PREDICTING MACROECONOMIC TIME SERIES IN MALAYSIA: USING NEURAL NETWORKS APPROACHES

By

MOHD ZUKIME HJ. MAT JUNOH

This dissertation is submitted in Partial Fulfilment of the requirements for the Master of Science (Information Technology) degree of the Graduates School of the Universiti Utara Malaysia

2001

© Mohd Zukime Hj. Mat Junoh, 2001. All Rights Reserved
Saya, yang bertandatangan, memperakuan bahawa
(I, the undersigned, certify that)

Mohd Zukime Hj. Mat Junoh

calon untuk Ijazah
(candidate for the degree of) Sarjana Sains (Teknologi Maklumat)

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

Predicting Macroeconomic Time Series In Malaysia:

Using Neural Networks Approaches

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan,
dan meliputi bidang ilmu dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia
(Name of Supervisor) : Prof. Madya Fadzilah Siraj

Tandatangan
(Signature)

Tarikh
(Date) : 8 November 2001
PERMISSION TO USE

In presenting this study in partial fulfilment of the requirements for a postgraduate degree from the Universiti Utara Malaysia. I would like to give permission that the Library may make it freely available for inspection. I agree that also permission for copying of this research in any manner, in whole or in part and for scholarly purposes may be granted by my supervisor (s) or, in their absence, by the DEAN of the GRADUATE SCHOOL. It is understood that any copying or publication or used of this project or parts there of for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my project paper.

Request for permission to copy or make other use of material in this research in whole or in part should be addressed to:

DEAN OF GRADUATE SCHOOL
UNIVERSITI UTARA MALAYSIA
06010 UUM SINTOK
KEDAH DARUL AMAN
ABSTRACT (BAHASA MALAYSIA)

ABSTRACT (ENGLISH)

In recent years, neural networks have received an increasing amount of attention among macroeconomic forecasters because of their potential to detect and reproduce linear and nonlinear relationships among a set of variables. This study provides an introduction to neural networks and its establishment to standard econometric techniques. An empirical results in forecasting macroeconomic variables to GDP growth in Malaysia was initially introduced. For both the in-sample and the out-of-sample periods, the forecasting accuracy of the neural network is found to be superior to a well established linear regression model, with the error reduction ranging 8 per cent to 57 per cent.

A thorough review of the literature suggests that neural networks are generally more accurate than linear models for out-of-sample forecasting of economic output and various financial variables such as stock prices. However, the literature should still be considered inconclusive due to the relatively small number of reliable studies on the macroeconomic forecasting. The full potential of neural networks can probably be exploited by using them in conjunction with linear regression models. Hence, neural networks should be viewed as an additional tool to be included in the toolbox of macroeconomic forecasters.
ACKNOWLEDGEMENTS

Thus, the process and pursuit of the Master of Information Technology Degree is completed. Completing this dissertation successfully has been a major achievement and important educational experience for me.

I am deeply grateful to Puan Fadzilah Siraj, my supervisor, who tirelessly read through voluminous revisions, generously offered guidance and assistance through the entire process of research and writing of this dissertation.

I wish to thank my colleagues and friends at the Universiti Utara Malaysia with whom I discussed my study and from whom I received helpful suggestions. Most prominent among these was my beloved wife Wan Azlin Wan Abdullah for helping me with the idea and improve and encourage me, writing dissertation in English.

And, of course again, my deepest appreciation is expressed to my wife Wan Azlin, my mother Zainab Awang, Azamli and Ayahsu for their love, understanding, patience and support for me throughout my Master Program.
TABLE OF CONTENTS

PERMISSION TO USE i
ABSTRACT (BAHASA MALAYSIA) ii
ABSTRACT (ENGLISH) iii
ACKNOWLEDGEMENTS iv
LIST OF TABLES viii
LIST OF FIGURES ix

CHAPTER ONE: INTRODUCTION

1.1 Overview 1
1.2 Problems Statement 3
1.3 The Current Trend of Malaysian Economy: Structural and Macroeconomic Perspective 6
1.4 Pattern of Economic Crises and Significant Period to the Study 9
1.5 Conceptual Research Framework 10
1.6 Purpose of the Study 11
1.7 Scope of the Study 12
1.8 Contribution of the Study 12
CHAPTER TWO: NEURAL NETWORKS

2.1 Overview 13
2.2 Biological Neuron Versus Artificial Neuron 13
2.3 Neural Network Learning Method 16
2.4 Backpropagation Neural Network 16
2.5 Backpropagation Architecture 18
2.6 Backpropagation Algorithm 18
 2.6.1 Feed Forward Phase 19
 2.6.2 Backpropagation Phase 19
 2.6.3 Update Weight Phase 20
 2.6.3.1 Backpropagation Training Algorithm 20
 2.6.3.2 Backpropagation Activation Function 22

CHAPTER THREE: REVIEW OF RELATED LITERATURE

3.1 Overview 24
3.2 Forecasting 24
3.3 Neural Networks and Economics 25
3.4 Modeling Bounded Rational Economic Agent 27
3.5 Time Series Prediction 29
3.6 Classification of Economic Agent 31
3.7 Neural Networks and Macroeconomic Study 33
CHAPTER FOUR: RESEARCH METHODOLOGY

4.1 Overview

4.2 Step Developing Neural Network Forecasting for Macroeconomic Time Series

4.3 Neural Network Model

4.4 Econometric Model

4.5 Data and Source

4.6 Data Preprocessing

CHAPTER FIVE: EMPIRICAL FINDINGS AND DISCUSSION

5.1 Overview

5.2 Relative Forecasting Performance

5.3 Simulation and Comparison

5.4 Encouraging Results

CHAPTER SIX: CONCLUSION, RECOMMENDATION AND FURTHER RESEARCH

6.1 Overview

6.2 Conclusion and Recommendation

6.3 Further Research

BIBLIOGRAPHY

APPENDICES
LIST OF TABLES

Table 1: Comparative Forecasting Accuracy of Both Models

Page

48
Figure 1	The relationship between public sector, international trade, sectoral output and aggregate demand to GDP growth	10
Figure 2	Basic Illustration of a Neuron	13
Figure 3	Artificial Neurons	14
Figure 4	Back Propagation Neural Network	18
Figure 5	A Neural Network Model	39
Figure 6	Econometric Model Configured as a Neural Network Model	43
Figure 7	Actual and In-Sample Forecasting Using Neural Network Approach	49
Figure 8	Actual and In-Sample Forecasting Using Regression Approach	49
Figure 9	Actual and Out-of-Sample Forecasting Using Neural Network Approach	50
Figure 10	Actual and Out-of-Sample Forecasting Using Regression Approach	51
CHAPTER 1
INTRODUCTION

1.1 Overview

Macroeconomic forecasting is a very difficult task due to the lack of an accurate, convincing model of the economy. The most accurate models for economic forecasting, "black box" time series models assume little about the structure of the economy (Moody, 1995). Recent research suggests that neural networks may prove useful to forecast volatility financial variables that are difficult to forecast with conventional statistical methods, such as exchange rates (Verkooijen, 1996) and stock performance (Refenes, Zappranis and Francis, 1994). Neural networks have also been successfully applied to macroeconomic variables such as economic growth (Tkacz, 1999), industrial production (Moody, Levin and Rehfuss, 1993) and aggregate electricity consumption (McMenamin, 1997).

Most of these applications would benefit from the inclusions of nonlinearity in the forecasting function. However, nonlinear time series forecasting is not straightforward and theory does not guide the model building process by suggesting a functional relationship between relevant lags and the response variable. Within sample fit criteria are less effective in choosing a nonlinear rather than a linear model, and the best fitting nonlinear model may not produce the most accurate out-of-sample forecast.
The contents of the thesis is for internal user only
BIBLIOGRAPHY

Aiken, Milam and Bsat, Mohammad (1999). ‘Forecasting with Neural Networks’, *Information Systems Management*.

