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Abstrak

Pengoptimuman koloni semut (ACO) adalah pendekatan metaheuristik yang
diilhamkan daripada tingkah laku semulajadi semut dan boleh digunakan untuk
menyelesaikan pelbagai masalah pengoptimuman kombinatorik. Masalah
penginduksian petua klasifikasi telah diselesaikan dengan algoritma Ant-miner, satu
varian ACO, yang diketengahkan oleh Parpinelli dalam tahun 2001. Kajian lepas
menunjukkan bahawa ACO adalah teknik mesin pembelajaran yang berkesan untuk
menjana petua klasifikasi. Walau bagaimanapun, Ant-miner kurang pemfokusan
terhadap kelas kerana petua untuk kelas diberi selepas petua dibina. Terdapat juga
kes di mana Ant-miner tidak dapat mencari sebarang penyelesaian optima bagi
sesetengah set data. Oleh itu, tesis ini mencadangkan dua algoritma varian hibrid
ACO dengan simulasi penyepuhlindapan (SA) untuk menyelesaikan masalah induksi
petua pengelasan. Algorithm pertama menggunakan SA untuk mengoptimumkan
penemuan peraturan oleh setiap semut. Set data tanda aras dari pelbagai bidang telah
digunakan untuk menguji algoritma yang dicadangkan. Keputusan eksperimen yang
diperolehi daripada algoritma yang dicadangkan ini adalah setanding dengan
keputusan Ant-miner dan beberapa algorithma induksi petua terkenal yang lain dari
segi ketepatan petua, dan menunjukkan keputusan lebih baik dari segi saiz petua.
Algoritma kedua pula menggunakan SA untuk mengoptimumkan pemilihan istilah
semasa pembinaan petua. Algoritma ini juga menetapkan kelas sebelum pembinaan
setiap petua. Penetapan awal kelas membolehkan penggunaan fungsi heuristik dan
fungsi kecergasan yang lebih mudah. Keputusan eksperimen algoritma kedua adalah
lebih baik berbanding dengan algoritma lain yang diuji, dari segi ketepatan ramalan.
Kejayaan dalam menghibridkan algoritma ACO dan SA telah membawa kepada
peningkatan keupayaan pembelajaran ACO untuk pengelasan. Oleh itu, model
klasifikasi dengan kebolehan ramalan yang lebih tinggi untuk pelbagai bidang boleh
dijana.

Kata Kunci: Pengoptimuman koloni semut, Simulasi penyepuhlindapan, Ant-miner,
Penginduksian petua



Abstract

Ant colony optimization (ACO) is a metaheuristic approach inspired from the
behaviour of natural ants and can be used to solve a variety of combinatorial
optimization problems. Classification rule induction is one of the problems solved by
the Ant-miner algorithm, a variant of ACO, which was initiated by Parpinelli in
2001. Previous studies have shown that ACO is a promising machine learning
technique to generate classification rules. However, the Ant-miner is less class
focused since the rule’s class is assigned after the rule was constructed. There is also
the case where the Ant-miner cannot find any optimal solution for some data sets.
Thus, this thesis proposed two variants of hybrid ACO with simulated annealing
(SA) algorithm for solving problem of classification rule induction. In the first
proposed algorithm, SA is used to optimize the rule's discovery activity by an ant.
Benchmark data sets from various fields were used to test the proposed algorithms.
Experimental results obtained from this proposed algorithm are comparable to the
results of the Ant-miner and other well-known rule induction algorithms in terms of
rule accuracy, but are better in terms of rule simplicity. The second proposed
algorithm uses SA to optimize the terms selection while constructing a rule. The
algorithm fixes the class before rule's construction. Since the algorithm fixed the
class before each rule's construction, a much simpler heuristic and fitness function is
proposed. Experimental results obtained from the proposed algorithm are much
higher than other compared algorithms, in terms of predictive accuracy. The
successful work on hybridization of ACO and SA algorithms has led to the improved
learning ability of ACO for classification. Thus, a higher predictive power
classification model for various fields could be generated.

Keywords: Ant colony optimization, Simulated annealing, Ant-miner, Rule
induction
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CHAPTER ONE
INTRODUCTION

The tremendous growth in computing power and storage capacity, the availability of
increased access to data from Web navigation and intranets, the explosive growth in
data collection, the storing of the data in data warehouses, and the competitive
pressure to increase market share in globalized economy stimulated the development
of data mining. Data mining acts as a tool to extract or yield important information

from raw data.

Classification is a data mining task of finding the common properties among
different objects and classifying the objects into classes. Figure 1.1 depicts the
general framework of classification task. The classification model contains a set of
classification rules. The classification model categorizes new unseen example data,
by predicting a class label for the example. One way of presenting the classification
model is by representing the information as a set of IF-THEN rules (classification

rules).

Attribute Set mmmmp |  Classification Model | mmmmmp Class Label

Figure 1.1: Classification Task General Framework
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