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Abstrak 

Pengoptimuman koloni semut (ACO) adalah pendekatan metaheuristik yang 

diilhamkan daripada tingkah laku semulajadi semut dan boleh digunakan untuk 

menyelesaikan pelbagai masalah pengoptimuman kombinatorik. Masalah 

penginduksian petua klasifikasi telah diselesaikan dengan algoritma Ant-miner, satu 

varian ACO, yang diketengahkan oleh Parpinelli dalam tahun 2001. Kajian lepas 

menunjukkan bahawa ACO adalah teknik mesin pembelajaran yang berkesan untuk 

menjana petua klasifikasi. Walau bagaimanapun, Ant-miner kurang pemfokusan 

terhadap kelas kerana petua untuk kelas diberi selepas petua dibina. Terdapat juga 

kes di mana Ant-miner tidak dapat mencari sebarang penyelesaian optima bagi 

sesetengah set data. Oleh itu, tesis ini mencadangkan dua algoritma varian hibrid 

ACO dengan simulasi penyepuhlindapan (SA) untuk menyelesaikan masalah induksi 

petua pengelasan. Algorithm pertama menggunakan SA untuk mengoptimumkan 

penemuan peraturan oleh setiap semut. Set data tanda aras dari pelbagai bidang telah 

digunakan untuk menguji algoritma yang dicadangkan. Keputusan eksperimen yang 

diperolehi daripada algoritma yang dicadangkan ini adalah setanding dengan 

keputusan Ant-miner  dan beberapa  algorithma induksi petua terkenal yang lain dari 

segi ketepatan petua, dan menunjukkan keputusan lebih baik dari segi saiz petua. 

Algoritma kedua pula menggunakan SA untuk mengoptimumkan pemilihan istilah 

semasa pembinaan petua. Algoritma ini juga menetapkan kelas sebelum pembinaan 

setiap petua. Penetapan awal kelas membolehkan penggunaan fungsi heuristik dan 

fungsi kecergasan yang lebih mudah. Keputusan eksperimen algoritma kedua adalah 

lebih baik berbanding dengan algoritma lain yang diuji, dari segi ketepatan ramalan. 

Kejayaan dalam menghibridkan algoritma ACO dan SA telah membawa kepada 

peningkatan keupayaan pembelajaran ACO untuk pengelasan. Oleh itu, model 

klasifikasi dengan kebolehan ramalan yang lebih tinggi untuk pelbagai bidang boleh 

dijana. 

 

Kata Kunci: Pengoptimuman koloni semut, Simulasi penyepuhlindapan, Ant-miner, 

Penginduksian petua 
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Abstract 

Ant colony optimization (ACO) is a metaheuristic approach inspired from the 

behaviour of natural ants and can be used to solve a variety of combinatorial 

optimization problems. Classification rule induction is one of the problems solved by 

the Ant-miner algorithm, a variant of ACO, which was initiated by Parpinelli in 

2001. Previous studies have shown that ACO is a promising machine learning 

technique to generate classification rules. However, the Ant-miner is less class 

focused since the rule’s class is assigned after the rule was constructed. There is also 

the case where the Ant-miner cannot find any optimal solution for some data sets. 

Thus, this thesis proposed two variants of hybrid ACO with simulated annealing 

(SA) algorithm for solving problem of classification rule induction. In the first 

proposed algorithm, SA is used to optimize the rule's discovery activity by an ant. 

Benchmark data sets from various fields were used to test the proposed algorithms. 

Experimental results obtained from this proposed algorithm are comparable to the 

results of the Ant-miner and other well-known rule induction algorithms in terms of 

rule accuracy, but are better in terms of rule simplicity. The second proposed 

algorithm uses SA to optimize the terms selection while constructing a rule. The 

algorithm fixes the class before rule's construction. Since the algorithm fixed the 

class before each rule's construction, a much simpler heuristic and fitness function is 

proposed. Experimental results obtained from the proposed algorithm are much 

higher than other compared algorithms, in terms of predictive accuracy. The 

successful work on hybridization of ACO and SA algorithms has led to the improved 

learning ability of ACO for classification. Thus, a higher predictive power 

classification model for various fields could be generated. 

 

Keywords: Ant colony optimization, Simulated annealing, Ant-miner, Rule 

induction 

  



 

 iv 

Acknowledgement 

First and foremost, the author would like to express his gratitude to Allah S.W.T., 

who has permitted him to complete this thesis. 

  

The author gratefully acknowledges his supervisor, Prof. Dr. Ku Ruhana Ku 

Mahamud, who has patiently supervised his work; for her continuous 

encouragement, patience, guidance and promptness in expecting this academic work 

to anchor the voyage. 

 

The author also wishes to express his gratitude to Ministry of Higher Education and 

Universiti Teknologi MARA for the study leave granted. 

 

To his beloved wife, Dr. Zeti Zuryani Mohd Zakuan and his three princesses; Rini 

Barizah, Rini Bazilah and Rini Basyirah; the author appreciates their understanding 

and for being there with him while he is sailing through the arduous journey. 

 

To his family and friends; the author values their words of encouragement.  

 

 

  



 

 v 

 

Table of Contents 

Permission to Use ..................................................................................................................... i 

Abstrak ..................................................................................................................................... ii 

Abstract ................................................................................................................................... iii 

Acknowledgement .................................................................................................................. iv 

Table of Contents ..................................................................................................................... v 

List of Tables ........................................................................................................................ viii 

List of Figures .......................................................................................................................... x 

List of Appendices ................................................................................................................. xii 

List of Abbreviations ............................................................................................................ xiii 

CHAPTER ONE INTRODUCTION ....................................................................... 1 

1.1 Problem Statement ................................................................................................. 4 

1.2 Research Objectives ............................................................................................... 6 

1.3 Significance of the Research .................................................................................. 6 

1.4 Scope, Assumptions and Limitations of the Research ........................................... 7 

1.5 Structure of the Thesis ........................................................................................... 8 

CHAPTER TWO LITERATURE REVIEW ........................................................ 10 

2.1 Data Mining and Classification ............................................................................ 10 

2.2 Classification Using Rule Induction .................................................................... 11 

2.3 Ant Colony Optimization Metaheuristic .............................................................. 15 

2.4 Applications of Ant Colony Optimization ........................................................... 17 

2.5 Ant Colony Optimization for Rule Induction ...................................................... 22 

2.5.1 Train by Fixing Classes ............................................................................. 23 

2.5.2 New Heuristic Functions ............................................................................ 24 

2.5.3 New Pheromone Updating Procedure ........................................................ 24 

2.5.4 Pseudorandom Proportional Transition Rule ............................................. 25 

2.5.5 Remove Pruning Procedure ....................................................................... 25 

2.6 Simulated Annealing Algorithm .......................................................................... 26 

2.6.1 Applications of Simulated Annealing ........................................................ 28 

2.6.2 Hybrid ACO and SA Algorithm Variants .................................................. 30 



 

 vi 

2.7 Hybrid ACO for Rule Induction .......................................................................... 32 

2.8 Summary .............................................................................................................. 35 

CHAPTER THREE RESEARCH METHODOLOGY ........................................ 36 

3.1 Data Set Development ......................................................................................... 37 

3.2 Algorithm Formulation ........................................................................................ 43 

3.3 Rule Validation .................................................................................................... 43 

3.4 Summary .............................................................................................................. 46 

CHAPTER FOUR ATTRIBUTE SELECTION METHODS FOR 

DIMENSIONALITY REDUCTION ...................................................................... 48 

4.1 Attribute selection method ................................................................................... 49 

4.2 Best Attribute Selection Method .......................................................................... 51 

4.3 Performance of Ant-miner on Reduced Attributes Data Sets .............................. 57 

4.4 Summary .............................................................................................................. 60 

CHAPTER FIVE SIMULATED ANNEALING AS LOCAL SEARCH IN ANT 

COLONY OPTIMIZATION FOR RULE INDUCTION .................................... 62 

5.1 Simulated Annealing as Local Search.................................................................. 62 

5.2 Experiment and Results........................................................................................ 73 

5.2.1 Classification of 17 Data Sets from UCI Repository ................................. 73 

5.2.2 Classification of Web Data Set .................................................................. 90 

5.3 Summary .............................................................................................................. 91 

CHAPTER SIX SIMULATED ANNEALING FOR BEST TERMS 

SELECTION ............................................................................................................ 93 

6.1 Simulated Annealing for Term Selection ............................................................. 94 

6.2 Experiment and Results...................................................................................... 108 

6.2.1 Classification of 17 Data Sets from UCI Repository ............................... 109 

6.2.2 Classification of Web Data Set ................................................................ 125 

6.3 Summary ............................................................................................................ 127 

CHAPTER SEVEN CONCLUSION AND FUTURE WORK .......................... 129 

7.1 Research Contribution ........................................................................................ 129 

7.2 Future Work ....................................................................................................... 130 



 

 vii 

REFERENCES ....................................................................................................... 132 

  

 



 

 viii 

List of Tables 

Table 3.1: Data Sets Used in the Experiments ....................................................................... 39 

Table 4.1: Search Methods for Attribute Selection ................................................................ 50 

Table 4.2: Attribute Evaluation Methods for Attribute Selection .......................................... 50 

Table 4.3: The Numbers of Attributes Generated by Various Attribute Selection Methods . 54 

Table 4.4: Comparison Between C4.5 and Ant-miner for Average Predictive Accuracy ..... 55 

Table 4.5: Comparison Between C4.5 and Ant-miner for Average Number of Rules .......... 56 

Table 4.6: The Number of Attributes Before and After Reduction ....................................... 58 

Table 4.7: Comparison of The Average Predictive Accuracy for Models Constructed by Ant-

miner on Original and Reduced UCI Data Sets ..................................................................... 58 

Table 4.8: Comparison of The Average Number of Rules for Models Constructed by Ant-

miner on Original and Reduced UCI Data Sets ..................................................................... 59 

Table 4.9: Comparison of The Average Number of Terms for Models Constructed by Ant-

miner on Original and Reduced UCI Data Sets ..................................................................... 60 

Table 5.1: Average Predictive Accuracy (%) of Ant-miner and Proposed Algorithm 1 ....... 75 

Table 5.2: Average Number of Rules of Ant-miner and Proposed Algorithm 1 ................... 76 

Table 5.3: Average Number of Terms of Ant-miner and Proposed Algorithm 1 .................. 77 

Table 5.4: Average Predictive Accuracy (%) of Ant-miner and Proposed Algorithm 1 on 

Reduced Attributes Data Sets ................................................................................................ 82 

Table 5.5: Average Number of Rules of Ant-miner and Proposed Algorithm 1 on Reduced 

Attributes Data Sets ............................................................................................................... 83 

Table 5.6: Average Number of Terms of Ant-miner and Proposed Algorithm 1 on Reduced 

Attributes Data Sets ............................................................................................................... 84 

Table 5.7: Average Predictive Accuracy (%) of Conjuctive Rule, Decision Table, DTNB, 

JRip, PART, ACO/PSO2 and Proposed Algorithm 1 ............................................................ 89 

Table 5.8: Average Number of Rules of JRip, PART, PSO/ACO2 and Proposed Algorithm 1

 ............................................................................................................................................... 90 

Table 5.9: Performance Comparison for Reduced Web Data ................................................ 91 

Table 6.1: Average Predictive Accuracy of Ant-miner and Proposed Algorithm 2 ............ 110 

Table 6.2: Average Number of Rules of Ant-miner and Proposed Algorithm 2 ................. 111 

Table 6.3: Average Number of Terms of Ant-miner and Proposed Algorithm 2 ................ 112 

Table 6.4: Average Predictive Accuracy of Ant-miner and Proposed Algorithm 2 on 

Reduced Attributes Data Sets .............................................................................................. 117 



 

 ix 

Table 6.5: Average Number of Rules of Ant-miner and Proposed Algorithm 2 on Reduced 

Attributes Data Sets ............................................................................................................. 118 

Table 6.6: Average Number of Terms of Ant-miner and Proposed Algorithm 2 on Reduced 

Attributes Data Sets ............................................................................................................. 119 

Table 6.7: Average Predictive Accuracy of Conjuctive Rule, Decision Table, DTNB, JRip, 

PART and Proposed Algorithm 2 ........................................................................................ 124 

Table 6.8: Average Number of Rules of JRip, PART, PSO/ACO2 and Proposed Algorithm 2

 ............................................................................................................................................. 125 

Table 6.9: Performance Comparison for Reduced Web Data .............................................. 126 

 

 

  



 

 x 

List of Figures 

Figure 1.1: Classification Task General Framework ............................................................... 1 

Figure 2.1: An Example of a Classification Rules. ................................................................ 12 

Figure 2.2: Experimental Setup for the Double Bridge Experiment. ..................................... 17 

Figure 3.1: Research Phases .................................................................................................. 36 

Figure 3.2: k-fold Cross Validation Procedure ...................................................................... 44 

Figure 4.1: The Process of Generating Rules ........................................................................ 52 

Figure 5.1: Sequential Covering Algorithm ........................................................................... 63 

Figure 5.2: SA as Local Search in ACO Flow Chart ............................................................. 66 

Figure 5.3: SA Flow Chart to Construct Best Rule for an Ant .............................................. 68 

Figure 5.4: Terms Selection Procedure Flow Chart ............................................................... 72 

Figure 5.5: Comparison of Average Predictive Accuracy Between Ant-miner and Proposed 

Algorithm 1 ............................................................................................................................ 78 

Figure 5.6: Comparison of Average Number of Rules Between Ant-miner and Proposed 

Algorithm 1 ............................................................................................................................ 79 

Figure 5.7: Comparison of Average Number of Terms Between Ant-miner and Proposed 

Algorithm 1 ............................................................................................................................ 80 

Figure 5.8: Comparison of Average Predictive Accuracy Between Ant-miner and Proposed 

Algorithm 1 on Reduced Attributes Data Sets ....................................................................... 85 

Figure 5.9: Comparison of Average Number of Rules Between Ant-miner and Proposed 

Algorithm 1 on Reduced Attributes Data Sets ....................................................................... 86 

Figure 5.10: Comparison of Average Number of Terms Between Ant-miner and Proposed 

Algorithm 1 on Reduced Attributes Data Sets ....................................................................... 87 

Figure 5.11: Performance Comparison for Reduced Web Data ............................................ 91 

Figure 6.1: Sequential Covering Algorithm with Pre-Defined Class .................................... 95 

Figure 6.2: Sequential Covering with Pre-Defined Class Flow Chart ................................... 96 

Figure 6.3: ACO Algorithm to Extract One Rule .................................................................. 98 

Figure 6.4: ACO Algorithm to Extract One Rule Flow Chart ............................................... 99 

Figure 6.5: Terms Selection Procedure ................................................................................ 103 

Figure 6.6: Terms Selection Procedure Flow Chart ............................................................. 104 

Figure 6.7: SA Algorithm to Select One Term Flow Chart ................................................. 105 

Figure 6.8: Comparison of Average Predictive Accuracy between Ant-miner and Proposed 

Algorithm 2 .......................................................................................................................... 113 



 

 xi 

Figure 6.9: Comparison of Average Number of Rules between Ant-miner and Proposed 

Algorithm 2 .......................................................................................................................... 114 

Figure 6.10: Comparison of Average Number of Terms between Ant-miner and Proposed 

Algorithm 2 .......................................................................................................................... 115 

Figure 6.11: Comparison of Average Predictive Accuracy between Ant-miner and Proposed 

Algorithm 2 on Reduced Attributes Data Sets ..................................................................... 120 

Figure 6.12: Comparison of Average Number of Rules between Ant-miner and Proposed 

Algorithm 2 on Reduced Attributes Data Sets ..................................................................... 121 

Figure 6.13: Comparison of Average Number of Terms between Ant-miner and Proposed 

Algorithm 2 on Reduced Attributes Data Sets ..................................................................... 122 

Figure 6.14: Performance Comparison for Reduced Web Data .......................................... 127 

 

 

  



 

 xii 

List of Appendices 

Appendix A List of Stop Words .......................................................................................... 144 

Appendix B Bash Script for Creating Train/Test Sets ......................................................... 146 

Appendix C Web Classification Sample Data Set ............................................................... 147 

 

 

  



 

 xiii 

List of Abbreviations 

ACO  Ant colony optimization 

AD Air defense 

ANN Artificial neural network 

ASA Adaptive simulated annealing 

C2 Command and control 

DFR Distribution feeder reconfiguration  

DGs Distributed generators  

GA Genetic algorithm 

IIR Infinite-impulse-response 

IR Information retrieval 

ML Maximum likelihood 

MMAS Max-Min ant system 

MSER DFE Minimum symbol-error-rate decision feedback 

equalizer 

ODP DMOZ Open Directory Project 

PSO Particle swarm optimization 

SA Simulated annealing 

SAM Surface to air missile 

STWTSDS Single machine total weighted tardiness with 

sequence-dependent setups 

TAP Target assignment problem 

TS Tabu search 

TSP Travelling salesman problem 

Web->KB CMU World Wide Knowledge Base 

 

 



 1 

CHAPTER ONE 

INTRODUCTION 

The tremendous growth in computing power and storage capacity, the availability of 

increased access to data from Web navigation and intranets, the explosive growth in 

data collection, the storing of the data in data warehouses, and the competitive 

pressure to increase market share in globalized economy stimulated the development 

of data mining. Data mining acts as a tool to extract or yield important information 

from raw data. 

Classification is a data mining task of finding the common properties among 

different objects and classifying the objects into classes. Figure 1.1 depicts the 

general framework of classification task. The classification model contains a set of 

classification rules. The classification model categorizes new unseen example data, 

by predicting a class label for the example. One way of presenting the classification 

model is by representing the information as a set of IF-THEN rules (classification 

rules). 

 

Figure 1.1: Classification Task General Framework 

 

Classification Model Attribute Set Class Label 
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Rule induction technique (Han, Kamber, & Pei, 2011; Witten, Frank, & Mark A., 

2011; Tan, Steinbach, & Kumar, 2006) generates the set of classification rules, for 

the classification model. Each rule in the classification model consists of conditions 

and class. The condition part includes one or more terms. Each term is a triple 

<attribute, operator, value>, where value is one of the values belonging to the 

domain of attribute. One of the emerging approaches for rule induction is through the 

use of ant colony optimization (ACO) (Dorigo & Stützle, 2004), specifically the Ant-

miner algorithm (Parpinelli, Lopes, & Freitas, 2002a, 2002b). 

In ACO, each ant incrementally constructs a candidate solution, associated with a 

path, to a given optimization problem. As each ant follows a path, it deposits 

pheromone onto that path. Therefore, the amounts of pheromone level for 

components that make up that path are increased. An ant will choose the next 

component for the current partial solution based on the density of the pheromone and 

heuristic function associated with the components to choose. 

In Ant-miner algorithm, each ant will create an artificial path, which represents a 

candidate of classification rule. The original experiment conducted by Parpinelli et 

al. (2002a, 2002b) fixed one ant for each ant colony. Ant-miner creates each rule by 

adding one term each time. When there are no more possible terms left, terms 

addition will stop. A fitness function will determine the quality of a rule. Next, a 

pruning procedure will remove the irrelevant terms from the rule. Rule pruning 

avoids the problem of over-fitting to the training data set, and improves the 

simplicity of the rule. The rule pruning procedure will iteratively remove one term at 
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a time from the rule while the rule's quality increases. Hence, rule pruning will 

improve the rule's quality. 

The better the quality of a rule constructed by the ant, the higher the pheromone level 

to the selected terms for that rule. Therefore, the best term will have higher 

pheromone level. Since ants tend to choose term with higher probability, the chances 

for the consequent ants to choose the best term increase. The next ant colony repeats 

the same processes as the previous ant colony, but with new level of pheromones 

based on the discovered rule by the previous ant colony. 

In order to discover more rules, Ant-miner removes all the examples covered by the 

current discovered rule. Ant-miner repeated these processes until the total number of 

examples in the training set is less than a threshold value, which is predefined 

beforehand. Ant-miner uses rule-based ordering scheme. Rule based ordering 

scheme orders the individual rules by some quality measure. Ant-miner uses the 

order of rule's discovery to order the rules. After each rule discovery, Ant-miner 

appends the new rule to the end of the list of discovered rules. Finally, when Ant-

miner has discovered all the rules, Ant-miner appends a default rule to the end of the 

discovered rules list. The default rule is a rule that contains only class without the 

condition part. The class for the default rule is a class with the majority counts of the 

left uncovered examples. 

Ant-miner used a rule discovery method based on sequential covering algorithm. The 

sequential covering algorithm is a common technique used to extract rules directly 

from data. Even though rules are grown in a greedy fashion based on an evaluation 
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measure, the used of pheromones will potentially increase the quality of the 

discovered rule. In order to classify new unseen example, Ant-miner compares the 

set of discovered rules, in the order of the rule’s discovery, with the new unseen 

example. If a rule covers the new unseen example, Ant-miner sets the rule’s class as 

the predicted class for the new unseen example. Else, if there is no rule covers the 

new example, a default rule is applied. Hence, the predicted class of the new unseen 

example used the class of the default rule. 

The first version of Ant-miner can only cope with categorical (discrete) attributes. 

Hence, the operator for the term in conditions for the discovered rule will always be 

a “=”. If there is any continuous attributes exist, before Ant-miner can discover rules, 

the continuous attributes is discretized (Dougherty, Kohavi, & Sahami, 1995) in the 

pre-processing step. 

Ant-miner (Parpinelli et al., 2002a, 2002b) has been compared to two rule induction 

algorithms in several UCI public domain data sets (Asuncion & Newman, 2007), 

which are CN2 and C4.5 (Quinlan, 1993) algorithms. The results, showed that the 

predictive accuracy of Ant-miner is not only at least at par with both compared 

algorithm, but also produced much more comprehensive rules. 

1.1 Problem Statement 

Rule induction extracted a set of IF-THEN rules from training data using a 

sequential covering algorithm (Tan et al., 2006). A sequential covering algorithm 

learns each rule sequentially, one at a time; by choosing terms that cover a class or 

by choosing interrelated terms and later on assign a most suitable class for the set of 
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terms using a greedy search. In greedy search, while constructing a rule, term that 

appears to be the best choice at the moment is added to the partial rule heuristically. 

The problem with greedy search is that the heuristic measure does not ensure 

whether the term chosen is the best choice. The usage of ACO, which consists of an 

element of memory called the pheromone, can lessen the chance of this happening. 

However, rule induction algorithm that is based on ACO also has some drawbacks 

that may reduce the prediction ability of the classification model constructed. The 

problems were discussed in the following paragraphs. 

The first Ant-miner algorithm introduced by Parpinelli et al. (2002a, 2002b) assigned 

the class after each ant constructs the rule antecedent. In other words, the class is 

unknown during rule’s construction. Since the class is unknown during the rule 

construction, two problems arose. First, the constructed rule might contain 

antecedent that are not highly related, since the algorithm calculates the heuristic 

based on the relationship between terms, but disregarding the class. Second, the 

pheromone level for each term is based on the differences amount from all classes, 

rather than to a specific class. These two factors make the original Ant-miner less 

focused relevance. Therefore, many researchers (Galea & Shen, 2006; Martens, De 

Backer, Haesen, Baesens, & Holvoet, 2006; Smaldon & Freitas, 2006) proposed that 

the class should be fixed initially. 

There is also the case where the Ant-miner sometimes cannot find any optimal 

solution for some data. For example, Parpinelli et al. (2002a, 2002b) reported that 

only four out of seven data sets tested were better than C4.5 algorithm. This shows 

that for some data sets, the ants may face the local optimization problem, because 
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Ant-miner does not use local search. Simulated annealing algorithm (SA) is a well-

known algorithm, statistically guaranteed, to find an optimal solution. Therefore, this 

thesis suggested the used of SA algorithm to improve the current implementation of 

ACO in rule induction. 

1.2 Research Objectives 

The main objective of this research is to develop enhanced Ant-miner algorithms for 

rule induction. The specific objectives of the research are: 

i. to determine the best attribute selection methods for dimensionality 

reduction, 

ii. to formulate a technique in optimizing the rules constructed by each ant, and 

iii. to construct a new method in optimizing terms selection. 

1.3 Significance of the Research 

Data mining classification task is a form of data analysis that extracts classification 

models to categorize future data trends. A classification model helps human to 

understand data better, especially a large data. For example, a classification model 

can help a finance bank manager to categorize a loan application into safe or risky. 

A rule induction algorithm must generate an efficient classification model with a set 

of simple, comprehensible, and accurate rules. Hence, the work done in this thesis is 

important in the sense that this thesis develops classification rules induction 
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algorithm that combines the robust ACO with the efficiency of SA to improve the 

efficiency of the resultant classification model. 

1.4 Scope, Assumptions and Limitations of the Research 

This thesis focused on using ACO as the learn-one-rule function to construct 

classification rules. The enhanced proposed algorithm used simulated annealing (SA) 

to reduce the problem of local optimization. This research however, not in all means 

to optimize the SA itself. In addition, this research developed rule induction 

algorithm that can only classify examples with single class. 

All experiments in Chapter Five and Six were carried out using seventeen data sets 

from Asuncion & Newman (2007) from various fields. The tested data sets include 

Balance Scale, Breast Cancer (Ljubljana), Breast Cancer (Wisconsin), Credit-a, 

Credit-g, Diabetes, Heart (Cleveland), Heart (Statlog), Hepatitis, Ionosphere, Iris, 

Lymphography, Mushroom, Segment, Sonar, Tic-Tac-Toe and Vehicle. The 

proposed methods were compared with the original Ant-miner (Parpinelli et al., 

2002a, 2002b) and PART (Frank & Witten, 1998) in terms of classification accuracy 

and simplicity of the constructed rules. A ten cross folds validation method (Kohavi, 

1995a) measure the classification accuracy and simplicity of the constructed rules. 

However, this thesis does not measure and optimize the efficiency of the proposed 

algorithm in terms of time taken for training and prediction. 

Like the original Ant-miner, proposed by Parpinelli et al (2002a, 2002b), both 

proposed methods cannot directly handle data sets with non-discrete attributes. This 

thesis uses the words “new” and “proposed” interchangeably, to represent the new 
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algorithms. A discretization method (Dougherty et al., 1995) discretized the non-

discrete attributes, and was discussed in Chapter Three. 

1.5 Structure of the Thesis 

This thesis has seven chapters, including the introductory chapter, which covers the 

background information that inspires the enhancement of ACO classification 

modelling. 

Chapter Two covers the literature review of the related studies on ACO. The second 

section of this chapter focuses on various studies on the usage of ACO. The third 

section discussed the usage of ACO in rule induction. Finally, a review on SA, its 

applications and the hybrid of ACO and SA were given. 

Chapter Three presents the methodology used in conducting this research, divided 

into two main sections. The first section is on how to pre-process the data sets, while 

the second section is on the validation process of the experiments. 

Chapter Four discusses the experiments and results on determining the best attribute 

selection for high dimension data. Ant-miner algorithm (Parpinelli et al., 2002a, 

2002b) constructed the classification model for this chapter. The large data set used 

was based on Web->KB project (http://www.cs.cmu.edu/~webkb/) from four (4) 

universities namely Cornell (867 pages), Texas (827 pages), Washington (1205 

pages) and Wisconsin (1263 pages) as well as 4,120 miscellaneous pages collected 

from other universities. This chapter also tested the performance of Ant-miner on 

several data sets from UCI database after applying the reduction method. 
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Chapter Five presents a new hybrid algorithm of ACO and SA. This chapter 

introduces a local search algorithm using SA, to optimize the rules constructed by 

each ant. The proposed algorithm in this chapter follows specific-to-general rule-

growing strategy to grow classification rule. The algorithm ordered the discovered 

rules in the order of their discovery. This chapter compares the results with the 

original Ant-miner and other several well-known rule induction algorithms, in terms 

of classification accuracy and simplicity, using the original and also attributes 

reduced data sets. 

Chapter Six presents the second proposed hybrid algorithm. Differ from the 

algorithm proposed in Chapter Five; this algorithm instead uses SA to optimize 

terms selections while each ant grows one rule. The proposed algorithm in this 

chapter fixes the class while growing classification rules. The algorithm ordered the 

discovered rules in descending order according to the quality its quality. This chapter 

compares the results with the original Ant-miner and other several well-known rule 

induction algorithms, in terms of classification accuracy and simplicity, using the 

original and also attributes reduced data sets, as in Chapter Five.  

Finally, Chapter Seven gives the concluding remarks on the two proposed hybrid 

algorithms. The concluding remarks include the description of features, capabilities 

and the weaknesses of the two proposed methods. The chapter presents some 

recommendations as guidelines for further research for using ACO for rule 

induction. 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter reviews the literature related to the research field considered in the 

thesis. Section 2.1 introduces data mining and classification problem, while Section 

2.2 presented several well-known and established rule induction algorithms. Section 

2.3 presents ant colony optimization (ACO), while Section 2.4 discussed the 

applications of ACO. Section 2.5 discussed on the variations of the implementation 

of ACO for rule induction. Section 2.6 discussed on simulated annealing (SA) 

algorithm and its applications. Section 2.7 discussed on the implementation of hybrid 

ACO for rule induction. Finally, Section 2.8 underlay the summary for this chapter. 

2.1 Data Mining and Classification 

Data mining is a multidisciplinary field whose core is at the intersection of machine 

learning, statistics and databases that refers to extracting or `mining' knowledge from 

large amounts of data (Han et al., 2011). Cabena et al. (1998) defined data mining as 

an interdisciplinary field bringing together techniques from machine learning, pattern 

recognition, statistics, databases, and visualization to address the issue of 

information extraction from large data bases. According to Larose (2005), data 

mining development has been stimulated by various factors: the explosive growth in 

data collection, the storing of the data in data warehouses, the competitive pressure 

to increase market share in globalized economy, the tremendous growth in 

computing power and storage capacity, and the availability of increased access to 

data from Web navigation and intranets. 
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There are several tasks in data mining such as classification, clustering, association 

rules and attribute selection (Han et al., 2011; Larose, 2005). The tasks should be 

chosen based on the problem that arise, and will be solved by using an appropriate 

algorithm. 

A classification task uses a classification algorithm to a set of training examples to 

construct a prediction model. The prediction model can predict a class for a given 

unknown example. Rule induction is a popular classification technique to construct a 

prediction model from a set of data. The prediction model constructed by rule 

induction is comprehensible to users and is presented in a high level language.  

2.2 Classification Using Rule Induction 

Rule induction technique (Han et al., 2011; Witten et al., 2011; Tan et al., 2006) 

generates a set of classification rules, for the prediction model. The prediction model 

consists of a set of IF-THEN rules. The set of IF-THEN rules is called the 

classification rules. 

A classification rule is represented in the form of “IF <condition> THEN <class>”. 

A condition consists of a set of attribute terms “<attribute, operator, value>”. The 

operator is an equal sign “=” and the class is the predicted value for example that 

satisfies the condition. Each attribute consists of more than one value, but can only 

assigned one value in each rule. 

For example, a weather data set might contain a few attributes: outlook, temperature, 

humidity and a class. This data set will predict whether we should go out and play or 
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not based on the weather. Figure 2.1 depicts an example of a classification rules for 

weather data set. 

 

Figure 2.1: An Example of a Classification Rules. 

A well-known and established rule induction algorithms are OneR (Holte, 1993), 

ridor (Gaines & Compton, 1995), PART (Frank & Witten, 1998), JRip (Cohen, 

1995), decision table (Kohavi, 1995b), DTNB (M. Hall & Frank, 2008) and 

conjunctive rule (Witten et al., 2011). 

OneR algorithm (Holte, 1993), also known as one rule algorithm is a simple 

algorithm that builds one rule for each of the attributes in the training examples. This 

algorithm selects the rule with the smallest error rate as its ‘one rule’ and creates a 

rule by calculating the most frequent class for each attribute (the class that appears 

most often for that attribute value). In other words, a rule is a set of attribute values 

bound to their majority class, and has the lowest error rate. If there are more than one 

rules that have the same error rate, the rule is chosen at random. 

Ridor algorithm (Gaines & Compton, 1995) is the implementation of a RIpple-

DOwn Rule learner (Compton & Jansen, 1990). This algorithm generates a default 

rule first and then the exceptions for the default rule with the least (weighted) error 
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rate. Then it generates the “best” exceptions for each exception and iterates until 

pure. Thus, it performs a tree-like expansion of exceptions. The exceptions are a set 

of rules that predict classes other than the default. 

PART (Frank & Witten, 1998) is a separate-and-conquer rule learner. This algorithm 

use a set of ordered of rules to predict the class of a new unseen example. A new 

example is compared to each rule in the list one by one until a rule is found satisfies 

the new example. If there is no rule that satisfy the new example, a default rule is 

used. PART builds a partial C4.5 (Quinlan, 1993) decision tree in each iteration. The 

best tree leaf is taken and converted into a rule in order of discovery. The algorithm 

is a combination of C4.5 and RIPPER rule learning. 

JRip algorithm (Cohen, 1995) implements a propositional rule learner, Repeated 

Incremental Pruning to Produce Error Reduction (RIPPER), as an optimized version 

of IREP. Ripper builds a rule set by repeatedly adding rules to an empty rule set until 

all positive examples are covered. Rules are formed by greedily adding conditions to 

the antecedent of a rule (starting with empty antecedent) until no negative examples 

are covered. After a rule set is constructed, the algorithm optimizes the rule to reduce 

its size and improve the accuracy. 

Decision table algorithm (Kohavi, 1995b) builds and using a simple decision table 

majority classifier to build the classification model. This algorithm summarizes the 

examples in the data set using a ‘decision table’ which contains the same number of 

attributes as the original data set. In order to predict the class for a new example, this 

algorithm finds the line in the decision table that matches the non-class values of the 
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new example. Decision table employs the wrapper method to find a good subset of 

attributes for inclusion in the table. The algorithm reduces the likelihood of over-

fitting and creates a smaller and condensed decision table, by eliminating attributes 

that contribute little or nothing to a model of the data set. 

DTNB (M. Hall & Frank, 2008) is a decision table/naive Bayes hybrid classifier. At 

each point in the search, the algorithm evaluates the merit of dividing the attributes 

into two disjoint subsets: one for the decision table, the other for naive Bayes. A 

forward selection search is used, where at each step, naive Bayes model selected 

attributes and the remainder by the decision table and all attributes are modelled by 

the decision table initially. At each step, the algorithm also considers dropping an 

attribute entirely from the model. 

Finally, conjunctive rule (Witten et al., 2011) is a rule induction algorithm which 

uses a single conjunctive rule learner that can predict for numeric and nominal class 

labels. The consequent in this algorithm using the distribution of the available 

classes in the data set. When predicting new example, if the test example is not 

satisfied by any rules, the test example is predicted using the default class 

distributions. The default class distribution is class defined from the examples that 

are not covered by any rules during training phases. During training phases, an 

antecedent is selected by computing information gain of each antecedent. The 

information of one antecedent is the weighted average of the entropies of both the 

examples covered and not covered by the rule. Each constructed partial rule, which 

contains antecedent only, is pruned afterwards using Reduced Error Prunning (REP) 



 

 15 

procedure by calculating a weighted average of the accuracy rates on the pruning 

data, apart from a simple pre-pruning based on a number of antecedents.  

One of the emerging approaches for rule induction is through the use of ant colony 

optimization (ACO) (Dorigo & Stützle, 2004), specifically the Ant-miner algorithm 

(Parpinelli et al., 2002a, 2002b). 

2.3 Ant Colony Optimization Metaheuristic 

ACO Metaheuristic is a branch of an artificial intelligence technique called swarm 

intelligence, introduced in the early 1990s (Dorigo, Maniezzo, & Colorni, 1991, 

1996). It is a probabilistic technique for solving combinatorial optimizations 

problem, which was inspired by the behaviour of cooperating ants in finding path 

from its nest to the food source (Dorigo & Stützle, 2004). Hence, the purpose of 

ACO metaheuristic is to find the best solution using a set of artificial ants that 

communicates indirectly using an item called the pheromone. 

Ants, which are blind or almost blind creatures, are capable to find the shortest path 

between the nest and the food source, and they have the capability to adapt to 

environment change. Ants tend to follow a trail, used by the majority ants, although 

they initially move at random. According to the double bridge experiments 

(Deneubourg, Aron, Goss, & Pasteels, 1990; Goss, Aron, Deneubourg, & Pasteels, 

1989), performed on the Argentine ant species I, communication between ants is 

established through the use of chemical substances called pheromone, which was 

deposited as each ant move. The amount of pheromone on one of the trails used by 

the majority ants will increase as time passed by and will decrease on the less used 
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trails. As a consequent, since ants tend to follow the pheromones, all or most of the 

ants will finally converge to the best trail, with the high density of pheromones, 

which happened to be the shortest trail from the nest to the food source. 

Figure 2.2(a) is a schematic diagram of the double bridge experiment set up with two 

branches of equal length. The double bridge experiment released ants from the nest 

and let them freely moved to the food source. Initially, each ant chooses any branch 

at random since it has no preference on any branch. While walking, ants will deposit 

pheromones. After some time, pheromones density on one of the branches will be 

greater than the other one, and will stimulate ants to use it. Eventually, all ants will 

use only one of the branches. The chosen branch is the one with the highest density 

of pheromones. This experiment proved that ants would follow each other based on a 

communication instrument, called the pheromone. 

On the other hand, in Figure 2.2(b), the double bridge is set up with one of the 

branch is twice the length of the other branch. The experiment found that, finally, 

most of the ants used the shorter branch, since the pheromones accumulate faster in 

the shorter branch. However, there are a small number of ants still using the longer 

branch. This is the effect of “path exploration”, where the density of the pheromone 

will not bias some of the ants. 

The experiment by Goss et al. (1989) also found that even though the pheromones 

evaporate, it evaporates too slowly to allow the ant colony to forget the current 

branch that they are using. For example, the ant colony will still favour the longer 

branch instead of the short branch, even though the shorter branch was added long 
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after the ant colony has been using the longer branch,. Hence, it shows that 

pheromone plays an important role in determining which branch the ant colony will 

choose. The path exploration cannot defeat the power of pheromone, at least in 

shorter time. 

 

Figure 2.2: Experimental Setup for the Double Bridge Experiment.  

(a) Branches have equal length. (b) Branches have different length.  

Adapted from Dorigo & Stützle (2004)  

 

2.4 Applications of Ant Colony Optimization 

There are various problems of using ACO for optimization. Some of the examples 

are routing, assignment, scheduling, subset and machine learning. The following 

subsection will discuss generally, the implementation of ACO on routing, 

assignment, scheduling, subset, and machine learning. 

Routing is a process of sending objects to appropriate destinations via a specific 

route. The routing problem that has been solved by ACO includes travelling 
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salesman (Dorigo & Gambardella, 1997; Dorigo et al., 1996), vehicle routing 

(Reimann, Doerner, & Hartl, 2002) and sequential ordering (Gambardella & Dorigo, 

1997, 2000).  

The Travelling Salesman Problem (TSP) is a problem to find the shortest possible 

trip, for travelling from a city to its destination. In this problem, each ant, which is 

located to a random start city, initially, will develop the solution by visiting all cities 

in its tour.  

The vehicle routing problem is an extension to the TSP problem. The objective of 

this problem is to determine a fleet of vehicles, each vehicle served customers, and in 

what order each vehicle should visit the customers assigned to. 

The sequential ordering problem is a problem to find a minimum weight 

Hamiltonian path on a directed graph with weights on the arcs and the nodes, subject 

to precedence constraints between nodes. The solutions built by ants iteratively are 

by adding, step-by-step, new unvisited nodes to become the partial solution. The ant 

added new nodes by using pheromone trails, heuristic, and constraint information. 

Besides TSP, vehicle routing, sequential ordering and telecommunication network 

routing problems have also been using ACO. In telecommunication network, routing 

is a process of moving packets of data from source node to the destination node. 

Hence, telecommunication network routing is a problem of finding minimum cost 

paths among all pairs of nodes in the network. In this type of problem, the algorithm 

assigned each ant a source and destination node. Each ant will move to the 
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destination node by moving from one node to another. At each node, the ant will 

choose to move to the next node using a probabilistic decision rule, which is a 

function of the ant’s memory, of local pheromones, and heuristic information. 

Examples of ACO applications that have been applied to the problem of network 

routing are connection-oriented network routing (Bonabeau et al., 1998), 

connectionless network routing (Caro & Dorigo, 1997) and optical network routing 

(Varela & Sinclair, 1999). 

The second problem type is assignment. The assignment problem is one of the 

fundamental combinatorial optimization problems in the branch of optimization or 

operations research in mathematics. It consists of finding a maximum weight 

matching in a weighted bipartite graph.  

For example, in quadratic assignment problem of n order, the objective is to find the 

best allocation of n activities to n locations. Generally, ACO will solve this kind of 

problem by choosing the components to add to the partial solution by using the 

pheromone trails and heuristic information. 

Some examples of the assignment problem include graph colouring (Bui & Nguyen, 

2006), quadratic assignment (Maniezo, Colorni, & Dorigo, 1994; Maniezzo & 

Colorni, 1999), generalized assignment (Lourenço & Serra, 1998), frequency 

assignment (Maniezzo & Carbonaro, 2000), and university course timetabling 

(Socha, Knowles, & Sampels, 2002). 
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Scheduling is a process of assigning priorities to processes in a priority queue. An 

example of the application of ACO in scheduling problem is job shop (Teich, 

Fischer, Vogel, & Fischer, 2001). The job shop scheduling problem is part of 

production planning. The ACO decides which operation is scheduled next, where 

each ant will generate a feasible solution under the use of a transition rule. 

Other examples of the used of ACO in scheduling problem include open shop (Blum 

& Sampels, 2002), flow shop (Stützle, 1998), total tardiness (Bauer, Bullnheimer, 

Hartl, & Strauss, 2000), group shop (Blum, 2002a), project scheduling (Merkle, 

Middendorf, & Schmeck, 2002) and total weighted tardiness (Besten, Stützle, & 

Dorigo, 2000). 

Subset is a problem in complexity theory and cryptography. Some examples of the 

used of ACO in subset problem includes multiple knapsack (Leguizamón & 

Michalewicz, 1999), max independent set, redundancy allocation (Liang & Smith, 

1999), set covering (Silva & Ramalho, 2001), weight constraint graph tree partition, 

edge-weighted k-cardinality tree (Blum, 2002b) and maximum clique (Fenet & 

Solnon, 2003). 

For example, in the edge-weighted k-cardinality tree problem, ants will construct a 

solution by building a path on construction graph, and does a number of construction 

steps. In each step, ACO added edge to the partial k-cardinal tree, based on the 

transition probabilities. The pheromone plays an important role in the generation of 

the transition probabilities. 
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Finally, machine learning, a method for creating computer programs by the analysis 

of data sets, is an area of artificial intelligence concerned with the development of 

techniques, which allow computers to “learn”. The major focus of machine learning 

is to extract information from data automatically, by computational or statistical 

methods. For example, an inductive machine learning methods extract rules and 

patterns out of massive data sets. 

Since the fields of statistics also study the analysis of data, machine learning must 

intersect with statistic field. Nevertheless, machine learning is pertained to the 

algorithmic complexity of computational implementations, as compared to statistics.  

Some examples of machine learning that is based on the ACO include classification 

rules for data mining (Parpinelli, Lopes, & Freitas, 2001; Parpinelli et al., 2002a, 

2002b; Parpinelli, Lopes, & Freitas, 2002c, 2005; Freitas, Parpinelli, & Lopes, 2008; 

Oliverio, Sá, & Parpinelli, 2009), Bayesian networks and fuzzy systems (Cordón, 

Casillas, & Herrera, 2000). 

This thesis focused on the development and enhancement of the rule induction 

technique for extracting classification rules from data using ACO. Parpinelli initially 

introduced this kind of problem in the early 2000s, called the Ant-miner (Parpinelli 

et al., 2002a, 2002b). 

The next section discussed on the variations of implementations of ACO for rule 

induction. 



 

 22 

2.5 Ant Colony Optimization for Rule Induction 

Parpinelli et al. (2002a, 2002b) proposed Ant-miner algorithm in 2002. The 

Sequential Covering algorithm is the based for Ant-miner algorithm, that extract 

rules directly from data. According to Tan et al. (2006), Sequential Covering 

algorithm discovers rules in greedy fashion based on a certain evaluation measure. In 

other words, this algorithm select terms using some heuristic. Ant-miner uses a 

heuristic measure as evaluation measure to fill in the antecedent part of the rule, by 

selecting the best term to be included into the partial rule. The heuristic measure is 

the normalization of entropy measures between terms. The algorithm selects one best 

rule from a set of discovered rules, based on a quality measure using some fitness 

function. 

Ant-miner differs from other Sequential Covering algorithms implementation 

because this algorithm also depends on a value called the pheromone, which 

contributes to the behaviour of exploration of the algorithm. Hence, Ant-miner uses a 

probability that is proportional to the product of heuristic value and pheromone level 

for that term, to add terms to a rule. Dorigo & Stützle (2004), called this transition 

rule, random proportional transition rule. 

Ant-miner updated the pheromone level after each ant colony has selected the best 

rule from a set of rules constructed by many ants in a colony. For the next ant 

colony, terms in the rule antecedent that have been selected by the previous ant 

colony will have a higher level of pheromone and will probably are more favoured 

than other terms. 
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Ant-miner selects the best rule after each ant colony has created a set of rules, based 

on rule's quality. This algorithm measures rule's quality using a fitness function that 

depends on the product of sensitivity and specificity, which were adapted from the 

field of information retrieval (IR). 

Since the class for rules constructed Ant-miner will only be determined after the 

creation of each rule, the selected terms are not focused relevance. In other words, 

this algorithm will select a term that may be high in relevancy with the current set of 

previously selected terms, but not for the later assigned class. Therefore, like other 

ACO implementations for other fields, Ant-miner might face the problem of 

stagnation, where optimized rule cannot be found, and thus make the program to run 

forever. Consequently, many researchers had proposed variations of modification for 

the original Ant-miner by Parpinelli et al. (2002a, 2002b). The following subsections 

discussed variations of modification for the original Ant-miner. 

2.5.1 Train by Fixing Classes 

The original Ant-miner (Parpinelli et al., 2002a, 2002b) determines the class after 

each rule's construction, and thus may affect the rule's quality. Several researchers 

(Galea & Shen, 2006; Martens et al., 2006; Smaldon & Freitas, 2006) have proposed 

that the class should be predefined earlier. If the algorithm uses a predefined class, 

the algorithm must use a new heuristic function and pheromone update methods. 
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2.5.2 New Heuristic Functions 

The original Ant-miner uses the entropy measure between terms to calculate the 

heuristic value for each term. Most researches (Galea & Shen, 2006; B. Liu, Abbass, 

& McKay, 2004; Martens et al., 2006; Smaldon & Freitas, 2006; Z. Wang & Feng, 

2005) who predefined the class before each rule’s construction, used a simpler 

heuristic function instead. The new heuristic function uses the frequency of the terms 

related to the predefined class. 

This simpler heuristic function is more computationally efficient since the 

calculation will only base on the frequency, unlike the original heuristic function, 

which depends on the calculation of entropy. The heuristic function uses frequency 

of examples. The researchers who use this simpler heuristic function claimed that 

even though the heuristic is simple, the use of pheromones would help to optimize 

the constructed rules. 

2.5.3 New Pheromone Updating Procedure 

The Ant-miner evaporates pheromone level for all terms implicitly by normalizing 

them. This happened after the algorithm had increased the pheromone level on all 

selected terms. However, this procedure sometimes faced problem in updating 

pheromone level with low quality rules, since the updating procedure depends on the 

rule’s quality. If the quality is very small, the new pheromone level will almost be 

the same as the previous one.  

Hence, Liu et al. (2004), Wang & Feng (2005) and Smaldon & Freitas (2006) have 

proposed a different equations for updating pheromone level, that could cope with 
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rule’s quality that is close to zero. Furthermore, Liu et al. (2004), Wang & Feng 

(2005) and Martens et al. (2006) also proposed that the updating procedure should 

use an explicit evaporation rate, which is predefined. More interestingly, Wang & 

Feng (2005) had made the parameter self-adaptive. 

2.5.4 Pseudorandom Proportional Transition Rule 

Instead of random proportional transition rule, some researchers (Liu et al., 2004; 

Wang & Feng, 2005) have used pseudorandom proportional transition rule. 

Pseudorandom proportional transition rule defines a new probability. This 

probability is used to control the effect of exploration and exploitation, based on a 

predefined constant parameter value, 0q . If the probability number generated is less 

than 0q , the term to be added will be determined using the same function as random 

proportional transition rule which depends on the maximum value from the product 

of heuristic value and pheromone level from all terms. Otherwise, a random 

proportional rule will probabilistically select terms, based on the product of heuristic 

value and pheromone level only. 

The disadvantage of this transition is that the researcher needs to optimize 

empirically the predefined constant parameter value, 0q . 

2.5.5 Remove Pruning Procedure 

Pruning procedure is a computational expensive procedure in rule induction, as well 

as the Ant-miner algorithm. Hence, in 2006, Martens et al. proposed that pruning 
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procedure removal is possible. Martens et al. (2006) claimed that the removal of rule 

pruning procedure improve the speed of the proposed algorithm. 

2.6 Simulated Annealing Algorithm 

SA is an algorithm developed by Kirkpatrick et al. (1983). The process of heating 

and gradually cooling process to hardened metal, and combinatorial optimization 

inspired the concept of SA. SA is an algorithm that has the ability to reduce the 

problem of local optimum. A local optimum problem is a problem where a solution 

is optimal within a neighbouring set of solutions. However, considering all set of 

solutions, this local optimal solution might not be the optimal solution. 

SA is a local search strategy that tries to avoid local optimal problem. SA starts at a 

very high temperature and it gradually cool down to a lower bound temperature. 

During the cooling process, SA accepts not only good solution, but also worst 

solution, with some probability. As the temperature reduced, the probability of 

accepting worst solution also reduced. SA ability to accept the worst solution with 

some probability helps to reduce the problem of local optimal.  

The main problem with SA is its slow speed for convergence (Nikolaev & Jacobson, 

2010; Henderson, Jacobson, & Johnson, 2003). However, many researchers have 

suggested improvement on SA in order to increase its convergence speed. 

Approaches to improve the SA’s speed include combining SA with evolutionary 

algorithm, fixing the temperature cooling schedule, implementing two-staged SA 

and using an adaptive temperature control scheme. 
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The first approach is to combine SA with evolutionary algorithms. Delport (1998) 

combines SA with evolutionary algorithm by adjusting the cooling schedule using 

fast recognition of the thermal equilibrium in terms of selection intensity. Another 

approach that combines SA with evolutionary algorithm is by linking SA with 

genetic algorithm (GA) using generalized hill-climbing algorithm (Sullivan & 

Jacobson, 2000, 2001). 

The second approach to improve SA’s speed is by fixing the temperature cooling 

schedule. Fielding (2000) suggested a fix temperature cooling schedules. The 

researcher tested his suggestion on traveling salesman problem, the quadratic 

assignment problem and the graph partitioning problem. Experiments by Fielding 

shows that a fixed temperature cooling schedule can improve the speed of SA. In 

addition, Orosz & Jacobson (2002a, 2002b) have suggested a finite-time 

performance measures for SA with fixed temperature cooling schedules. The 

measures used randomly generated instances of the traveling salesman problem. 

The third approach to speed up SA is to implement a two-staged SA algorithm, 

which are high temperature and low temperature. At the high temperature stage, a 

fast heuristic is used. At the low temperature, the algorithm works as traditional SA. 

Varanelli & Cohoon (1999) have proposed a method for determining the initial 

temperature for two-staged SA. 

The forth approach is to use an adaptive temperature control scheme.  An adaptive 

temperature control scheme changes temperature based on the number of 

consecutive improving moves. For example, Azizi & Zolfaghari (2004) have tested 
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SA with an adaptive temperature control scheme for job shop scheduling problem. 

According to Azizi & Zolfaghari (2004), SA speeds have improved. 

2.6.1 Applications of Simulated Annealing 

Many researchers have used SA to solve many discretes and continuous variable 

problems. Chen et al. (2007) implemented five conversions of SA from sequential-

to-parallel forms on high-performance computers and applied them to a set of 

standard function optimization problems in order to test their performances. The 

performance analyses of the best algorithm among the five implemented algorithms 

shows that a hybrid version of a genetic algorithm combined with SA has proven to 

be most efficient. 

Steinhöfel et al. (2002) uses logarithmic cooling schedules of SA to solve flow shop 

scheduling problem. The implementation uses an objective to minimize the overall 

completion time (called the makespan). Steinhöfel et al. (2002) prove that a lower 

bound for the number of steps that are sufficient to approach an optimal solution 

with a certain probability. 

Chen & Luk (1999) proposed an adaptive SA (ASA) to solve difficult non-linear 

optimization problems of signal processing. Chen & Luk have applied the proposed 

algorithm to three signal processing applications: maximum likelihood (ML) joint 

channel and data estimation, infinite-impulse-response (IIR) filter design, and 

evaluation of minimum symbol-error-rate decision feedback equalizer (MSER DFE). 

ASA is found to perform better than genetic algorithm. 
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Abramson et al. (1999) have used SA for solving the school timetabling problems. 

Six different SA cooling schedules were compared for solving the school timetabling: 

the basic geometric cooling schedule, a scheme that uses multiple cooling rates, 

geometric reheating, enhanced geometric reheating, non-monotonic cooling, and 

reheating as a function of cost. Experiments performed by Abramson et al. (1999) 

show that the scheme, which uses the phase transition temperature in combination 

with the best solution quality found to date, produced the best results. 

Emden-Weinert & Proksch (1999) report about a study of SA for the airline crew 

pairing problem based on a run-cutting formulation. It is found that that run time can 

be saved and solution quality can be improved by using a problem specific initial 

solution, by relaxing constraints “as far as possible”, by combining SA with a 

problem specific local improvement heuristic and by multiple independent runs. 

Koulamas et al. (1994) have found that SA provides a better performance, in terms 

of number of iterations and neighbourhood functions, for operation research 

problems. Thus, increase the probability of converging to the optimal solution. 

Johnson et al. (1989, 1991) have used SA to solve discrete problems, the graph 

partitioning problems (Johnson et al., 1989), and graph colouring and number 

partitioning problems (Johnson et al., 1991). Johnson et al. (1991) have found that 

SA performs better for the long run lengths to solve graph colouring problems. 
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2.6.2 Hybrid ACO and SA Algorithm Variants 

Researchers have hybrid SA with ACO for many types of problems. Mostly, ACO 

used SA as a booster. In other words, SA tries to improve the solutions found by 

ACO implicitly.  

Anghinolfi & Paolucci (2008) proposed a hybrid ACO and SA to solve single 

machine total weighted tardiness with sequence-dependent setups (STWTSDS) 

problem. SA works as intensification to validate solutions by all ants after each ant 

colony runs, and select one best solution for the current ant colony run. Experiments 

show that the effectiveness of ACO increased with the usage of SA as an 

intensification mechanism. Thus, combining swarm intelligence algorithm such as 

ACO with SA is a viable strategy to produce in a simple way high quality 

metaheuristics. 

Wang et al. (2011) solved the target assignment problem (TAP) applied to the air 

defense (AD) command and control (C2) system of surface to air missile (SAM) 

tactical unit using a hybrid ACO and SA algorithm. The simulation examples show 

that the model and algorithms can meet the solving requirement of TAP in AD 

combat. Wang et al. (2011) found that by using ACO can achieves solution quickly, 

but the solution is sometimes local minimal value, SA needs more time to get the 

optimal solution. However, the hybrid optimization strategy based on ACO and SA 

algorithm can meet the need of solving the TAP. 

Olamaei et al. (2010) proposed a hybrid of ACO and SA algorithm for solving for 

distribution feeder reconfiguration (DFR) considering Distributed Generators (DGs). 
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DGs is used to minimize the real power loss, the deviation of nodes voltage and the 

number of switching operations. Experiments on a real distribution feeder show that 

the proposed hybrid ACO and SA algorithm performs better as compared to ACO, 

particle swarm optimization (PSO) and genetic algorithm (GA). 

In 2011, Olamaei et al. enhanced the proposed hybrid of ACO and SA algorithm 

(Olamaei, Niknam, Arefi, & Mazinan, 2011) to minimize the cost of distributed 

network operation including the cost of the active power generated by DGs. This 

algorithm used a cost based compensation method to encourage DGs in active and 

reactive power generation due to private ownership of DGs. The experiments were 

done on a real distribution feeder. Olamaei et al. (2011) claimed that this algorithm 

minimizes the number of the switches. The small number of switches reduced the 

required space and computation time. The proposed algorithm also reaches a much 

better optimal solution in comparison with others and has the small standard 

deviation for different trials.  

Ghanbari et al. (2010) predicts short term electricity load using a hybrid ACO and 

SA algorithm. The hybrid approach consists of two general stages. First, the 

algorithm fed time series inputs into ACO to perform a global search that find a 

globally optimum solution. Second, the algorithm used the solution by ACO as 

initial solution for SA. SA starts local search around the ACO’s global optimum and 

performs the tuning process on the initial solution. Ghanbari et al. (2010) conducted 

experiments on Iranian monthly load prediction problem and compared the results 

with ACO, SA and artificial neural network (ANN). Results show that the proposed 
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algorithm performs better than the compared algorithms regarding to prediction 

accuracy. 

T'Kindt et al., (2000) solved a 2-machine flowshop bicriteria scheduling problem 

using a hybrid ACO and SA algorithm. The proposed algorithm uses a variant of 

ACO called the Max-Min Ant System (MMAS) proposed by Stützle (1998). Each 

ant builds a permutation schedule that has an optimal value of the makespan at each 

iteration. The proposed algorithm uses a wheel selection method to choose the next 

job. SA works as intensification to the solution by ACO. Furthermore, the proposed 

algorithm used a 2-opt local search algorithm to improve the solution furthermore. 

T'Kindt et al., (2000) have found that the proposed algorithm is able to reduce the 

resolution time of the hardest problem. 

Researchers have also proposed a hybrid of ACO and SA algorithm the problem of 

cluster analysis (Niknam, Bahmani, & Nayeripour, 2008; Niknam, Olamaei, & 

Amiri, 2008). The proposed algorithm uses SA to find the best local position for 

each ant colony runs. The experimental results show that the proposed algorithm 

performs at least comparable to SA, ACO and k-means in terms of function 

evaluations and standard deviations for partitional clustering problem. 

2.7 Hybrid ACO for Rule Induction 

Most recent trends to improve the earlier implementation of ACO for rule induction 

(Ant-miner) are by hybrid ACO with other algorithm. The other algorithm will try to 

solve the problematic, less efficient or lack of features parts of ACO in inducting 

rules, such as the lack of ability to directly cope with continuous attributes. 
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Particle swarm optimisation (PSO) based classification algorithms perform well in 

data sets that contain continuous attributes since it has the ability to convert nominal 

attributes into numerical values. This feature is lacked from the originally proposed 

ACO based classification algorithm by Parpinelli et al. (2002a). Hence, Holden & 

Freitas (2008) have proposed a hybrid particle swarm optimisation with ACO 

(PSO/ACO2) algorithm for the discovery of classification rules that can directly 

cope with both continuous attributes. Experiments show that PSO/ACO2 is very 

competitive in terms of accuracy as compared to PART (Frank & Witten, 1998) and 

produces simpler rule sets. 

However, PSO does not guarantee for local optimal solution. To solve this problem, 

Nalini & Balasubramnaie (2010) proposed the use of Tabu search (TS) in PSO to 

improve the search capability and integrate the pheromone concept of ACO. Besides, 

the proposed algorithm also runs two tasks simultaneously in parallel machines. 

Experiments have shown that the proposed algorithm is competitive against existing 

classification algorithms in terms of predictive accuracy and rule’s simplicity. As an 

addition, Nalini & Balasubramnaie (2010) also claimed that since this algorithm runs 

in parallel, the execution time is reduced. 

Shahzad & Baig (2011) proposed a hybrid classification algorithm called ACO-AC. 

This algorithm integrates classification with association rule mining technique to 

discover high quality rules. ACO is used to mine only the appropriate subset of class 

association rules, and not all possible rules. Shahzad & Baig (2011) compared ACO-

AC against eight other classification algorithms on twenty six data sets and found 

that this algorithm achieves higher accuracy rates. 
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Sequential covering strategy used in the first implementation of ACO for 

classification, Ant-miner (Parpinelli et al., 2002a) has a drawback of not coping with 

the problem of rule interaction where the outcome of a rule affects the rules that can 

be discovered subsequently since the search space is modified due to the removal of 

examples covered by previous rules. Hence, Otero et al. (2012) proposed a new 

sequential covering strategy for ACO classification algorithms to lessen the problem 

of rule interaction. The proposed algorithm implicitly encoded the rules as 

pheromone values and guides the search using the quality of a candidate list of rules. 

Experiments using eighteen publicly available data sets show that the proposed 

algorithm gained a significantly higher predictive accuracy as compared to other rule 

induction classification algorithms. 

Last but not least, Mangat (2012) proposed a hybrid of genetic algorithm (GA), PSO 

and ACO algorithm to mine rules in the medical domain that can handle all types of 

attributes. According to Mangat (2012), GA is used to feature selection, and provides 

inputs for ACO, PSO and/or Shuffled frog-leaping algorithm (SFLA). The major 

advantage of the usage GA in the discovery of prediction rule is that GA performs a 

global search based on a greedy approach. Mangat (2012) however, has not test the 

algorithm, but suggested that a data set like the heart disease data set available at the 

UCI machine learning repository may be used as input to check the effectiveness of 

the proposed algorithm in the medical domain. 
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2.8 Summary 

Many researchers have applied ACO in many fields of optimization research, as well 

as machine learning for data mining. Most researchers in this field claimed that the 

performance of this kind of algorithm is at least at par when compared to the existing 

algorithms for classification such as C4.5, CN2 and PART. 

The common problem with ACO is the stagnation (Dorigo & Stützle, 2004). Ant-

miner (Parpinelli et al., 2002a, 2002b) also faced the same problem when the 

construction of high quality rule is not possible. Even though many researchers have 

made improvements to the Ant-miner, a perfect algorithm for data from all domains 

of problems is not possible. Some improvements may increase the predictive power, 

but not the simplicity of the constructed rule, and vice versa. 

SA is an algorithm that is able to reduce the problem of local optimal. The usage of 

SA as local search algorithm in ACO could help to improve the ability of ACO to 

converge to an optimal solution. In other words, most of the researchers used SA to 

intensify the solutions discovered by each ant colony. For various problems, these 

hybrid solutions have shown better (or at least comparable) to other standard 

algorithms for each specific problem. The main idea for the hybrid ACO and SA 

algorithm is to use SA as a mechanism to improve solutions discovered by ACO 

since SA is an algorithm that has the ability to reduce the problem of local optimum. 

Hence, this thesis proposed two variants of hybrid ACO and SA algorithms to 

generate classification model using rule induction technique. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

This chapter presents the approach to develop techniques to classify Web documents 

and data sets using ACO algorithm. The development of the new Ant-miner used the 

same experimental research methodology as Parpinelli et al. (2002a, 2002b). Figure 

3.1 depicts the phases of the research, which include the data sets development, the 

formulation of the algorithm for rule classification and the evaluation of the 

constructed rules. 

 

Figure 3.1: Research Phases 

The following sections explain the phases of the research. 

Data Set 

Development 

Formulating Algorithm 

for Rule Classification 

Validation of 

Constructed Rule 
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3.1 Data Set Development 

The data set used in Chapter Four has been developed based on CMU World Wide 

Knowledge Base (Web->KB) project (http://www.cs.cmu.edu/~webkb/). 

Experiments in Chapter Four use this data set to determine the best attributes 

reduction methods, for Ant-miner (Parpinelli et al., 2002a, 2002b). Web->KB consist 

of manually pre-classified 8282 Web pages of computer science departments from 

four (4) universities namely Cornell (867 pages), Texas (827 pages), Washington 

(1205 pages) and Wisconsin (1263 pages) as well as 4120 miscellaneous pages 

collected from other universities, into seven (7) categories. The classes for these 

Web pages include student (1641 pages), faculty (1124 pages), staff (137 pages), 

department (182 pages), course (930 pages), project (504 pages) and other (3764 

pages). The “other” category consists of Web pages that do not apply to the other six 

categories, such as publications list, vitae and research interests pages. A folder 

structure is used to organize each Web pages file by category, one folder for each 

category. Each of these seven (7) folders contains five (5) subfolders, one for each of 

the four (4) universities and one for the miscellaneous pages. 

In order to build the data set, a set of words from the Web pages for each category 

was collected. The extracted words will only contain the twenty-six (26) English 

letters. Next, remove all the punctuations and spaces. As a result, a set of words that 

occurred in a Web page for a particular category presented in a simple word-based 

representation, called the bag-of-words. The bag-of-words presents a Web page 

(document) as a collection of words. Each word occurs in a document for at least 

once. Paragraph structure, punctuation and the meaning of the word were not taken 
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into consideration. For each word, information about the count of its occurrences 

was included. An example of the final data set was presented in Appendix C. 

Chapter Five and Six experiments used a collection of seventeen (17) data sets from 

UCI repository (Asuncion & Newman, 2007). The data sets involved were Balance 

Scale, Breast Cancer (Ljubljana), Breast Cancer (Wisconsin), Credit-a, Credit-g, 

Diabetes, Heart (Cleveland), Heart (Statlog), Hepatitis, Ionosphere, Iris, 

Lymphography, Mushroom, Segment, Sonar, Tic-Tac-Toe and Vehicle. Table 3.1 

summarized the main characteristic for these data sets. 

Balance Scale is a data set that models psychological experimental results with 625 

examples.  Each example is classified as having the balance scale tip to the right 

(288 examples), tip to the left (288 examples), or at balanced (49 examples).  There 

are four numeric attributes includes the left weight, the left distance, the right weight 

and the right distance. 

The University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia by M. 

Zwitter and M. Soklic created breast cancer (Ljubljana) data set. This 286 examples 

data set includes 201 examples of one class (no-recurrence-events) and 85 examples 

of another class (recurrence-events).  The examples are described by 9 categorical 

attributes. 

Clinical Sciences Center, University of Wisconsin created the Breast cancer 

(Wisconsin) data set. The data set consists of 699 examples separated into two 
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classes: benign (458 examples) and malignant (241 examples). All the nine attributes 

in this data set are non-discrete.  

Table 3.1: Data Sets Used in the Experiments 

Data Sets Number of 

Examples 

Number of 

Categorical 

Attributes 

Number of 

Continuous 

Attributes 

Number of 

Classes 

Balance Scale 625 0 4 3 

Breast Cancer 

(Ljubljana) 

282 9 0 2 

Breast Cancer 

(Wisconsin) 

683 0 9 2 

Credit-a 690 9 6 2 

Credit-g 1000 13 7 2 

Diabetes 768 0 8 2 

Heart (Cleveland) 303 8 5 5 

Heart (Statlog) 270 0 13 2 

Hepatitis 155 13 6 2 

Ionosphere 351 0 34 2 

Iris 150 0 4 3 

Lymphography 148 15 3 4 

Mushroom 8124 22 0 2 

Segment 2310 0 19 7 

Sonar 208 0 60 2 

Tic-Tac-Toe 958 9 0 2 

Vehicle 846 0 18 4 

 

Credit-a data set is about credit card applications.  There are 690 examples with 15 

attributes, divided into two classes: positive (307 examples) and negative (383 

examples). Nine of the attributes are discrete, while the rest are non-discrete. 
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Professor Dr. Hans Hofmann developed credit-g data set about German credit. This 

data set consists of 1000 examples divided into two classes: good (700 examples) 

and bad (300 examples). Thirteen out of twenty attributes in this data set are discrete. 

Diabetes data set is a data set collected from Pima Indian heritage females' patients 

with the age range of at least 21 years old. It is used to investigate whether the 

patient shows signs of diabetes according to World Health Organization criteria. It 

consists of 768 numeric examples and divided into two classes: tested positive for 

diabetes (268 examples) and not tested positive for diabetes (500 examples).  

Cleveland Clinic Foundation collected heart (Cleveland) data set. This data set 

consists of 303 examples divided into five classes: '<50' (164 examples), '>50_1' (55 

examples), '>50_2' (36 examples), '>50_3' (35 examples) and '>50_4' (13 examples). 

There are thirteen attributes with eight discrete attributes. 

Heart (Statlog) data set is a heart disease data set that contains 270 examples. All the 

thirteen attributes are non-discrete, and the examples are divided into two classes: 

absent (150 examples) and present (120 examples). 

Hepatitis data set is a data set developed by Gail Gong from Carnegie-Mellon 

University. This data set consists of 155 examples divided into 2 classes: DIE (32 

examples) and LIVE (123 examples). 6 attributes out of 19 attributes are continuous. 

Ionosphere data set is a radar data, collected by a system in Goose Bay, Labrador. 

The data set consists of 351 examples, divided into 2 classes: good (225 examples) 

and bad (126 examples). All the 34 attributes in this data set are of continuous type. 
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Iris data set contains 3 classes of 50 instances each. Each class refers to a type of iris 

plant. All the four attributes for this data set are continuous. R.A. Fisher developed 

this data set in July 1988. 

M. Zwitter and M. Soklic developed Lymphography data set, which was obtained 

from the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. 

This data set consists of 148 examples divided into four classes: normal find (2 

examples), metastases (81 examples), malign lymph (61 examples), and fibrosis (4 

examples). 3 out of 18 attributes in this data set are continuous. 

Mushroom data set includes descriptions of hypothetical samples corresponding to 

the species of gilled mushrooms in the agaricus and lepiota family. The data set 

consists of 8124 examples divided into 2 classes: edible (4208 examples) and 

poisonous (3916 examples). All the 22 attributes in this data set are continuous. 

Vision Group, University of Massachusetts, developed segment data set with 2310 

examples. All the 19 attributes are continuous. The examples in this data set were 

divided equally into seven classes: brickface, sky, foliage, cement, window, path, 

and grass. 

The Sonar data set has 208 examples, used to discriminate between sonar signals 

bounced off a metal cylinder and those bounced off a roughly cylindrical rock, 

developed by Gorman and Sejnowski. All the 60 attributes for this data set are 

continuous. This data set is divided into 2 classes: Rock (97 examples) and Mines 

(111 examples). 
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David W. Aha developed tic-tac-toe data set that encodes the complete set of 

possible board configurations at the end of tic-tac-toe games. There are 958 

examples divided into 2 classes: negative (332 examples) and positive (626 

examples). From the nine attributes for this data set, none are of continuous type. 

The last data set used in this thesis is the vehicle data set, developed by Turing 

Institute, Glasgow, Scotland. Vehicle data set consists of 846 examples. This data set 

classifies a given silhouette as one of four types of vehicle, using a set of features 

extracted from the silhouette. All the 18 attributes are continuous and the examples 

are divided into 4 classes: opel (212 examples), saab (217 examples), bus (218 

examples), and van (199 examples). 

Many rule induction algorithms, including Ant-miner (Parpinelli et al., 2002a, 

2002b) do not support continuous attributes. Discretization is a method to convert 

continuous attributes into categorical attributes. Typically, the data for the 

continuous attribute is partitioned into K  ranges with equal length, or %K  of the 

total data with equal frequencies (Clarke & Barton, 2000). For example, consider a 

data set that contains attribute that represent an age of persons. Attribute age is 

discretized into categorical values by transform it into ranges, such as "less than 15 

years", "16 to 30 years", and so on. 

This thesis used a discretization method called the Fayyad & Irani's MDL method 

(Fayyad & Irani, 1993) to discretize all the data set with non-discrete attributes. This 

discretization method uses information gain to recursively defines the best ranges. 

Dougherty et al. (1995) has given a detailed discussion on discretization methods for 
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continuous attributes. This thesis used WEKA software (M. A. Hall et al., 2009) to 

implement the discretization method on non-discrete attributes. 

3.2 Algorithm Formulation 

This study developed two hybrid algorithms based on the original Ant-miner 

proposed by Parpinelli et al. (2002a, 2002b) and SA. The main components of the 

Ant-miner are rule transaction, pheromone updates, heuristic function and rule 

pruning. The first proposed algorithm, presented in Chapter Five, used SA to 

optimize the rule discovered by an ant. The second proposed algorithm presented in 

Chapter Six, fixed the class before an ant discovers a rule. Besides, the optimization 

of the terms selection process while an ant constructing a rule, used the SA. The 

second proposed algorithm uses a simpler heuristic and fitness functions as 

compared to the first algorithm, which used the same heuristic and fitness functions 

as the Ant-miner (Parpinelli et al., 2002a, 2002b). 

3.3 Rule Validation 

This study used stratified ten-fold cross-validation method, depicted by Figure 3.2, to 

evaluate the performance of the classifiers. Cross-validation (Kohavi, 1995a) is a 

method for estimating how well a classifier performs on new data. Generally, this 

technique divides data set into almost equal size of ten (10) sets (or folds). Appendix 

B listed a Bash script to automate the process of creating the train/test sets. To 

evaluate the performance of a classifier, take the i-th set as a test set, and the rest of 

the sets as training sets. The classifier trained the training set to yield ordered 
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classification rules,  defaultrrR ,,1  . The default rule, defaultr  is a rule that 

contains only the consequent part. 

 

 

Figure 3.2: k-fold Cross Validation Procedure 

Later, the classification rules were evaluated against the test set for predictive 

accuracy, iacc . This process repeats k times by taking the next set as a test set, and 

the rest set as the training set. Each run uses different set as a test set. Finally, the 
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procedure calculates the average predictive accuracy, by dividing the total of all 

predictive accuracies by the total number of sets, as 





k

i

iavg accacc
110

1
  accuracy, predictive average  (3.1) 

where iacc  is the predictive accuracy for training the training set i. 

The predictive accuracy for each test set i is the average of the number of correctly 

classified examples in the test set, by the classification rules. In other words, average 

predictive accuracy for each test set, is the count of the numbers of correctly 

classified rules,   rie ccn  , mi ,,1  , where m  is the total number of examples 

in test set i ,  iec  is the consequent for example i, and rc  is the consequent for the 

rule with antecedent that covered the antecedent of example i. In order to measure 

the predictive accuracy, first, selects the first example,  1e  in the test set. Second, 

select a rule one by one, in order, until reach a rule that covers the antecedent of  1e

, say jr . If no rule cover  1e , use the default rule,  defaultr . Third, compare the 

consequent of j-th rule's consequent, 
jrc ,  with the consequent of  1e ,  1ec . If the 

consequent of ir  and  1e  is equal, increase the count of correctly classified 

examples,   re ccn 1 , by one. The algorithm calculate the predictive accuracy, 

after all the examples in the test set have been tested against the classification rules, 

by calculating the average number of correctly classified rules,   
jre ccn 1 , as 
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  



m

i

riei j
ccn

m
acc

1

1
 (3.2) 

where iacc  is the predictive accuracy for test set i , and m  is the total number of 

examples in test set i . 

Ant-miner (Parpinelli et al., 2002a, 2002b) is the first ACO based algorithm for rule 

induction, and was credited by the founder of ACO, in his book (Dorigo & Stützle, 

2004). Hence, this thesis compares the performance of the proposed algorithms with 

the Ant-miner (Parpinelli et al., 2002a, 2002b). As a control, this thesis also 

compares the performance of the proposed algorithms with PART (Frank & Witten, 

1998) and some other rule induction algorithms discussed in Section 2.2. PART is 

known as an industrial standard classification algorithm (Witten et al., 2011), which 

is an improvement of C4.5 (Quinlan, 1993) included in WEKA software (M. A. Hall 

et al., 2009). PART builds a partial C4.5 tree in each iteration and makes the best 

leaf into the rule. In other words, PART extracts the path with the highest coverage 

to form the first rule. The instances covered by this rule are removed from the 

training examples and the process is then repeated to generate the second rule, and so 

on. Hence, a set of C4.5 trees are grown on increasingly smaller subsets of the 

training examples. 

3.4 Summary 

In formulating the hybrid Ant-miner, it is important to determine the best attribute 

selection methods for dimensionality reduction, a technique in optimizing the rules 

constructed by each ant, and a method for optimizing terms selection. These steps 
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are important so that the newly formulated algorithms can produce classification 

model that could help human to understand data better, especially for large data. 
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CHAPTER FOUR 

ATTRIBUTE SELECTION METHODS FOR DIMENSIONALITY 

REDUCTION 

According to a Web Server Survey by Netcraft (http://www.netcraft.com), there are 

about 677 million Web sites, with rate of growth of 5.1% in April 2012 as compared 

to March 2012, and thus contributing to the enormous size of information on the 

Web. Consequently, information searching from the Web is not an easy task. Web 

directories are Web sites that list other Web sites according to category and 

subcategory.  

Categorizing Web documents into Web directories could facilitate information 

retrieval. Before committing a search, the user will select a specific category, such as 

“Arts”, “Business”, “Computers”, or “Sports”, resulting in more accurate and related 

information to the search engine results. DMOZ Open Directory Project (ODP) 

(http://www.dmoz.org) is an example of Web directory. A huge number of human 

editors mainly construct the ODP. However, as the Web is constantly changing and 

expanding, this manual approach will sooner became less effective. Hence, due to 

the enormous size of the Web, it would be good to have an automatic classier that 

will categorized Web pages, to help the development of a Web directory. 

The development of Web directories can benefit from the help of an intelligent 

computer system. Classification is a data mining task of assigning objects to one of 

several predefined classes. It is an important task in many information management 

and retrieval tasks on the Web. Examples include helping Web spider to focus crawl, 
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improve the quality of Web search, and assisting in the development of Web 

directories. 

Web text categorization problem, defines attributes as the words that occur in the 

Web pages (documents). The number of attributes could be tens or even hundreds of 

thousands, even for small size Web pages. According to the study conducted by 

Yang & Pederson, removing up to 98% of the attributes improved the text 

categorization performance (Yang & Pedersen, 1997). 

This chapter presented a study on the performance of various attribute selection 

methods for reducing the dimension of data set. Next, Ant-miner classifies to see the 

performance in terms of predictive accuracy and the number of rules generated. This 

chapter compares the results of classification model to C4.5, as done by Parpinelli 

(Parpinelli et al., 2002a, 2002b). 

4.1 Attribute selection method 

Attribute selection is done by searching the space of attributes for a set of attributes 

that would best predict the class. Several search methods such as Best-First, 

Exhaustive Search, Genetic Search (Goldberg, 1989), Greedy Stepwise, Race Search 

(Moore & Lee, 1994) and Random Search (H. Liu & Setiono, 1996) are constantly 

used by researchers for attribute selection activities. The function for each search 

method is as listed in Table 4.1. 
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Table 4.1: Search Methods for Attribute Selection 

Search Methods Function 

Best-First Searches the space of attribute subsets by greedy hill climbing 

augmented with a backtracking facility. 

Exhaustive Search Performs an exhaustive search through the space of attribute subsets 

starting from the empty set of attributes. 

Genetic Search Search using simple genetic algorithm. 

Greedy Stepwise Searches the space of attribute subsets by greedy hill climbing 

augmented without a backtracking facility. 

Race Search Using race search methodology. 

Random Search Search randomly. 

 

Table 4.2: Attribute Evaluation Methods for Attribute Selection 

Evaluation Methods Function 

Correlation-based Evaluates the worth of a subset of attributes by considering the 

individual predictive ability of each feature along with the 

degree of redundancy between them. 

Classifier-based Use classifier to evaluate attribute set. 

Consistency subset Measure consistency in class values for a chosen subset of 

attributes. 

 

Evaluation method such as Correlation-based attribute subset selection (Hall, 1999), 

Classifier-based attribute subset selection and Consistency subset (H. Liu & Setiono, 

1996) were used by many researchers to select the attributes in the process of 

evaluating the attributes subset found by search method. Table 4.2 lists all the 

functions for each evaluation method. 
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In this chapter, the performance of three attributes selection evaluation methods 

against Ant-miner and C4.5 has been undertaken. This chapter compares the 

performance of the attributes selection methods according to the predictive accuracy 

and the number of discovered rules, discussed in Section 4.2. Section 4.3 gives the 

summary. 

4.2 Best Attribute Selection Method 

This chapter uses the pre-classified Web pages of four Universities data sets (Craven 

et al., 1998), as mentioned in Section 1.1. The data set contains 8282 manually 

classified Web pages. The classes are student, faculty, staff, department, course and 

project. For this project, only two classes were chosen which are student and course, 

leaving only 2571 Web pages. Figure 4.1 depicts the whole process of the rules 

generation. 

From those documents, a set of binary attributes (words) was extracted, leaving the 

html tags, numbers, stop words and punctuations (pre-process). Stop words are 

words that give very little contribution or none to the meaning of the text. Examples 

of stop words are “the”, “and”, “he”. For each attribute, a value of one (1) will be 

given if the attribute occurs in the document and zero (0) otherwise. The list of stop 

words used for this experiment is listed in Appendix A. 

The words “car” and “cars” come from the same word root “car”. Instead of keeping 

both words “car” and “cars”, the number of words will be reduced using stemming 

algorithm if only the root word is used. Therefore, each word extracted was stemmed 

using Porter’s stemming algorithm (Porter, 1980). 
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Figure 4.1: The Process of Generating Rules 
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According to Hull (1996), there is no difference between the stemmers in terms of 

average performance. However, Porter's stemming algorithm (Porter, 1980) is the 

most common algorithm for stemming English. Attributes that occur less than a 

hundred (100) in the whole set of documents were also removed, and for each 

category, only twenty (20) attributes were chosen. 

This chapter compares three different attribute evaluation methods with seven search 

methods, to reduce the number of attributes. The evaluation methods are Correlation-

based attribute subset selection (M. A. Hall, 1999), Classifier-based attribute subset 

selection and Consistency subset (H. Liu & Setiono, 1996). The search methods used 

include Best-First, Exhaustive Search, Genetic Search (Goldberg, 1989), Greedy 

Stepwise, Race Search (Moore & Lee, 1994) and Random Search (H. Liu & Setiono, 

1996). The attribute selection was done using WEKA software (M. A. Hall et al., 

2009) which generates a number of new sets of data. Table 4.3 shows the number of 

attribute selected for each attribute selection run. 

For each set generated by the attribute selection, classification of documents was 

performed. The experiment compared these results with C4.5 (Quinlan, 1993). A 10-

fold cross validation procedure (Kohavi, 1995a) measures the accuracy of the 

discovered rules. The experiment consists of 10 folds (iterations), where each fold 

uses a different set of data as a test set. 

The parameters for the Ant-miner are the same as were used by Parpinelli (Parpinelli 

et al., 2002a, 2002b), which are as follows: 



 

 54 

 Number of ants: 3000 

 Minimum number of examples per rule: 10 

 Maximum number of uncovered examples: 10 

 Number of identical for convergence: 10 

Table 4.3: The Numbers of Attributes Generated by Various Attribute Selection 

Methods 

Evaluation Methods Search Method Number of Attributes 

Classifier-based Best-First 8 

Exhaustive Search 8 

Genetic Search 8 

Greedy Stepwise 6 

Race Search 6 

Random Search 9 

Correlation-based Best-First 16 

Exhaustive Search 16 

Genetic Search 16 

Greedy Stepwise 16 

Random Search 17 

Consistency subset Best-First 20 

Genetic Search 19 

Greedy Stepwise 20 

 

To evaluate the rules generated by each fold, at the end of each fold run, statistics 

such as predictive accuracy of the rule set and the number of rules in the rule set are 

calculated. Table 4.4 reported the average predictive accuracy in the test set over the 

ten (10) iterations of the cross validation procedure for each new data set created by 
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the attribute selection in terms of average predictive accuracy, while Table 4.5 list 

out the average number of rules generated by each classifier for different attribute 

selection methods. The number after the “±” sign is the standard deviation. 

Table 4.4: Comparison Between C4.5 and Ant-miner for Average Predictive 

Accuracy 

Evaluation Methods Search Method Average Predictive Accuracy 

C4.5 (%) Ant-miner (%) 

Classifier-based Best-First 92.29 ± 1.63 88.77 ± 1.66 

Exhaustive Search 92.29 ± 1.63 88.77 ± 1.66 

Genetic Search 92.29 ± 1.63 88.77 ± 1.66 

Greedy Stepwise 92.38 ± 1.63 89.94 ± 0.86 

Race Search 92.38 ± 1.63 89.94 ± 0.86 

Random Search 92.31 ± 1.62 89.63 ± 0.87 

Correlation-based Best-First 93.74 ± 1.58 91.30 ± 1.45 

Exhaustive Search 93.74 ± 1.58 91.30 ± 1.45 

Genetic Search 93.74 ± 1.58 91.30 ± 1.45 

Greedy Stepwise 93.74 ± 1.58 91.30 ± 1.45 

Random Search 93.92 ± 1.49 93.36 ± 0.67 

Consistency subset Best-First 94.03 ± 1.42 88.96 ± 1.38 

Genetic Search 93.89 ± 1.41 88.80 ± 1.67 

Greedy Stepwise 94.03 ± 1.42 91.02 ± 0.99 

 

Table 4.4 and Table 4.5 show that Correlation-based evaluation with Random Search 

is the best attribute selection method for Ant-miner, with the highest predictive 

accuracy and lowest number of rules. As for the C4.5 case, it seems like C4.5 

performs slightly better (with Consistency subset evaluation method) than Ant-miner 

(with Correlation-based attribute subset selection) in terms of predictive accuracy. 

However, the number of rules generated is more than double the number of rules 
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generated by Ant-miner. As for the number of attributes concerned, it shows that the 

lesser the number of attributes slightly decrease the predictive accuracy, but 

increases the knowledge comprehension (the number of rules). However, if the 

attribute selection reduces too many attributes, like in the Classifier-based evaluation 

method case, the predictive accuracy will slightly reduce. 

Table 4.5: Comparison Between C4.5 and Ant-miner for Average Number of Rules 

Evaluation Methods Search Method Average Number of Rules 

C4.5 Ant-miner 

Classifier-based Best-First 8.27 ± 0.94 8.70 ± 0.21 

Exhaustive Search 8.27 ± 0.94 8.70 ± 0.21 

Genetic Search 8.27 ± 0.94 8.70 ± 0.21 

Greedy Stepwise 7.00 ± 0.00 7.70 ± 0.15 

Race Search 7.00 ± 0.00 7.70 ± 0.15 

Random Search 7.4 ± 0.85 9.10 ± 0.46 

Correlation-based Best-First 18.93 ± 2.61 7.40 ± 0.27 

Exhaustive Search 18.93 ± 2.61 7.40 ± 0.27 

Genetic Search 18.93 ± 2.61 7.40 ± 0.27 

Greedy Stepwise 18.93 ± 2.61 7.40 ± 0.27 

Random Search 19.83 ± 2.45 7.00 ± 0.15 

Consistency subset Best-First 20.20 ± 1.63 7.30 ± 0.33 

Genetic Search 20.94 ± 1.88 8.00 ± 0.26 

Greedy Stepwise 20.20 ± 1.63 7.80 ± 0.33 

 

Eventually, Correlation-based evaluation with Random Search attribute selection, 

which contributes the best predictive accuracy as well as the number of rules for 

Ant-miner, does not provide the best number of attributes removed. The number of 

attributes selected for this attribute selection method is 100%, which is higher than 
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the one generated by Classifier-based attribute subset selection. Even though 

predictive accuracy depends on the attributes selected, the choice of classifiers also 

plays a critical role. Classifier will perform differently for different domain of data 

sets. 

4.3 Performance of Ant-miner on Reduced Attributes Data Sets 

Experiments conducted in the previous section have shown that the best attribute 

selection method to be used in Ant-miner is the combination of Correlation-based 

evaluation with Random Search as the search method. This section studies the 

performance of Ant-miner when the number of attributes of the data sets were 

reduced using the best combination of evaluation method and search method on 

several UCI data sets (Asuncion & Newman, 2007). Table 4.6 listed the number of 

attributes before and after reduction using Correlation-based evaluation with 

Random Search as the search method. 

Table 4.7 shows the average predictive accuracy of Ant-miner (Parpinelli et al., 

2002a, 2002b) tested on sixteen UCI data sets. It is found that the average predictive 

accuracy was improved on about 68 % of all tested data sets. For the simplicity of 

the discovered rules, according to Table 4.8 and Table 4.9, the average number of 

rules was reduced on 50 % of the sixteen data sets while the average number of 

terms was reduced on 68 % of the sixteen data sets. 

The experiment performs in this section shows that not all attributes occur in data 

sets are important and can be removed. By removing unnecessary attributes, the 

performance of a classifier in terms of the prediction power increased. As an 
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addition, the removal of unnecessary attributes will also increase the simplicity of 

the discovered rules. The simplicity of the discovered rules is important to the human 

where complex rules are harder for human to understand. 

Table 4.6: The Number of Attributes Before and After Reduction 

Data Sets Before Reduction After Reduction 

Balance Scale 4 3 

Breast Cancer (Ljubjana) 9 6 

Credit-a 15 7 

Credit-g 20 4 

Diabetes 8 5 

Heart (Cleveland) 13 7 

Heart (Statlog) 13 7 

Hepatitis 19 8 

Ionosphere 34 13 

Iris 4 2 

Lymphography 18 11 

Mushroom 22 4 

Segment 19 6 

Sonar 60 19 

Tic-tac-toe 9 5 

Vehicle 18 9 

 

Table 4.7: Comparison of The Average Predictive Accuracy for Models Constructed 

by Ant-miner on Original and Reduced UCI Data Sets 

Data Sets Before Reduction After Reduction 

Balance Scale 71.27 ± 1.54 75.17 ± 1.84 

Breast Cancer (Ljubjana) 73.74 ± 2.69 76.5 ± 2.76 

Credit-a 84.93 ± 1.21 86.09 ± 1.11 

Credit-g 70.5 ± 2.01 73.7 ± 1.51 

Diabetes 73.55 ± 1.85 74.71 ± 2 
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Heart (Cleveland) 76.78 ± 2.09 80.64 ± 2.47 

Heart (Statlog) 77.04 ± 2.64 80 ± 2.6 

Hepatitis 83.07 ± 2.63 76.31 ± 3.59 

Ionosphere 89.25 ± 1.65 86.25 ± 2.04 

Iris 95.33 ± 1.42 95.33 ± 1.42 

Lymphography 76.92 ± 3.94 70.92 ± 2.82 

Mushroom 97.45 ± 0.62 98.52 ± 0.17 

Segment 83.94 ± 1 86.23 ± 1.27 

Sonar 78.27 ± 3.36 78.88 ± 2.35 

Tic-tac-toe 71.17 ± 1.74 70.79 ± 2.05 

Vehicle 58.29 ± 1.39 58.98 ± 1.64 

 

Table 4.8: Comparison of The Average Number of Rules for Models Constructed by 

Ant-miner on Original and Reduced UCI Data Sets 

Data Sets Before Reduction After Reduction 

Balance Scale 7.8 ± 0.2 6 ± 0 

Breast Cancer (Ljubjana) 6.1 ± 0.18 6.3 ± 0.15 

Credit-a 7.4 ± 0.22 8.1 ± 0.31 

Credit-g 9.1 ± 0.18 9 ± 0.21 

Diabetes 9.3 ± 0.21 9.3 ± 0.15 

Heart (Cleveland) 6.4 ± 0.27 6.1 ± 0.18 

Heart (Statlog) 5.9 ± 0.18 6.1 ± 0.18 

Hepatitis 4.8 ± 0.2 5.1 ± 0.18 

Ionosphere 6.2 ± 0.2 6.1 ± 0.23 

Iris 4.2 ± 0.2 4 ± 0 

Lymphography 6.3 ± 0.26 6 ± 0.26 

Mushroom 7.7 ± 0.33 10 ± 0 

Segment 17.7 ± 0.47 20.4 ± 0.96 

Sonar 6 ± 0.15 6 ± 0.15 

Tic-tac-toe 7.9 ± 0.55 9 ± 0.63 

Vehicle 12 ± 0.33 10.9 ± 0.41 
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Table 4.9: Comparison of The Average Number of Terms for Models Constructed by 

Ant-miner on Original and Reduced UCI Data Sets 

Data Sets Before Reduction After Reduction 

Balance Scale 10.6 ± 0.4 7 ± 0 

Breast Cancer (Ljubjana) 7.9 ± 0.38 8.3 ± 0.42 

Credit-a 10.6 ± 0.45 9.8 ± 0.29 

Credit-g 15.6 ± 0.4 9.1 ± 0.38 

Diabetes 10.3 ± 0.54 9.1 ± 0.43 

Heart (Cleveland) 10.1 ± 0.66 8.3 ± 0.3 

Heart (Statlog) 8.8 ± 0.53 8.7 ± 0.37 

Hepatitis 8.5 ± 0.48 7.9 ± 0.6 

Ionosphere 9.1 ± 0.78 8.9 ± 0.41 

Iris 3.2 ± 0.2 3 ± 0 

Lymphography 10 ± 0.68 8.2 ± 0.68 

Mushroom 8.1 ± 0.46 9 ± 0 

Segment 23.7 ± 0.91 25.8 ± 1.72 

Sonar 11.7 ± 0.37 12.6 ± 0.56 

Tic-tac-toe 9.5 ± 1.41 9.8 ± 1.15 

Vehicle 24.5 ± 1.17 19.2 ± 1.26 

 

4.4 Summary 

The best attribute selection method to be used in Ant-miner is the combination of 

Correlation-based evaluation with Random Search as the search method. However, 

this attribute selection method will not give the best performance in attributes 

reduction. Using classifier-based attribute subset selection will reduce more 

attributes, but sacrifice the performance of the classifier. This experiments in this 

chapter shows that Ant-miner performed better than C4.5 for Web texts 

categorization. 
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Since this thesis only focuses on two classes of Web data set, it is suggested to test 

the performance of attribute selection on higher dimension of Web data sets, with 

more classes. On the other hand, a study on reducing the size of attributes dimension 

could also be done in relation to the linguistic relationship to generalize words, as a 

manual preliminary step before performing the attribute selection method. 

Tests on several reduced data sets from various fields from UCI data sets using 

Correlation-based evaluation with Random Search as the search method were also 

conducted in this thesis on Ant-miner (Parpinelli et al., 2002a, 2002b). It is found 

that using a reduced attributes data sets improve the performance of Ant-miner in 

terms of prediction power as well as the simplicity of the discovered rules. 
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CHAPTER FIVE 

SIMULATED ANNEALING AS LOCAL SEARCH IN ANT 

COLONY OPTIMIZATION FOR RULE INDUCTION 

This chapter proposed a hybrid of ACO and SA algorithm for rule induction. The 

hybrid algorithm is part of the sequential covering algorithm, which is the commonly 

used algorithm to extract classification rules directly from data. SA acted as local 

search algorithm while each ant discover rule. The usage of SA as a local search 

algorithm will minimize the problem of low quality discovered rule by an ant in a 

colony, where the rule discovered by an ant is not the best quality rule. In the 

experiments, seventeen (17) data sets which consist of discrete and continuous data 

from UCI repository (Asuncion & Newman, 2007) were used to evaluate the 

performance of the proposed algorithm. This chapter compares the experiments’ 

results to the Ant-miner and some other rule induction algorithms discussed in 

Section 2.2. In addition, this chapter also tested the proposed algorithm with the 

reduced Web data set from Chapter Four, in order to test the credibility of the 

proposed algorithm on Web pages classification. 

5.1 Simulated Annealing as Local Search 

The proposed hybrid algorithm follows Sequential Covering algorithm, in order to 

discover rules from the data set. Figure 5.1 depicts the flowchart for the sequential 

covering algorithm. Generally, the algorithm starts with an empty discovered rules 

list. This algorithm will extract rule, in  classTHENconditionsIF  form, one 

at a time from the training data set using Learn-One-Rule function. The Learn-One-

Rule function contains a set of ant colonies, which will discover a set of rules. The 
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algorithm selects one best rule from this set of rules, and then remove examples from 

the training data set that were covered (disregard the class) by this best rule. The best 

rule refers to the highest quality rule among all the ants from each ant colony. The 

algorithm appends this rule to the end of the list of discovered rule list, according to 

the discovery order, called the ordered discovered rules list. 

 

Figure 5.1: Sequential Covering Algorithm 
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After each ant colony has discovered the rules, the algorithm updates the pheromone 

level. Initially, the pheromone level for all terms were initialized using  





a

i

i

ij

b

1

1
  (5.1) 

where 

 a  is the total number of attributes, and 

 ib  is the total number of values for attribute i . 

After each rule discovery, by each ant colony, the algorithm increases the pheromone 

level for terms used in the discovered rule. The algorithm updates pheromone level 

at time t  using 

     11  tQt ijij   (5.2) 

where 

 ij  is the pheromone level for term with attribute i  and value j , and 

 Q  is the quality of the current discovered rule, defined by Equation 5.4. 
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The algorithm evaporates pheromone level for all terms by dividing the pheromone 

level for each term with the total of pheromone level. This normalization procedure 

is done after the increased of pheromone level for all used terms. 

The rules discovery processes repeat until the total number of data set is less than or 

equal to a predefined threshold value (the maximum number of uncovered data). 

Finally, the algorithm adds a default rule to the set of discovered rules. A default rule 

is a rule without the antecedent part, but contains a class with majority examples 

from the set of uncovered examples. 

In order to improve the rule’s quality discovered by each ant, this algorithm uses SA 

as a local search in Learn-One-Rule function. The algorithm applied the local search 

algorithm iteratively to each ant while each ant is discovering rule, in each ant 

colony using the Learn-One-Rule function. Figure 5.2 depicts the implementation of 

SA as a local search algorithm in ACO for rule induction. 

Each ant in each colony uses the SA to discover one rule. SA depends on the 

temperature variable. The temperature starts very high with a predefined value, and 

gradually gets lower, by a factor of a predefined threshold value. Iteration in the SA 

will create one rule using a terms selection method, which depends on a probability. 

Iterations will stop when the temperature has reduced to a predefined lower limit 

temperature. Figure 5.3 depicts these processes. 
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Figure 5.2: SA as Local Search in ACO Flow Chart 
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The algorithm evaluates the rule based on its quality, and selects the new rule as the 

best rule for iteration, if the new rule’s quality is better than the previous quality. 

However, rule with lower quality also has a chance to be selected using the 

probability 








 


T

qq
p 21exp  (5.3) 

where 

 1q  and 2q  are the quality for the previous and current rules respectively, and 

 T  is the temperature for the current iteration. 

 

The temperature starts very high. Therefore, p will almost be one, and all rules have 

almost the same probability to be chosen. As the temperature decreases, the 

difference between the previous and current quality become more significant. Hence, 

rule with slightly lower quality will be preferred over much lower ones. 
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Figure 5.3: SA Flow Chart to Construct Best Rule for an Ant 
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After each ant discovers a rule, the algorithm performs pruning procedure. The 

pruning procedure iteratively removes one term at a time while rule’s quality is 

improved. The rule quality is calculated using fitness function 

FPTN

TN

FNTP

TP
Q





  (5.4) 

where 

 TP  is the number of examples covered by the rule and having the same class 

from the class predicted by the rule, 

 FP  is the number of examples covered by the rule and having a different 

class from the class predicted by the rule, 

 FN  is the number of examples that are not covered by the rule, but have the 

same class with the class predicted by the rule, and 

 TN  is the number of examples that are not covered by the rule, and have a 

different class with the class predicted by the rule. 

In the terms selection procedure (depicted by Figure 5.4), terms will be added to the 

partial rule until there is no more possible terms left. A new selected term’s attribute 

is an unused previously attribute. In other words, a rule cannot have an attribute with 

more than one value. It is a one to one mapping of an attribute and its value. After 

terms addition process has finished, the algorithm adds a consequent to the partial 
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rule. The consequent is the class with the majority examples, from all examples 

covered by the rule. The term selection method uses the following probability: 


 






a

i

f

j

ijij

ijij
ij

i

P

1 1




 (5.5) 

where 

 ij  is the heuristic value for term with attribute i  and value j , 

 ij  is the pheromone level for term with attribute i  and value j , and 

 if  is the number of values for attribute i . 

The probability depends on the heuristic value,  tij , and current pheromone level, 

 tij  for each term, ijterm . By time, after each ant colony has selected one best 

rule, the pheromone level for the higher quality terms will increase, and hence 

increases the chances of selecting those terms. The heuristic value for terms remains 

the same. 

The heuristic function uses the entropy for preferring a term to the others, as 


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where 

 ijinfo  is the entropy value for term with attribute i  and value j , 

 k  is the total number of classes, 

 ijT  is the total number of examples for attribute i  with value if , 

 a  is the total number of attributes, and 

 ib  is the total number of values for attribute i . 

The entropy is calculated using Equation 5.7. 

   iji

k

c

ijiij VAcPVAcP  


|log|info
1

2  (5.7) 

where 

 c  is the class value, 

 k  is the total number of class values, and 

  iji VAcP |  is the probability of observing class c  conditional on observing 

attribute i  having value ijV , iji VA  . 
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Figure 5.4: Terms Selection Procedure Flow Chart 
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5.2 Experiment and Results 

The chapter tested the proposed algorithm on 17 data sets from UCI repository 

(Asuncion & Newman, 2007), as well as the reduced Web data set from Chapter 

Four, using a ten-fold cross-validation technique (Kohavi, 1995a). Each data set is 

randomly shuffled and split into ten approximately equally sized subsets using 

WEKA software (M. A. Hall et al., 2009). First, the experiment takes one subset as 

the testing set, while the rest subsets become the training set. After the proposed 

algorithm trained the training set, the proposed algorithm evaluated the discovered 

rules against the test subset. The experiment repeats this processes ten times, 

producing ten individual sets of performance statistics, such as predictive accuracy, 

number of rules and number of terms in the rules. Finally, the experiment averages 

these performance statistics and calculates the standard deviations for each 

performance statistics. 

The proposed hybrid algorithm, cannot cope with non-discrete attributes, but only 

nominal attributes. Hence, the experiment discretizes non-discrete attributes in the 

first place, using the discretization method proposed by Fayyad & Irani (1993), as 

discussed in Chapter Three. All the experiments use 100 ant colonies with 5 ants 

each. 

5.2.1 Classification of 17 Data Sets from UCI Repository 

The performance of the proposed algorithm is evaluated by comparing it with Ant-

miner (Parpinelli et al., 2002a, 2002b). Table 5.1-5.3 summarized the performance 

statistics for Ant-miner (Parpinelli et al., 2002a, 2002b), and the proposed algorithm. 
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Figure 5.5–5.7 visualized the performance statistics laid out by Table 5.1–5.3, 

respectively. 

Table 5.1 and Figure 5.5 compare the predictive accuracy between Ant-miner 

(Parpinelli et al., 2002a, 2002b) and the proposed algorithm. Compared to the Ant-

miner, the proposed algorithm achieves almost similar predictive accuracy. It is 

found that the proposed algorithm only performed better than the Ant-miner on only 

35% (6 out of 17) of the data sets. For the data sets where the Ant-miner wins, the 

differences are very small. However, when it comes to simplicity, the proposed 

algorithm performed a significant different where the proposed algorithm construct 

fewer number of rules for 82% (15 out of 17) of the data sets, as shown in Table 5.2 

and Figure 5.6. Moreover, the proposed algorithm produced rule with fewer number 

of terms on all data sets, compared to the Ant-miner, as shown in Table 5.3 and 

Figure 5.7. 
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Table 5.1: Average Predictive Accuracy (%) of Ant-miner and Proposed Algorithm 1 

Data Sets Ant-miner Proposed Algorithm 1 

Balance Scale 71.27 ± 1.54 63.68 ± 6.19 

Breast Cancer (Ljubljana) 73.74 ± 2.69 74.11 ± 3.95 

Breast Cancer (Wisconsin) 94.99 ± 0.49 93.99 ± 3.71 

Credit-a 84.93 ± 1.21 84.64 ± 4.31 

Credit-g 70.50 ± 2.01 72.90 ± 4.13 

Diabetes 73.55 ± 1.85 74.62 ± 4.70 

Heart (Cleveland) 76.78 ± 2.09 74.83 ± 7.95 

Heart (Statlog) 77.04 ± 2.64 75.56 ± 7.07 

Hepatitis 83.07 ± 2.63 82.00 ± 4.62 

Ionosphere 89.25 ± 1.65 85.48 ± 5.62 

Iris 95.33 ± 1.42 96.00 ± 4.42 

Lymphography 76.92 ± 3.94 78.95 ± 7.41 

Mushroom 97.45 ± 0.62 91.14 ± 5.93 

Segment 83.94 ± 1.00 86.15 ± 2.44 

Sonar 78.27 ± 3.36 73.14 ± 8.96 

Tic-tac-toe 71.17 ± 1.74 71.09 ± 3.86 

Vehicle 58.29 ± 1.39 57.57 ± 6.04 
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Table 5.2: Average Number of Rules of Ant-miner and Proposed Algorithm 1 

Data Sets Ant-miner Proposed Algorithm 1 

Balance Scale 7.80 ± 0.20 5.00 ± 0.00 

Breast Cancer (Ljubljana) 6.10 ± 0.18 5.20 ± 0.60 

Breast Cancer (Wisconsin) 7.40 ± 0.22 7.40 ± 0.49 

Credit-a 7.40 ± 0.22 5.80 ± 1.08 

Credit-g 9.10 ± 0.18 8.10 ± 0.83 

Diabetes 9.30 ± 0.21 9.10 ± 0.30 

Heart (Cleveland) 6.40 ± 0.27 6.20 ± 0.98 

Heart (Statlog) 5.90 ± 0.18 5.30 ± 0.46 

Hepatitis 4.80 ± 0.20 4.50 ± 0.50 

Ionosphere 6.20 ± 0.20 6.40 ± 1.11 

Iris 4.20 ± 0.20 4.00 ± 0.00 

Lymphography 6.30 ± 0.26 5.40 ± 0.49 

Mushroom 7.70 ± 0.33 3.70 ± 1.10 

Segment 17.70 ± 0.47 19.50 ± 1.96 

Sonar 6.00 ± 0.15 5.20 ± 0.75 

Tic-tac-toe 7.90 ± 0.55 6.20 ± 2.44 

Vehicle 12.00 ± 0.33 11.90 ± 0.83 
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Table 5.3: Average Number of Terms of Ant-miner and Proposed Algorithm 1 

Data Sets Ant-miner Proposed Algorithm I 

Balance Scale 10.60 ± 0.40 4.00 ± 0.00 

Breast Cancer (Ljubljana) 7.90 ± 0.38 4.20 ± 0.60 

Breast Cancer (Wisconsin) 7.70 ± 0.26 6.40 ± 0.49 

Credit-a 10.60 ± 0.45 4.80 ± 1.08 

Credit-g 15.60 ± 0.40 7.10 ± 0.83 

Diabetes 10.30 ± 0.54 8.10 ± 0.30 

Heart (Cleveland) 10.10 ± 0.66 5.20 ± 0.98 

Heart (Statlog) 8.80 ± 0.53 4.30 ± 0.46 

Hepatitis 8.50 ± 0.48 3.50 ± 0.50 

Ionosphere 9.10 ± 0.78 5.40 ± 1.11 

Iris 3.20 ± 0.20 3.00 ± 0.00 

Lymphography 10.00 ± 0.68 4.40 ± 0.49 

Mushroom 8.10 ± 0.46 2.70 ± 1.10 

Segment 23.70 ± 0.91 18.50 ± 1.96 

Sonar 11.70 ± 0.37 4.20 ± 0.75 

Tic-tac-toe 9.50 ± 1.41 5.20 ± 2.44 

Vehicle 24.50 ± 1.17 10.90 ± 0.83 
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Figure 5.5: Comparison of Average Predictive Accuracy Between Ant-miner and 

Proposed Algorithm 1 
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Figure 5.6: Comparison of Average Number of Rules Between Ant-miner and 

Proposed Algorithm 1 
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Figure 5.7: Comparison of Average Number of Terms Between Ant-miner and 

Proposed Algorithm 1 
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Experiments in Chapter 4 have shown that the removal of the unnecessary attributes 

will increased the predictive power of the classification model constructed by Ant-

miner (Parpinelli et al., 2002a, 2002b) as well as improving the simplicity of the 

classification rules. This section tested the proposed algorithm on the seventeen UCI 

reduced data sets using the methods from Chapter 4: the combination of Correlation-

based evaluation with Random Search as the search method. 

According to the average accuracy laid out in Table 5.4 and depicted by Figure 5.8, 

the proposed algorithm wins on 6 out of 17 data sets (35%), the same as without 

attributes reduction method applied. However, the mean for all average accuracy is 

higher (79.5%) compared to when using the proposed algorithm to construct the 

classification model without reducing the attributes (78.58%). 

Moreover, the simplicity (the less number of rules and the less number of terms per 

rule, the better the simplicity of the rules) of the constructed rules also improved 

when reducing the number of attributes as shown in Table 5.5 and Figure 5.9, where 

the proposed algorithm wins on 15 out of 17 (88.2%) data sets with a mean of 6.73 

as compared to 14 out of 17 (82.4%) without reducing the attributes for the average 

number of rules with a mean of 6.99. 

The same goes for the number of terms per rule. The mean for the average number of 

terms per rule, when the method of attributes reduction is applied on the data sets 

initially, was reduced by 4.3. The results were shown in Table 5.6 and Figure 5.10. 
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Experiments in this section have shown that even though the number of rules was 

reduced (simpler rules) and the number of terms for each rule was reduced, the 

predictive power (accuracy) of the constructed classification model still improved, if 

we reduced the unnecessary attributes using the proposed method in Section 4 from 

the data sets, before using the proposed algorithm in this section to constructed the 

classification model.  

Table 5.4: Average Predictive Accuracy (%) of Ant-miner and Proposed Algorithm 1 

on Reduced Attributes Data Sets 

Data Sets Ant-miner Proposed Algorithm 1 

Balance Scale 75.17 ± 1.84 65.29 ± 5.32 

Breast Cancer (Ljubljana) 76.50 ± 2.76 74.46 ± 3.94 

Breast Cancer (Wisconsin) 94.71 ± 0.83 94.57 ± 3.60 

Credit-a 86.09 ± 1.11 86.09 ± 4.99 

Credit-g 73.70 ± 1.51 71.80 ± 4.75 

Diabetes 74.71 ± 2.00 75.53 ± 4.47 

Heart (Cleveland) 80.64 ± 2.47 75.17 ± 8.48 

Heart (Statlog) 80.00 ± 2.60 76.30 ± 7.44 

Hepatitis 76.31 ± 3.59 81.96 ± 7.41 

Ionosphere 86.25 ± 2.04 88.04 ± 3.77 

Iris 95.33 ± 1.42 94.67 ± 4.00 

Lymphography 70.92 ± 2.82 80.95 ± 8.27 

Mushroom 98.52 ± 0.17 98.52 ± 0.46 

Segment 86.23 ± 1.27 85.80 ± 2.95 

Sonar 78.88 ± 2.35 73.07 ± 7.45 

Tic-tac-toe 70.79 ± 2.05 73.07 ± 1.87 

Vehicle 58.98 ± 1.64 55.80 ± 3.07 
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Table 5.5: Average Number of Rules of Ant-miner and Proposed Algorithm 1 on 

Reduced Attributes Data Sets 

Data Sets Ant-miner Proposed Algorithm 1 

Balance Scale 6.00 ± 0.00 4.00 ± 0.00 

Breast Cancer (Ljubljana) 6.30 ± 0.15 4.90 ± 0.30 

Breast Cancer (Wisconsin) 7.40 ± 0.22 7.50 ± 0.50 

Credit-a 8.10 ± 0.31 6.90 ± 1.04 

Credit-g 9.00 ± 0.21 8.90 ± 0.94 

Diabetes 9.30 ± 0.15 8.10 ± 0.30 

Heart (Cleveland) 6.10 ± 0.18 5.80 ± 0.60 

Heart (Statlog) 6.10 ± 0.18 5.20 ± 0.40 

Hepatitis 5.10 ± 0.18 4.10 ± 0.70 

Ionosphere 6.10 ± 0.23 6.70 ± 0.78 

Iris 4.00 ± 0.00 3.40 ± 0.49 

Lymphography 6.00 ± 0.26 5.10 ± 0.30 

Mushroom 10.00 ± 0.00 5.00 ± 0.00 

Segment 20.40 ± 0.96 19.40 ± 2.29 

Sonar 6.00 ± 0.15 5.10 ± 0.70 

Tic-tac-toe 9.00 ± 0.63 5.20 ± 2.18 

Vehicle 10.90 ± 0.41 9.10 ± 1.45 
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Table 5.6: Average Number of Terms of Ant-miner and Proposed Algorithm 1 on 

Reduced Attributes Data Sets 

Data Sets Ant-miner Proposed Algorithm 1 

Balance Scale 7.00 ± 0.00 3.00 ± 0.00 

Breast Cancer (Ljubljana) 8.30 ± 0.42 3.90 ± 0.30 

Breast Cancer (Wisconsin) 8.20 ± 0.36 6.50 ± 0.50 

Credit-a 9.80 ± 0.29 5.90 ± 1.04 

Credit-g 9.10 ± 0.38 7.90 ± 0.94 

Diabetes 9.10 ± 0.43 7.10 ± 0.30 

Heart (Cleveland) 8.30 ± 0.30 4.80 ± 0.60 

Heart (Statlog) 8.70 ± 0.37 4.20 ± 0.40 

Hepatitis 7.90 ± 0.60 3.10 ± 0.70 

Ionosphere 8.90 ± 0.41 5.70 ± 0.78 

Iris 3.00 ± 0.00 2.40 ± 0.49 

Lymphography 8.20 ± 0.68 4.10 ± 0.30 

Mushroom 9.00 ± 0.00 4.00 ± 0.00 

Segment 25.80 ± 1.72 18.40 ± 2.29 

Sonar 12.60 ± 0.56 4.10 ± 0.70 

Tic-tac-toe 9.80 ± 1.15 4.20 ± 2.18 

Vehicle 19.20 ± 1.26 8.10 ± 1.45 
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Figure 5.8: Comparison of Average Predictive Accuracy Between Ant-miner and 

Proposed Algorithm 1 on Reduced Attributes Data Sets 
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Figure 5.9: Comparison of Average Number of Rules Between Ant-miner and 

Proposed Algorithm 1 on Reduced Attributes Data Sets 
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Figure 5.10: Comparison of Average Number of Terms Between Ant-miner and 

Proposed Algorithm 1 on Reduced Attributes Data Sets 
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The performance of the proposed algorithm was also tested on several other well-

known rule induction algorithm discussed in Section 2.2. The tested algorithms are 

the conjunctive rule (Witten et al., 2011), decision table (Kohavi, 1995b), DTNB (M. 

Hall & Frank, 2008), JRip (Cohen, 1995) and PART (Frank & Witten, 1998). As an 

addition, comparison was also done with a hybrid algorithm for rule induction, the 

PSO/ACO2 (Holden & Freitas, 2008). 

Table 5.7 shows the average predictive accuracy comparison of conjunctive rule 

(Witten et al., 2011), decision table (Kohavi, 1995b), DTNB (M. Hall & Frank, 

2008), JRip (Cohen, 1995) and PART (Frank & Witten, 1998) against the proposed 

algorithm in this chapter. The mean for the average predictive accuracy for each 

algorithm were calculated. The conjunctive rule algorithm produced the lowest mean 

at 69.97%, and JRip produced the highest predictive accuracy with a mean of 

83.75%. The hybrid of PSO and ACO algorithm for rule induction, the PSO/ACO2 

scores a mean of 79.03%. The proposed algorithm produced average predictive 

accuracy with a mean that is at par with the rest of other the tested algorithm with a 

mean of 78.58%. Even though the proposed algorithm predictive power is only at par 

with other tested rule induction algorithms, the proposed algorithm produced much 

simpler rules as shown in Table 5.8. The proposed algorithm produced the fewest 

average number of rules from all data sets with a mean of 6.73. The hybrid 

PSO/ACO2 produced the highest mean of average number of rules with a value of 

17.79 rules.   
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Table 5.7: Average Predictive Accuracy (%) of Conjuctive Rule, Decision Table, 

DTNB, JRip, PART, ACO/PSO2 and Proposed Algorithm 1 

Data Sets 
Conjunc

tive Rule 

Decision 

Table 
DTNB JRip PART 

ACO/ 

PSO2 

Prop. 

Algo. 1 

Balance Scale 60.93 71.26 70.89 74.87 69.84 82.72 63.68 

 
± 5.4 ± 3.79 ± 3.74 ± 4.41 ± 3.97  ± 4.77 ± 6.19 

Breast Cancer 

(Ljubjana) 
69.03 73.73 69.94 71.45 69.41 72.62 74.11 

 
± 4.17 ± 5.34 ± 6.93 ± 6.44 ± 7.63  ± 6.84 ± 3.95 

Breast Cancer 

(Wisconsin) 
88.03 94.96 97.01 95.48 95.05 93.42 93.99 

 
± 3.6 ± 2.54 ± 1.91 ± 2.3 ± 2.39  ± 3.79 ± 3.71 

Credit-a 85.51 84.67 85.48 86.38 85.25 85.31 84.64 

 
± 3.96 ± 4.21 ± 4.09 ± 3.75 ± 4.00  ± 4.14 ± 4.31 

Credit-g 70 72.75 71.76 71.74 72.24 67.9 72.9 

 
± 0 ± 3.66 ± 3.71 ± 3.67 ± 4.24  ± 5.82 ± 4.13 

Diabetes 73.47 77.02 77.77 77.41 76.84 72.67 74.62 

 
± 4.91 ± 4.7 ± 4.45 ± 4.78 ± 4.19  ± 4.98 ± 4.70 

Heart 

(Cleveland) 
72.98 77.22 80.81 81.65 77.49 77.38 74.83 

 
± 7.18 ± 7.5 ± 8.75 ± 6.45 ± 8.30  ± 5.45 ± 7.95 

Heart (Statlog) 73 83.41 81.56 82.89 83.33 81.11 75.56 

 
± 8.09 ± 7.03 ± 6.55 ± 6.67 ± 7.44  ± 6.16 ± 7.07 

Hepatitis 79.83 81.22 81.1 81.45 81.59 - 82 

 
± 4.95 ± 8.07 ± 8.31 ± 9.16 ± 8.62 - ± 4.62 

Ionosphere 80.77 89.04 91.68 91.68 90.03 88.06 85.48 

 
± 6.12 ± 4.58 ± 4.54 ± 4.84 ± 4.43  ± 4.91 ± 5.62 

Iris 66.67 93.8 94.13 94.6 94.87 94.67 96 

 
± 0 ± 5.04 ± 5.38 ± 5.25 ± 5.09  ± 5.26 ± 4.42 

Lymphography 71.77 73.47 77.25 77.4 78.24 83.05 78.95 

 
± 11.86 ± 10.5 ± 10.22 ± 11.08 ± 10.54  ± 6.67 ± 7.41 

Mushroom 88.68 100 99.91 100 100 99.9 91.14 

 
± 1.11 ± 0 ± 0.11 ± 0 ± 0.00  ± 0.11 ± 5.93 

Segment 28.57 90.45 94.57 92.84 94.82 96.67 86.15 

 
± 0 ± 2.06 ± 1.5 ± 2.28 ± 1.53  ± 1.17 ± 2.44 

Sonar 70.33 74.77 79.49 79 81.26 75.05 73.14 

 
± 9.94 ± 11.14 ± 8.92 ± 8.34 ± 8.51  ± 9.11 ± 8.96 

Tic-tac-toe 69.45 73.83 69.94 97.55 93.85 100 71.09 

 
± 4.31 ± 4.13 ± 4.31 ± 1.66 ± 3.08  ± 0 ± 3.86 

Vehicle 40.4 67.34 66.3 67.32 70.45 73.05 57.57 

  ± 2.09 ± 4.36 ± 3.63 ± 3.94 ± 4.24  ± 4.45 ± 6.04 
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Table 5.8: Average Number of Rules of JRip, PART, PSO/ACO2 and Proposed 

Algorithm 1 

Data Sets JRip PART PSO/ACO2 
Proposed 

Algorithm 1 

Balance Scale 4.67 ± 0.47 4.92 ± 0.27 26.6 ± 1.07 4 ± 0 

Breast Cancer (Ljubjana) 2.87 ± 0.82 16.64 ± 3.63 12.4 ± 2.27 4.9 ± 0.3 

Breast Cancer (Wisconsin) 6.79 ± 1 9.77 ± 1.53 9.9 ± 1.6 7.5 ± 0.5 

Credit-a 4.89 ± 1.47 16.49 ± 4.27 22.7 ± 2 6.9 ± 1.04 

Credit-g 5.08 ± 1.52 14.16 ± 3.25 54.3 ± 1.89 8.9 ± 0.94 

Diabetes 4.71 ± 0.56 13.15 ± 2.32 33.4 ± 1.43 8.1 ± 0.3 

Heart (Cleveland) 4.22 ± 0.66 10.43 ± 2.33 12.6 ± 0.84 5.8 ± 0.6 

Heart (Statlog) 4.88 ± 0.82 9.36 ± 2.04 9.7 ± 1.34 5.2 ± 0.4 

Hepatitis 2.37 ± 0.51 6.59 ± 3.71 - 4.1 ± 0.7 

Ionosphere 8.12 ± 1.65 9.84 ± 1.56 3.6 ± 0.97 6.7 ± 0.78 

Iris 3.1 ± 0.3 3 ± 0 3 ± 0 3.4 ± 0.49 

Lymphography 6.73 ± 0.97 9.65 ± 2.25 14.7 ± 2 5.1 ± 0.3 

Mushroom 8.84 ± 0.6 13.19 ± 1.34 8.7 ± 0.48 5 ± 0 

Segment 46.55 ± 8.44 55 ± 4.67 21.9 ± 0.99 19.4 ± 2.29 

Sonar 4.62 ± 0.83 12.85 ± 1.89 4.4 ± 1.58 5.1 ± 0.7 

Tic-tac-toe 10.33 ± 1.42 33.09 ± 3.37 9 ± 0 5.2 ± 2.18 

Vehicle 16.04 ± 2.53 38.83 ± 3.38 37.8 ± 1.2 9.1 ± 1.45 

 

5.2.2 Classification of Web Data Set 

This subsection experiments the proposed algorithm with the data set build in 

Chapter Four. The number of attributes was reduced using Correlation-based 

evaluation method with Random search as the search method. The results was 

compared to PART (Witten et al., 2011) and Ant-miner (Parpinelli et al., 2002a, 

2002b). 

Table 5.9 and Figure 5.11 show that the average predictive accuracy for proposed 

algorithm is slightly less accurate than PART and Ant-miner. However, the proposed 

algorithm outperformed PART in terms of simplicity of discovered rules. The 
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number of rules and number of terms are both far less than PART, even though it is 

only at par with Ant-miner. 

Table 5.9: Performance Comparison for Reduced Web Data 

Algorithm 

Average 

Predictive 

Accuracy (%) 

Average 

Number of Rules 

Average 

Number of Terms 

PART 94.01 ± 4.30 28.00 ± 3.4 90.00 ± 3.5 

Ant-miner 93.36 ± 0.67 7.00 ± 0.15 10.1 ± .45 

Proposed Algorithm 1 79.15 ± 5.17 8.80 ± 0.98 7.80 ± 0.98 

 

 

 

Figure 5.11: Performance Comparison for Reduced Web Data 

5.3 Summary 

This chapter had proposed a hybrid algorithm based on ACO and SA to discover 

classification rules from data. The SA acts as a local search algorithm in order for an 

0
10
20
30
40
50
60
70
80
90

100

Average

Predictive Accuracy

(%)

Average

Number of Rules

Average

Number of Terms

PART Ant-miner Proposed Algorithm 1



 

 92 

ant to discover a good quality rule. This chapter compares the performance of the 

proposed algorithm to the original Ant-miner and PART concerning the predictive 

accuracy, and found to be competitive with Ant-miner and PART. Moreover, the 

experiments in this chapter found that the rules discovered by the proposed algorithm 

were simpler that the compared algorithms. Therefore, SA is able to help ACO 

produced simpler rules, even though the .predictive accuracy is only at par with Ant-

miner and PART. 

Chapter Six discusses the usage of SA to select terms to be included in a rule. 

Besides, the proposed algorithm in Chapter Six will fix the class before selecting 

terms in order to improve the rule's predictive accuracy. 
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CHAPTER SIX 

SIMULATED ANNEALING FOR BEST TERMS SELECTION 

Chapter Five proposed a hybrid algorithm to optimize rule discovered by each ant in 

the ACO. The proposed hybrid algorithm used the SA to optimize the rule. The 

usage of SA improved the simplicity of the discovered rules, by producing fewer 

rules, and rule with lesser number of terms. Even though the accuracy of the 

discovered rules are competitive to the original Ant-miner (Parpinelli et al., 2002a, 

2002b), the accuracy is only at par. The main problem of the proposed algorithm, as 

well as the original Ant-miner, is that the class is not pre-defined. The class is 

determined at the end of the rule construction process. Since the ant does not know 

the class at the beginning of the rule's construction process, the ant will heuristically 

find the best related term to the set of current terms in the partial rule. Thus, the 

algorithm may not discover any rule for the class with very few examples or in the 

data set with unequally distributed examples for each class. 

This chapter proposed a new hybrid algorithm that fixed the class before the rule's 

construction process. Each term inclusion to the partial rule, will reflect the pre-

defined rule's class. The proposed algorithm used a sequential covering based 

algorithm to extract classification rules for known class. SA is used to optimize the 

terms selection process, in each rule's construction process, which differ from the 

proposed algorithm in Chapter Five. The proposed algorithm in Chapter Five uses 

the SA to optimized rule discovered by each ant. The pre-defining of class in 

constructing a rule enabled the use of simpler heuristic function for terms selection, 

as well as the fitness function to measure the quality of a rule. 
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The following section discussed the construction of the proposed algorithm, 

followed by experiments setup and the discussion on the results from the 

experiments. 

6.1 Simulated Annealing for Term Selection 

The proposed algorithm uses sequential covering algorithm as the basis algorithm. 

The algorithm extracts the rules by training the examples in the training data set, E , 

one class at a time. The list of k  classes are ordered based on their prevalence, 0C . 

Class prevalence is the fraction of examples in the training set that belongs to a 

particular class. The k -th class in the classes list is not used to extract rules, but is 

set as default rule, defaultr . A default rule is a rule that contains no antecedent part, 

but only the consequent part, placed at the bottom of the list of discovered rules. If 

there are only two classes available, the algorithm performs the training for class 

with the highest prevalence only, and set the second class as the default rule. 

Figure 6.1 summarizes sequential covering algorithm used in the proposed 

algorithm, and Figure 6.2 depicted the flow chart for the algorithm. The algorithm 

starts with an empty list of discovered rules, R . For each class, ic  in 0C , except for 

the last class kc , an ACO algorithm is used to extract the best rule, that covers the 

current set of training examples. After ACO has found one best rule for the current 

set of training examples, r , the examples covered by the rule are removed from the 

training set. Then, the constructed rule, r  is added to the list of discovered rules, R . 

This procedure repeats until the number of examples in the training set is less than a 

pre-defined threshold value, max_uncovered. In order to extract rules for the next i -
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th class, ic , the original set of training examples is restored. The algorithm repeats 

the same procedure for the next class. 

 

Figure 6.1: Sequential Covering Algorithm with Pre-Defined Class 
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Figure 6.2: Sequential Covering with Pre-Defined Class Flow Chart 
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The algorithm sorted the list of discovered rules for all 1k  classes in descending 

order of the quality. By disregarding the rule's class, the algorithm place the highest 

quality rule at the top of the list, followed by the second highest quality rule, and so 

on. In order to predict a new unseen example, the algorithm search for a rule in 

order, in the list of discovered rules, which cover the example. The class for the rule 

that covers the new example is set as the predicted class for the new example. If 

there is no rule found to cover the new example, the default rule is used. In other 

words, the algorithm predicted the new example to have the same class with the class 

that has the minority number of examples. 

The proposed algorithm uses ACO, depicted by Figure 6.3, as the Learn-One-Rule 

function in the sequential covering algorithm to extract a rule from the current set of 

training examples. Figure 6.4 visualize the flow chart for ACO. Each ant colony in 

ACO contains only one ant each, and discovers one rule each. However, the 

algorithm may stop earlier if the set of rules have converged. Therefore, the total 

number of rules is less than or equal to the number of ant colonies. 

The convergence of the rules occurs when p  number of consequent rules has the 

same value of quality. The value p  is pre-defined earlier before the algorithm starts. 

The algorithm updates the pheromone level for all terms after each ant colony has 

discovered a rule. The chosen terms will have a higher level of pheromone compared 

to the other terms.  Since ants tend to choose terms with higher pheromone level, the 

next ant colony will discover a rule that is biased by the rule discovered by the 



 

 98 

previous ant colony (foraging behaviour of ants). Finally, the rules discovered by the 

consequents ant colony will converge to the same rule. 

 

Figure 6.3: ACO Algorithm to Extract One Rule 

The algorithm initialized all pheromones level equally using Equation 6.1, as 





a

i

i

ij

b
1

1
  (6.1) 

where  

 a  is the total number of attributes, and 

 ib  is the total number of values for attribute i . 
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Figure 6.4: ACO Algorithm to Extract One Rule Flow Chart 
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The pheromones level for terms used in the discovered rule, by each ant colony are 

colony are increased. The pheromone level update at time t  for term with attribute i  

and value j , ijterm  is carried out using 

      Qttt ijijij *11    (6.2) 

where 

 ij  is the updated pheromone level for ijterm , 

  1tij  is the current pheromone level for ijterm , and 

Q  is quality of the newly constructed rule, defined by Equation 6.4. 

Subsequently, to mimic the evaporation of pheromone by the real ants, the 

pheromone level for all terms are normalize by dividing the pheromone level for 

each term by the sum of all pheromone level, as 

 
 

 
 






m
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ij

ij

ij

t

t
t

1 1

1

1




  (6.3) 

where 

 ij  is the updated pheromone level for ijterm , 

  1tij  is the current pheromone level for ijterm , 
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 m  is the total number of attributes, and 

 n  is the total number of values for each attribute. 

After all ant colonies have discovered the rules, or when the rules have converged, 

where p  number of consequent rules have the same value of quality, the algorithm 

will select one best rule from the set of all rules. The best rule is a rule that has the 

highest quality among all the rules discovered by ACO. 

The algorithm calculate the rule's quality using a fitness function, defined by 

Equation 6.4, 

 
FPTPk

TP
Q






1

1
 (6.4) 

where  

 TP  is the number of examples covered by the rule, and having the same class 

from the class predicted by the rule, 

 FP  is the number of examples covered by the rule, and having a different 

class from the class predicted by the rule, and 

 k  is the total number of classes. 

Since the ant knows the class when constructing the rule, the proposed algorithm 

used a simpler fitness function as compared to the fitness function used in the 
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original Ant-miner proposed by Parpinelli. Therefore, the relationship between terms 

is not important, since the selected terms for inclusion are already from the same 

group. The fitness function is the proportion of the number of correctly covered 

examples by the rule to the number of covered examples of the rule. However, if 

there are no examples covered by the rule, the equation is undefined, since both the 

numerator and denominator are both zero. Hence, Equation 6.4 adds one to the 

numerator, and k1  to the denominator. As a consequent, if there are no examples 

covered by the rule, the rule's quality is still be given a value. 

Each ant constructs a rule using terms selection procedure. Figure 6.5 summarizes 

the terms selection procedure, while Figure 6.6 depicts the flow chart for the whole 

processes. The terms selection procedure starts by initializing a list of terms, and an 

empty partial rule, but with a known class, ic . Terms are added to the partial rule 

one by to the partial rule each time, from a set of terms, Terms . SA finds the best 

term, t , to be included into the partial rule, r , each time. The terms selection 

procedure stops when there are no more terms with unused attributes left; or the new 

term addition does not improve the quality of the rule. There is one caveat when 

constructing the rule. A rule cannot contain two or more terms with the same 

attribute. Therefore, the procedure stops when there are no more attributes left. 

Rule pruning helps to avoid the over-fitting to the training data, since the algorithm 

selects terms greedily based on a heuristic measure. Moreover, the pruning 

procedure may improve the simplicity of the rule, by reducing the number of terms 

in a rule. The algorithm prunes each constructed rule if there are more than one term 
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available in the rule's antecedent, and remove terms one at a time. After each term 

removal, the new rule's quality is calculated. If the rule's quality has improved, the 

pruning procedure removes the term permanently. This process continues until there 

is only one term left, or no terms removal would improve the rule's quality. This is 

different from the pruning procedure used by the original Ant-miner by Parpinelli 

(2002a, 2002b) and the one used in Chapter Five. The pruning procedure used in this 

proposed algorithm does not change the class for the rule. In other words, the 

removal of a term is to improve the rule's quality subject to a known class. 

 

Figure 6.5: Terms Selection Procedure 
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terms for a selected class, optimized by SA. In other words, SA optimizes each term 

inclusion into the partial rule. Figure 6.5 depicted the flow chart for the SA 

procedure to select a term. The SA starts by first initializing a very high value 

temperature. For a set of available terms, a known class, and an empty partial rule, 

the algorithm select an optimize term, and add it to the partial rule. 
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Figure 6.6: Terms Selection Procedure Flow Chart 

Figure 6.7 depicts the flow chart for selecting an optimize term with SA. The 

simulated algorithm optimized the selected term, by selecting a term to be tested, and 

check whether the new selected term increase the quality of the rule. Equation 6.4 

defines the fitness function to calculate the rule’s quality. If the new term addition 

makes the rule's quality improved, the term is marked as the best term so far. 
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Figure 6.7: SA Algorithm to Select One Term Flow Chart 
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SA reduced the temperature based on a pre-defined cooling factor, after selecting 

and testing a term. The cooling process continues until the algorithm has tested all 

terms, or the temperature has reduced to a value less than a pre-defined lower bound 

temperature value. 

The algorithm uses a roulette wheel procedure to select a term to test each time. The 

procedure is as follows. First, generate a random number. For each term in the terms’ 

list, cumulate all the probability calculated using Equation 6.5. The cumulating 

process stops if the current total probability for the current term in the cumulating 

process exceeds the random number. The algorithm uses this current term for terms 

selection testing for inclusion into the partial rule. 

The probabilities for all terms are calculated using a random proportional transitional 

rule, as used in the Ant System for the Travelling Salesman problem (Dorigo et al., 

1996), defined by 


 






a

i

b

j

ijij

ijij

ij
i

P

1 1




 (6.5) 

where 

 ij  is the heuristic value for term with attribute i  and value j , 

 ij  is the pheromone level for term with attribute i  and value j , defined by 

Equation 6.3, and 
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 ib  is the total number of value for attribute i . 

The probability depends on the heuristic value and current pheromone level for each 

term. Over time, the pheromone level for the higher quality terms will increase, and 

hence increase the chances of selecting those terms. The heuristic value for terms 

remains the same, but has a different value for the same terms with different class. 

This algorithm proposed a simpler heuristic function to calculate the heuristic for 

each term. Equation 6.6 defines the heuristic function used by the proposed 

algorithm in this chapter.  


 


a

i

b

j

w
ij

w
ij

ij
i

freq

freq

1 1

  (6.6) 

where  

 w
ijfreq  is the number of examples for term with attribute i  and value j  for a 

given class w , and 

 ib  is the total number of value for attribute i . 

The SA also gives chance to a term with lower quality rule to be accepted. Besides 

selecting a term that improves the rule's quality, if a generated random number, 

rndNum exceeded the probability defined by Equation 6.7, the term is also accepted. 
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T

qq

ep
21

  (6.7) 

where 

 1q  and 2q  are the quality for the previous and current partial rules 

respectively, and 

 T  is the current temperature value. 

The temperature starts very high. Therefore, p  is almost one, and all rules have 

almost the same probability to be chosen. As the temperature decreases slowly, the 

difference between the previous and current quality becomes significant. Hence, a 

term with a slightly lower quality rule will be preferred over much lower ones. 

6.2 Experiment and Results 

This study conducts experiments on seventeen (17) data sets from a UCI repository 

(Asuncion & Newman, 2007), as well as the reduced Web data set from Chapter 

Four. The experiments are undertaken using a ten-fold cross-validation technique 

(Kohavi, 1995a). Each data set is randomly shuffled and split into ten approximately 

equally sized subsets. Each experiment uses one subset as the test set, and trains the 

rest of the subsets. The experiment repeats the processes ten times, producing ten 

individual sets of performance statistics, the predictive accuracy. These performance 

statistics are averaged and the standard deviations for each of the performance 

statistics are calculated.  



 

 109 

The proposed algorithm, like the original Ant-miner (Parpinelli et al., 2002a, 2002b), 

cannot cope with non-discrete attributes, only nominal attributes. Hence, the 

experiments discretized non-discrete attributes in the first place; using a 

discretization method used in this study based on the method proposed by Fayyad & 

Irani (1993). The experiments used five hundred ant colonies with one ant per 

colony. 

6.2.1 Classification of 17 Data Sets from UCI Repository 

Table 6.1 and Figure 6.8 shows the predictive accuracy of the proposed algorithm as 

compared to the original Ant-miner (Parpinelli et al., 2002a, 2002b) as well as the 

PART (M. A. Hall et al., 2009; Witten et al., 2011). The proposed algorithm 

discovers rules with a better accuracy rate than Ant-miner on 82.4% (14 out of 17) of 

the 17 data sets, with a huge improvement on three data sets: Vehicle: Tic-tac-toe 

and segment data sets, with an average percentage difference of 15.4 %. Moreover, 

the average percentage difference for the three data sets (Balance Scale, Ljubljana 

and Iris) where the original Ant-miner (Parpinelli et al., 2002a, 2002b) wins, is very 

small for an average of 1.2 %. 

In Chapter Five, the proposed algorithm produced rules that are good in terms of 

simplicity as compared to Ant-miner, but, with predictive accuracy that is only at par 

with other rule induction algorithms. However, the proposed algorithm in this 

chapter has performed better in terms of the predictive accuracy compared to Ant-

miner, but, produced much larger rule set than Ant-miner as shown in Table 6.2 and 
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Figure 6.9. The proposed algorithm also produced much longer rules on all data sets 

compared to Ant-miner as shown in Table 6.3 and Figure 6.10. 

Table 6.1: Average Predictive Accuracy of Ant-miner and Proposed Algorithm 2 

Data Sets Ant-miner Proposed Algorithm 2 

Balance Scale 71.27 ± 1.54 71.04 ± 3.91 

Breast Cancer (Ljubljana) 73.74 ± 2.69 72.39 ± 9.09 

Breast Cancer (Wisconsin) 94.99 ± 0.49 96.14 ± 2.93 

Credit-a 84.93 ± 1.21 85.80 ± 2.58 

Credit-g 70.50 ± 2.01 75.50 ± 3.29 

Diabetes 73.55 ± 1.85 76.70 ± 4.11 

Heart (Cleveland) 76.78 ± 2.09 81.78 ± 7.29 

Heart (Statlog) 77.04 ± 2.64 81.11 ± 9.14 

Hepatitis 83.07 ± 2.63 83.25 ± 5.79 

Ionosphere 89.25 ± 1.65 90.89 ± 3.98 

Iris 95.33 ± 1.42 93.33 ± 8.43 

Lymphography 76.92 ± 3.94 78.29 ± 6.88 

Mushroom 97.45 ± 0.62 99.01 ± 2.55 

Segment 83.94 ± 1.00 92.42 ± 1.60 

Sonar 78.27 ± 3.36 80.36 ± 7.40 

Tic-tac-toe 71.17 ± 1.74 97.18 ± 1.88 

Vehicle 58.29 ± 1.39 69.98 ± 4.04 
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Table 6.2: Average Number of Rules of Ant-miner and Proposed Algorithm 2 

Data Sets Ant-miner Proposed Algorithm 2 

Balance Scale 7.80 ± 0.20 19.20 ± 1.72 

Breast Cancer (Ljubljana) 6.10 ± 0.18 16.40 ± 1.02 

Breast Cancer (Wisconsin) 7.40 ± 0.22 11.90 ± 0.83 

Credit-a 7.40 ± 0.22 20.40 ± 2.33 

Credit-g 9.10 ± 0.18 48.00 ± 3.97 

Diabetes 9.30 ± 0.21 29.30 ± 1.10 

Heart (Cleveland) 6.40 ± 0.27 12.80 ± 0.87 

Heart (Statlog) 5.90 ± 0.18 12.50 ± 1.12 

Hepatitis 4.80 ± 0.20 7.80 ± 0.98 

Ionosphere 6.20 ± 0.20 12.60 ± 1.36 

Iris 4.20 ± 0.20 4.70 ± 0.46 

Lymphography 6.30 ± 0.26 7.90 ± 0.83 

Mushroom 7.70 ± 0.33 24.90 ± 1.76 

Segment 17.70 ± 0.47 57.60 ± 2.42 

Sonar 6.00 ± 0.15 11.90 ± 1.04 

Tic-tac-toe 7.90 ± 0.55 33.30 ± 3.32 

Vehicle 12.00 ± 0.33 41.30 ± 1.35 
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Table 6.3: Average Number of Terms of Ant-miner and Proposed Algorithm 2 

Data Sets Ant-miner Proposed Algorithm 2 

Balance Scale 10.60 ± 0.40 42.90 ± 5.15 

Breast Cancer (Ljubljana) 7.90 ± 0.38 33.20 ± 3.74 

Breast Cancer (Wisconsin) 7.70 ± 0.26 18.90 ± 2.02 

Credit-a 10.60 ± 0.45 53.50 ± 8.88 

Credit-g 15.60 ± 0.40 127.90 ± 14.82 

Diabetes 10.30 ± 0.54 65.70 ± 3.90 

Heart (Cleveland) 10.10 ± 0.66 29.10 ± 3.53 

Heart (Statlog) 8.80 ± 0.53 27.60 ± 3.98 

Hepatitis 8.50 ± 0.48 15.70 ± 3.47 

Ionosphere 9.10 ± 0.78 24.50 ± 3.75 

Iris 3.20 ± 0.20 4.80 ± 1.08 

Lymphography 10.00 ± 0.68 16.50 ± 2.97 

Mushroom 8.10 ± 0.46 37.00 ± 2.90 

Segment 23.70 ± 0.91 121.60 ± 5.97 

Sonar 11.70 ± 0.37 25.70 ± 3.61 

Tic-tac-toe 9.50 ± 1.41 96.50 ± 11.14 

Vehicle 24.50 ± 1.17 116.80 ± 7.14 
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Figure 6.8: Comparison of Average Predictive Accuracy between Ant-miner and 

Proposed Algorithm 2 
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Figure 6.9: Comparison of Average Number of Rules between Ant-miner and 

Proposed Algorithm 2 
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Figure 6.10: Comparison of Average Number of Terms between Ant-miner and 

Proposed Algorithm 2 
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In order to see the effect of reducing attributes as proposed in Chapter 4 where the 

removal of the unnecessary attributes increased the predictive power of the 

classification model constructed by Ant-miner (Parpinelli et al., 2002a, 2002b) as 

well as improving the simplicity of the classification rules, this section also tested the 

proposed algorithm on the seventeen UCI reduced data sets using the methods from 

Chapter 4: the combination of Correlation-based evaluation with Random Search as 

the search method. The results were compared against the Ant-miner. 

According to the average accuracy laid out in Table 6.4 and depicted by Figure 6.11, 

the proposed algorithm wins on all 17 data sets (100%).. However, the mean for all 

average accuracy is slightly lower (82.5%) compared to when using the proposed 

algorithm to construct the classification model without reducing the attributes 

(83.8%) by 1.3%. 

However, the simplicity (the less number of rules and the less number of terms per 

rule, the better the simplicity of the rules) of the constructed rules improved when 

reducing the number of attributes as shown in Table 6.5 and Figure 5.12, where the 

mean of the average number of rules was reduced from 21.91 to 19.28. 

The same goes for the average number of terms per rule. The mean for the average 

number of terms per rule, when the method of attributes reduction is applied on the 

data sets initially, was reduced by 10.54. The results were shown in Table 6.6 and 

Figure 6.13. 
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Hence, when applying the attribute reduction on the data sets before using the 

proposed algorithm in this section, even though the predictive power is slightly 

reduced, the simplicity of the constructed rules increased.  

Table 6.4: Average Predictive Accuracy of Ant-miner and Proposed Algorithm 2 on 

Reduced Attributes Data Sets 

Data Sets Ant-miner Proposed Algorithm 2 

Balance Scale 75.17 ± 1.84 75.22 ± 3.58 

Breast Cancer (Ljubljana) 76.5 ± 2.76 72.80 ± 7.85 

Breast Cancer (Wisconsin) 94.71 ± 0.83 95.14 ± 2.94 

Credit-a 86.09 ± 1.11 85.94 ± 3.43 

Credit-g 73.7 ± 1.51 73.80 ± 6.11 

Diabetes 74.71 ± 2 77.74 ± 3.61 

Heart (Cleveland) 80.64 ± 2.47 82.44 ± 7.81 

Heart (Statlog) 80 ± 2.6 81.11 ± 7.11 

Hepatitis 76.31 ± 3.59 82.58 ± 7.44 

Ionosphere 86.25 ± 2.04 89.47 ± 4.02 

Iris 95.33 ± 1.42 92.67 ± 5.54 

Lymphography 70.92 ± 2.82 75.62 ± 6.32 

Mushroom 98.52 ± 0.17 99.00 ± 0.33 

Segment 86.23 ± 1.27 92.86 ± 1.26 

Sonar 78.88 ± 2.35 81.79 ± 9.41 

Tic-tac-toe 70.79 ± 2.05 78.39 ± 3.30 

Vehicle 58.98 ± 1.64 65.84 ± 3.14 

 

  



 

 118 

 

Table 6.5: Average Number of Rules of Ant-miner and Proposed Algorithm 2 on 

Reduced Attributes Data Sets 

Data Sets Ant-miner Proposed Algorithm 2 

Balance Scale 6.00 ± 0.00 16.30 ± 0.78 

Breast Cancer (Ljubljana) 6.30 ± 0.15 14.00 ± 1.55 

Breast Cancer (Wisconsin) 7.40 ± 0.22 11.80 ± 0.75 

Credit-a 8.10 ± 0.31 18.00 ± 2.32 

Credit-g 9.00 ± 0.21 29.50 ± 2.20 

Diabetes 9.30 ± 0.15 27.20 ± 1.66 

Heart (Cleveland) 6.10 ± 0.18 12.00 ± 0.77 

Heart (Statlog) 6.10 ± 0.18 11.80 ± 0.75 

Hepatitis 5.10 ± 0.18 7.50 ± 0.67 

Ionosphere 6.10 ± 0.23 12.50 ± 0.92 

Iris 4.00 ± 0.00 4.00 ± 0.00 

Lymphography 6.00 ± 0.26 7.60 ± 0.80 

Mushroom 10.00 ± 0.00 16.60 ± 0.66 

Segment 20.40 ± 0.96 56.00 ± 1.61 

Sonar 6.00 ± 0.15 12.40 ± 0.80 

Tic-tac-toe 9.00 ± 0.63 34.50 ± 2.50 

Vehicle 10.90 ± 0.41 36.10 ± 2.43 
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Table 6.6: Average Number of Terms of Ant-miner and Proposed Algorithm 2 on 

Reduced Attributes Data Sets 

Data Sets Ant-miner Proposed Algorithm 2 

Balance Scale 7.00 ± 0.00 28.00 ± 2.19 

Breast Cancer (Ljubljana) 8.30 ± 0.42 24.60 ± 4.00 

Breast Cancer (Wisconsin) 8.20 ± 0.36 19.80 ± 1.40 

Credit-a 9.80 ± 0.29 41.00 ± 6.48 

Credit-g 9.10 ± 0.38 56.50 ± 6.70 

Diabetes 9.10 ± 0.43 62.10 ± 5.63 

Heart (Cleveland) 8.30 ± 0.30 22.80 ± 2.60 

Heart (Statlog) 8.70 ± 0.37 25.10 ± 1.87 

Hepatitis 7.90 ± 0.60 12.40 ± 1.85 

Ionosphere 8.90 ± 0.41 22.80 ± 2.82 

Iris 3.00 ± 0.00 3.00 ± 0.00 

Lymphography 8.20 ± 0.68 12.90 ± 2.30 

Mushroom 9.00 ± 0.00 24.70 ± 1.35 

Segment 25.80 ± 1.72 110.70 ± 3.44 

Sonar 12.60 ± 0.56 33.80 ± 4.45 

Tic-tac-toe 9.80 ± 1.15 88.70 ± 9.03 

Vehicle 19.20 ± 1.26 89.80 ± 6.24 
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Figure 6.11: Comparison of Average Predictive Accuracy between Ant-miner and 

Proposed Algorithm 2 on Reduced Attributes Data Sets 
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Figure 6.12: Comparison of Average Number of Rules between Ant-miner and 

Proposed Algorithm 2 on Reduced Attributes Data Sets 
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Figure 6.13: Comparison of Average Number of Terms between Ant-miner and 

Proposed Algorithm 2 on Reduced Attributes Data Sets 
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The performance of the algorithm proposed in this chapter was also compared 

against several other well-known rule induction algorithm discussed in Section 2.2 

that includes the conjunctive rule (Witten et al., 2011), decision table (Kohavi, 

1995b), DTNB (M. Hall & Frank, 2008), JRip (Cohen, 1995) and PART (Frank & 

Witten, 1998). 

Table 6.7 shown the average predictive accuracy comparison of conjunctive rule 

(Witten et al., 2011), decision table (Kohavi, 1995b), DTNB (M. Hall & Frank, 

2008), JRip (Cohen, 1995) and PART (Frank & Witten, 1998) against the proposed 

algorithm in this chapter. The mean for the average predictive accuracy for each 

algorithm were calculated. It is found that the proposed algorithm in this chapter 

produced the highest mean of average predictive accuracy at 83.83% while the 

conjunctive rule algorithm produced the lowest mean at 69.97%, the hybrid of PSO 

and ACO algorithm for rule induction, the PSO/ACO2 scores a mean of 79.03%. 

Table 6.8 depicted the average number of rules comparison between the proposed 

algorithm and other rule induction algorithms. The table shows that the proposed 

algorithm produced the highest number of rules as compared to other algorithms 

with a mean of 19.28 rules. However, the mean is only slightly higher to PART 

(16.29) and PSO/ACO2 (17.79). However, JRip produced the lowest number of rules 

with a mean of 8.52. 

As a conclusion, the proposed algorithm performs not just much better as compared 

to the original Ant-miner (Parpinelli et al., 2002a, 2002b), but also, it is competitive 

with other tested rules induction algorithms. It seems that the high improvement on 
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predictive accuracy, sacrificed the simplicity of the rules. Hence, the results in this 

chapter suggested that the algorithm needs a mechanism to control the terms 

inclusion, without scarifying the predictive accuracy. Perhaps, the algorithm also 

needs a better pruning strategy in order to improve the simplicity of the rules, for 

training data while fixing class. 

Table 6.7: Average Predictive Accuracy of Conjuctive Rule, Decision Table, DTNB, 

JRip, PART and Proposed Algorithm 2 

Data Sets 
Conjunc

tive Rule 

Decision 

Table 
DTNB JRip PART 

ACO/ 

PSO2 

Prop. 

Algo. 2 

Balance Scale 60.93 71.26 70.89 74.87 69.84 82.72 71.04 

 
± 5.4 ± 3.79 ± 3.74 ± 4.41 ± 3.97  ± 4.77 ± 3.91 

Breast Cancer 

(Ljubjana) 
69.03 73.73 69.94 71.45 69.41 72.62 72.39 

 
± 4.17 ± 5.34 ± 6.93 ± 6.44 ± 7.63  ± 6.84 ± 9.09 

Breast Cancer 

(Wisconsin) 
88.03 94.96 97.01 95.48 95.05 93.42 96.14 

 
± 3.6 ± 2.54 ± 1.91 ± 2.3 ± 2.39  ± 3.79 ± 2.93 

Credit-a 85.51 84.67 85.48 86.38 85.25 85.31 85.80 

 
± 3.96 ± 4.21 ± 4.09 ± 3.75 ± 4.00  ± 4.14 ± 2.58 

Credit-g 70 72.75 71.76 71.74 72.24 67.9 75.50 

 
± 0 ± 3.66 ± 3.71 ± 3.67 ± 4.24  ± 5.82 ± 3.29 

Diabetes 73.47 77.02 77.77 77.41 76.84 72.67 76.70 

 
± 4.91 ± 4.7 ± 4.45 ± 4.78 ± 4.19  ± 4.98 ± 4.11 

Heart 

(Cleveland) 
72.98 77.22 80.81 81.65 77.49 77.38 81.78 

 
± 7.18 ± 7.5 ± 8.75 ± 6.45 ± 8.30  ± 5.45 ± 7.29 

Heart (Statlog) 73 83.41 81.56 82.89 83.33 81.11 81.11 

 
± 8.09 ± 7.03 ± 6.55 ± 6.67 ± 7.44  ± 6.16 ± 9.14 

Hepatitis 79.83 81.22 81.1 81.45 81.59 - 83.25 

 
± 4.95 ± 8.07 ± 8.31 ± 9.16 ± 8.62 - ± 5.79 

Ionosphere 80.77 89.04 91.68 91.68 90.03 88.06 90.89 

 
± 6.12 ± 4.58 ± 4.54 ± 4.84 ± 4.43  ± 4.91 ± 3.98 

Iris 66.67 93.8 94.13 94.6 94.87 94.67 93.33 

 
± 0 ± 5.04 ± 5.38 ± 5.25 ± 5.09  ± 5.26 ± 8.43 

Lymphography 71.77 73.47 77.25 77.4 78.24 83.05 78.29 

 
± 11.86 ± 10.5 ± 10.22 ± 11.08 ± 10.54  ± 6.67 ± 6.88 

Mushroom 88.68 100 99.91 100 100 99.9 99.01 

 
± 1.11 ± 0 ± 0.11 ± 0 ± 0.00  ± 0.11 ± 2.55 

Segment 28.57 90.45 94.57 92.84 94.82 96.67 92.42 
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± 0 ± 2.06 ± 1.5 ± 2.28 ± 1.53  ± 1.17 ± 1.60 

Sonar 70.33 74.77 79.49 79 81.26 75.05 80.36 

 
± 9.94 ± 11.14 ± 8.92 ± 8.34 ± 8.51  ± 9.11 ± 7.40 

Tic-tac-toe 69.45 73.83 69.94 97.55 93.85 100 97.18 

 
± 4.31 ± 4.13 ± 4.31 ± 1.66 ± 3.08  ± 0 ± 1.88 

Vehicle 40.4 67.34 66.3 67.32 70.45 73.05 69.98 

  ± 2.09 ± 4.36 ± 3.63 ± 3.94 ± 4.24  ± 4.45 ± 4.04 

 

 

Table 6.8: Average Number of Rules of JRip, PART, PSO/ACO2 and Proposed 

Algorithm 2 

Data Sets JRip PART PSO/ACO2 
Proposed 

Algorithm 2 

Balance Scale 4.67 ± 0.47 4.92 ± 0.27 26.6 ± 1.07 16.3 ± 0.78 

Breast Cancer (Ljubjana) 2.87 ± 0.82 16.64 ± 3.63 12.4 ± 2.27 14 ± 1.55 

Breast Cancer (Wisconsin) 6.79 ± 1 9.77 ± 1.53 9.9 ± 1.6 11.8 ± 0.75 

Credit-a 4.89 ± 1.47 16.49 ± 4.27 22.7 ± 2 18 ± 2.32 

Credit-g 5.08 ± 1.52 14.16 ± 3.25 54.3 ± 1.89 29.5 ± 2.2 

Diabetes 4.71 ± 0.56 13.15 ± 2.32 33.4 ± 1.43 27.2 ± 1.66 

Heart (Cleveland) 4.22 ± 0.66 10.43 ± 2.33 12.6 ± 0.84 12 ± 0.77 

Heart (Statlog) 4.88 ± 0.82 9.36 ± 2.04 9.7 ± 1.34 11.8 ± 0.75 

Hepatitis 2.37 ± 0.51 6.59 ± 3.71 - 7.5 ± 0.67 

Ionosphere 8.12 ± 1.65 9.84 ± 1.56 3.6 ± 0.97 12.5 ± 0.92 

Iris 3.1 ± 0.3 3 ± 0 3 ± 0 4 ± 0 

Lymphography 6.73 ± 0.97 9.65 ± 2.25 14.7 ± 2 7.6 ± 0.8 

Mushroom 8.84 ± 0.6 13.19 ± 1.34 8.7 ± 0.48 16.6 ± 0.66 

Segment 46.55 ± 8.44 55 ± 4.67 21.9 ± 0.99 56 ± 1.61 

Sonar 4.62 ± 0.83 12.85 ± 1.89 4.4 ± 1.58 12.4 ± 0.8 

Tic-tac-toe 10.33 ± 1.42 33.09 ± 3.37 9 ± 0 34.5 ± 2.5 

Vehicle 16.04 ± 2.53 38.83 ± 3.38 37.8 ± 1.2 36.1 ± 2.43 

 

6.2.2 Classification of Web Data Set 

This subsection experiments the proposed algorithm with the data set built in 

Chapter Four. The number of attributes was reduced using Correlation-based 

evaluation method with Random search as the search method. The results was 
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compared to PART (Witten et al., 2011) and Ant-miner (Parpinelli et al., 2002a, 

2002b). 

Table 6.9 and Figure 6.14 show that the average predictive accuracy for proposed 

algorithm is at par with PART and Ant-miner. However, consistent with the results 

in Section 6.2.1, the proposed algorithm discovered less comprehend rule as 

compared to Ant-miner, but at par with PART. Even though Ant-miner produced 

much simpler rules than the proposed algorithm, the proposed algorithm is more 

accurate than Ant-miner. It shows in order to improve the accuracy; the simplicity of 

the rules must be sacrifice. 

Table 6.9: Performance Comparison for Reduced Web Data 

Algorithm 

Average 

Predictive 

Accuracy (%) 

Average 

Number of Rules 

Average 

Number of Terms 

PART 94.01 ± 4.30 28.00 ± 3.4 90.00 ± 3.5 

Ant-miner 93.36 ± 0.67 7.00 ± 0.15 10.1 ± .45 

ProposedAlgorithm 2 93.89 ± 1.38 26.30 ± 2.05 79.4 ± 8.91 
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Figure 6.14: Performance Comparison for Reduced Web Data 

6.3 Summary 

This chapter proposed an algorithm based on a sequential covering algorithm, which 

uses ACO as the Learn-One-Rule function to extract rules from data sets. In order to 

improve the rule’s quality, the proposed algorithm uses SA for terms selection while 

building the rule. The proposed algorithm used a simpler heuristic that does not take 

the relationship between terms into account, while selecting terms for growing a rule. 

By fixing the class, the proposed algorithm is able to use a much simpler heuristic 

function, since the algorithm fixed the class before selecting terms for inclusion in a 

rule. Moreover, this chapter also proposed a simpler fitness function to evaluate the 

rule's quality. 

The performance of the proposed algorithm was compared to the original Ant-miner 

(Parpinelli et al., 2002a, 2002b) as well as the PART concerning the predictive 

accuracy, and found to be competitive with PART, but much better than the original 
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Ant-miner (Parpinelli et al., 2002a, 2002b). Therefore, SA is able to reduce the local 

optimum problem, where the ant found a more related term for inclusion into the 

partial rule. 

In future, this thesis suggested an enhancement of the proposed hybrid algorithm to 

cope with non-discrete attributes on the fly. Furthermore, it would be interesting to 

evaluate the performance of the proposed hybrid algorithm for selecting terms and 

fitness function for rule evaluation. Since there is no perfect classification algorithm 

for all types of data sets; it is also practical to evaluate the performance of the 

proposed algorithm on other types of data sets, such as sparse and huge data sets. 
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CHAPTER SEVEN 

CONCLUSION AND FUTURE WORK 

The main goal of this thesis is to design a new ACO based approach for 

classification rule induction. To achieve this goal, first, this thesis used SA as a local 

search to improve the rule's quality by optimizing each rule constructed by an ant. 

Second, this thesis used SA as terms selection algorithm during the construction a 

rule. The next section summaries the conclusion drawn from the experiments and 

results discussed in Chapter Five and Six, while the following section suggests 

possible directions for future work. 

7.1 Research Contribution 

There are three main contributions of the research. The first contribution is finding 

the best attribute selection method for Web texts categorization. The combination of 

correlation-based evaluation with random search as the search method is the best 

approach for attribute selection. However, this attribute selection method will not 

give the best performance in attributes reduction. Using classifier-based attribute 

subset selection will reduce more attributes, but sacrifice the performance of the 

classifier. Experiments in Chapter Four found that Ant-miner performed better than 

C4.5 for Web texts categorization. 

The first proposed hybrid algorithm based on ACO and SA to discover classification 

rules from data is the second main contribution. The proposed algorithm discovered 

simpler rules, without scarifying the predictive accuracy. Hence, the use of SA was 

able to produce simpler rules. 
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The second proposed hybrid algorithm based on ACO, and SA to selecting terms for 

inclusion in a rule is the third main contribution. The proposed algorithm discovered 

higher predictive accuracy rules compared to both Ant-miner and PART. 

As a conclusion, SA is able to improve the discovered rules by ACO. Experiments in 

this thesis have shown that SA was able to reduce the local extrema problem of 

ACO. In other words, SA works successfully to intensify the solutions (set of rules 

in) discovered by ACO.  

7.2 Future Work 

In future, it is suggested to test the performance of attribute selection on higher 

dimension of Web data sets, with more categories, since this study has only focus on 

two categories. Higher dimension of data sets may cause higher dimension of 

attributes. On the other hand, a study on reducing the size of attributes dimension 

could also be done in related to the linguistic relationship to generalize words, as a 

manual preliminary step before performing the attribute selection method. 

The future work also can enhance the proposed hybrid ACO and SA algorithms to 

cope with non-discrete attributes. It is also interesting to evaluate the performance of 

the proposed hybrid algorithm using different heuristic function for selecting terms 

and fitness function for rule evaluation. 

Fixing the class before constructing the rule improved the predictive accuracy 

significantly. However, the improvement sacrifices the rules' simplicity. Hence, it is 

also suggested that a new mechanism is needed to control the size of the rules set and 
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the number of terms for each rule. Perhaps a new pruning procedure is needed in 

order to cope with this kind of rules induction algorithm. 

Experiments in this thesis have shown that SA was able to improve the solutions 

discovered by ACO. However, SA is known for its slow speed for convergence 

(Nikolaev & Jacobson, 2010; Henderson et al., 2003), and hence may affected the 

algorithm performance in terms of speed. Therefore, it is suggested that in future, the 

SA part of the proposed algorithms should be enhanced to improve its speed. 
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Appendix A 

List of Stop Words 

This list of stop words was compiled by The Information Retrieval Group, 

University of Glasgow, led by Professor Keith van Rijsbergen. 

(http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words). 

a about above across after afterwards again against all almost alone along already 

also although always am among amongst amoungst amount an and another any 

anyhow anyone anything anyway anywhere are around as at back be became because 

become becomes becoming been before beforehand behind being below beside 

besides between beyond bill both bottom but by call can cannot cant co computer 

con could couldnt cry de describe detail do done down due during each eg eight 

either eleven else elsewhere empty enough etc even ever every everyone everything 

everywhere except few fifteen fify fill find fire first five for former formerly forty 

found four from front full further get give go had has hasnt have he hence her here 

hereafter hereby herein hereupon hers herself him himself his how however hundred 

i ie if in inc indeed interest into is it its itself keep last latter latterly least less ltd 

made many may me meanwhile might mill mine more moreover most mostly move 

much must my myself name namely neither never nevertheless next nine no nobody 

none noone nor not nothing now nowhere of off often on once one only onto or other 

others otherwise our ours ourselves out over own part per perhaps please put rather 

re same see seem seemed seeming seems serious several she should show side since 

sincere six sixty so some somehow someone something sometime sometimes 
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somewhere still such system take ten than that the their them themselves then thence 

there thereafter thereby therefore therein thereupon these they thick thin third this 

those though three through throughout thru thus to together too top toward towards 

twelve twenty two un under until up upon us very via was we well were what 

whatever when whence whenever where whereafter whereas whereby wherein 

whereupon wherever whether which while whither who whoever whole whom 

whose why will with within without would yet you your yours yourself yourselves 
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Appendix B 

Bash Script for Creating Train/Test Sets 

This bash script will create the train/test sets for a 10-fold stratified cross-validation 

at the same location as the original dataset. 

#!/bin/bash 

## expects the weka.jar as first parameter and the datasets to work on as  second parameter. 

# 

# FracPete, 2007-04-10 

# http://weka.wikispaces.com/Generating+cross-validation+folds+%28Filter+approach%29 

 

DATASET=$1 

FOLDS=10 

FILTER=weka.filters.supervised.instance.StratifiedRemoveFolds 

SEED=1 

 

mkdir `echo $DATASET | sed s/"\.arff"//g` 

 

for ((i = 1; i <= $FOLDS; i++)) 

do 

  echo "Generating pair $i/$FOLDS..." 

     

  OUTFILE=`echo $DATASET | sed s/"\.arff"//g` 

   

  # train set 

  java $FILTER -V -N $FOLDS -F $i -S $SEED -i $DATASET -o "$OUTFILE/train$i.arff" 

-c last 

  # test set 

  java $FILTER    -N $FOLDS -F $i -S $SEED -i $DATASET -o "$OUTFILE/test$i.arff"  -c 

last 

done 
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Appendix C 

Web Classification Sample Data Set 

@relation 'student_course' 

@attribute assignments {0,1} 

@attribute instructor {0,1} 

@attribute syllabus {0,1} 

@attribute class {0,1} 

@attribute hours {0,1} 

@attribute homework {0,1} 

@attribute lecture {0,1} 

@attribute final {0,1} 

@attribute exam {0,1} 

@attribute interests {0,1} 

@attribute notes {0,1} 

@attribute university {0,1} 

@attribute grading {0,1} 

@attribute introduction {0,1} 

@attribute research {0,1} 

@attribute midterm {0,1} 

@attribute assignment {0,1} 

@attribute handouts {0,1} 

@attribute description {0,1} 

@attribute fall {0,1} 

@attribute 'Copy of class' {student,course} 

 

@data 

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,course 

0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,student 

0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,student 

0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,course 

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,student 

0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,student 

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,student 

0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,student 

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,student 

1,0,1,1,0,0,1,0,0,0,1,0,1,1,0,1,1,1,1,1,course 

0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,course 

0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,student 

0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1,1,course 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,student 

1,1,0,1,1,1,1,1,1,0,0,1,1,1,0,1,1,0,0,0,course 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,student 

0,1,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,course 

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,student 

1,1,1,0,1,1,1,0,0,0,1,0,0,1,0,0,0,0,0,1,course 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,student 


