METRICS EDUCATIONAL PACKAGE APPRAISAL/UPDATE

A thesis submitted to the Graduate School in partial fulfillment of the requirements for the degree Master of Science (Information Technology), Universiti Utara Malaysia

By
Ong Yak Kuang

© Ong Yak Kuang, 2001. All rights reserved
Saya, yang bertandatangan, memperakukan bahawa
(l, the undersigned, certify that)

Ong Yak Kuang

calon untuk Ijazah
(candidate for the degree of) Sarjana Sains (Teknologi Maklumat)

telah mengemukakan kertas projek yang bertajuk
(has presented his/her project paper of the following title)

Metrics Educational Package Appraisal/Update

seperti yang tercatat di muka surat tajuk dan kulit kertas projek
(as it appears on the title page and front cover of project paper)

bahawa kertas projek tersebut boleh diterima dari segi bentuk serta kandungan,
dan meliputi bidang ilmu dengan memuaskan.
(that the project paper acceptable in form and content, and that a satisfactory
knowledge of the field is covered by the project paper).

Nama Penyelia
(Name of Supervisor) : En. Azham Bin Hussain

Tandatangan
(Signature)

Tarikh
(Date) : 24 Oktober 2001
PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirement for a post graduate degree from Universiti Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by my supervisor(s) or, in their absence, by the Dean of the Graduate school. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without any written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Graduate School
Universiti Utara Malaysia
06010 UUM Sintok
Kedah Darul Aman
ABSTRACT (BAHASA MALAYSIA)

Pada kebelakangan ini, terdapat banyak pengajaran berindividu dan teknologi komputer, telah digunakan untuk memudahkan pembelajaran pada semua peringkat pendidikan dan latihan. Didapati bahawa aplikasi Pembelajaran Berbantuan Komputer (PBK) telah menjadi salah satu kaedah yang menyokong aktiviti pembelajaran ini.

Memandangkan perkembangan ini, penyelidikan ini bertujuan untuk nilai Pakej Pendidikan METKIT (Metrics Educational ToolKit) dalam bidang pengukuran kejuruteraan perisian, dan kemukakan cadangan untuk keperluan-keperluan pengemaskinian, dan seterusnya menyusun langkah untuk menjadikannya sebagai satu bahan pengajaran dalam pendidikan jarak jauh.

Penyelidikan ini telah menunjukkan bahawa kepincangan dalam pengukuran perisian menjadi punca utama kegagalan banyak projek perisian. Penyelidikan ini telah menidentifikasikan bahawa kekurangan ketepatan dalam objektif pengukuran perisian menyebabkan kegagalan dalam kebanyakkan projek perisian. Dengan kesedaran inilah, projek ini mencadangkan supaya pengukuran perisian perlu digalakkan dalam kursus melalui penggunaan pengajaran berindividu dan teknologi komputer untuk memudahkan proses pembelajaran dan pengajaran. Pakej Pembelajaran Berbantuan Komputer (PBK) telah dikenalpasti sebagai satu bentuk media yang dapat membantu untuk mencapai proses pembelajaran yang berkesan.
Pembangunan perisian PBK telah dirancangkan dengan rapi dan teliti untuk memastikan ia akan menjadikan satu alat pengajaran berindividu yang berkesan. Untuk tujuan ini, teori pembelajaran pendidikan telah dirujuk dan ciri-ciri rekabentuk yang baik telah dimasukkan ke dalam pakej perisian PBK itu. Pakej PBK itu kemudiannya dijalankan dengan sampel yang terpilih secara rawak daripada sesuatu populasi yang tertentu. Hasil daripada penyelidikan ini menunjukkan bahawa sesuatu pakej PBK yang efektif boleh meningkatkan proses pengajaran dan pembelajaran yang berkesan.

Sesuatu pakej PBK yang direkabentukkan perlu mengambil kira unsur-unsur teori pembelajaran dan memasukkan ciri-ciri rekabentuk yang baik dalam segi ruang, visual, audio, warna, grafik, dan animasi, untuk menjadikannya sebagai alat pengajaran berindividu yang berjaya.

Kajian ini juga menunjukkan keberkesanan dari segi kos dan masa dalam sistem pendidikan dan latihan dapat dicapai dengan aplikasi pakej PBK yang mempunyai bahan pengajaran yang berkualiti. Dengan teknologi maklumat ini, matlamat jangka panjang para pendidik dan tenaga pengajar dapat dicapai dengan mengagihkan bahan pengajaran berindividu seperti pakej PBK ini, kepada pelajar-pelajar, dan bukannya lagi mengagihkan pelajar-pelajar kepada bahan pengajaran. Tambahan pula, kemajuan teknologi menunjukkan kos perpindahan maklumat-maklumat secara elektronik dijangka jauh lebih rendah berbandingkan dengan penghantaran maklumat-maklumat secara cetakan kertas. Selain daripada itu, kos perkakasan per unit ingatan secara relatifnya,
telahpun dikurangkan. Kesemua faktor ini akan menggalakkan penggunaan PBK di dalam bidang pendidikan dan latihan.

Dalam konteks ini, pakej pendidikan METKIT telah memainkan peranan yang penting dalam usahanya untuk mempromosikan penggunaan pengukuran kejuruteraan perisian di kalangan komuniti Eropah. Sama ada pakej pendidikan METKIT ini berjaya atau tidak untuk mencapai matlamatnya, ini akan menjadi satu soal tanya. Akan tetapi kajian ini telah menunjukkan bahawa integrasi pakej pendidikan METKIT kepada pakej PBK dapat menjayakannya sebagai alat pengajaran berindividu yang berkesan dalam penggunaan kursus.
ABSTRACT

In recent years there has been increased development on individualized instruction and computer technology to facilitate learning at all levels of education and training. The application of CAL is one of the methods that support this activity.

In view of this development, the research aims to evaluate the METKIT Educational Package on software engineering measurements, and make recommendations for update requirements, and propose suggestions for it to be use in course for distance learning. A CAL educational package has been developed for that purpose.

The research has identified software measurements as a contributive factor towards the success or failure of a software project. The research has shown that the lack of objectivity in software measurements had resulted in project failures and over-runs. It is with this awareness that the software measurements should be promoted in course through the usage of individualized instruction and computer technology to facilitate learning. The CAL package has been recognized as one form of media for effective learning.

The development of CAL courseware has been carefully planned out. Emphasis has been placed on the application of educational learning theory, and the inclusion of good designing features. The CAL package is then evaluated by conducting a test on a sample of the selected population.
The finding from the research has shown that an effective CAL package can promote learning process efficiently. An effective CAL educational package should be developed with elements of learning theory in mind, and incorporated with good designing features to make it a successful tool as an individualized instruction package for use in course.

The research has shown that the cost effectiveness of education and training systems can be achieved by application of CAL using high quality instructional material and computers. With this technology, a long-term goal of educators and trainers can be realized by distributing instruction to students rather than by distributing students to instruction. Furthermore, technological advances indicate that electronic transfer of information is expected to be cheaper than paper transmission of information. In addition, the hardware cost per unit memory has been relatively reduced. All of these factors promote a technological change to the use of CAL in educational and training field.

In this respect, the METKIT educational package has played an important role in its effort to promote the use of software engineering measurements within the European Community. Whether the METKIT has successfully fulfill its mission is still questionable. But, one of the effective ways to make METKIT a successful instructional medium is to incorporate it into an effective CAL package for use in course.
ACKNOWLEDGEMENT

This project has been made possible through contribution from many people. I would like to express my sincere gratitude to the following persons:-

- Mr. Azham Bin Hussain, my project supervisor, for his valuable and helpful advice, understanding, and support throughout the project.
- Mr. Mohd Syazwan @ Pathmanathan Bin Abdullah, from the School of Information Technology, Northern University of Malaysia, for his kindness to read through my project research and patiently correcting the spelling and grammatical mistakes that I had made.
- Mr. Woon Moong Vooi, from the School of Economic, Northern University of Malaysia, for his guidance, constructive comments and especially for his recommendation to develop a CAL package.
- My fellow coursemates, who have voluntary tested my CAL program for the formative and summative evaluation.
- Mr. Ong Aik Jit, my youngest brother who has so helpful printing out my project papers.
- Last but not least, my beloved wife, Tan Jin Li, for her understanding and supports, my children Jeffrey, Jason and Jared, who have been a constant inspiration for me to work harder.

Thanks to you all.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMISSION TO USE</td>
<td>I</td>
</tr>
<tr>
<td>ABSTRACT (BAHASA MALAYSIA)</td>
<td>II</td>
</tr>
<tr>
<td>ABSTRACT (ENGLISH)</td>
<td>V</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>VII</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>VIII</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XV</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XVI</td>
</tr>
<tr>
<td>CHAPTER ONE: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background of the Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Statement of the Problem</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Statement of the Objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Significance of the Study</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Scope of the Study</td>
<td>4</td>
</tr>
<tr>
<td>1.6 Limitations of the Study</td>
<td>4</td>
</tr>
<tr>
<td>1.7 Project Layout</td>
<td>6</td>
</tr>
<tr>
<td>1.8 Project Organization</td>
<td>7</td>
</tr>
<tr>
<td>1.8.1 Software Measurement</td>
<td>7</td>
</tr>
<tr>
<td>1.8.2 METKIT- The European Dimension Towards Software Crisis</td>
<td>7</td>
</tr>
<tr>
<td>1.8.3 Tool Supports in METKIT</td>
<td>7</td>
</tr>
<tr>
<td>1.8.4 Integration of METKIT Educational Package into CAL Package</td>
<td>8</td>
</tr>
<tr>
<td>1.8.5 Distance Learning</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER TWO: LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Software Measurement</td>
<td>9</td>
</tr>
</tbody>
</table>

VIII
2.1.1 Introduction

2.1.2 The Problem of Software Evaluation

2.1.2.1 Why bother to measure?

2.1.2.2 Software Crisis: What went wrong?

2.1.3 Toward a Scientific Basis for Software Evaluation

2.1.3.1 Invariant Principle

2.1.3.2 Successive Refinement

2.1.3.3 Model Validations

2.1.3.4 Introspection

2.1.4 Metrics and Quality Management

2.1.4.1 Why is measurement important?

2.2 METKIT – The European Dimension Towards Software Crisis

2.2.1 Introduction

2.2.2 Rationale and Goals

2.2.3 Target Audiences

2.2.4 Academic and Industrial Educational Modules

2.2.5 Overview of METKIT Academic Modules

2.2.5.1 Module AM 0: Introduction to Software Engineering Measurement

2.2.5.2 Module AM 2: What is Measurement?

2.2.5.3 Module AM 3: Principles of Software Engineering Measurement

2.2.5.4 Module AM 4: Software Engineering Measurement in Industry

2.2.5.5 Module AM 2.4: Experimental Design for Software Engineering

2.2.5.6 Module AM 3.2: Software Engineering Models and Measures
2.2.5.7 Module AM 3.4: The Project on Diverse Software – A Software Measurement Case Study

2.2.5.8 Module AM 4.3: Tool Sampler

2.3 Tool Supports in METKIT

2.3.1 Introduction

2.3.2 METKIT Computer Assisted Instruction (CAI)

2.3.2.1 Free Browsing Mode

2.3.2.2 Guided Learning Mode (Tutorial)

2.3.2.3 Suggestions For Using The METKIT CAI System

2.3.3 Glossary of Terms

2.3.3.1 Suggestions For Using METKIT Glossary of Terms

2.3.4 Software Engineering Measurement Tools

2.3.4.1 Tool Sampler

2.3.4.2 What is "Before You Leap"?

2.3.4.3 Suggestions For Using The "Before You Leap"

2.3.4.4 What is "Logiscope"?

2.3.4.5 Suggestions For Using The "Logiscope"

2.3.4.6 What is "Qualms"?

2.3.4.7 Suggestions For Using The "Qualms"

2.3.5 Bibliography Database

2.3.5.1 Suggestions For Using The Bibliography Database

2.3.6 Reference Books

2.3.6.1 Suggestions For Using Norman Fenton's Book

2.3.7 Database of Measurement Tools

2.3.7.1 Suggestions For Using Database of Measurement Tools
2.4 Computer-Assisted Learning (CAL) Package

2.4.1 The Need for CAL

2.4.2 What is Computer-Assisted Learning (CAL)?

2.4.3 Why use CAL?

2.4.4 Paradigms of CAL Learning
 2.4.4.1 The Instructional Paradigm
 2.4.4.2 The Revelatory Paradigm
 2.4.4.3 The Conjectural Paradigm
 2.4.4.4 The Emancipatory Paradigm

2.4.5 Computer-Assisted Learning Technique
 2.4.5.1 Drill and Practise
 2.4.5.2 Tutorial
 2.4.5.3 Problem Solving
 2.4.5.4 Simulation

CHAPTER THREE: METHODOLOGY

3.1 Introduction

3.2 Evaluation of METKIT Educational Package
 3.2.1 Evaluation Against Learning Theory
 3.2.1.1 Gain Attention/Provide Motivation
 3.2.1.2 Present the Objective
 3.2.1.3 Recall Prerequisites
 3.2.1.4 Present Stimulus
 3.2.1.5 Guide Learning
 3.2.1.6 Elicit Performance
 3.2.1.7 Provide Feedback
3.2.1.8 Assess Performance 60
3.2.1.9 Promote Retention and Transfer 60
3.3 Integration of METKIT Educational Package into CAL Package 61
 3.3.1 Introduction 61
 3.3.2 Developing a METKIT CAL Package 62
 3.3.2.1 The Goals 62
 3.3.2.2 The Development of the METKIT CAL Package 63
 3.3.2.3 Designing Technique 65
 3.3.2.3.1 Characteristics of Good Tutorial CAL 65
 3.3.2.3.2 Design Features of the METKIT CAL 67

CHAPTER FOUR: RESULT 77
4.1 Trials 77
 4.1.1 Formative Evaluation 77
 4.1.2 Conducting a Formative Evaluation 77
 4.1.3 Analysis of the Finding (Formative Evaluation) 78
 4.1.4 Modifications 80
 4.1.5 Publication 80
4.2 Summative Evaluation and Follow-up 80
 4.2.1 Analysis of Finding (Summative Evaluation) 81
4.3 Conclusion 87

CHAPTER FIVE: DISTANCE LEARNING 88
5.1 Introduction 88
5.2 The Definition of Distance Learning 88
5.3 The Method of Distance Learning 89
5.4 The Role of Learning Package 89

XII
5.5 CAL Package and Distance Learning

5.6 How To Use the METKIT CAL Effectively in Distance Learning

5.6.1 Identify Your Learners

5.6.1.1 Attitude

5.6.1.2 Resource and Facility

5.6.1.3 Knowledge, Experience and Skill

5.6.2 Provide Learner Supports

5.6.2.1 Tutoring

5.6.2.2 Counseling

5.6.2.3 Local Infrastructure and Facility

5.6.2.4 Supports From Other People

5.6.3 Evaluating the METKIT CAL Package for Distance Learning

5.6.3.1 Why Evaluation?

5.6.3.2 Evaluation Method

5.6.3.3 Result

5.7 The Pros and Cons of Distance Learning

5.7.1 Introduction

5.7.2 Advantages of Distance Learning

5.7.2.1 Benefits to the Learner

5.7.2.2 Benefits to Employers

5.7.3 Disadvantages of Distance Learning

CHAPTER SIX: PROJECT EVALUATION AND CONCLUSION

6.1 Limitations of METKIT CAL

6.2 Recommendations for Improvement

6.3 Assessment of Achievement
CHAPTER ONE: INTRODUCTION

1.1 Background of the Study

The main idea of this project “Metrics Educational Package Appraisal/Update” was formulated on 18th March, 2001, when I went to see the lecturer, Encik Azham Bin Hussain for the project proposal. My project proposal is to evaluate a METKIT educational package, make recommendations for update and forward suggestions for use in course for distance learning. A Computer Assisted Learning (CAL) package was then developed for that purpose. I was very keen to undertake this project because I had been involved in educational field for almost 16 years since 1984. In fact my previous experience and training in education was an invaluable asset to me when I was doing this research project.

METKIT stands for Metrics Educational Toolkit. The primary goal of the METKIT educational package is to promote the use of software measurement within the European software engineering industry.

METKIT is a modular package design to cover the theoretical foundation and application of software metrics. The METKIT Educational Package shows how measurement can be used in software engineering to understand, control and improve the process of software development. The METKIT philosophy is not to tell people what to measure, rather it is to show how to use measurement to solve and avoid problems in software engineering.
The contents of the thesis is for internal user only
BIBLIOGRAPHY

Http://www.sbu.ac.uk/~csse/qualms_info.html
Http://www.sbu.ac.uk/~csse/products.html

REFERENCES

