PERFORMANCE EVALUATION OF ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORKS

RAJA ASIF WAGAN (809009)

UNIVERSITY UTARA MALAYSIA 2012

PERFORMANCE EVALUATION OF ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORKS

A project submitted to the Graduate School in partial fulfillment of the requirements for the degree

Master of Science (Information Technology)

Universiti Utara Malaysia

By Raja Asif Wagan

PERMISSION TO USE

In presenting this project of the requirements for a Master of Science in Information Technology (MSc. IT) from Universiti Utara Malaysia. I agree that the University library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor or in their absence, by the Dean of Awang Had Salleh Graduate School. It is understood that any copying or publication or use of this project or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project.

Request for permission to copy or make other use of materials in this project, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate
School of Arts and Sciences
Universiti Utara Malaysia
06010 Sintok

Kedah Darul Aman

ABSTRACT

The growing field of information technology enhanced the capabilities of the wireless communication. The large usage of WSN in the various fields of the real world is scaling with the wide variety of roles for wireless sensor network performance is challenging tasks. The issues of performance in the wireless sensor networks in many literatures, yet more studies are being done on the performance because the user and application needs are keep increasing, to encounter the challenges of the performance issues are studied here by digging out the routing protocols performance in WSN. To conduct the study and analysis on performance of WSN protocols the there are various performance metrics used for the evaluation of performance in WSN. This study will be carried out to come up with the simulation experiments over the directed diffusion (DD) and LEACH routing protocols in terms of energy consumption, congestion and reliability in the wireless sensor networks (WSN) environment with the low power consumptions. The simulation experiments in this study are based on the reliability, delay and other constraints to compare the speed, reliability and electricity saving data communication in the wireless sensor networks (WSN). The discussion of the conducted simulation experiments describes the steps which are pertaining to the protocols and tradeoffs and complexity of the data traffic for the efficiency. The NS2 simulation is used for the simulation based experiments for performance of wireless sensor network (WSN) communications which is demonstrating the comparative effectiveness of the routing protocols in the recent concepts. The results of the simulation are lightening the ways for the minimization of the delay and enhancement in the reliability issues in wireless sensor networks (WSN).

ACKNOWLEDGEMENT

At first I want to thank Allah Who showered His multiple blessings upon me in the form of strength and health to complete this research.

I put forward my cordial thanks to Dr. Mohammed M. Kadhum who not only devoted his endless hours in reading the drafts versions of this project paper, but also provided me the thought provoking and constructive suggestions to improve my research work. I would like to appreciate his constant guidance and friendly behavior that would be remembered forever.

I also render my sincerest gratitude to Mr. Ahmad Hanis Bin Mohd Shabli and Mr. Fazli Bin Azzali whose positive criticism not only paved a way for me to work harder but also enhanced my research skills.

I am really indebted to my parents and other family members who provided me the financial and the moral support to pursue my studies and showed acute patience during my stay at Malaysia.

I have great regard for all those who encouraged and lent me a moral support to carry out this research in a better way.

I wish to extend my warmest thanks to UUM officials who allowed me to use the University resources; and I especially thank the Head of the department and the teaching staff of the department for showing their co-operation during the process of this research.

Raja Asif Wagan

2012

TABLE OF CONTENTS

PERMIS	SION TO USE	l
ABSTRA	СТ	11
ACKNO\	VLEDGEMENT	
TABLE C	F CONTENTS	IV
LIST OF	ABBREVIATIONS	VII
LIST OF	TABLES	IX
LIST OF	FIGURES	X
СНАРТЕ	R 1	1
INTROD	UCTION	1
1.1	INTRODUCTION	1
1.2	PROBLEM STATEMENT	3
1.3	RESEARCH QUESTIONS	5
1.4	RESEARCH OBJECTIVES	5
1.5	SCOPE OF RESEARCH	6
1.6	SIGNIFICANCE OF RESEARCH	6
1.7	PROJECT REPORT ORGANIZATION	6
1.8	SUMMARY	8
СНАРТЕ	R 2	9
LITERAT	URE REVIEW	9
2.1	EFFECTIVE DATA COMMUNICATION CHARACTERISTICS	9
2.2	THE NETWORK AND IT'S CRITERIA	10
2.3	WIRELESS SENSOR NETWORKS (WSNs)	11
2.4	WIRELESS SENSOR NETWORK APPLICATIONS	13
2.5	WIRELESS SENSOR NETWORK PLATEFORMS	15
2.6	SENSOR NODES	16
2.7	SENSOR NETWORK ARCHITECTURE	17
2.8	UNINIQUENESS & CONSTRAINTS AS COMPARE TO TRADITIONAL WIRELESS NETWORKS	20
2.9	BASIC WIRELESS SENSOR NETWORK DESIGN OBJECTIVES:	21

2.10	ROL	JTING PROTOCOLS IN WSN	22
2.	10.1	Location based Protocols	23
2.	10.2	Data Centric Protocols	28
2.	10.3	Hierarchical Protocols	31
2.	10.4	Mobility Protocols	34
2.	10.5	Multipath based Protocols	36
2.	10.6	Heterogeneity based Protocols	37
2.	10.7	Quality of Service (QoS) based Protocols:	38
2.11	REL	ATED WORK (Experimental studies on routing protocols of WSN)	40
2.	11.1	Experiments studies performed	41
2.12	SUN	1MARY	43
CHAPTI	ER 3		44
RESEAF	RCH MI	THODOLOGY	44
3.1	RES	EARCH METHODOLOGY	44
3.	1.1	Awareness of Problem	45
3.	1.2	Suggestion	46
3.	1.3	Development	46
3.	1.4	Evaluation	47
3.2	PER	FORMANCE METRICS	47
3.3	NET	WORK SIMULATOR 2 (NS2)	48
3.4	SIM	ULATION SCENARIOS	52
3.5	SUN	1MARY	53
CHAPTI	ER 4		54
PERFO	RMAN	CE EVALUATION OF LEACH AND DIRECTED DIFFUSION PROTOCOLS	54
4.1	SIM	ULATION WIRELESS SENSOR NETWORKS IN NS-2	54
4.2	тос	DL COMMAND LANGUAGE (TCL) SCRIPTS	55
4.3	ANA	LYSIS OF SIMULATION RESULTS	61
4.3	3.1	Packet Delivery Ratio (PDR)	61
4.3	3.2	Routing Load	62
4.3	3.3	Average End-to- End Delay	63
4.4	SUN	1MARY	64
СНДРТІ	FR FIVE	•	66

CONCLUSION AND FUTURE WORK		66
5.1	CONCLUSION	66
5.2	SUGGESTIONS FOR FUTURE WORK	67
5.3	SUMMARY	67
REFERENCES		68
APPENDIX A		76

LIST OF ABBREVIATIONS

WSN	Wireless Sensor Network
WSNs	Wireless Sensor Networks
SN	Sensor Node
GPS	Global Positioning System
FSN	Fixed Sensor Network
PDR	Packet Delivery Ratio
NS2	Network Simulator 2
ACM	Association for Computing Machinery
IEEE	Institute of Electrical and Electronics Engineers
TE	Traffic Engineering
QoS	Quality of Service
CPU	Central Processing Unit
IO	Input Output
MANET	Mobile Ad-Hoc Network
GAF	Geographic Adaptive Fidelity
GEAR	Geographic and Energy Aware Routing
TBF	Trajectory Based Forwarding
BVGF	Bounded Voronoi Greedy Forwarding
GeRaF	Geographic Random Forwarding
RTS	Request to Send
CTS	Confirm to Send
MECN	Minimum Energy Communication Network
SMECN	Small Minimum Energy Communication Network
SPIN	Sensor Protocols for Information via Negotiation
RR	Rumor Routing
ACQUIRE	Active Query Forwarding in Sensor Networks
EAD	Energy Aware Data Centric Routing
LEACH	Low Energy Adaptive Clustering Hierarchy
HEED	Hybrid, Energy Efficient Distributed Clustering
СН	Cluster Head
TEEN	Threshold Sensitive Energy Efficient Sensor Network Protocol
APTEEN	Adaptive Periodic Threshold Sensitive Energy Efficient Sensor
	Network Protocol
MULE	Mobile Ubiquitous LAN Extensions
SEAD	Scalable Energy Efficient Asynchronous Dissemination
IDSQ	Information Driven Sensor Query
CHR	Cluster Head Relay Routing
SAR	Sequential Assignment Routing
SNFG	Stateless Geographic non Deterministic Forwarding

MAC	Media Access Control
GRAB	Gradient Broadcast
TTDD	Two-Tier Data Dissemination
NAM	Network Animator
TCP	Transmission Control Protocol
CBR	Constant Bit Rate
UDP	User Datagram Protocol
TCL	Tool Command Language

LIST OF TABLES

TABLE 2. 1THE ROUTING PROTOCOLS FOR WSN	23
TABLE 2. 2 LOCATION BASED PROTOCOLS	28
TABLE 2. 3 DATA-CENTRIC PROTOCOLS	31
TABLE 2. 4 HIERARCHICAL PROTOCOLS	33
TABLE 2. 5 MOBILITY-BASED PROTOCOLS	35
TABLE 2. 6 MULTIPATH-BASED PROTOCOLS	37
TABLE 2. 7 HETEROGENEITY-BASED PROTOCOLS	38
TABLE 2. 8 QOS-BASED PROTOCOLS	40
TABLE 3. 1 SIMULATION PARAMETERS FOR EVALUATION SCENARIOS	52
TABLE 4. 1 PACKET DELIVERY RATIO FOR LEACH AND DIRECTED DIFFUSION	
PROTOCOLS	62
TABLE 4. 2 ROUTING LOAD FOR LEACH AND DIRECTED DIFFUSION PROTOCOLS	63
TABLE 4. 3 AVERAGE END-TO-END DELAY FOR LEACH AND DIRECTED DIFFUSION	
PROTOCOLS	64

LIST OF FIGURES

FIGURE 1. 1 ACCESS OF WSN THROUGH INTERNET	2
FIGURE 1. 2 PROBLEM STATEMENT DIAGRAM	4
FIGURE 2. 1 A TAXONOMY OF WSN APPLICATIONS	
FIGURE 2. 2 A TAXONOMY OF WSN APPLICATIONS	13
FIGURE 2. 3 SENSE ONLY AND SENSE/REACT WSN APPLICATIONS	14
FIGURE 2. 4 SENSOR NODE STRUCTURE	
FIGURE 2. 5 SENSOR NODE STRUCTURE	18
FIGURE 2. 6 SINGLE HOP NETWORK ARCHITECTURE	
FIGURE 2. 7 FLAT NETWORK ARCHITECTURE	19
FIGURE 2. 8 FLAT NETWORK ARCHITECTURE	
FIGURE 2. 9 VORONOI DIAGRAM	26
FIGURE 2. 10 NETWORK TOPOLOGY	
FIGURE 2. 11 SIMULATION PARAMETERS	41
FIGURE 2. 12 TOPOLOGY PARAMETER	
FIGURE 3. 1 RESEARCH METHODOLOGY	
FIGURE 3. 2 WATERFALL DEVELOPMENT LIFE CYCLE	
FIGURE 3. 3 NETWORK SIMULATOR 2	
FIGURE 3. 4 SIMPLIFIED USER'S VIEW OF NS	
FIGURE 3. 5 FIELDS OF TRACE FILE	50
FIGURE 4. 1 COMPARISION OF LEACH AND DIRECTED DIFFUSION PROTOCOLS I	
OF PDR	62
FIGURE 4. 2 COMPARISON OF LEACH AND DIRECTED DIFFUSION PROTOCOLS II	
OF ROUTING LOAD	63
FIGURE 4. 3 COMPARISON OF LEACH AND DIRECTED DIFFUSION PROTOCOLS II	
OF AVERAGE END-TO-END DELAY	64

CHAPTER 1

INTRODUCTION

This chapter contains introduction to this study, problem statement, research questions, research objectives, significance and scope. In this chapter the foundations of this research are given.

1.1 INTRODUCTION

The technological boom is at higher levels, therefore the usage of the electronic devices like Bluetooth, WIFI, PDA, GPS, Mobile and laptops are being used everywhere because they are cheap and easy to mobilize. The distributed wireless devices also brought the wireless sensor networks which are being used widely. The Wireless Sensor Networks (WSN) are basically type of a network which is now becoming embedded to our life and heavily used. The practice of the wireless sensor network (WSN) is increasing in the variety of the areas like chemical, gases, disaster management, agriculture, forecasting, health, patient monitoring, security, industry and etc (Yu, Prasanna, Krishnamachari, 2006). In general, a WSN is the combination or network of the sensor nodes (SN) that node are used for the sensing and communication of the acquired or processed data. The WSN node is having many components in it like power source, circuit, communication and sensing component in a small pack. The WSN are having low power circuit and network technology which is getting power from the source of 2 AA as power source which enables it to work about three years. A wireless sensor network might be having from a few to thousands of sensor nodes responsible for communication and data acquisition. The usage of the

The contents of the thesis is for internal user only

REFERENCES

Abbasi A.A. & Younis M., (2007), A survey on clustering algorithms for wireless sensor networks, Computer Communications Network Coverage and Routing Schemes for Wireless Sensor Network, Volume 30, Issues 14–15, 15 October 2007, Pages 2826–2841

Agarwal B, Tayal S & Gupta M. (2009), Software Engineering & Testing: An Introduction. Jones & Bartlett Publishers

Akyildiz I, Sankarasubramaniam Y & Cayirci E. (2002), "A survey on sensor networks," IEEE Communication Magazine, Volume: 40 Issue: 8, pp. 102-114.

Akkaya, K. & Younis, M. (2003), An energy-aware QoS routing protocol for wireless sensor networks, Proceedings 23rd International Conference on Distributed Computing Systems Workshops, pages 710 – 715

Alkaraki J. & Kamal A. E. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communication. 11, 6.

Altman E. & Jimenez E., (2003). Ns Simulator for Beginners. Available on http://www-sop.inria.fr/members/Eitan.Altman/ns.htm. Retrieved on 30-4-2012

Alturki, Ahmad, Gable, Guy G., & Bandara, Wasana (2011) A design science research roadmap. In Design Science Research in Information Systems and Technology 2011 (Lecture Notes in Computer Science 6629), Springer, Milwaukee, Wisconsin, pp. 107-

Al Khdour, T.A. & Baroudi, U. (2007), A Generlaized Energy-Aware Data Centric Routing for Wireless Sensor Network, IEEE International Conference on Signal Processing and Communications, ICSPC 2007.

Ammari H. M. & Das S.K. (2010), Forwarding via checkpoints: Geographic routing on always-on sensors, Journal of Parallel and Distributed Computing Volume 70, Issue 7, Pages 719–731

Ammari H.M. & Das S.K., (2005), Trade-off between energy savings and source-to-sink delay in data dissemination for wireless sensor networks, MSWiM '05 Proceedings of the 8th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems, ACM New York, NY, USA.

Anastasi, G., Conti, M. & Di Francesco, M. (2008), Data collection in sensor networks with data mules: An integrated simulation analysis, IEEE Symposium on Computers and Communications (ISCC 2008).

Antonopoulos C., Kapourniotis T., Triantafillou V., (2011), On Simulation based WSN Multi-Parametric Performance Analysis, World Academy of Science, Engineering and Technology 80.

Atiquzzaman, M. & Akhtar, M. S. (1994). Effect of nonuniform traffic on the performance of multistage interconnection networks. IEEE Computers and Digital Techniques.

Bagula A. B. & Mazandu K. G., (2008) Energy constrained multipath routing in wireless sensor networks, in Proceedings of the 5th International Conference on Ubiquitous Intelligence and Computing (UIC '08), vol. 5061 of Lecture Notes in Computer Science, pp. 453–467, Oslo, Norway

Bagula, A. (2010) Modelling and Implementation of QoS in Wireless Sensor Networks: A Multi-constrained Traffic Engineering Model. Eurasip Journal on Wireless Communications and Networking 2010.

Baghyalakshmi, D., Ebenezer, J. & Satyamurty, S.A.V., (2010), Low latency and energy efficient routing protocols for wireless sensor networks, International Conference on Wireless Communication and Sensor Computing, ICWCSC 2010. Pages 1 – 6.

Beadles, M. & Mitton, D. (2001). Criteria for Evaluating Network Access Server Protocols, RFC Criteria for Evaluating Network Access Server Protocols.

Behrouz A Forouzan, Sophia Chung Fegan (2007), "Data Communication and Networking (Fourth Edition)", The McGraw-Hill Companies.

Berfield, A. & Mosse, D., (2006), Efficient Scheduling for Sensor Networks, 3rd Annual International Conference on Mobile and Ubiquitous Systems - Workshops, 2006.

Berfield A., Chrysanthis P.K & Labrinidis A., (2006), Efficient handling of sensor failures, Proceedings of the 3rd workshop on Data management for sensor networks: in conjunction with VLDB 2006, ACM.

Bokareva, T., Bulusu, N. & Jha, S., (2004), A Performance Comparison of Data Dissemination Protocols for Wireless Sensor Networks, Global Telecommunications Conference Workshops, GlobeCom Workshops, IEEE.

Braga, T. R. d. M., Silva, F. A., Ramos, K. P., Melo, J. C. e., Assunção, H. P. d., & Lopes, C. E. R. (2003). Mannasim Framework. Retrieved 05/1/2012, from http://www.mannasim.dcc.ufmg.br/index.htm

Casari, P., Nati, M.; Petrioli, C. & Zorzi, M. (2007), Efficient Non-Planar Routing around Dead Ends in Sparse Topologies using Random Forwarding, ICC '07. IEEE International Conference on Communications, Pages 3122 – 3129.

Casari, P., Marcucci, A., Nati, M., Petrioli, C. & Zorzi, M, (2005), A detailed simulation study of geographic random forwarding (GeRaF) in wireless sensor networks, IEEE Military Communications Conference, 2005. MILCOM, Pages 59 - 68 Vol. 1.

Çayirci E. & Rong C., (2009), Security in Wireless Ad Hoc and Sensor Networks, John Wiley & Sons, Ltd

Chang R.S & Kuo C.J., (2006), An energy efficient routing mechanism for wireless sensor networks, 20th International Conference on Advanced Information Networking and Applications (AINA).

Chamam A. & Pierre S., (2009), A distributed energy-efficient clustering protocol for wireless sensor networks, Computers & Electrical Engineering, Volume 36, Issue 2, March 2010, Pages 303–312

Chiang S.S., Huang C.H. & Chang K.C., (2007), A Minimum Hop Routing Protocol for Home Security Systems Using Wireless Sensor Networks, IEEE transactions on Consumer Electronics, pages 1483 - 1489

Chen B., Jamieson K., Balakrishnan H. & Morris R. (2002), Span: An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks, Wireless networks, Kluwer Academic Publishers

Chen Y. & Nasser N., (2008), Enabling QoS Multipath Routing Protocol for Wireless Sensor Networks, IEEE International Conference on Communications, ICC '08.

Chen J., Lin R., Li Y. & Sun Y. (2008), LQER: A Link Quality Estimation based Routing for Wireless Sensor Networks, Sensors 2008, Vol 2, pages 1025-1038.

Chung, J., Claypool M., (2012), NS by Example, Worcester Polytechnic Institute (WPI), computer science, Available on http://nile.wpi.edu/NS/, Retrieved on 30-4-2012

Deshpande A, Guestrin C & Madden S. (2005). Resource-aware wireless sensor-actuator networks. IEEE Data Eng. 28, 1.

Deza E. & Deza M. M. (2009), Encyclopedia of Distances, page 94, Springer.

El Salti, T., Fevens, T. & Abdallah, A.E., (2008), Fast Progress-Based Routing in Sensing-Covered Networks, IEEE Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008.

Felemban, E., Lee, C.G. & Ekici, E. (2006), MMSPEED: multipath Multi-SPEED protocol for QoS guarantee of reliability and. Timeliness in wireless sensor networks, IEEE transactions on Mobile Computing, pages 738 – 754.

Fuente, M.G. & Ladiod, H. (2007), A Performance Comparison of Position-Based Routing Approaches for Mobile Ad Hoc Networks, IEEE 66th Vehicular Technology Conference, 2007. VTC-2007.

Giuseppe A., Marco C., Emmanuele M. & Andrea P. (2007), An Adaptive Data-transfer Protocol for Sensor Networks with Data Mules, IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM.

Huang X & Fang Y, (2008), "Multiconstrained QoS multipath routing in wireless sensor networks," ACM

Wireless Networks, vol. 14, no. 4, pp. 465–478.

Imadud, D., & Nazar Abbas, S. (2008). Passive Packet Loss Detection and its Effect on Web Traffic Characteristics. Paper presented at the Proceedings of the 2008 International Conference on Computer and Electrical Engineering

Jung S.M., Han Y.J. & Chung T.M., (2007), The Concentric Clustering Scheme for Efficient Energy Consumption in the PEGASIS, The 9th International Conference on Advanced Communication Technology, Pages 260 - 265

Karthickraja, N.P. & Sumathy, V. (2010), A study of routing protocols and a hybrid routing protocol based on Rapid Spanning Tree and Cluster Head Routing in Wireless Sensor Networks, International Conference on Wireless Communication and Sensor Computing, ICWCSC, pages 1-6.

Kamiyama N., (2006). Network Topology Design with Multiple Criteria, 12th international Networks, Telecommunications Network Strategy and Planning Symposium.

Kuorilehto, M., Kohvakka, M., Suhonen, J., Hämäläinen, P., Hännikäinen, M. and Hämäläinen, T. D. (2007) Front Matter, in Ultra-Low Energy Wireless Sensor Networks in Practice: Theory, Realization and Deployment, John Wiley & Sons, Ltd, Chichester, UK.

Li L. (2004), A minimum-energy path-preserving topology-control algorithm, IEEE Transactions on Wireless Communications, Pages 910-921

Liu X., Huang Q. & Zhang Y., (2007), Balancing Push and Pull for Efficient Information Discovery in Large-Scale Sensor Networks, IEEE Transactions on Mobile Computing, Pages 241 – 251.

Liu M., Cao J., Chen G. & Wang X. (2009), An Energy-Aware Routing Protocol in Wireless Sensor Networks, Sensors 9, no. 1: pages 445-462.

Luo J., Panchard J., Piórkowski M., Grossglauser M. & Hubaux J.P., (2006), MobiRoute: Routing Towards a Mobile Sink for Improving Lifetime in Sensor Networks, Distributed Computing in Sensor Systems, Springer Berlin.

Luo J. & Hubaux, J.P., (2005), Joint mobility and routing for lifetime elongation in wireless sensor networks, INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, pages 1735 - 1746 vol. 3.

Lwis F. L. (2004), Wireless sensor networks, Smart Environments: Technologies, Protocols, and Applications, John Wiley, New York, 2004.

Martirosyan, A., Boukerche, A. & Pazzi, R.W.N. (2008), A Taxonomy of Cluster-Based Routing Protocols for Wireless Sensor Networks, International Symposium on Parallel Architectures, Algorithms, and Networks, I-SPAN 2008, pages 247 - 253.

Macedo, D.F. Correia, L.H.A., dos Santos, A.L., Loureiro, A.F. & Nogueira, J.M.S. (2005), A pro-active routing protocol for continuous data dissemination in wireless sensor networks, ISCC 200 Proceedings 10th IEEE Symposium on Computers and Communications.

Mainwaring A, Culler D, Polastre J, Szewczyk R & Anderson J, (2002). Wireless sensor networks for habitat monitoring. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA).

Mahadevaswamy U.B. & Shanmukhaswamy M. N., (2012), Delay Aware and Load Balanced Multi-Path Routing in Wireless Sensor Networks, INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS, Springer

Mottola, L. and Picco, G. P. (2011). Programming wireless sensor networks: Fundamental concepts and state of the art. ACM Computing Surveys

Muruganathan, S.D., Ma, D.C.F., Bhasin, R.I. & Fapojuwo, A.O., (2005), A centralized energy-efficient routing protocol for wireless sensor networks, IEEE Communications Magazine, Volume: 43, Issue: 3, Pages: S8 - 13

Niculescu, D. (2005), Communication paradigms for sensor networks, IEEE Communication Magazine.

Patas J, Milicevic D & Goeken M, (2011), Enhancing Design Science through Empirical Knowledge: Framework and Application, Service oriented perspectives in design science research, Lecture Notes in Computer Science, Volume 6629/2011, 32-46

Perillo M.A & Heinzelman W.B, (2004), Wireless Sensor Network Protocols, in Algorithms and Protocols for Wireless Mobile Networks, Eds. A. Boukerche et al., CRC Hall Publishers

Perwaiz, N. & Javed, M.Y. (2009), A study on distributed diffusion and its variants, 12th International Conference on Computers and Information Technology, 2009. ICCIT '09.

Phoha S, (2004), "Guest editorial: Mission-oriented sensor networks," IEEE Transactions on Mobile

Computing, vol. 3, no. 3, pp. 209–210

Roychowdhury S. & Patra C., (2010). Geographic Adaptive Fidelity and Geographic Energy Aware ROuting in Ad Hoc ROuting, Special issue of IJCCT Vol.1 Issue 2,3,4: 2010 for Internation Conference (ACCTA-2010).

Sadagopan N., Krishnamachari B. & Helmy A., (2005), Activequeryforwarding in sensornetworks, Ad Hoc Networks Volume 3, Issue 1, Pages 91–113

Santos, R.A. Edwards, A., Alvarez, O., Gonzalez, A. & Verduzco, A. (2006), A Geographic Routing Algorithm for Wireless Sensor Networks, Robotics and Automotive Mechanics Conference on Electronics, Pages 64 – 69.

Schmitz, R., Torrent-Moreno, M., Hartenstein, H. & Effelsberg, W. (2004). The impact of wireless radio fluctuations on ad hoc network performance, 29th Annual IEEE International Conference on Local Computer Networks.

Singh S.K., Singh M.P., & Singh D.K., (2010). Routing Protocols in Wireless Sensor Networks – A Survey, International Journal of Computer Science and Engineering Survey (IJCSES). Vol.1, No.2.

Shokrzadeh, H., Haghighat, A.T., Tashtarian, F., & Nayebi, A. (2007), Directional rumor routing in wireless sensor networks, ICI 2007. 3rd IEEE/IFIP International Conference in Central Asia on Internet.

Shokrzadeh H., Haghighat A.T. & Nayebi A., (2009), Computer Communications, Volume 32, Issue 1, 23 January 2009, Pages 86–93.

Skorpil, V. & Karamatzanis, J. (2005). Optimisation criteria for network design, ICECS'05 Proceedings of the 4th WSEAS international conference on Electronics, control and signal processing. pages 181-186.

Taleb, T., Sakhaee, E., Jamalipour, A., Hashimoto, K., Kato, N. & Nemoto, Y., (2007), A Stable Routing Protocol to Support ITS Services in VANET Networks, IEEE Transactions on Vehicular Technology, pages 3337 – 3347.

Tan H.P. & Winston K. G., (2006), Multipath virtual sink architecture for wireless sensor networks in harsh environments, InterSense '06 Proceedings of the first international conference on Integrated internet ad hoc and sensor networks, ACM New York, NY, USA.

The VINT Project. (2012). The ns Manual, formerly ns Notes and Documentation. Available on http://www.isi.edu/nsnam/ns. Retrieved on 30-4-2012

Vaishnavi, V., & Kuechler, B. (2005, 16/9/2009). Design Research in Information Systems. Retrieved 20/11/2010, 2010, from http://desrist.org/design-research-in-information-systems/

Venable, J. & Kuechler B, (2006), The Role of Theory and Theorising in Design Science Research, First International Conference on Design Science Research in Information Systems and Technology, Claremont, California, pp. 1-18.

Vidhyapriya, R. & Vanathi, P.T. (2007), Conserving energy in wireless sensor networks, IEEE Potentials, pages 37-42.

Vidhyapriya, R. & Vanathi, P.T. (2007), Energy Aware Routing for Wireless Sensor Networks, International Conference on Signal Processing, Communications and Networking, ICSCN '07. Pages 545 - 550

Weimerskirch A., (2004). Authentication in Ad-hoc and Sensor Networks. University of Ruhr Bochum: Ph.D. Thesis

Yang Y., Zhong C.,Sun Y. & Yang J. (2010), Network coding based reliable disjoint and braided multipath routing for sensor networks, Journal of Network and Computer Applications Volume 33, Issue 4, Pages 422–432

Yu Y, Prasanna V, Krishnamachari B, (2006), 'Information Processing and Routing in Wireless Sensor Networks', Publisher World Scientific Press, p.1-17 (research monograph)

Yuan, L., Cheng, W., Du X., (2007), An energy-efficient real-time routing protocol for sensor networks, Computer Communications, Elsevier, Volume 30, Issue 10, Pages 2274–2283.

Xiangning F. & Yulin S., (2007), Improvement on LEACH Protocol of Wireless Sensor Network, International Conference on Sensor Technologies and Applications, SensorComm 2007.

Xiao W., Zhang S., Lin J. & Tham C.K., (2010), Energy-efficient adaptive sensor scheduling for target tracking in wireless sensor networks, JOURNAL OF CONTROL THEORY AND APPLICATIONS Volume 8, Number 1.

Xing G., Li M., Luo H. & Jia X., (2009), Dynamic Multiresolution Data Dissemination in Wireless Sensor Networks, IEEE Transactions on Mobile Computing.

Xue, Y., Lee, H. S., Yang, M., Kumarawadu, P., Ghenniwa, H. H., & Shen, W. (2007). Performance Evaluation of NS-2 Simulator for Wireless Sensor Networks. Performance Evaluation, 1372-1375. IEEE. Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4233004

Zabin, F., Misra, S., Woungang, I., Rashvand, H.F., Ma, N.-W. & Ali, M. A., (2008), REEP: data-centric, energy-efficient and reliable routing protocol for wireless sensor networks, Communications, IET, pages 995 – 1008.

Zhang W.Y., Liang Z.Z., Hou Z.G. & Tan M., (2007), A Power Efficient Routing Protocol for Wireless Sensor Network, IEEE International Conference on Networking, Sensing and Control, pages 20 - 25

Zhang W., Cao G. & Porta T.L., (2007), Dynamic proxy tree-based data dissemination schemes for wireless sensor networks, WIRELESS NETWORKS Volume 13, Springer Science

Zhang, H., Nixon, P. & Dobson, S. (2008). Multi criteria adaptation mechanisms in homological sensor networks, 11th IEEE Singapore International Conference on Communication Systems.

Zheng J. & Jamalipour A., (2009). Wireless Sensor Networks: A Networking Perspective, published by John Wiley & Sons.

Zheng J., Jamalipour A., Das S.K. & Ammari H.M., (2008), Wireless Sensor Networks: A Networking Perspective, IEEE