.70
Heart (Cleveland) 76.78 £ 2.09 74.83£7.95
Heart (Statlog) 77.04 £ 2.64 75.56 £ 7.07
Hepatitis 83.07 £ 2.63 82.00 + 4.62
lonosphere 89.25 + 1.65 85.48 + 5.62
Iris 95.33+1.42 96.00 £ 4.42
Lymphography 76.92 £ 3.94 78.95+7.41
Mushroom 97.45 + 0.62 91.14+5.93
Segment 83.94+1.00 86.15+2.44
Sonar 78.27 £ 3.36 73.14 £ 8.96
Tic-tac-toe 71.17+1.74 71.09 = 3.86
Vehicle 58.29 + 1.39 57.57 £ 6.04
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Table 5.2: Average Number of Rules of Ant-miner and Proposed Algorithm 1

Data Sets Ant-miner Proposed Algorithm 1
Balance Scale 7.80£0.20 5.00 £ 0.00
Breast Cancer (Ljubljana) 6.10+0.18 5.20 £ 0.60
Breast Cancer (Wisconsin) 7.40+£0.22 7.40+£0.49
Credit-a 7.40+0.22 5.80+1.08
Credit-g 9.10+0.18 8.10+0.83
Diabetes 9.30+0.21 9.10+0.30
Heart (Cleveland) 6.40 £ 0.27 6.20 £ 0.98
Heart (Statlog) 5.90+0.18 5.30 £ 0.46
Hepatitis 4.80+0.20 450 £0.50
lonosphere 6.20 £ 0.20 6.40+1.11
Iris 420+0.20 4.00 £0.00
Lymphography 6.30 +0.26 5.40+0.49
Mushroom 7.70+£0.33 3.70+1.10
Segment 17.70 £ 0.47 19.50 £ 1.96
Sonar 6.00 £ 0.15 5.20+0.75
Tic-tac-toe 7.90 £ 0.55 6.20 £2.44
Vehicle 12.00+0.33 11.90+0.83
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Table 5.3: Average Number of Terms of Ant-miner and Proposed Algorithm 1

Data Sets Ant-miner Proposed Algorithm |
Balance Scale 10.60 £ 0.40 4.00 £ 0.00
Breast Cancer (Ljubljana) 7.90£0.38 4.20 +0.60
Breast Cancer (Wisconsin) 7.70 +0.26 6.40 +0.49
Credit-a 10.60 + 0.45 4.80+1.08
Credit-g 15.60 + 0.40 7.10+0.83
Diabetes 10.30+0.54 8.10+0.30
Heart (Cleveland) 10.10 £ 0.66 5.20+0.98
Heart (Statlog) 8.80 £ 0.53 4.30 £ 0.46
Hepatitis 8.50+0.48 3.50+0.50
lonosphere 9.10+£0.78 540+1.11
Iris 3.20+£0.20 3.00+0.00
Lymphography 10.00 £ 0.68 4.40 £ 0.49
Mushroom 8.10 £ 0.46 2.70+1.10
Segment 23.70+£0.91 18.50 £ 1.96
Sonar 11.70 £ 0.37 4.20+0.75
Tic-tac-toe 950+1.41 520+ 2.44
Vehicle 2450+ 1.17 10.90 +0.83
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Figure 5.5: Comparison of Average Predictive Accuracy Between Ant-miner and
Proposed Algorithm 1
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Figure 5.6: Comparison of Average Number of Rules Between Ant-miner and
Proposed Algorithm 1
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Figure 5.7: Comparison of Average Number of Terms Between Ant-miner and
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Experiments in Chapter 4 have shown that the removal of the unnecessary attributes
will increased the predictive power of the classification model constructed by Ant-
miner (Parpinelli et al., 2002a, 2002b) as well as improving the simplicity of the
classification rules. This section tested the proposed algorithm on the seventeen UCI
reduced data sets using the methods from Chapter 4: the combination of Correlation-

based evaluation with Random Search as the search method.

According to the average accuracy laid out in Table 5.4 and depicted by Figure 5.8,
the proposed algorithm wins on 6 out of 17 data sets (35%), the same as without
attributes reduction method applied. However, the mean for all average accuracy is
higher (79.5%) compared to when using the proposed algorithm to construct the

classification model without reducing the attributes (78.58%).

Moreover, the simplicity (the less number of rules and the less number of terms per
rule, the better the simplicity of the rules) of the constructed rules also improved
when reducing the number of attributes as shown in Table 5.5 and Figure 5.9, where
the proposed algorithm wins on 15 out of 17 (88.2%) data sets with a mean of 6.73
as compared to 14 out of 17 (82.4%) without reducing the attributes for the average

number of rules with a mean of 6.99.

The same goes for the number of terms per rule. The mean for the average number of
terms per rule, when the method of attributes reduction is applied on the data sets

initially, was reduced by 4.3. The results were shown in Table 5.6 and Figure 5.10.
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Experiments in this section have shown that even though the number of rules was
reduced (simpler rules) and the number of terms for each rule was reduced, the
predictive power (accuracy) of the constructed classification model still improved, if
we reduced the unnecessary attributes using the proposed method in Section 4 from
the data sets, before using the proposed algorithm in this section to constructed the

classification model.

Table 5.4: Average Predictive Accuracy (%) of Ant-miner and Proposed Algorithm 1
on Reduced Attributes Data Sets

Data Sets Ant-miner Proposed Algorithm 1
Balance Scale 75.17 +1.84 65.29 + 5.32
Breast Cancer (Ljubljana) 76.50 + 2.76 74.46 + 3.94
Breast Cancer (Wisconsin) 94,71 £0.83 94,57 £ 3.60
Credit-a 86.09+1.11 86.09 £ 4.99
Credit-g 73.70£1.51 7180+ 4.75
Diabetes 74.71 £ 2.00 75.53 £ 4.47
Heart (Cleveland) 80.64 + 2.47 75.17 + 8.48
Heart (Statlog) 80.00 £ 2.60 76.30 £ 7.44
Hepatitis 76.31 £ 3.59 81.96 +7.41
lonosphere 86.25 + 2.04 88.04 + 3.77
Iris 95.33+1.42 94.67 £ 4.00
Lymphography 70.92 +£2.82 80.95 + 8.27
Mushroom 98.52 + 0.17 98.52 + 0.46
Segment 86.23 + 1.27 85.80 £ 2.95
Sonar 78.88 £ 2.35 73.07£7.45
Tic-tac-toe 70.79 £ 2.05 73.07 £1.87
Vehicle 58.98 + 1.64 55.80 + 3.07

82



Table 5.5: Average Number of Rules of Ant-miner and Proposed Algorithm 1 on
Reduced Attributes Data Sets

Data Sets Ant-miner Proposed Algorithm 1
Balance Scale 6.00 £ 0.00 4.00 £0.00
Breast Cancer (Ljubljana) 6.30 £ 0.15 4.90+0.30
Breast Cancer (Wisconsin) 7.40 £0.22 7.50 £ 0.50
Credit-a 8.10+0.31 6.90 £1.04
Credit-g 9.00+0.21 8.90£0.94
Diabetes 9.30+0.15 8.10 £ 0.30
Heart (Cleveland) 6.10+0.18 5.80 £ 0.60
Heart (Statlog) 6.10+0.18 5.20+£0.40
Hepatitis 5.10+0.18 4.10+0.70
lonosphere 6.10 £0.23 6.70£0.78
Iris 4.00£0.00 3.40 £ 0.49
Lymphography 6.00 + 0.26 5.10 £ 0.30
Mushroom 10.00 + 0.00 5.00 £ 0.00
Segment 20.40 £ 0.96 19.40 £ 2.29
Sonar 6.00 £ 0.15 5.10+0.70
Tic-tac-toe 9.00 £ 0.63 520+2.18
Vehicle 10.90+£0.41 9.10+1.45
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Table 5.6: Average Number of Terms of Ant-miner and Proposed Algorithm 1 on
Reduced Attributes Data Sets

Data Sets Ant-miner Proposed Algorithm 1
Balance Scale 7.00 £ 0.00 3.00 £ 0.00
Breast Cancer (Ljubljana) 8.30£0.42 3.90£0.30
Breast Cancer (Wisconsin) 8.20 £ 0.36 6.50 + 0.50
Credit-a 9.80£0.29 590+1.04
Credit-g 9.10+0.38 7.90+£0.94
Diabetes 9.10+£0.43 7.10+£0.30
Heart (Cleveland) 8.30 £ 0.30 4.80 £ 0.60
Heart (Statlog) 8.70 £0.37 4.20 £ 0.40
Hepatitis 7.90 £ 0.60 3.10+£0.70
lonosphere 8.90£0.41 570+0.78
Iris 3.00£0.00 2.40 £ 0.49
Lymphography 8.20 £ 0.68 4,10£0.30
Mushroom 9.00 £ 0.00 4.00 +0.00
Segment 2580 1.72 18.40 £ 2.29
Sonar 12.60 £ 0.56 4.10+0.70
Tic-tac-toe 9.80+1.15 420+2.18
Vehicle 19.20 £ 1.26 8.10+1.45
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Figure 5.8: Comparison of Average Predictive Accuracy Between Ant-miner and
Proposed Algorithm 1 on Reduced Attributes Data Sets
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Figure 5.9: Comparison of Average Number of Rules Between Ant-miner and
Proposed Algorithm 1 on Reduced Attributes Data Sets
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Figure 5.10: Comparison of Average Number of Terms Between Ant-miner and
Proposed Algorithm 1 on Reduced Attributes Data Sets
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The performance of the proposed algorithm was also tested on several other well-
known rule induction algorithm discussed in Section 2.2. The tested algorithms are
the conjunctive rule (Witten et al., 2011), decision table (Kohavi, 1995b), DTNB (M.
Hall & Frank, 2008), JRip (Cohen, 1995) and PART (Frank & Witten, 1998). As an
addition, comparison was also done with a hybrid algorithm for rule induction, the

PSO/ACO2 (Holden & Freitas, 2008).

Table 5.7 shows the average predictive accuracy comparison of conjunctive rule
(Witten et al., 2011), decision table (Kohavi, 1995b), DTNB (M. Hall & Frank,
2008), JRip (Cohen, 1995) and PART (Frank & Witten, 1998) against the proposed
algorithm in this chapter. The mean for the average predictive accuracy for each
algorithm were calculated. The conjunctive rule algorithm produced the lowest mean
at 69.97%, and JRip produced the highest predictive accuracy with a mean of
83.75%. The hybrid of PSO and ACO algorithm for rule induction, the PSO/ACO2
scores a mean of 79.03%. The proposed algorithm produced average predictive
accuracy with a mean that is at par with the rest of other the tested algorithm with a
mean of 78.58%. Even though the proposed algorithm predictive power is only at par
with other tested rule induction algorithms, the proposed algorithm produced much
simpler rules as shown in Table 5.8. The proposed algorithm produced the fewest
average number of rules from all data sets with a mean of 6.73. The hybrid
PSO/ACO2 produced the highest mean of average number of rules with a value of

17.79 rules.
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Table 5.7: Average Predictive Accuracy (%) of Conjuctive Rule, Decision Table,
DTNB, JRip, PART, ACO/PSO2 and Proposed Algorithm 1

e oale GO ome mp ew A0 o
Balance Scale 60.93 71.26 70.89 74.87 69.84 82.72 63.68
+54  +379  +374  +441  +397  +477  +6.19

(ngejsjtaﬁ:)”cer 6003 7373  69.94 7145 6941 7262 7411
+417  +534  +693  +644  +763  +684  +3.95

(Bvrvegitoﬁ;rr‘ser 88.03 94.96 97.01 95.48 95.05 93.42 93.99
+36 +254  +191 +23 +239  +£379 +371

Credit-a 85.51 84.67 85.48 86.38 85.25 85.31 84.64
+396  +421  +409  +375  +400  +414  +431

Credit-g 70 72.75 71.76 71.74 72.24 67.9 72.9
+0 +366  +371  +367  +424  +58)  +413

Diabetes 73.47 77.02 77.77 77.41 76.84 72.67 74.62
+491  +47 +445  +478 419  +£498  +4.70

l(?li(}elan 9 72.98 77.22 80.81 81.65 77.49 77.38 74.83
+718  +75 +875  +645  +830  +545  +7.95

Heart (Statlog) 73 83.41 81.56 82.89 83.33 81.11 75.56
+809  +7.03  +655  +667 +744  +6.16  +7.07

Hepatitis 79.83 81.22 81.1 81.45 81.59 - 82

+495  +807  +831  +916  +862 - +4.62

lonosphere 80.77 89.04 91.68 91.68 90.03 88.06 85.48
+6.12 +4.58 +4.54 +4.84 +4.43 +4.91 +5.62

Iris 66.67 93.8 94.13 94.6 94.87 94.67 96

+0 +504  +538  +525  +500  +526  +4.42

Lymphography 7177 73.47 77.25 77.4 78.24 83.05 78.95
+1186  +105  +1022 +1108 +1054 +6.67  +741

Mushroom 88.68 100 99.91 100 100 99.9 91.14
+1.11 +0 +0.11 +0 +000  +011  *5093

Segment 28.57 90.45 94.57 92.84 94.82 96.67 86.15
+0 +2.06 +15 +228  +153  +117  +2.44

Sonar 70.33 74.77 79.49 79 81.26 75.05 73.14
+994  +1114  +892  +834  +851  +911  +896

Tic-tac-toe 69.45 73.83 69.94 97.55 93.85 100 71.09
+431  +413  +431  +166  +3.08 10 +3.86

Vehicle 40.4 67.34 66.3 67.32 70.45 73.05 57.57
+209  +436  +363  +394  +424  +445  +6.04
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Table 5.8: Average Number of Rules of JRip, PART, PSO/ACO2 and Proposed

Algorithm 1

Data Sets JRip PART PSO/ACO2 Afgrgrﬁgﬁfﬁ .
Balance Scale 467+047 492+027 26.6+1.07 4+0
Breast Cancer (Ljubjana) 287+0.82 16.64+3.63 124+227 49+0.3
Breast Cancer (Wisconsin) 6.79+1 9.77+1.53 99+16 75+05
Credit-a 489+ 147 16.49+4.27 227+2 6.9+1.04
Credit-g 508+152 14.16+3.25 54.3+1.89 8.9+0.94
Diabetes 471+056 13.15+2.32 33.4+1.43 8.1+0.3
Heart (Cleveland) 422+0.66 1043+233 126+0.84 58+0.6
Heart (Statlog) 488+082 9.36+204 97+134 5.2 +0.4
Hepatitis 237+051 6.59+3.71 - 41+0.7
lonosphere 812+165 984+156  3.6+0.97 6.7 £0.78
Iris 3.1+0.3 3+0 3+0 3.4+0.49
Lymphography 6.73+0.97 9.65+2.25 147 +2 5.1+0.3
Mushroom 8.84+06 1319+134 8.7+0.48 5+0
Segment 4655+ 844 55+ 4.67 21.9+099  19.4+2.29
Sonar 462+083 12.85+1.89 4.4+158 5.1+0.7
Tic-tac-toe 10.33+1.42 33.09 +3.37 9+0 5.2 +2.18
Vehicle 16.04+253 3883+3.38 37.8+1.2 9.1+1.45

5.2.2 Classification of Web Data Set

This subsection experiments the proposed algorithm with the data set build in

Chapter Four. The number of attributes was reduced using Correlation-based

evaluation method with Random search as the search method. The results was

compared to PART (Witten et al., 2011) and Ant-miner (Parpinelli et al., 2002a,

2002b).

Table 5.9 and Figure 5.11 show that the average predictive accuracy for proposed

algorithm is slightly less accurate than PART and Ant-miner. However, the proposed

algorithm outperformed PART in terms of simplicity of discovered rules. The
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number of rules and number of terms are both far less than PART, even though it is

only at par with Ant-miner.

Table 5.9: Performance Comparison for Reduced Web Data

Average

Predictive Average Average
Algorithm Accuracy (%) Number of Rules  Number of Terms
PART 94.01 £4.30 28.00x 34 90.00£ 3.5
Ant-miner 93.36 £ 0.67 7.00+£0.15 10.1+ 45
Proposed Algorithm 1 79.15+5.17 8.80+£0.98 7.80 £0.98

PART = Ant-miner = Proposed Algorithm 1

Average Average Average
Predictive Accuracy ~ Number of Rules Number of Terms
(%)

Figure 5.11: Performance Comparison for Reduced Web Data

5.3 Summary

This chapter had proposed a hybrid algorithm based on ACO and SA to discover

classification rules from data. The SA acts as a local search algorithm in order for an
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ant to discover a good quality rule. This chapter compares the performance of the
proposed algorithm to the original Ant-miner and PART concerning the predictive
accuracy, and found to be competitive with Ant-miner and PART. Moreover, the
experiments in this chapter found that the rules discovered by the proposed algorithm
were simpler that the compared algorithms. Therefore, SA is able to help ACO
produced simpler rules, even though the .predictive accuracy is only at par with Ant-

miner and PART.

Chapter Six discusses the usage of SA to select terms to be included in a rule.
Besides, the proposed algorithm in Chapter Six will fix the class before selecting

terms in order to improve the rule's predictive accuracy.
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CHAPTER SIX
SIMULATED ANNEALING FOR BEST TERMS SELECTION

Chapter Five proposed a hybrid algorithm to optimize rule discovered by each ant in
the ACO. The proposed hybrid algorithm used the SA to optimize the rule. The
usage of SA improved the simplicity of the discovered rules, by producing fewer
rules, and rule with lesser number of terms. Even though the accuracy of the
discovered rules are competitive to the original Ant-miner (Parpinelli et al., 2002a,
2002b), the accuracy is only at par. The main problem of the proposed algorithm, as
well as the original Ant-miner, is that the class is not pre-defined. The class is
determined at the end of the rule construction process. Since the ant does not know
the class at the beginning of the rule's construction process, the ant will heuristically
find the best related term to the set of current terms in the partial rule. Thus, the
algorithm may not discover any rule for the class with very few examples or in the

data set with unequally distributed examples for each class.

This chapter proposed a new hybrid algorithm that fixed the class before the rule's
construction process. Each term inclusion to the partial rule, will reflect the pre-
defined rule's class. The proposed algorithm used a sequential covering based
algorithm to extract classification rules for known class. SA is used to optimize the
terms selection process, in each rule's construction process, which differ from the
proposed algorithm in Chapter Five. The proposed algorithm in Chapter Five uses
the SA to optimized rule discovered by each ant. The pre-defining of class in
constructing a rule enabled the use of simpler heuristic function for terms selection,

as well as the fitness function to measure the quality of a rule.
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The following section discussed the construction of the proposed algorithm,
followed by experiments setup and the discussion on the results from the

experiments.

6.1 Simulated Annealing for Term Selection
The proposed algorithm uses sequential covering algorithm as the basis algorithm.
The algorithm extracts the rules by training the examples in the training data set, E,

one class at a time. The list of k classes are ordered based on their prevalence, C,,.

Class prevalence is the fraction of examples in the training set that belongs to a
particular class. The k -th class in the classes list is not used to extract rules, but is

set as default rule, ry.,,: - A default rule is a rule that contains no antecedent part,

but only the consequent part, placed at the bottom of the list of discovered rules. If
there are only two classes available, the algorithm performs the training for class

with the highest prevalence only, and set the second class as the default rule.

Figure 6.1 summarizes sequential covering algorithm used in the proposed
algorithm, and Figure 6.2 depicted the flow chart for the algorithm. The algorithm

starts with an empty list of discovered rules, R. For each class, c; in C,, except for
the last class c, , an ACO algorithm is used to extract the best rule, that covers the

current set of training examples. After ACO has found one best rule for the current
set of training examples, r, the examples covered by the rule are removed from the
training set. Then, the constructed rule, r is added to the list of discovered rules, R.
This procedure repeats until the number of examples in the training set is less than a

pre-defined threshold value, max_uncovered. In order to extract rules for the next i -
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th class, c;, the original set of training examples is restored. The algorithm repeats

the same procedure for the next class.

Let E be the training examples.

Let Terms be the set of attributes-values pairs, term;;.

Let C, be an ordered set of classes {c;, ¢, ,...,C, }.
Initialize empty set of discovered rules R ={}.
for each class ¢, e C, \{c, }:

while the number of examples > max_uncovered:
r < ACO(E, Terms, ¢ ).
Remove examples from E covered by r.
R—>Rvr.
Restore the list of raining examples.

Reorieq < SOrted(R) .

R—>Rv rdefault'

Figure 6.1: Sequential Covering Algorithm with Pre-Defined Class

95



Empty List of
Discovered Rules

\A

Select a Class

\A

ACO Extract One
Rule for the Selected
Class

!

Remove Covered
Examples

\2

Update List of
Discovered Rules A

The Number of
Examples >

max_uncovered
2

Restore List of
Training Examples

Yes

Any Class
Left?

Sort List of
Discovered Rules by

Quality

|

Set Default Rule

Figure 6.2: Sequential Covering with Pre-Defined Class Flow Chart
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The algorithm sorted the list of discovered rules for all k —1 classes in descending
order of the quality. By disregarding the rule's class, the algorithm place the highest
quality rule at the top of the list, followed by the second highest quality rule, and so
on. In order to predict a new unseen example, the algorithm search for a rule in
order, in the list of discovered rules, which cover the example. The class for the rule
that covers the new example is set as the predicted class for the new example. If
there is no rule found to cover the new example, the default rule is used. In other
words, the algorithm predicted the new example to have the same class with the class

that has the minority number of examples.

The proposed algorithm uses ACO, depicted by Figure 6.3, as the Learn-One-Rule
function in the sequential covering algorithm to extract a rule from the current set of
training examples. Figure 6.4 visualize the flow chart for ACO. Each ant colony in
ACO contains only one ant each, and discovers one rule each. However, the
algorithm may stop earlier if the set of rules have converged. Therefore, the total

number of rules is less than or equal to the number of ant colonies.

The convergence of the rules occurs when p number of consequent rules has the
same value of quality. The value p is pre-defined earlier before the algorithm starts.

The algorithm updates the pheromone level for all terms after each ant colony has
discovered a rule. The chosen terms will have a higher level of pheromone compared
to the other terms. Since ants tend to choose terms with higher pheromone level, the

next ant colony will discover a rule that is biased by the rule discovered by the
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previous ant colony (foraging behaviour of ants). Finally, the rules discovered by the

consequents ant colony will converge to the same rule.

Initialize ant colonies.

Initialize empty set of rules R_,onies ={3-

for all ant colonies, while rules are not converged:
Extract one rule, r.
Update pheromone level for all terms.

R d Rcoloniesv r

colonies

Select best rule from R_,onies -

Figure 6.3: ACO Algorithm to Extract One Rule

The algorithm initialized all pheromones level equally using Equation 6.1, as

where

e a is the total number of attributes, and

e b, isthe total number of values for attribute i.
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?
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Return One Rule with
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Figure 6.4: ACO Algorithm to Extract One Rule Flow Chart
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The pheromones level for terms used in the discovered rule, by each ant colony are

colony are increased. The pheromone level update at time t for term with attribute i

and value j, term; is carried out using
Tj (t):rij (t—1)+ Tj (t—l)*Q (6.2)

where

e 1y isthe updated pheromone level for term;,

ij
°* T (t—1) is the current pheromone level for term;;, and

Q is quality of the newly constructed rule, defined by Equation 6.4.

Subsequently, to mimic the evaporation of pheromone by the real ants, the
pheromone level for all terms are normalize by dividing the pheromone level for

each term by the sum of all pheromone level, as

Tij (t)_ M (6.3)

" m n

ZZTH (t—l)

i=1 j=1
where

e 7 isthe updated pheromone level for term;,

ij

e 7 (t—1) is the current pheromone level for term;,
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e m is the total number of attributes, and

e n is the total number of values for each attribute.

After all ant colonies have discovered the rules, or when the rules have converged,
where p number of consequent rules have the same value of quality, the algorithm
will select one best rule from the set of all rules. The best rule is a rule that has the

highest quality among all the rules discovered by ACO.

The algorithm calculate the rule's quality using a fitness function, defined by

Equation 6.4,

B 1+TP
1+k+TP+FP

Q (6.4)

where

e TP is the number of examples covered by the rule, and having the same class

from the class predicted by the rule,

e FP is the number of examples covered by the rule, and having a different

class from the class predicted by the rule, and

e k isthe total number of classes.

Since the ant knows the class when constructing the rule, the proposed algorithm

used a simpler fitness function as compared to the fitness function used in the
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original Ant-miner proposed by Parpinelli. Therefore, the relationship between terms
IS not important, since the selected terms for inclusion are already from the same
group. The fitness function is the proportion of the number of correctly covered
examples by the rule to the number of covered examples of the rule. However, if
there are no examples covered by the rule, the equation is undefined, since both the
numerator and denominator are both zero. Hence, Equation 6.4 adds one to the
numerator, and 1+k to the denominator. As a consequent, if there are no examples

covered by the rule, the rule's quality is still be given a value.

Each ant constructs a rule using terms selection procedure. Figure 6.5 summarizes
the terms selection procedure, while Figure 6.6 depicts the flow chart for the whole
processes. The terms selection procedure starts by initializing a list of terms, and an

empty partial rule, but with a known class, c;. Terms are added to the partial rule

one by to the partial rule each time, from a set of terms, Terms. SA finds the best
term, t, to be included into the partial rule, r, each time. The terms selection
procedure stops when there are no more terms with unused attributes left; or the new
term addition does not improve the quality of the rule. There is one caveat when
constructing the rule. A rule cannot contain two or more terms with the same

attribute. Therefore, the procedure stops when there are no more attributes left.

Rule pruning helps to avoid the over-fitting to the training data, since the algorithm
selects terms greedily based on a heuristic measure. Moreover, the pruning
procedure may improve the simplicity of the rule, by reducing the number of terms

in a rule. The algorithm prunes each constructed rule if there are more than one term
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available in the rule's antecedent, and remove terms one at a time. After each term
removal, the new rule's quality is calculated. If the rule's quality has improved, the
pruning procedure removes the term permanently. This process continues until there
is only one term left, or no terms removal would improve the rule's quality. This is
different from the pruning procedure used by the original Ant-miner by Parpinelli
(20023, 2002b) and the one used in Chapter Five. The pruning procedure used in this
proposed algorithm does not change the class for the rule. In other words, the

removal of a term is to improve the rule's quality subject to a known class.

Let E be the training examples.
Terms be the set of attributes-values pairs, term, -
Let c, be the current class.
Initialize rule, r:{ } >c
while there is possible terms to add:
t < SA(E, Terms, ;)

r-rvt

Figure 6.5: Terms Selection Procedure

This proposed terms selection procedure produced a rule with an optimize group of
terms for a selected class, optimized by SA. In other words, SA optimizes each term
inclusion into the partial rule. Figure 6.5 depicted the flow chart for the SA
procedure to select a term. The SA starts by first initializing a very high value
temperature. For a set of available terms, a known class, and an empty partial rule,

the algorithm select an optimize term, and add it to the partial rule.
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Figure 6.6: Terms Selection Procedure Flow Chart

Figure 6.7 depicts the flow chart for selecting an optimize term with SA. The
simulated algorithm optimized the selected term, by selecting a term to be tested, and
check whether the new selected term increase the quality of the rule. Equation 6.4
defines the fitness function to calculate the rule’s quality. If the new term addition

makes the rule's quality improved, the term is marked as the best term so far.
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Figure 6.7: SA Algorithm to Select One Term Flow Chart
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SA reduced the temperature based on a pre-defined cooling factor, after selecting
and testing a term. The cooling process continues until the algorithm has tested all
terms, or the temperature has reduced to a value less than a pre-defined lower bound

temperature value.

The algorithm uses a roulette wheel procedure to select a term to test each time. The
procedure is as follows. First, generate a random number. For each term in the terms’
list, cumulate all the probability calculated using Equation 6.5. The cumulating
process stops if the current total probability for the current term in the cumulating
process exceeds the random number. The algorithm uses this current term for terms

selection testing for inclusion into the partial rule.

The probabilities for all terms are calculated using a random proportional transitional
rule, as used in the Ant System for the Travelling Salesman problem (Dorigo et al.,

1996), defined by

P Tij X

! a

by
Z Z Tij % 1ij

i=1 j=1

(6.5)

where

e 7; is the heuristic value for term with attribute i and value j,

e 7, is the pheromone level for term with attribute i and value j, defined by

ij
Equation 6.3, and
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e b, isthe total number of value for attribute i.

The probability depends on the heuristic value and current pheromone level for each
term. Over time, the pheromone level for the higher quality terms will increase, and
hence increase the chances of selecting those terms. The heuristic value for terms

remains the same, but has a different value for the same terms with different class.

This algorithm proposed a simpler heuristic function to calculate the heuristic for
each term. Equation 6.6 defines the heuristic function used by the proposed

algorithm in this chapter.

freq,jV

a b

Z freq;

i=1l j=1

myj = (6.6)

where

o freqﬁv is the number of examples for term with attribute i and value j for a

given class w, and

e b, isthe total number of value for attribute i.

The SA also gives chance to a term with lower quality rule to be accepted. Besides
selecting a term that improves the rule's quality, if a generated random number,

rndNum exceeded the probability defined by Equation 6.7, the term is also accepted.
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-0
p=e T (6.7)

where

e (, and q, are the quality for the previous and current partial rules

respectively, and

e T isthe current temperature value.

The temperature starts very high. Therefore, p is almost one, and all rules have

almost the same probability to be chosen. As the temperature decreases slowly, the
difference between the previous and current quality becomes significant. Hence, a

term with a slightly lower quality rule will be preferred over much lower ones.

6.2 Experiment and Results

This study conducts experiments on seventeen (17) data sets from a UCI repository
(Asuncion & Newman, 2007), as well as the reduced Web data set from Chapter
Four. The experiments are undertaken using a ten-fold cross-validation technique
(Kohavi, 1995a). Each data set is randomly shuffled and split into ten approximately
equally sized subsets. Each experiment uses one subset as the test set, and trains the
rest of the subsets. The experiment repeats the processes ten times, producing ten
individual sets of performance statistics, the predictive accuracy. These performance
statistics are averaged and the standard deviations for each of the performance

statistics are calculated.
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The proposed algorithm, like the original Ant-miner (Parpinelli et al., 2002a, 2002b),
cannot cope with non-discrete attributes, only nominal attributes. Hence, the
experiments discretized non-discrete attributes in the first place; using a
discretization method used in this study based on the method proposed by Fayyad &
Irani (1993). The experiments used five hundred ant colonies with one ant per

colony.

6.2.1 Classification of 17 Data Sets from UCI Repository

Table 6.1 and Figure 6.8 shows the predictive accuracy of the proposed algorithm as
compared to the original Ant-miner (Parpinelli et al., 2002a, 2002b) as well as the
PART (M. A. Hall et al., 2009; Witten et al., 2011). The proposed algorithm
discovers rules with a better accuracy rate than Ant-miner on 82.4% (14 out of 17) of
the 17 data sets, with a huge improvement on three data sets: Vehicle: Tic-tac-toe
and segment data sets, with an average percentage difference of 15.4 %. Moreover,
the average percentage difference for the three data sets (Balance Scale, Ljubljana
and Iris) where the original Ant-miner (Parpinelli et al., 2002a, 2002b) wins, is very

small for an average of 1.2 %.

In Chapter Five, the proposed algorithm produced rules that are good in terms of
simplicity as compared to Ant-miner, but, with predictive accuracy that is only at par
with other rule induction algorithms. However, the proposed algorithm in this
chapter has performed better in terms of the predictive accuracy compared to Ant-

miner, but, produced much larger rule set than Ant-miner as shown in Table 6.2 and
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Figure 6.9. The proposed algorithm also produced much longer rules on all data sets

compared to Ant-miner as shown in Table 6.3 and Figure 6.10.

Table 6.1: Average Predictive Accuracy of Ant-miner and Proposed Algorithm 2

Data Sets Ant-miner Proposed Algorithm 2
Balance Scale 71.27+1.54 71.04 £3.91
Breast Cancer (Ljubljana) 73.74 £ 2.69 72.39£9.09
Breast Cancer (Wisconsin) 94.99 £ 0.49 96.14 £ 2.93
Credit-a 8493+1.21 85.80 + 2.58
Credit-g 70.50+2.01 75.50 + 3.29
Diabetes 73.55+1.85 76.70 £ 4.11
Heart (Cleveland) 76.78 £ 2.09 81.78 £7.29
Heart (Statlog) 77.04 £2.64 81.11+£9.14
Hepatitis 83.07 £ 2.63 83.25+5.79
lonosphere 89.25+1.65 90.89 + 3.98
Iris 95.33+1.42 93.33+8.43
Lymphography 76.92 £ 3.94 78.29 £ 6.88
Mushroom 97.45 + 0.62 99.01 +2.55
Segment 83.94 +1.00 92.42 +1.60
Sonar 78.27 + 3.36 80.36 + 7.40
Tic-tac-toe 7117+ 174 97.18 +1.88
Vehicle 58.29 + 1.39 69.98 + 4.04
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Table 6.2: Average Number of Rules of Ant-miner and Proposed Algorithm 2

Data Sets Ant-miner Proposed Algorithm 2
Balance Scale 7.80£0.20 19.20+1.72
Breast Cancer (Ljubljana) 6.10+0.18 16.40+£1.02
Breast Cancer (Wisconsin) 7.40+0.22 11.90 + 0.83
Credit-a 7.40+0.22 20.40 £ 2.33
Credit-g 9.10+0.18 48.00 £ 3.97
Diabetes 9.30+0.21 29.30+1.10
Heart (Cleveland) 6.40 £ 0.27 12.80 + 0.87
Heart (Statlog) 5.90+0.18 1250+ 1.12
Hepatitis 4.80+0.20 7.80+0.98
lonosphere 6.20 £ 0.20 1260+ 1.36
Iris 4.20+£0.20 4.70 £0.46
Lymphography 6.30 + 0.26 7.90£0.83
Mushroom 7.70+0.33 2490+ 1.76
Segment 17.70 £ 0.47 57.60 £ 2.42
Sonar 6.00 £ 0.15 11.90+1.04
Tic-tac-toe 7.90+0.55 33.30+3.32
Vehicle 12.00+0.33 41.30£1.35
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Table 6.3: Average Number of Terms of Ant-miner and Proposed Algorithm 2

Data Sets Ant-miner Proposed Algorithm 2
Balance Scale 10.60 £ 0.40 4290 +5.15
Breast Cancer (Ljubljana) 7.90+0.38 33.20+3.74
Breast Cancer (Wisconsin) 7.70 £ 0.26 18.90 + 2.02
Credit-a 10.60 + 0.45 53.50 + 8.88
Credit-g 15.60 + 0.40 127.90 + 14.82
Diabetes 10.30+0.54 65.70 £ 3.90
Heart (Cleveland) 10.10 £ 0.66 29.10 £ 3.53
Heart (Statlog) 8.80 £ 0.53 27.60 £ 3.98
Hepatitis 8.50 +0.48 15.70 + 3.47
lonosphere 9.10+0.78 2450 £ 3.75
Iris 3.20+£0.20 4.80+1.08
Lymphography 10.00 + 0.68 16.50 + 2.97
Mushroom 8.10 £ 0.46 37.00 £ 2.90
Segment 23.70+£0.91 121.60 + 5.97
Sonar 11.70 £ 0.37 25.70 £ 3.61
Tic-tac-toe 950+1.41 96.50 £ 11.14
Vehicle 2450 £ 1.17 116.80+7.14
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® Ant-miner = Proposed Algorithm 2

Vehicle
Tic-tac-toe
Sonar
Segment
Mushroom
Lymphography
Iris

lonosphere

Hepatitis

Data Sets

Heart (Statlog)

Heart (Cleveland)
Diabetes

Credit-g

Credit-a

Breast Cancer (Wisconsin)
Breast Cancer (Ljubjana)

Balance Scale

0 20 40 60 80 100
Average Predictive Accuracy (%)

Figure 6.8: Comparison of Average Predictive Accuracy between Ant-miner and
Proposed Algorithm 2
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Figure 6.9: Comparison of Average Number of Rules between Ant-miner and

Proposed Algorithm 2
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® Ant-miner = Proposed Algorithm 2
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Figure 6.10: Comparison of Average Number of Terms between Ant-miner and
Proposed Algorithm 2
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In order to see the effect of reducing attributes as proposed in Chapter 4 where the
removal of the unnecessary attributes increased the predictive power of the
classification model constructed by Ant-miner (Parpinelli et al., 2002a, 2002b) as
well as improving the simplicity of the classification rules, this section also tested the
proposed algorithm on the seventeen UCI reduced data sets using the methods from
Chapter 4: the combination of Correlation-based evaluation with Random Search as

the search method. The results were compared against the Ant-miner.

According to the average accuracy laid out in Table 6.4 and depicted by Figure 6.11,
the proposed algorithm wins on all 17 data sets (100%).. However, the mean for all
average accuracy is slightly lower (82.5%) compared to when using the proposed
algorithm to construct the classification model without reducing the attributes

(83.8%) by 1.3%.

However, the simplicity (the less number of rules and the less number of terms per
rule, the better the simplicity of the rules) of the constructed rules improved when
reducing the number of attributes as shown in Table 6.5 and Figure 5.12, where the

mean of the average number of rules was reduced from 21.91 to 19.28.

The same goes for the average number of terms per rule. The mean for the average
number of terms per rule, when the method of attributes reduction is applied on the
data sets initially, was reduced by 10.54. The results were shown in Table 6.6 and

Figure 6.13.
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Hence, when applying the attribute reduction on the data sets before using the
proposed algorithm in this section, even though the predictive power is slightly

reduced, the simplicity of the constructed rules increased.

Table 6.4: Average Predictive Accuracy of Ant-miner and Proposed Algorithm 2 on
Reduced Attributes Data Sets

Data Sets Ant-miner Proposed Algorithm 2
Balance Scale 75.17+1.84 75.22 £ 3.58
Breast Cancer (Ljubljana) 76.5+2.76 72.80+7.85
Breast Cancer (Wisconsin) 94.71£0.83 95.14 £2.94
Credit-a 86.09 £ 1.11 85.94 £+ 3.43
Credit-g 73.7+1.51 73.80£6.11
Diabetes 7471 %2 77.74 £ 3.61
Heart (Cleveland) 80.64 £+ 2.47 82.44 +£7.81
Heart (Statlog) 80+2.6 81.11+7.11
Hepatitis 76.31£3.59 82.58 £ 7.44
lonosphere 86.25+ 2.04 89.47 £4.02
Iris 95.33+1.42 92.67 £5.54
Lymphography 70.92 £2.82 75.62 £ 6.32
Mushroom 98.52 + 0.17 99.00 £ 0.33
Segment 86.23 £ 1.27 92.86 + 1.26
Sonar 78.88 £ 2.35 81.79+9.41
Tic-tac-toe 70.79 £ 2.05 78.39 £ 3.30
Vehicle 58.98 £ 1.64 65.84 £ 3.14
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Table 6.5: Average Number of Rules of Ant-miner and Proposed Algorithm 2 on
Reduced Attributes Data Sets

Data Sets Ant-miner Proposed Algorithm 2
Balance Scale 6.00 £ 0.00 16.30 £ 0.78
Breast Cancer (Ljubljana) 6.30 £ 0.15 14.00 £ 1.55
Breast Cancer (Wisconsin) 7.40+0.22 11.80+£0.75
Credit-a 8.10+0.31 18.00 + 2.32
Credit-g 9.00+0.21 29.50 +2.20
Diabetes 9.30£0.15 27.20 £ 1.66
Heart (Cleveland) 6.10+0.18 12.00 £ 0.77
Heart (Statlog) 6.10+0.18 11.80+£0.75
Hepatitis 5.10+0.18 7.50 £ 0.67
lonosphere 6.10+0.23 12.50 £ 0.92
Iris 4.00 £ 0.00 4.00 £0.00
Lymphography 6.00 + 0.26 7.60 £ 0.80
Mushroom 10.00 + 0.00 16.60 + 0.66
Segment 20.40 £ 0.96 56.00 + 1.61
Sonar 6.00+0.15 12.40+0.80
Tic-tac-toe 9.00 £ 0.63 34.50+2.50
Vehicle 10.90+0.41 36.10+2.43
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Table 6.6: Average Number of Terms of Ant-miner and Proposed Algorithm 2 on
Reduced Attributes Data Sets

Data Sets Ant-miner Proposed Algorithm 2
Balance Scale 7.00 £ 0.00 28.00 £ 2.19
Breast Cancer (Ljubljana) 8.30 £ 0.42 24.60 + 4.00
Breast Cancer (Wisconsin) 8.20+0.36 19.80+1.40
Credit-a 9.80£0.29 41.00 £ 6.48
Credit-g 9.10+0.38 56.50 £ 6.70
Diabetes 9.10+£0.43 62.10 + 5.63
Heart (Cleveland) 8.30 £ 0.30 22.80 £ 2.60
Heart (Statlog) 8.70 £0.37 25.10 £ 1.87
Hepatitis 7.90 +£0.60 12.40+ 1.85
lonosphere 8.90+0.41 22.80+2.82
Iris 3.00£0.00 3.00+0.00
Lymphography 8.20 £ 0.68 12.90 + 2.30
Mushroom 9.00 £ 0.00 2470 £1.35
Segment 25.80+1.72 110.70 + 3.44
Sonar 12.60 + 0.56 33.80+£4.45
Tic-tac-toe 9.80+1.15 88.70 £ 9.03
Vehicle 19.20+1.26 89.80 £ 6.24
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® Ant-miner = Proposed Algorithm 2
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Figure 6.11: Comparison of Average Predictive Accuracy between Ant-miner and
Proposed Algorithm 2 on Reduced Attributes Data Sets
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Figure 6.12: Comparison of Average Number of Rules between Ant-miner and
Proposed Algorithm 2 on Reduced Attributes Data Sets
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® Ant-miner = Proposed Algorithm 2
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Figure 6.13: Comparison of Average Number of Terms between Ant-miner and
Proposed Algorithm 2 on Reduced Attributes Data Sets
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The performance of the algorithm proposed in this chapter was also compared
against several other well-known rule induction algorithm discussed in Section 2.2
that includes the conjunctive rule (Witten et al., 2011), decision table (Kohavi,
1995b), DTNB (M. Hall & Frank, 2008), JRip (Cohen, 1995) and PART (Frank &

Witten, 1998).

Table 6.7 shown the average predictive accuracy comparison of conjunctive rule
(Witten et al., 2011), decision table (Kohavi, 1995b), DTNB (M. Hall & Frank,
2008), JRip (Cohen, 1995) and PART (Frank & Witten, 1998) against the proposed
algorithm in this chapter. The mean for the average predictive accuracy for each
algorithm were calculated. It is found that the proposed algorithm in this chapter
produced the highest mean of average predictive accuracy at 83.83% while the
conjunctive rule algorithm produced the lowest mean at 69.97%, the hybrid of PSO

and ACO algorithm for rule induction, the PSO/ACQO?2 scores a mean of 79.03%.

Table 6.8 depicted the average number of rules comparison between the proposed
algorithm and other rule induction algorithms. The table shows that the proposed
algorithm produced the highest number of rules as compared to other algorithms
with a mean of 19.28 rules. However, the mean is only slightly higher to PART
(16.29) and PSO/ACO2 (17.79). However, JRip produced the lowest number of rules

with a mean of 8.52.

As a conclusion, the proposed algorithm performs not just much better as compared
to the original Ant-miner (Parpinelli et al., 2002a, 2002b), but also, it is competitive

with other tested rules induction algorithms. It seems that the high improvement on
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predictive accuracy, sacrificed the simplicity of the rules. Hence, the results in this
chapter suggested that the algorithm needs a mechanism to control the terms
inclusion, without scarifying the predictive accuracy. Perhaps, the algorithm also
needs a better pruning strategy in order to improve the simplicity of the rules, for

training data while fixing class.

Table 6.7: Average Predictive Accuracy of Conjuctive Rule, Decision Table, DTNB,
JRip, PART and Proposed Algorithm 2

Conjunc  Decision ACO/ Prop.

Data Sets tive Rule  Table DTNB JRip PART PSO2 Algo. 2

Balance Scale 60.93 71.26 70.89 74.87 69.84 82.72 71.04

+54 +379  +374  +441 +3.97 +477  +391
Breast Cancer 69.03 73.73 69.94 71.45 69.41 72.62 72.39
(Ljubjana)

+417  +534  +693  +644  +7.63 +6.84  £9.09

BreastCancer  gg03 9496  97.01 9548 9505 9342  96.14

(Wisconsin)
+3.6 +254 191 +2.3 +239  +379  +2093
Credit-a 85.51 84.67 85.48 86.38 85.25 85.31 85.80
+396  +421  +409  +375  +400  +4.14  +258
Credit-g 70 72.75 71.76 71.74 72.24 67.9 75.50
+0 +366  +371  +£367  +424  +58)  +£329
Diabetes 73.47 77.02 77.77 77.41 76.84 72.67 76.70
+4.91 +4.7 +445  +478 419  +498 411
z;aer\felan 9 72.98 77.22 80.81 81.65 77.49 77.38 81.78
+7.18 +75 +875  +645  +830  +545  +7.29
Heart (Statlog) 73 83.41 81.56 82.89 83.33 81.11 81.11
+809  +7.03  +655  +667 +744  +616 +9.14
Hepatitis 79.83 81.22 81.1 81.45 81.59 - 83.25
+495  +807  +831  +916  +862 - +5.79
lonosphere 80.77 89.04 91.68 91.68 90.03 88.06 90.89
+6.12  +458  +454  +484  +443  +491  +3.98
Iris 66.67 93.8 94.13 94.6 94.87 94.67 93.33
+0 +504  +538  +525  +509  +526  +843
Lymphography ~ 71.77 73.47 77.25 77.4 78.24 83.05 78.29
+11.86 +105 +1022 +1108 +1054 +6.67  +6.88
Mushroom 88.68 100 99.91 100 100 99.9 99.01
+1.11 +0 +0.11 +0 +000  +011 *255
Segment 28.57 90.45 94.57 92.84 94.82 96.67 92.42
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Sonar

Tic-tac-toe

Vehicle

+0
70.33
+9.94
69.45
+4.31

40.4
+2.09

+2.06
7477
+11.14
73.83
+4.13
67.34
+4.36

15

79.49
+8.92
69.94
+4.31

66.3
+3.63

+2.28
79
+8.34
97.55
+1.66
67.32
+3.94

+1.53 +1.17 +1.60
81.26 75.05 80.36
+8.51 +9.11 +7.40
93.85 100 97.18
+3.08 +1.88
70.45 73.05 69.98
+4.24 +4.45 +4.04

Table 6.8: Average Number of Rules of JRip, PART, PSO/ACO2 and Proposed

Algorithm 2

Data Sets JRip PART  PSO/ACO2 Afgrgﬂgﬁﬁz
Balance Scale 467+047 492+027 266+1.07 16.3+0.78
Breast Cancer (Ljubjana) 287+0.82 16.64+3.63 12.4+2.27 14+ 155
Breast Cancer (Wisconsin) 6.79+1 9.77 +1.53 99+16 11.8 +0.75
Credit-a 4.89+1.47 16.49 +4.27 22.7+2 18 +2.32
Credit-g 508+152 14.16+3.25 54.3+1.89 29.5+2.2
Diabetes 471+056 13.15+232 334+143 27.2+166
Heart (Cleveland) 422+066 1043+233 12.6+0.84 12 +0.77
Heart (Statlog) 488+0.82 936+204 9.7+134 11.8+0.75
Hepatitis 237+051 659+3.71 - 7.5+ 0.67
lonosphere 812+1.65 984+156  3.6+0.97 12.5+0.92
Iris 31+0.3 3+0 3+0 4+0
Lymphography 6.73+0.97 9.65+2.25 14.7+2 76+0.8
Mushroom 884+06 13.19+1.34 8.7+048 16.6 + 0.66
Segment 4655+ 8.44 55+ 4.67 21.9 +0.99 56 + 1.61
Sonar 462+083 1285+1.89 4.4+158 12.4+0.8
Tic-tac-toe 10.33+1.42 33.09 + 3.37 9+0 345+25
Vehicle 16.04+253 38.83+338 37.8+12 36.1+2.43

6.2.2 Classification of Web Data Set

This subsection experiments the proposed algorithm with the data set built in

Chapter Four. The number of attributes was reduced using Correlation-based

evaluation method with Random search as the search method. The results was
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compared to PART (Witten et al., 2011) and Ant-miner (Parpinelli et al., 20023,

2002h).

Table 6.9 and Figure 6.14 show that the average predictive accuracy for proposed
algorithm is at par with PART and Ant-miner. However, consistent with the results
in Section 6.2.1, the proposed algorithm discovered less comprehend rule as
compared to Ant-miner, but at par with PART. Even though Ant-miner produced
much simpler rules than the proposed algorithm, the proposed algorithm is more
accurate than Ant-miner. It shows in order to improve the accuracy; the simplicity of

the rules must be sacrifice.

Table 6.9: Performance Comparison for Reduced Web Data

Average
Predictive Average Average
Algorithm Accuracy (%) Number of Rules ~ Number of Terms
PART 94.01+4.30 28.00+ 3.4 90.00+ 3.5
Ant-miner 93.36 £ 0.67 7.00+0.15 10.1 + .45
ProposedAlgorithm 2 93.89+1.38 26.30 £ 2.05 79.4 +£8.91
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PART = Ant-miner = Proposed Algorithm 2
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Figure 6.14: Performance Comparison for Reduced Web Data

6.3 Summary

This chapter proposed an algorithm based on a sequential covering algorithm, which
uses ACO as the Learn-One-Rule function to extract rules from data sets. In order to
improve the rule’s quality, the proposed algorithm uses SA for terms selection while
building the rule. The proposed algorithm used a simpler heuristic that does not take
the relationship between terms into account, while selecting terms for growing a rule.
By fixing the class, the proposed algorithm is able to use a much simpler heuristic
function, since the algorithm fixed the class before selecting terms for inclusion in a
rule. Moreover, this chapter also proposed a simpler fitness function to evaluate the

rule's quality.

The performance of the proposed algorithm was compared to the original Ant-miner
(Parpinelli et al., 2002a, 2002b) as well as the PART concerning the predictive
accuracy, and found to be competitive with PART, but much better than the original
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Ant-miner (Parpinelli et al., 2002a, 2002b). Therefore, SA is able to reduce the local
optimum problem, where the ant found a more related term for inclusion into the

partial rule.

In future, this thesis suggested an enhancement of the proposed hybrid algorithm to
cope with non-discrete attributes on the fly. Furthermore, it would be interesting to
evaluate the performance of the proposed hybrid algorithm for selecting terms and
fitness function for rule evaluation. Since there is no perfect classification algorithm
for all types of data sets; it is also practical to evaluate the performance of the

proposed algorithm on other types of data sets, such as sparse and huge data sets.
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CHAPTER SEVEN
CONCLUSION AND FUTURE WORK

The main goal of this thesis is to design a new ACO based approach for
classification rule induction. To achieve this goal, first, this thesis used SA as a local
search to improve the rule's quality by optimizing each rule constructed by an ant.
Second, this thesis used SA as terms selection algorithm during the construction a
rule. The next section summaries the conclusion drawn from the experiments and
results discussed in Chapter Five and Six, while the following section suggests

possible directions for future work.

7.1 Research Contribution

There are three main contributions of the research. The first contribution is finding
the best attribute selection method for Web texts categorization. The combination of
correlation-based evaluation with random search as the search method is the best
approach for attribute selection. However, this attribute selection method will not
give the best performance in attributes reduction. Using classifier-based attribute
subset selection will reduce more attributes, but sacrifice the performance of the
classifier. Experiments in Chapter Four found that Ant-miner performed better than

C4.5 for Web texts categorization.

The first proposed hybrid algorithm based on ACO and SA to discover classification
rules from data is the second main contribution. The proposed algorithm discovered
simpler rules, without scarifying the predictive accuracy. Hence, the use of SA was

able to produce simpler rules.
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The second proposed hybrid algorithm based on ACO, and SA to selecting terms for
inclusion in a rule is the third main contribution. The proposed algorithm discovered

higher predictive accuracy rules compared to both Ant-miner and PART.

As a conclusion, SA is able to improve the discovered rules by ACO. Experiments in
this thesis have shown that SA was able to reduce the local extrema problem of
ACO. In other words, SA works successfully to intensify the solutions (set of rules

in) discovered by ACO.

7.2 Future Work

In future, it is suggested to test the performance of attribute selection on higher
dimension of Web data sets, with more categories, since this study has only focus on
two categories. Higher dimension of data sets may cause higher dimension of
attributes. On the other hand, a study on reducing the size of attributes dimension
could also be done in related to the linguistic relationship to generalize words, as a

manual preliminary step before performing the attribute selection method.

The future work also can enhance the proposed hybrid ACO and SA algorithms to
cope with non-discrete attributes. It is also interesting to evaluate the performance of
the proposed hybrid algorithm using different heuristic function for selecting terms

and fitness function for rule evaluation.

Fixing the class before constructing the rule improved the predictive accuracy
significantly. However, the improvement sacrifices the rules' simplicity. Hence, it is
also suggested that a new mechanism is needed to control the size of the rules set and
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the number of terms for each rule. Perhaps a new pruning procedure is needed in

order to cope with this kind of rules induction algorithm.

Experiments in this thesis have shown that SA was able to improve the solutions
discovered by ACO. However, SA is known for its slow speed for convergence
(Nikolaev & Jacobson, 2010; Henderson et al., 2003), and hence may affected the
algorithm performance in terms of speed. Therefore, it is suggested that in future, the

SA part of the proposed algorithms should be enhanced to improve its speed.
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Appendix A
List of Stop Words

This list of stop words was compiled by The Information Retrieval Group,
University of Glasgow, led by Professor Keith van Rijsbergen.

(http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words).

a about above across after afterwards again against all almost alone along already
also although always am among amongst amoungst amount an and another any
anyhow anyone anything anyway anywhere are around as at back be became because
become becomes becoming been before beforehand behind being below beside
besides between beyond bill both bottom but by call can cannot cant co computer
con could couldnt cry de describe detail do done down due during each eg eight
either eleven else elsewhere empty enough etc even ever every everyone everything
everywhere except few fifteen fify fill find fire first five for former formerly forty
found four from front full further get give go had has hasnt have he hence her here
hereafter hereby herein hereupon hers herself him himself his how however hundred
i ie if in inc indeed interest into is it its itself keep last latter latterly least less Itd
made many may me meanwhile might mill mine more moreover most mostly move
much must my myself name namely neither never nevertheless next nine no nobody
none noone nor not nothing now nowhere of off often on once one only onto or other
others otherwise our ours ourselves out over own part per perhaps please put rather
re same see seem seemed seeming seems serious several she should show side since

sincere six sixty so some somehow someone something sometime sometimes
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somewhere still such system take ten than that the their them themselves then thence
there thereafter thereby therefore therein thereupon these they thick thin third this
those though three through throughout thru thus to together too top toward towards
twelve twenty two un under until up upon us very via was we well were what
whatever when whence whenever where whereafter whereas whereby wherein
whereupon wherever whether which while whither who whoever whole whom

whose why will with within without would yet you your yours yourself yourselves
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Appendix B
Bash Script for Creating Train/Test Sets

This bash script will create the train/test sets for a 10-fold stratified cross-validation

at the same location as the original dataset.

#1/bin/bash

## expects the weka.jar as first parameter and the datasets to work on as second parameter.
#

# FracPete, 2007-04-10

# http://weka.wikispaces.com/Generating+cross-validation+folds+%28Filter+approach%29

DATASET=$1

FOLDS=10
FILTER=weka.filters.supervised.instance.StratifiedRemoveFolds
SEED=1

mkdir “echo $DATASET | sed s/"\.arff"//g’
for ((i = 1; i <= $FOLDS; i++))
do

echo "Generating pair $i/$FOLDS..."

OUTFILE="echo $DATASET | sed s/"\.arff"//g’

# train set
java $FILTER -V -N $FOLDS -F $i -S $SEED -i $SDATASET -o "$OUTFILE/train$i.arff"
-C last
# test set
java $FILTER -N $FOLDS -F $i -S $SEED -i $SDATASET -0 "$OUTFILE/test$i.arff" -c
last
done
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Appendix C
Web Classification Sample Data Set

@relation 'student_course'
@attribute assignments {0,1}
@attribute instructor {0,1}
@attribute syllabus {0,1}
@attribute class {0,1}
@attribute hours {0,1}
@attribute homework {0,1}
@attribute lecture {0,1}
@attribute final {0,1}
@attribute exam {0,1}
@attribute interests {0,1}
@attribute notes {0,1}
@attribute university {0,1}
@attribute grading {0,1}
@attribute introduction {0,1}
@attribute research {0,1}
@attribute midterm {0,1}
@attribute assignment {0,1}
@attribute handouts {0,1}
@attribute description {0,1}
@attribute fall {0,1}
@attribute 'Copy of class' {student,course}

@data
0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,course
0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,student
0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,student
0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,course
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,student
0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,student
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,student
0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,student
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,student
1,01,1,0,0,1,0,0,0,1,0,1,1,0,1,1,1,1,1,course
0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,course
0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,student
0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1,1,course
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,student
11011,1,1,1,1,0,0,1,1,1,0,1,1,0,0,0,course
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,student
0,1,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,course
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,student
1,1101,1,1,0,0,0,1,0,0,1,0,0,0,0,0,1,course
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,student
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