
A HYBRID OF ANT COLONY OPTIMIZATION ALGORITHM AND 

SIMULATED ANNEALING FOR CLASSIFICATION RULES 

 RIZAUDDIN SAIAN 

DOCTOR OF PHILOSOPHY 

UNIVERSITI UTARA MALAYSIA 

2013



 

 i 

Permission to Use 

In presenting this thesis in fulfilment of the requirements for a postgraduate degree 

from Universiti Utara Malaysia, I agree that the Universiti Library may make it 

freely available for inspection. I further agree that permission for the copying of this 

thesis in any manner, in whole or in part, for scholarly purpose may be granted by 

my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate 

School of Arts and Sciences. It is understood that any copying or publication or use 

of this thesis or parts thereof for financial gain shall not be allowed without my 

written permission. It is also understood that due recognition shall be given to me 

and to Universiti Utara Malaysia for any scholarly use which may be made of any 

material from my thesis. 

 

Requests for permission to copy or to make other use of materials in this thesis, in 

whole or in part, should be addressed to: 

 

Dean of Awang Had Salleh Graduate School of Arts and Sciences  

UUM College of Arts and Sciences 

Universiti Utara Malaysia 

06010 UUM Sintok 

 

  



 

 ii 

Abstrak 

Pengoptimuman koloni semut (ACO) adalah pendekatan metaheuristik yang 

diilhamkan daripada tingkah laku semulajadi semut dan boleh digunakan untuk 

menyelesaikan pelbagai masalah pengoptimuman kombinatorik. Masalah 

penginduksian petua klasifikasi telah diselesaikan dengan algoritma Ant-miner, satu 

varian ACO, yang diketengahkan oleh Parpinelli dalam tahun 2001. Kajian lepas 

menunjukkan bahawa ACO adalah teknik mesin pembelajaran yang berkesan untuk 

menjana petua klasifikasi. Walau bagaimanapun, Ant-miner kurang pemfokusan 

terhadap kelas kerana petua untuk kelas diberi selepas petua dibina. Terdapat juga 

kes di mana Ant-miner tidak dapat mencari sebarang penyelesaian optima bagi 

sesetengah set data. Oleh itu, tesis ini mencadangkan dua algoritma varian hibrid 

ACO dengan simulasi penyepuhlindapan (SA) untuk menyelesaikan masalah induksi 

petua pengelasan. Algorithm pertama menggunakan SA untuk mengoptimumkan 

penemuan peraturan oleh setiap semut. Set data tanda aras dari pelbagai bidang telah 

digunakan untuk menguji algoritma yang dicadangkan. Keputusan eksperimen yang 

diperolehi daripada algoritma yang dicadangkan ini adalah setanding dengan 

keputusan Ant-miner  dan beberapa  algorithma induksi petua terkenal yang lain dari 

segi ketepatan petua, dan menunjukkan keputusan lebih baik dari segi saiz petua. 

Algoritma kedua pula menggunakan SA untuk mengoptimumkan pemilihan istilah 

semasa pembinaan petua. Algoritma ini juga menetapkan kelas sebelum pembinaan 

setiap petua. Penetapan awal kelas membolehkan penggunaan fungsi heuristik dan 

fungsi kecergasan yang lebih mudah. Keputusan eksperimen algoritma kedua adalah 

lebih baik berbanding dengan algoritma lain yang diuji, dari segi ketepatan ramalan. 

Kejayaan dalam menghibridkan algoritma ACO dan SA telah membawa kepada 

peningkatan keupayaan pembelajaran ACO untuk pengelasan. Oleh itu, model 

klasifikasi dengan kebolehan ramalan yang lebih tinggi untuk pelbagai bidang boleh 

dijana. 

 

Kata Kunci: Pengoptimuman koloni semut, Simulasi penyepuhlindapan, Ant-miner, 

Penginduksian petua 
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Abstract 

Ant colony optimization (ACO) is a metaheuristic approach inspired from the 

behaviour of natural ants and can be used to solve a variety of combinatorial 

optimization problems. Classification rule induction is one of the problems solved by 

the Ant-miner algorithm, a variant of ACO, which was initiated by Parpinelli in 

2001. Previous studies have shown that ACO is a promising machine learning 

technique to generate classification rules. However, the Ant-miner is less class 

focused since the rule’s class is assigned after the rule was constructed. There is also 

the case where the Ant-miner cannot find any optimal solution for some data sets. 

Thus, this thesis proposed two variants of hybrid ACO with simulated annealing 

(SA) algorithm for solving problem of classification rule induction. In the first 

proposed algorithm, SA is used to optimize the rule's discovery activity by an ant. 

Benchmark data sets from various fields were used to test the proposed algorithms. 

Experimental results obtained from this proposed algorithm are comparable to the 

results of the Ant-miner and other well-known rule induction algorithms in terms of 

rule accuracy, but are better in terms of rule simplicity. The second proposed 

algorithm uses SA to optimize the terms selection while constructing a rule. The 

algorithm fixes the class before rule's construction. Since the algorithm fixed the 

class before each rule's construction, a much simpler heuristic and fitness function is 

proposed. Experimental results obtained from the proposed algorithm are much 

higher than other compared algorithms, in terms of predictive accuracy. The 

successful work on hybridization of ACO and SA algorithms has led to the improved 

learning ability of ACO for classification. Thus, a higher predictive power 

classification model for various fields could be generated. 

 

Keywords: Ant colony optimization, Simulated annealing, Ant-miner, Rule 

induction 
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CHAPTER ONE 

INTRODUCTION 

The tremendous growth in computing power and storage capacity, the availability of 

increased access to data from Web navigation and intranets, the explosive growth in 

data collection, the storing of the data in data warehouses, and the competitive 

pressure to increase market share in globalized economy stimulated the development 

of data mining. Data mining acts as a tool to extract or yield important information 

from raw data. 

Classification is a data mining task of finding the common properties among 

different objects and classifying the objects into classes. Figure 1.1 depicts the 

general framework of classification task. The classification model contains a set of 

classification rules. The classification model categorizes new unseen example data, 

by predicting a class label for the example. One way of presenting the classification 

model is by representing the information as a set of IF-THEN rules (classification 

rules). 

 

Figure 1.1: Classification Task General Framework 

 

Classification Model Attribute Set Class Label 
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