Mobile Based Linear Programming Solver Application

(MBLPSA)

Mouslem Damkhi

Universiti Utara Malaysia
2012
Mobile Based Linear Programming Solver Application

(MBLPSA)

A Project submitted to Dean of the Postgraduate Studies and Research in partial Fulfillment of the requirements for the degree
Master of Science of Information Technology
Universiti Utara Malaysia

By

Mouslem Damkhi
PERMISSION OF USE

In presenting this project in partial fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this project in any manner, in whole or in part, for scholarly purpose may be granted by my supervisors or, in their absence by the Dean of Postgraduate Studies and Research.

It is understood that any copying or publication or use of this project or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project. Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to

Dean of Postgraduate Studies and Research

College of Arts and Sciences (CAS)

Universiti Utara Malaysia

06010 UUM Sintok

Kedah Darul Aman.
ABSTRACT

Mobile technology has developed during the last few years. Due to this fast development in this field, subscribers of today are enjoying the use of many applications ranging from data, voice, audio to video irrespective of the place where they are stationed or moving. This study focused on the development one of mobile applications which is a Mobile Based Linear Programming Solver Application (MBLPSA). The linear programming is considered one of the basic methods using by the decision makers and scientists, but owing to its complexity in solving of the linear problems that is lead to prove the important roles of the computer applications to hold and solve that kind of problems. But the luck of the availability of computer devices and web applications anywhere can cause some obstacles for the users. If the system can be automated and made available on mobile access, it will solve that issues currently faced by them. This study proposes to design and to develop a mobile linear programming solver application which can be ensure the solving of the linear programs anytime and anywhere through the using of the mobile devices. The study proposes to follow the research adopted from System Development Research Methodology (SDRM) proposed by (Nunamaker & Chen, 1990); due to its suitability for small to medium sized development projects or applications. Finally it has been proposed conduct a usability test on the prototype developed for ease of use and user friendliness with the aid of a questionnaire.
ACKNOWLEDGEMENT

First and foremost, all praise to Allah for providing me with the strength, perseverance, and wisdom to have this work done on time.

Many special thanks to my family for their support and encouragement, especially my parents.

I would like express my deepest gratitude to my supervisor Mr. Azmi bin Md Saman and to my evaluators for their intellectual guidance and kind support given to me during the period of this study.

Last but not least, thanks to all my friends for their help, support and for keeping this period of study as enjoyable as possible; thanks to everyone else who was involved directly or indirectly.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMISSION OF USE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Research Questions</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Research Objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Research Scope</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Research Significance</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Organization of the Report</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>7</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2 The Linear Programming</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Linear program</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Algorithms used to solve the problems of the linear programming</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Mobile Technology</td>
<td>23</td>
</tr>
<tr>
<td>2.3.1 Mobile application</td>
<td>23</td>
</tr>
<tr>
<td>2.3.2 Java Platform Micro Edition</td>
<td>24</td>
</tr>
<tr>
<td>2.3.3 Lightweight User Interface Toolkit</td>
<td>24</td>
</tr>
<tr>
<td>2.4 Related Work</td>
<td>25</td>
</tr>
<tr>
<td>2.5 Summary</td>
<td>29</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>30</td>
</tr>
<tr>
<td>RESEARCH METHODOLOGY</td>
<td>30</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>30</td>
</tr>
</tbody>
</table>
LIST OF TABLES

- **Table 2.1:** Simplex table
- **Table 2.2:** Revised simplex table
- **Table 4.1:** Functional Requirements
- **Table 4.2:** Non-Functional Requirements
- **Table 4.3:** Create a new linear program Use Case Description
- **Table 4.4:** Create the objective function Use Case Description
- **Table 4.5:** Create the constraints Use Case Description
- **Table 4.6:** Display the result Case Description
- **Table 5.1:** Respondents’ Profile
- **Table 5.2:** Items-scale
- **Table 5.3:** User Perception of Usability
LIST OF FIGURES

Figure 2.1: The graphical representation of a linear program ... 9
Figure 2.2: The different types of the optimal solution in linear programming 10
Figure 2.3: Graphical representation of a linear program with a single solution 11
Figure 2.4: Graphical representation of a linear program with a multiple solution 12
Figure 2.5: Graphical representation of a linear program with an infinite solution 13
Figure 2.6: Graphical representation of a linear program without solution 14
Figure 3.1: Research steps adopted from System Development Research Methodology. 31
Figure 3.2: Prototype process (Laudon & Laudon, 1995) ... 32
Figure 4.1: MBLPSA Use Case Diagram ... 39
Figure 4.2: Create a new linear program Use Case Diagram .. 40
Figure 4.3: Create the objective function Use Case Diagram 41
Figure 4.4: Create the constraints Use Case Diagram .. 42
Figure 4.5: Display the result Use Case Diagram ... 43
Figure 4.6: Create a new linear program Sequence Diagram 44
Figure 4.7: Create the objective function Sequence Diagram 45
Figure 4.8: Create the constraints Sequence Diagram ... 45
Figure 4.9: Display the result Sequence Diagram ... 46
Figure 4.10: MBLPSA Class Diagram ... 47
Figure 4.11: Create a new linear program snapshot ... 48
Figure 4.12: Create the objective function snapshot ... 49
Figure 4.13: Create the constraints snapshot .. 51
Figure 4.14: Display the result snapshot ... 52
Figure 4.15: Exception 1 snapshot ... 53
Figure 4.16: Exception 2 snapshot ... 54
Figure 4.17: Exception 3 snapshot ... 55
Figure 5.1: Respondents’ Profiles ... 59
Figure 5.2: Perceived Usefulness Graph .. 61
Figure 5.3: Perceived Ease of Use Graph .. 61
CHAPTER 1

INTRODUCTION

The linear programming is considered one of the basic methods which help the decision makers to take right decisions by a scientific way (Li & Xu, 2005; Erensal & Albayrak, 2006). The problems of linear programming are a part of the mathematical programming problems, which may be linear and nonlinear. Moreover, the mathematical programming is in turn part of the topic of a more comprehensive, which is called operational research, which is related with the issues of organization, management, transport, agriculture, industry and so on (Chen & Xi, 2010; Zhengfeng & Jinfu, 2010). The linear mathematical programming is an issue of preference, where the issues whose are intended in this case are those issues whose are looking to maximize or minimize a linear function related to linear constraints as well (Hoet al., 2010).

From the most important and easiest methods to solve the linear mathematical programs, the simplex method of Dantzig, which is a method of linear programming where it is not necessary to calculate all the acceptable solutions, but it is working on the transition from a solution to another solution better until the getting of the optimal solution (Nash, 2000). This method has remained applicable in many domains (Peng and Li, 2011; Spampinato & Elster, 2009) because of ease of dealing with it in spite of the high complexity, where the complexity reflect on the number of calculations to reach the maximum ideal solution of the problem (Guerfi & Damkhi, 2009).
The contents of the thesis is for internal user only
References

Seaton, R. (2008). You have unlimited access to this document with your subscription. *Practising problem solving using mobile* (pp. 3 - 7). IEEE.

