

**Mobile Map-Based Positioning System Using Segmentation
Algorithm
(MM-BPS)**

A thesis was submitted to the Graduate School in partial fulfillment of the
requirements for the degree Master of Science (Information Technology)
Universiti Utara Malaysia

By
Hazem Moh'd Ali Migdady

© Hazem Moh'd Ali Migdady, 2008.
All Rights Reserved.

KOLEJ SASTERA DAN SAINS
(College of Arts and Sciences)
Universiti Utara Malaysia

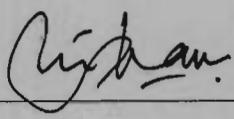
PERAKUAN KERJA KERTAS PROJEK
(Certificate of Project Paper)

Saya, yang bertandatangan, memperakukan bahawa
(I, the undersigned, certify that)

HAZEM MOH'D ALI MIGDADY

calon untuk Ijazah
(candidate for the degree of) **MSc. (IT)**

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)


MOBILE MAP-BASED POSITIONING SYSTEM USING
SEGMENTATION ALGORITHM

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan
dan meliputi bidang ilmu dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia Utama
(Name of Main Supervisor): **MR. AHMAD HISHAM ZAINAL ABIDIN**

Tandatangan
(Signature)

:

Tarikh
(Date)

: 25 MAY 2008

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from Universiti Utara Malaysia; I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence by the Dean of the Graduate School. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia (UUM) for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to

**Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman.**

ABSTRACT

The rapid deployment of mobile technology has increasingly provided people and organizations with ability to work away from office and be always on run. The mobile technology was developed to create ubiquitous environment where information can be accessed at any place and at any time. In the positioning process, the navigator needs to identify the position of his/her final destination in order to reduce any required efforts, and to make the right decision to choose the most suitable way. Knowing the locations is important in the navigation strategy. The major aim of this research is to provide the Navigators with information about his/her final destination according to his/her current location during the navigation. The research has targeted on UUM vital buildings. Vaishnavi and Kuechler Methodology has been implemented in various applications and it is considered as a general methodology to develop totally new algorithms and create new information according to the accumulated information. This paper reports steps to build a segmentation positioning algorithm and to implement Mobile Map-Based Positioning System prototype.

ACKNOWLEDGEMENT

By the Name of Allah, the Most Gracious and the Most Merciful

First; I would like to express my appreciation to Allah, the Most Merciful and, the Most Compassionate who has granted me the ability and willing to start and complete this study. I do pray to His Greatness to inspire and enable me to continue the work for the benefits of humanity.

My most profound thankfulness goes to my supervisor Mr. Ahmed Hisham Zainal Abidin for his scientifically proven and creativity encouraging guidance. Honestly; he has been all the time center of inspiration and guidance. I am gratefully and deeply thank him for his support and cooperation as being equipped to provide his best help. My thanks also go to all the lecturers who helped me to collect my data during their classes. “May Allah bless all of them”

Last but not least; I wish to thank all my dearest family members, especially Father, Mother, and my lovely Sister and Brothers. I dedicate my admiration and thanks to all of them who have sacrificed their selves and supported me to the completion of the thesis. My demonstrative appreciations are to all my friends, colleagues, all FTM staff, and everyone who has put the hand either directly or indirectly to complete this thesis.

TABLE OF CONTENTS

Contents	Page
PERMISSION TO USE	i
ABSTRACT	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENT	iv
LIST OF FIGURES	viii
LIST OF TABLES	X
LIST OF ABBREVIATIONS	xi
CHAPTER ONE: INTRODUCTION	1
1.1 Problem Statement	1
1.2 Research Objectives	2
1.3 Scope of Study	3
1.4 Significance of Study	5
1.5 Motivation of the Study	6
1.6 Thesis Overview	7
1.7 Summary	8

CHAPTER TWO: LITERATURE REVIEW	9
2.1 Mobile Architecture and Applications	9
2.2 The Technology of the Wireless Application Protocol (WAP)	10
2.3 Location Identification Related Technologies	10
2.4 Related Works	12
2.4.1 Mobile Systems	13
2.4.2 Positioning Algorithms	14
2.4.3 Mobile Map-Based Systems	15
2.5 Summary	25
CHAPTER THREE: RESEARCH METHODOLOGY	26
3.1 Introduction:	26
3.2 Awareness of Problem	27
3.3 Suggestions	32
3.4 Development	37
3.5 Evaluation	38
3.6 Conclusion	39

CHAPTER FOUR: FINDINGS AND RESULTS	40
4.1 Unified Modelling Language (UML):	40
4.1.2 Overview of the Proposed System	41
4.2 Functional Requirements	41
4.2.1 Website Functional Requirements	41
4.2.2 Mobile Functional Requirements	42
4.3 Non functional requirements	42
4.4 System Design	43
4.4.1 Use Case Diagram:	44
4.4.2 Sequence Diagrams:	48
4.4.3 Database Design:	53
4.5 Segmentation Positioning Algorithm (SP Algorithm)	54
4.5.1 Algorithm Steps	54
4.6 System Development	58
4.6.1 Graphical User Interface (GUI):	61
4.7 System Evaluation	69
CHAPTER FIVE: CONCLUSION AND RECCOMENDATION	72
5.1 Introduction	73
5.2 Problem Encountered	73

5.3 Project Review	73
5.4 Limitation of the Study:	74
5.5 Future Work	75
REFERENCES	76
APPENDIX	80

LIST OF FIGURES

Figure 2.1	Emergency Rescue Plan for First Floor	16
Figure 2.2	Map and Information	19
Figure 2.3	TellMaris Prototype	21
Figure 2.4	The BPN's Multi-Modal Interface	23
Figure 2.5	Different Maps Generated by MapView's Map Server	24
Figure 3.1	Design research cycle	26
Figure 4.1	Administrator Use Case Diagram	46
Figure 4.2	End User Use Case Diagram	46
Figure 4.3	Mobile Map-Based Positioning System Use Case Diagram	48
Figure 4.4	Login Sequence diagram	50
Figure 4.5	Manage Locations Sequence Diagram	50
Figure 4.6	Manage Maps Sequence Diagram	51
Figure 4.7	Manage User Sequence Diagram	51
Figure 4.8	Manage Links Sequence Diagram	52
Figure 4.9	Use Links Sequence Diagram	52
Figure 4.10	Use Mobile Index Sequence Diagram	53
Figure 4.11	ER Diagram for Mobile Map-Based Positioning System	53
Figure 4.12	Mobile Map-Based Positioning System Architecture	59

Figure 4.13	Mobile Map-Based Positioning System Login Interface	62
Figure 4.14	Mobile Map-Based Positioning System Location Manager Interface	63
Figure 4.15	Mobile Map-Based Positioning System Map Manager Interface	64
Figure 4.16	Mobile Map-Based Positioning System User Manager Interface	64
Figure 4.17	Mobile Map-Based positioning System Links Manager Interface	65
Figure 4.18	Mobile Map-Based Positioning system Main interface	66
Figure 4.19	Mobile Map-Based System Mobile Index Interface	67
Figure 4.20	Mobile Map-Based Positioning System Links Interface	68

LIST OF TABLES

Table 1	Scope Questionnaire Results	4
Table 2	Types of Sample Members	29
Table 3	Location Identification Obstacles	30
Table 4	Types of Obstacles	30
Table 5	Users Desires	31
Table 6	Common Cellular Types	34
Table 7	Users Who Own GPS Receiver	35
Table 8	Prototype Development Environment	60
Table 9	Descriptive Statistics Results	70
Table 10	Sample Members Frequency	71

LIST OF ABBREVIATIONS

API	Application Programming Interface
ASP	Active Server Pages
CEPT	Conference of European Posts & Telegraphs
CIMD	Computer Interface to Message Distribution
CLR	Common Language Runtime
ETSI	European Telecommunication Standards Institute
GPRS	General Packet Radio Service
GSM	Global System for Mobile communications
HTTP	Hypertext Transfer Protocol
IIS	Internet Information Services
ISDN	Integrated Services Digital Network
LMS	Learning Management Systems
MMS	Multimedia Messaging Service
MM-BPS	Mobile Map-Based Positioning System
MO	Mobile Originated
MSIL	Microsoft Intermediate language
MT	Mobile Terminated
ODL	Open and Distance Learning
PC	Personal computer
PDA	Personal Digital Assistant
PMB	Pos Malaysia Berhad

POP3	Post Office Protocol version 3
PU	Plovdiv University
RS232	Recommended Standard 232
SIM	Subscriber Identity Module
SMS	Short Messaging Service
SMEs	Subject Matter Experts
SMSC	Short Message Service Center
SMTP	Simple Mail Transfer Protocol
SPSS	Statistical Package for Social Sciences
TAP	Telecor Application Protocol
UCP	Universal Communications Protocol
UML	Unified Modeling Language
UNISA	University of South Africa
URL	Uniform Resource Locator
USB	Universal Serial Bus
UUM	Universiti Utara Malaysia
WAP	Wireless Application Protocol
3G	Third Generation
3GPP	Third Generation Partnership Project

CHAPTER ONE

INTRODUCTION

Since the earlier ages of using the technology; the inventors and scientists were always trying to create methods and develop techniques in order to achieve the most flexible and easiest ever life for the humanity.

Nowadays; the wireless technology considered as one of the most important and common technologies which can be used in several applications. One of those applications is the mobile technology which occupies a wide area of our daily life; since it is very rarely to find any person did not own a mobile phone; moreover the mobile devices are considered as a very flexible devices; since they are easy to use and to be carried out every where by the users.

Mobile guides and navigational assistants have come a long way since the first research prototypes. At the moment; there are not only many different re-search projects working on the topic; but there are also several commercial services available to mobile phone users and car drivers (Baus *et al.* 2004).

So; it is very useful and convenient to increase the mobile efficiency and extend its usage during our daily life.

1.1. Problem Statement

There is no suitable technique displays map on the web-enabled mobile phones using a convenient way including the required positioning information. Moreover; the current

The contents of
the thesis is for
internal user
only

► References

Anneg, H., Kunzier, H., Michelmayr, E., Pospischil, G., and Umlauft, M. (2002). *Lo@: de-signing a location based UMTS application*. Elektrotechnik und Informationstechnik, 119(2):48-51.

Arrington, C. T., Rayhan, S. H., (2003). Enterprise Java and UML. Second Edition, Prentice Hall, ISBN: 0471386804.

Baus, J., (2003). Ressourcenadaptierende hybride Personennavigation. DISKI 268, Akademische Verlagsgesellschaft Aka GmbH.

Baus, J., Cheverst, K., Kray, C. (2004). A Survey of Map-based Mobile Guides.

Baus, J., Kray, C., and Krüger, A. (2001). Visualization of route descriptions in a resource-adaptive navigation aid. *Cognitive Processing*, 2 (2-3):323-345.

Bennett, S., McRobb, S., and Farmer, R. (2006). Object-Oriented Systems Analysis and Design Using UML. Berkshire: McGraw Hill.

Bornträger, C., Cheverst, K. (2003). Social and technical pitfalls designing a tourist guide system. Proceedings of HCI in Mobile Guides, Udine, Italy.

Bornträger, C., Cheverst, K., Davies, N., Dix, A., Friday, A., and Seitz, J. (2003). Experiments with multimodal interfaces in a context-aware city guide. In Proceedings of Mobile HCI 2003. Springer.

Campbell, D., Sarker, S., Valacich, J. (2006). Collaboration Using Mobile Technologies (MCTs): When is it essential? Proceedings of the International conference in mobile business (ICMB'06) IEEE.

Cheverst, K., Davies, N., Mitchell, K. and Friday, A. (2000). Experiences of Developing and Deploying a Context-Aware Tourist Guide: the GUIDE project. Proc. MOBICOM, 20-31.

Cheverst, K., Davies, N., Mitchell, K. and Friday, A. (2001). Mobile-Awareness: Designing for Mobile Interactive Systems. SIGGROUP Bulletin April 2001 No 1, 22, No.1.

Cheverst, K., Davies, N., Mitchell, K., Friday, A., and Efstratiou, C. (2000). Developing a Context-aware Electronic Tour Guide: Some Issues and Experiences. In Proceedings of the 2000 conference on Human Factors in Computing Systems (CHI 2000), pages 17-24.

Daniel, J. D., Ibrahim, M. N., and Hatta, S. M. (2004). Web-Based GIS For Campus Facilities Management With Emergency Rescue Plan. Universiti Teknologi Petronas.

Dennis & Wixon, (2003). Evaluating usability methods: why the current literature fails the practitioner. In *Interactions*, 10 (4) ACM. pp. 28-34.

Deitel, M.H., Deitel, P.J., Nieto, T.R. and Steinbuhler, K., *Wireless Internet and Mobile Business How to Program*, Prentice Hall, 2002.

Dix, A. (1995). Cooperation without (reliable) Communication: Interfaces for Mobile Applications. *Distributed Systems Engineering*; 2, 3, pp 171-181.

Elliott, G. and Phillips, N. (2004). *Mobile Commerce and Wireless Computing Systems*: Person Education Limited.

Ermel, C. Holscher, K. & Kuske, S. and Ziemann, P. (2005). Animated Simulation of Integrated UML Behavioral Models based on Graph Transformation. *Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC'05)*.

Espinoza F, Persson P, Sandin A, Nystro" m H, Cacciato E, Bylund M (2001) GeoNotes: Social and navigational aspects of location-based information systems. *Lecture Notes in Computer Science* 2201. Springer pp 2–17.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. *Communications of the ACM*, 24(6):381–395.

Geoplane, (2008). What is GPS? , Retrieval Date: January, 17, 2008. retrieved from: www.goeplane.com.

George, J. & Valacich, J. S. Hoffer, J. A. and Batra, D., (2004). *Object-oriented Systems Analysis and Design*. First Edition, Prentice Hall. ISBN: 9780131133266. 198p.

Griffin, E. (2001, June). .NET Mobile Web SDK: Build and Test Wireless Web Applications for Phones and PDAs. *MSDN Magazine*, 16. Available at: <http://msdn.microsoft.com/msdnmag/issues/01/06/Mobile/default.aspx>[April 10, 2008].

Guide, I. M. (2003). Supports the Mobilized Software Initiative.

Gupta, P. (2007). Personal Area Networks: Say It And You Are Connected! Available at: <http://www.wirelessdevnet.com/channels/bluetooth/features/pans.html> [February 20, 2008].

Kaasinen, E. (2003) User Needs for Location-Aware Mobile Services. *Personal and Ubiquitous Computing*. Vol. 7, no. 1, 70–79.

Kerjcie,R. Morgan, D.(1970).Determining sample size for research activities. *Educational and Psychological Measurement* ,30, 607-610.

Kjeldskov, J., Graham, C., Pedell, S., Vetere, F., Howard, S., Balbo, S., and Davies, J. (2004). Evaluating the usability of a mobile guide: the influence of location, participants and resources. To appear in *Behaviour and Information Technology*.

Korkki, J. (2001). Wireless e-business by IBM Wireless Local Area Networks.

Kray, C., (2003). *Situated Interaction on Spatial Topics*. DISKI 274, Akademische Verlagsgesellschaft Aka GmbH.

Kray, C., Laakso, K., Elting, C., and Coors, V., (2003). Presenting route instructions on mobile devices. In *Proceedings of the International Conference on Intelligent User Interfaces 2003 (IUI 03)*, pages 117-124.

Krüger, A., Butz, A., Müller, C., Stahl, C., Wasinger, R., Steinberg, K.E., and Dirschl, A. (2004). The Connected User Interface: Realizing a Personal Situated Navigation System. In *Proceedings of the International Conference on Intelligent User Interfaces (IUI 04)*. To appear.

Laakso, k. (2002). Evaluation the use of navigable three-dimensional maps in mobile devices. Master's thesis, Helsinki University of Technology.

Izadi, S., Benford, S., Cheverst, K., Coutinho, P., Flintham, M., Fraser, M., Greenhalgh, C., Michell, K., Rodden, T. (2001) A Citywide Mixed Reality Performance: Initial Findings, In proceedings of the workshop on Moving between the physical and the digital, Portugal (April) SIGGROUP, pp 15-17.

Manolakis, D. E. (1996). Efficient solution and performance analysis of 3-D position estimation by trilateration. *IEEE Transactions on Aerospace and Electronic Systems*, 32(4):1239–1248.

Nishida, Y., Kitamura, K., Hori, T., Nishitani, A., Kanade, T., and Mizoguchi, H. (2004). Quick realization of function for detecting human activity events by ultrasonic 3d tag and stereo vision. In *Second IEEE International Conference on Pervasive Computing and Communications*, pages 43–54.

Ober, I. (2000). More Meaningful UML Models. French RNRT Project No 98.S.02882000, IEEE. 0-7695-0918-5100.

O'Donnell, J., Jackson, M., Shelly, M., and Ligertwood, J. (2007). Australian Case Studies in Mobile Commerce. *Journal of Theoretical and Applied Electronic Commerce Research*. ISSN 0718-1876 Electronic Version. VOL 2/ ISSUE 2/ 1-18.

O' Sullivan, D.T.J., Keane, M.M. (2000) The Specification of a web Based Multimedia Information System for Building Appraisal. CIB W89 International Conference on Building Education and Research (BEAR2000). May 16-18 2000. Atlanta Georgia USA.

Oppermann, R., and Specht, M. (2000). A Context-Sensitive Nomadic Exhibition Guide. In Second Symposium on Handheld and Ubiquitous Computing – HUC2K, pages 127-149.

Owen, C. (1997). Design Research: Building the Knowledge Base. *Journal of the Japanese Society for the Science of Design*, 5 (2): 36-45.

Parikh, T. S. (2005). Using Mobile Phones for Secure, Distributed Document Processing in the Developing World. *Pervasive Computing*, IEEE 4(2): 74 - 81.

Pospischil, G., Umlauft, M., and Michlmayr., M. (2002). Designing Lol@, a Mobile Tourist Guide for UMTS. In Proceedings of 4th International Symposium on Mobile Hu-man-Computer Interaction (MobileHCI) 2002, pages 140-154.

Rice, A., Harle, R. (2005). Evaluating Lateration-Based Positioning Algorithms for Fine-Grained Tracking. Proceedings of the 2005 joint workshop on Foundations of mobile computing/DIALM-POMC' .05. ACM.

Rist, T., Brandmaier, P., Herzog, G., and André, E., (2000). Getting the Mobile Users in: Three systems that support collaboration in an environment with heterogeneous communication devices. In Proceedings of the Working Conference on Advanced Visual Interfaces (AVI 2000), pages 251-254.

Sargent, P. E. (2000). ePOC: Mobile Clinical Information Access and Diffusion in Ambulatory Care Service Settings.

Sohrabi K., Gao J., Ailawadhi V., et al. (2000). Protocols for Selforganization of a Wireless Sensor Network. *IEEE Personal Communications*, 7(5): 16-27.

Stage, J., Kjeldskov, J. (2004). New Techniques of Usability Evaluation of Mobile Systems. DK-9220 Aalborg East, Denmark. ACM 1-58113-348-0/01/0005.

Uma, S. (2003). Research methods for business. A Skill Building Approach. New York: John Wiley & Sons Inc.

Vaishnavi V. and W. Kuechler (2004). "Design Research in Information Systems" January 16, 2008. URL: <http://www.isworld.org/Researchdesign/drisISworld.htm> Authors e-mail: vvaishna@gsu.edu kuechler@unr.edu.

Ward, A. (1998) Sensor-driven Computing. PhD thesis, University of Cambridge.

Zhao, W., Liu, D., Jiang, Y. (2006). Positioning Algorithm of Wireless Sensor Network Nodes. Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing/IIH-MSP.06. IEEE. 271-273.