THE DETERMINANTS OF FIRMS’ INNOVATIVENESS ON CONSTRUCTION TECHNOLOGY IN MALAYSIAN HEAVY CONSTRUCTION SECTOR

NG WENG SENG

DOCTOR OF BUSINESS ADMINISTRATION
UNIVERSITI UTARA MALAYSIA
November 2012
THE DETERMINANTS OF FIRMS’ INNOVATIVENESS ON CONSTRUCTION TECHNOLOGY IN MALAYSIAN HEAVY CONSTRUCTION SECTOR

By

NG WENG SENG

Dissertation Submitted to Othman Yeop Abdullah Graduate School of Business Universiti Utara Malaysia in Partial Fulfillment of the Requirement for the Degree of Doctor of Business Administration
PERMISSION TO USE

In presenting this project paper in partial fulfillment of the requirements for a Post Graduate degree from Universiti Utara Malaysia (UUM), I agree that the Library of this university may make it freely available for inspection. I further agree that permission for copying of this dissertation in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or in their absence, by the Dean of Othman Yeop Abdullah Graduate School of Business where I did my dissertation. It is understood that any copying or publication or use of this project paper or parts of it for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the UUM in any scholarly use which may be made of any material from my dissertation.

Request for permission to copy or make other use of materials in this dissertation in whole or in part should be addressed to:

Dean of Othman Yeop Abdullah Graduate School of Business
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
ABSTRACT

The peculiar characteristics of constructed products significantly differentiate construction from manufacturing. Past researches seem have been given greatest attention and concentration to the innovation in manufacturing sector. This research assesses the determinants of firm’s innovativeness in construction sector, which has been neglected by researchers despite its immense importance to the technological advancement in affecting the degree of innovation implementation and adoption. A total of fourteen hypotheses were developed and tested. These hypotheses are established within the context of heavy construction sector characteristics that are consistently suggested to be significant determinants of firm innovativeness. These characteristics include (1) market structure characteristics, (2) organisation and task characteristics, (3) adopter industry competitive environment, and (4) external cooperation linkage. This study has reviewed the problem of determinants of firms’ innovativeness in technological innovation the Malaysian heavy construction sector to meet the three outlined objectives. Hypotheses were tested utilising survey data collect from Malaysia Construction Industry Development Board, CIDB Grade 7 construction firms throughout the Malaysia. The relationships of the identified four domains were discussed in this research. The results indicate that adopter industry competitive environment and external cooperation linkage are among the variables that significantly affect the degree of innovation implementation and adoption. Results also indicate that 13 out of 14 hypotheses are supported and positively affecting the degree of innovation implementation and adoption. Lastly, a new model closely reflects the essence of the determinants of firm’s innovativeness in heavy construction sector was formulated. Therefore, the results suggest that increasing the rate of innovation implementation and adoption may be enhanced to a greater degree by increasing adopter industry competitive environment and external linkage rather than implementing market structure environment characteristics or organisation and task characteristics. This research has value and has advanced knowledge in construction industry, especially, and hence the aim has successfully attained.

Keywords: Innovation, Construction Technological Innovation, Determinants of Firms’ Innovativeness, Heavy Construction Sectors, Modeling
ABSTRAK

Kata kunci: Inovasi, Inovasi Teknologi Pembinaan, Penentu Kadar Inovasi Firma-firma, Sektor Pembinaan Berat, Model
PUBLICATIONS FROM THIS RESEARCH

The following papers have been produced from the research reported in this dissertation:

DEDICATION

I dedicated this dissertation to my Mum and Dad for nursing me with affections and their dedicated partnership for success in my life.

This Dissertation is also in debt to my wife, Tan Mee Teng. Her hours of work in loving our children, enabled the hours of research, contemplation, and writing necessary to complete this research. She is my “excellent wife, worth more than jewels”. Please continue to help me to care and deliver more lovely children.

Thank all for your everlasting love, care, support ...
ACKNOWLEDGMENTS

This dissertation would not have been possible without the contribution from several individual. Hence, I wish to present my appreciation to all those who extended their support to many different ways. I would firstly like to thank Associate Professor Dr. Shahimi Mohtar as a great mentor throughout the whole research journey. I am very grateful for his advice, encouragement, challenging questions and sacrifice. I was very fortune to be under his supervision, as he embraced every responsibility of a principal supervisor to guide my research.

This dissertation would not have been finished without endless support, encouragement, and love of my family. My deepest appreciation is given to my great PARENTS who have always inspired me on my academy advancement. I will always assure that both of you are proud with my life achievement in the past, now and future. Whatsoever merits are absolutely for both of you. I also wish to express my sincere thank to my wife, Tan Mee Teng and my lovely daughter Ng Kher Er for their continuous encouragement and support throughout this journey. Never forget, Tong and Em who has been inspired me and accompany me all the while on together academy development. I love you all.

Thank also Madam Tham LB for without her early inspiration, coaching and enthusiasm none of this would have happen. You are truly my great supporter in the academic excellence and continuous advancement.

I love you all.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>CERTIFICATION OF DISSERTATION</td>
<td>ii</td>
</tr>
<tr>
<td>PERMISSION TO USE</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>PUBLICATIONS FROM THIS RESEARCH</td>
<td>vii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>viii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF EQUATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxi</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>208</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION 1

1.1 Introduction 1

1.2 Background of the Study 1

1.3 Problem Statement 6

1.4 Research Question 13

1.5 Research Objective 15

1.6 Scope of Work 15

1.7 Definition of Terms 17

1.8 Organisation of the Dissertation 19

CHAPTER TWO: LITERATURE REVIEW 21

2.1 Introduction 21

2.2 Definition of Innovation 21

2.2.1 Types of Innovation 22
2.2.2 Stages of Innovation 23
2.2.3 Levels of Analysis 23

2.3 Determination for Firm Innovativeness 24

2.3.1 Market Structure Characteristics 25
 2.3.1.1 Industry Fragmentation 25
 2.3.1.2 Operation Location 30
 2.3.1.3 Firm Size 32

2.3.2 Organisation and Task Characteristics 38
 2.3.2.1 Types of Constructions 38
 2.3.2.2 Presence of Trade Unions 39
 2.3.2.3 Professional and Trade Association Affiliations 43
 2.3.2.4 Complexity (Purchase and Use) 49
 2.3.2.5 Management Intensity 50
 2.3.2.6 Experience in Construction Industry 52

2.3.3 Adopter Industry Competitive Environment 54
 2.3.3.1 Perceived Environmental Uncertainty 54
 2.3.3.2 Competitive Rivalry 58

2.3.4 External Linkages 62
 2.3.4.1 Firm-University Cooperation 62
 2.3.4.2 Firm-Research Center Cooperation 64
 2.3.4.3 Firm-Government Cooperation 65

2.4 Underpinning Theories 66
 2.4.1 Rogers' Initial Innovation Diffusion Model 67
 2.4.2 Rogers' Refined Innovation Diffusion Model 70
2.4.3 The Classic Model of the Innovation Diffusion Process 71

2.4.4 Organizations and the Classic Model of the Innovation Diffusion Process 75

CHAPTER THREE: METHODOLOGY 77

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>77</td>
</tr>
<tr>
<td>3.2</td>
<td>Research Framework</td>
<td>78</td>
</tr>
<tr>
<td>3.3</td>
<td>Hypotheses</td>
<td>79</td>
</tr>
<tr>
<td>3.4</td>
<td>Research Design</td>
<td>81</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Unit of Analysis</td>
<td>82</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Survey Methodology</td>
<td>82</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Sample Selection</td>
<td>83</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Survey Sample Size</td>
<td>83</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Survey Development and Execution</td>
<td>84</td>
</tr>
<tr>
<td>3.4.5.1</td>
<td>Dependent Variable</td>
<td>87</td>
</tr>
<tr>
<td>3.4.5.2</td>
<td>Independent Variable</td>
<td>88</td>
</tr>
<tr>
<td>3.5</td>
<td>Data Analysis Methodology</td>
<td>95</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Response Rate and Nonresponse Bias</td>
<td>96</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Data Screening</td>
<td>96</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Reliability and Validity</td>
<td>97</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Correlation Analysis</td>
<td>98</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Factor Analysis</td>
<td>99</td>
</tr>
<tr>
<td>3.5.5.1</td>
<td>Principal Component Analysis</td>
<td>100</td>
</tr>
<tr>
<td>3.5.5.2</td>
<td>Multiple Regression Analysis</td>
<td>106</td>
</tr>
</tbody>
</table>
CHAPTER FOUR: RESULTS AND DISCUSSION 117

4.1 Introduction 117
4.2 Response Rate and Nonresponse Bias 117
4.3 Data Screening 118
4.4 Profile of the Respondents 119
4.5 Reliability and Validity 125
4.6 Descriptive Analysis 125
4.7 Inferential Statistics 127
 4.7.1 Correlation Analysis 128
 4.7.2 Multiple Regression Analysis 133
4.8 Hypotheses Testing 139
4.9 Principal Component Analysis (PCA) 155
4.10 MRA - Model with Components or Factors 164
4.11 Conclusion 168

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION 170

5.1 Introduction 170
5.2 Overview of the Study 170
5.3 Summary of the Research Findings 172
5.4 Implications 176
 5.4.1 Theoretical Implications 177
 5.4.2 Practical Implications 180
5.5 Limitations of the Study 182
5.6 Recommendations for Further Researches 185
5.7 Conclusion 187
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Advantages and disadvantages associated with large and small firms in</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>innovation adoption</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Characteristics of product and process innovations that influence</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>their rate of adoption</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Summary of the hypothesised determinants of firms’ innovativeness</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>in the construction industry</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Analysis of CIDB contractor registration</td>
<td>85</td>
</tr>
<tr>
<td>4.1</td>
<td>Level of position</td>
<td>119</td>
</tr>
<tr>
<td>4.2</td>
<td>Working department</td>
<td>121</td>
</tr>
<tr>
<td>4.3</td>
<td>Category of registration</td>
<td>122</td>
</tr>
<tr>
<td>4.4</td>
<td>Gross annual revenue</td>
<td>124</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary of Cronbach’s Alpha</td>
<td>126</td>
</tr>
<tr>
<td>4.6</td>
<td>Descriptive analysis</td>
<td>128</td>
</tr>
<tr>
<td>4.7</td>
<td>Correlation analysis</td>
<td>130</td>
</tr>
<tr>
<td>4.8</td>
<td>Results of regression analysis for market structure characteristics</td>
<td>134</td>
</tr>
<tr>
<td>4.9</td>
<td>Results of regression analysis for organization and task characteristics</td>
<td>135</td>
</tr>
<tr>
<td>4.10</td>
<td>Results of regression analysis for adopter industry competitive</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>environment</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Results of regression analysis for external cooperation linkage</td>
<td>138</td>
</tr>
<tr>
<td>4.12</td>
<td>Results of regression analysis for industrial fragmentation</td>
<td>139</td>
</tr>
<tr>
<td>4.13</td>
<td>Results of regression analysis for operation location</td>
<td>141</td>
</tr>
<tr>
<td>4.14</td>
<td>Results of regression analysis for firm size</td>
<td>142</td>
</tr>
<tr>
<td>4.15</td>
<td>Result of regression analysis for types of construction</td>
<td>143</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.16</td>
<td>Results of regression analysis for presence of trade unions</td>
<td>144</td>
</tr>
<tr>
<td>4.17</td>
<td>Results of regression analysis for professional trade association</td>
<td>145</td>
</tr>
<tr>
<td>4.18</td>
<td>Result of regression analysis for complexity in purchase and use</td>
<td>146</td>
</tr>
<tr>
<td>4.19</td>
<td>Results of regression analysis for management intensity</td>
<td>147</td>
</tr>
<tr>
<td>4.20</td>
<td>Results of regression analysis for experience in construction</td>
<td>148</td>
</tr>
<tr>
<td>4.21</td>
<td>Results of regression analysis for perceived environmental uncertainty</td>
<td>150</td>
</tr>
<tr>
<td>4.22</td>
<td>Results of regression analysis for competitive rivalry</td>
<td>151</td>
</tr>
<tr>
<td>4.23</td>
<td>Results of regression analysis for firm-university cooperation</td>
<td>152</td>
</tr>
<tr>
<td>4.24</td>
<td>Results of regression analysis for firm-research center cooperation</td>
<td>153</td>
</tr>
<tr>
<td>4.25</td>
<td>Results of regression analysis for firm-government cooperation</td>
<td>154</td>
</tr>
<tr>
<td>4.26</td>
<td>Results of KMO and Bartlett’s test</td>
<td>158</td>
</tr>
<tr>
<td>4.27</td>
<td>Component Matrix</td>
<td>159</td>
</tr>
<tr>
<td>4.28</td>
<td>Rotated component matrix</td>
<td>162</td>
</tr>
<tr>
<td>4.29</td>
<td>Output of regression analysis with components</td>
<td>166</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Elemental components of Rogers’ initial model of the innovation diffusion process</td>
<td>69</td>
</tr>
<tr>
<td>2.2</td>
<td>Elemental components of Rogers' refined classical model of the innovation diffusion process</td>
<td>72</td>
</tr>
<tr>
<td>2.3</td>
<td>Elemental components of Rogers' "classic" innovation diffusion model for organizations</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>Distribution of level of position</td>
<td>120</td>
</tr>
<tr>
<td>4.2</td>
<td>Distribution of working department</td>
<td>121</td>
</tr>
<tr>
<td>4.3</td>
<td>Distribution of category of registration</td>
<td>123</td>
</tr>
<tr>
<td>4.4</td>
<td>Distribution of the firms’ gross annual revenue</td>
<td>124</td>
</tr>
</tbody>
</table>
LIST OF EQUATION

<table>
<thead>
<tr>
<th>Equation</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Sample Size</td>
<td>84</td>
</tr>
<tr>
<td>3.2</td>
<td>Model for the ith Standardized Variable in X_i</td>
<td>101</td>
</tr>
<tr>
<td>3.3</td>
<td>General Expression for the Estimate of the jth in Factor F_j</td>
<td>102</td>
</tr>
<tr>
<td>3.4</td>
<td>Multiple Regression Analysis</td>
<td>107</td>
</tr>
<tr>
<td>4.1</td>
<td>Regression for Construction Firms’ Innovativeness and Market Structure Characteristics</td>
<td>133</td>
</tr>
<tr>
<td>4.2</td>
<td>Regression for Construction Firms’ Innovativeness and Organisation and Task Characteristics</td>
<td>135</td>
</tr>
<tr>
<td>4.3</td>
<td>Regression for Construction Firms’ Innovativeness and Adopter Industry Competitive Environment</td>
<td>136</td>
</tr>
<tr>
<td>4.4</td>
<td>Regression for Construction Firms’ Innovativeness and External Cooperation Linkage</td>
<td>137</td>
</tr>
<tr>
<td>4.5</td>
<td>Regression for Hypothesis 1</td>
<td>140</td>
</tr>
<tr>
<td>4.6</td>
<td>Regression for Hypothesis 2</td>
<td>141</td>
</tr>
<tr>
<td>4.7</td>
<td>Regression for Hypothesis 3</td>
<td>142</td>
</tr>
<tr>
<td>4.8</td>
<td>Regression for Hypothesis 4</td>
<td>143</td>
</tr>
<tr>
<td>4.9</td>
<td>Regression for Hypothesis 5</td>
<td>144</td>
</tr>
<tr>
<td>4.10</td>
<td>Regression for Hypothesis 6</td>
<td>145</td>
</tr>
<tr>
<td>4.11</td>
<td>Regression for Hypothesis 7</td>
<td>147</td>
</tr>
<tr>
<td>4.12</td>
<td>Regression for Hypothesis 8</td>
<td>148</td>
</tr>
<tr>
<td>4.13</td>
<td>Regression for Hypothesis 9</td>
<td>149</td>
</tr>
<tr>
<td>4.14</td>
<td>Regression for Hypothesis 10</td>
<td>150</td>
</tr>
<tr>
<td>4.15</td>
<td>Regression for Hypothesis 11</td>
<td>151</td>
</tr>
<tr>
<td>Equation</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.16</td>
<td>Regression for Hypothesis 12</td>
<td>152</td>
</tr>
<tr>
<td>4.17</td>
<td>Regression for Hypothesis 13</td>
<td>153</td>
</tr>
<tr>
<td>4.18</td>
<td>Regression for Hypothesis 14</td>
<td>154</td>
</tr>
<tr>
<td>4.19</td>
<td>Model for Implementation and Adoption of Technology Innovation in Heavy Construction Sector</td>
<td>165</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AICE</td>
<td>Adopter Industry Competitive Environment</td>
</tr>
<tr>
<td>CFI</td>
<td>Construction Firms’ Innovativeness</td>
</tr>
<tr>
<td>CIDB</td>
<td>Construction Industry Development Board</td>
</tr>
<tr>
<td>Comp</td>
<td>Complexity in Purchase and Use</td>
</tr>
<tr>
<td>CR</td>
<td>Competitive Rivalry</td>
</tr>
<tr>
<td>ECL</td>
<td>External Cooperation Linkage</td>
</tr>
<tr>
<td>EIC</td>
<td>Experience in Construction</td>
</tr>
<tr>
<td>FGC</td>
<td>Firm-Government Cooperation</td>
</tr>
<tr>
<td>FRCC</td>
<td>Firm-Research Center Cooperation</td>
</tr>
<tr>
<td>FS</td>
<td>Firm Size</td>
</tr>
<tr>
<td>FUC</td>
<td>Firm-University Cooperation</td>
</tr>
<tr>
<td>IF</td>
<td>Industrial Fragmentation</td>
</tr>
<tr>
<td>MI</td>
<td>Management Intensity</td>
</tr>
<tr>
<td>MRA</td>
<td>Multiple Regression Analysis</td>
</tr>
<tr>
<td>MSC</td>
<td>Market Structure Characteristics</td>
</tr>
<tr>
<td>OL</td>
<td>Operation Location</td>
</tr>
<tr>
<td>OTC</td>
<td>Organisation and Task Characteristics</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PEU</td>
<td>Perceived Environmental Uncertainties</td>
</tr>
<tr>
<td>PTA</td>
<td>Professional and Trade Association Affiliation</td>
</tr>
<tr>
<td>PTU</td>
<td>Presence of Trade Unions</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>TOC</td>
<td>Types of Construction</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Questionnaire</td>
<td>208</td>
</tr>
<tr>
<td>2</td>
<td>Pilot Test</td>
<td>217</td>
</tr>
<tr>
<td>3</td>
<td>Frequencies Analysis</td>
<td>229</td>
</tr>
<tr>
<td>4</td>
<td>Normality Test</td>
<td>233</td>
</tr>
<tr>
<td>5</td>
<td>Reliability Test</td>
<td>252</td>
</tr>
<tr>
<td>6</td>
<td>Descriptive Analysis</td>
<td>265</td>
</tr>
<tr>
<td>7</td>
<td>Correlations Analysis</td>
<td>266</td>
</tr>
<tr>
<td>8</td>
<td>Regression Analysis</td>
<td>283</td>
</tr>
<tr>
<td>9</td>
<td>Factor Analysis</td>
<td>296</td>
</tr>
</tbody>
</table>
CHAPTER ONE: INTRODUCTION

1.1 INTRODUCTION
This chapter provides an overview of the background of the study, problem statement, research question, research objective, scope of work, definition of terms used in this study and organisation of the dissertation.

1.2 BACKGROUND OF THE STUDY
Malaysia has been experiencing a massive surge of construction activity with the construction boom reaching its climax at the turn of the 2010s. Examples of heavy construction projects delivered includes, but not limited to, North-South Highway, Kuala Lumpur International Airport (KLIA), Malaysia-Singapore Second Link, Electrified Double Tracking Project (EDTP), Second Penang Bridge, Mechanical Railway Transit Project (MRT), Light Railway Transit Project (LRT) and many more. The Malaysian construction industry has been one of the greatest contributors to the Gross Domestic Product (GDP). Advancement in technology is an integral part of Malaysia's growth as an industrialised country. However, the firms’ innovativeness in technological innovation in construction has virtually been given relatively less attention and neglected as a viable area for investigation and research in most of the countries (Holt, 2010). In contrast, the firms’ innovativeness in technological change in manufacturing industries has received more attention from the industry and the research communities.

Budiawan & Sidwell (2004), Manley (2006), Brochner (2008), Kristian (2010), Hardie (2010), and Aouad, Ozorhon, & Abbott. (2010) are few examples of the
The contents of the thesis is for internal user only
REFERENCES

McGill university, affordable homes program, Research Paper No. 2, Montreal, Quebec, Canada: McGill University.

Liao, H. L., & Lu, H. P. (2008). *The role of experience and innovation characteristic and continued use of e-learning websites*. Taiwan: National Taiwan University of Science and Technology.

206

