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Abstrak 

Kualiti perisian adalah satu bidang penyelidikan yang penting dan telah mendapat 
perhatian dikalangan komuniti kejuruteraan perisian terutama dalam mengenal pasti 
atribut penting dalam proses pembangunan perisian. Tesis ini menerangkan 
penyelidikan asli dalam bidang model kualiti perisian dengan memperkenalkan 
algoritma Feature Ranking Algorithm (FRA) untuk model Pragmatic Quality Factor 
(PQF). Algoritma yang dicadangkan mampu memperbaiki kelemahan model sedia 
ada dalam mengemaskini dan mempelajari kombinasi atribut untuk penaksiran 
kualiti perisian. Teknik penaksiran sedia ada kurang keupayaan untuk 
menyenaraikan atribut mengikut keutamaan dan keupayaan pembelajaran data yang 
boleh meningkatkan proses penaksiran kualiti. Tujuan kajian ini adalah untuk 
mengenal pasti dan mencadangkan penggunaan teknik dalam bidang Kepintaran 
Buatan ke arah meningkatkan proses penaksiran kualiti dalam model PQF. Oleh itu, 
algoritma FRA yang menggunakan Feature Ranking Technique (FRT) telah dibina 
dan prestasi algoritma FRA telah dinilai. Metodologi yang digunakan terdiri 
daripada kajian teori, reka bentuk rangka kerja formal untuk kualiti perisian pintar, 
mengenal pasti kesesuaian ciri-ciri FRT untuk penyenaraian atribut, pembangunan 
dan penilaian algoritma FRA. Penaksiran atribut telah bertambah baik dengan 
menggunakan algoritma FRA yang mengandungi formula untuk mengira keutamaan 
atribut dan diikuti oleh adaptasi pembelajaran melalui aplikasi Java Library for 
Multi Label Learning (MULAN). Hasil kajian menunjukkan bahawa prestasi 
algoritma FRA  mempunyai kolerasi yang sangat kuat dengan model pakar iaitu 
model PQF. Ujian statistik menunjukkan bahawa FRA telah menghasilkan keputusan 
ketepatan yang lebih baik berbanding algoritma Kolmogorov-Smirnov Correlation 
Based Filter (KSCBF) iaitu 98% berbanding 83% masing-masing. Ujian statistik 
juga menghasilkan keputusan bagi algorithm FRA iaitu 0.052 adalah lebih baik 
berbanding dengan algoritma KSCBF iaitu 0.048. Ini menunjukkan bahawa 
keputusan FRA adalah lebih signifikan berbanding algoritma yang digunakan. 
Sumbangan utama kajian ini adalah dalam pelaksanaan teknik FRT yang 
memperkenalkan pengiraan Most Priority of Features (MPF) dalam algoritma FRA 
untuk teknik penaksiran tersebut. Kesimpulannya, penemuan kajian ini menyumbang 
kepada usaha penyelidikan baru dalam bidang pemilihan atribut dalam kualiti 
perisian.  
 
 
Kata Kunci: Perisian kualiti, Algoritma FRA, Teknik Kepintaran Buatan, dan 
Mesin Pembelajaran 
 
 
 

 

 



 

   iii 

Abstract 

Software quality is an important research area and has gain considerable attention 
from software engineering community in identification of priority quality attributes 
in software development process.  This thesis describes original research in the field 
of software quality model by presenting a Feature Ranking Algorithm (FRA) for 
Pragmatic Quality Factor (PQF) model. The proposed algorithm is able to improve 
the weaknesses in PQF model in updating and learning the important attributes for 
software quality assessment. The existing assessment techniques lack of the 
capability to rank the quality attributes and data learning which can enhance the 
quality assessment process. The aim of the study is to identify and propose the 
application of Artificial Intelligence (AI) technique for improving quality assessment 
technique in PQF model. Therefore, FRA using FRT was constructed and the 
performance of the FRA was evaluated. The methodology used consists of 
theoretical study, design of formal framework on intelligent software quality, 
identification of Feature Ranking Technique (FRT), construction and evaluation of 
FRA algorithm. The assessment of quality attributes has been improved using FRA 
algorithm enriched with a formula to calculate the priority of attributes and followed 
by learning adaptation through Java Library for Multi Label Learning (MULAN) 
application. The result shows that the performance of FRA correlates strongly to 
PQF model with 98% correlation compared to the Kolmogorov-Smirnov Correlation 
Based Filter (KSCBF) algorithm with 83% correlation. Statistical significance test 
was also performed with score of 0.052 compared to the KSCBF algorithm with 
score of 0.048. The result shows that the FRA was more significant than KSCBF 
algorithm. The main contribution of this research is on the implementation of FRT 
with proposed Most Priority of Features (MPF) calculation in FRA for attributes 
assessment. Overall, the findings and contributions can be regarded as a novel effort 
in software quality for attributes selection.  
 

Keywords: Software Quality, FRA Algorithm, Artificial Intelligence (AI) 
Technique, and Machine Learning 
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CHAPTER ONE 

INTRODUCTION 

1.1 Overview 

Chapter One presents the overall study and briefly explains the aims of the research. 

Several sections have been defined to classify and identify the purpose of this study. 

These include research background, problem statement of the research, research 

motivation, research objectives, scope of study and methodology. 

1.2 Research Background 

Nowadays, rapid development and diffusion of software quality is related to 

technologies in several industries. Statistics shows on insufficiently understood 

requirements accounted to 50% of errors. This was followed by design incorrectly 

understood from requirements, which accounted to 30% of errors. Hence, 

programming errors of system design contributed to 20% of errors (Humphrey et al., 

1989). In fact, the organization has outlined the exactly errors in perfectly before 

they starts to develop a software product. Thus, Software Quality Assurance (SQA) 

is a very important domain in software development and its purpose is to find ways 

to reduce the rate and associated cost of failure from poor product and services 

(Humphrey et al., 1989).  

In order to reduce errors in systems design and to fulfill user needs and requirements, 

the quality of systems development should be highlighted as an important goal. 

Normally, the standard level of quality is recommended by the International 

Organization for Standardization (ISO) and IEEE as well.  ISO defines quality as the 
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total of features and characteristics of a product and services that bear on its ability 

to satisfy stated or implied needs (ISO/IEC9126, 1991). IEEE defines software 

quality as a software feature or characteristic used to assess the quality of a system or 

component (IEEE, 1993). Furthermore, software quality is also defined as the fitness 

for use of the software product and conformance to software requirements and to 

provide useful services (Tervonen, 1996).  

Later, software quality is defined as conformance to explicitly states that functional 

and performance requirements, explicitly documented development standards, and 

implicit characteristics that are expected for all professionally developed software 

(Tervonen, 1996). In many organizations, software is considered as one of the main 

assets with which the organization can enhance its competitive global positioning in 

current economic era. In past literatures, software quality have been qualified and 

assessed by the current quality models such as McCall ( McCall et al., 1976), Boehm 

( Boehm et al., 1978), FURPS (Grady & Caswell, 1987), ISO 9126 ( ISO/IEC 9126, 

1991), Software Product Quality Requirement and Evaluation (SQuaRE) (The next 

generation of ISO/IEC 9126, 1999), Dromey Quality Model (Dromey, 1996), 

Systemic Quality Model (Callaos & Callaos, 2003), and Pragmatic Quality Factor 

(PQF) model (Yahaya et al., 2006). 

All of these quality models are based on theoretical approaches and are known as 

static model. Most of the assessment methods used in existing quality models are not 

able to show how factors are evaluated. In fact, the current existing models have 

limitations to fulfill the transformation in the environment. This scenario is discussed 

in Chapter Two.  
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In order to cater for future high software requirements, different assessment methods 

should be used to cope with the problem that occurred in the software quality model 

itself. This study presents an intelligent software quality model that was developed 

based on an Artificial Intelligence (AI) approach. The model consists of an algorithm 

and mechanism for assessing quality characteristics. Furthermore, the algorithm 

incorporates a formula that acts as a medium to evaluate and assess the quality 

characteristics according to the values given by users, developers and independent 

assessors. The model is able to identify and recommend to the environment on the 

priority of attributes in the software development process. Moreover, the proposed 

new intelligent model is able to solve the weaknesses that exist in current models. 

This is to ensure that the software quality meets the nation and organizations 

requirements and meets current and future standards.  

1.3 Research Problem Statement  

The existing literatures on software quality models have consistently highlighted 

those models as static models. A static model refers to the development of a software 

product on time, within budget and efficient in performing all specified functions of 

requirements (Boehm et al., 1978). Although, researchers on software quality have 

been developed their own models to evaluate and measure a software product. Most 

of them had developed based on their experiences and theoretical approaches that 

include basic components of software quality (McCall et al., 1976; Boehm et al., 

1978; Grady & Caswell, 1987; and Dromey, 1996).  

Nowadays, the software quality environment is fast changing in terms of user 

requirements and needs to fulfill future requirements. Hence, the existing models in 



 

   4 

the literature have limitations to meet the future requirements due to the assessment 

technique used. Since, the latest quality model, PQF has focused on user approach 

and human aspects it is still considered as a static model. Hence, this model is also 

has weaknesses in updating necessary information that is derived from possible new 

combination of attributes during assessment. However, the evaluation and 

measurement techniques provided by PQF model were not tailored by using an 

advance tool that incorporates an intelligent mechanism such as learning capabilities. 

This is one of the limitations of the model and in order to meet current requirements 

in software quality model, an assessment technique using AI approach is needed.  

In previous studies, AI approach has been widely used in software quality 

assessment. Some classification techniques used for software quality estimation 

include optimal set reduction (Briand et al., 2000), logistic regression (Khoshgoftaar 

& Allen, 1999; Schneidewind, 2001), decision trees (Khoshgoftaar et al., 2000; 

Suarez & Lutsko, 1999; Takahashi et al., 1997), neural networks (Khoshgoftaar et 

al., 1997; Paul, 1992; Pizzi et al., 2002), and case-based reasoning (Ross et al., 

2002). Most of the studies were established to assist quality improvement efforts 

during operations in the software quality testing and enhancing resources. The latest 

studies by Gao et al. (2009) used four Feature Selection (FS) techniques such as 

Automatic Hybrid Search (AHS), Rough Sets (RS), Kolmogorov-Smirnov (KS) and 

Probabilistic Search (PS) and conducted experiments using the algorithms on a very 

large telecommunications software system.  

The FS technique was used to remove irrelevant and redundant features from the 

original data set using filter approach. The FS technique used in this research 

consists of both approaches in feature selection such as filter and wrapper 
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approaches.  The development of an algorithm is an assessment technique that can 

improve software quality assessment in PQF model. The algorithm is known as 

Feature Ranking Algorithm (FRA). This algorithm includes a measuring technique 

in evaluating the priority of quality attributes using a formula known as Most 

Priority of Features (MPF). The learning adaptation through Java Library for Multi 

Label Learning (MULAN) application using classifiers like Random k-Labelsets 

(RAkel) and Multi Label k-Nearest Neighbour (MLkNN) is highlighted in this 

research. Furthermore, the developed algorithm provides an alternative in assessment 

on the quality of software product among users, developers and independent 

assessors. 

1.4 Research Motivation 

Firstly, the study presents an intelligent software quality model using Feature 

Ranking Technique (FRT) which is a type of FS technique to select a subset of 

relevant features for building learning models. The selected technique is widely used 

in the classification model of software quality estimation to perform prediction. 

Thus, the proposed technique can improve the assessment technique made by PQF 

model by incorporating the learning concept to identifying the priority of attributes. 

In fact, the new quality model provided an intelligent assessment technique to the 

software quality industry in Malaysia. 

1.5 Research Objectives 

The objectives of the research are: 
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I. to identify Feature Ranking Techique (FRT) as to improve Pragmatic 

Quality Factor (PQF) model. 

II. to develop and evaluate an assessment technique in PQF model with the 

proposed Feature Ranking Technique (FRT). 

 

1.6 Research Scope 

The main scope of this research is to utilize the data adopted from PQF model 

developed by Yahaya et al. (2007) which is captured since 2007 until 2011. The 

description of the data is discussed in Chapter Two. The data was used as the input 

and it is claimed as important because the data were gathered from the previous 

study of software quality model in the literatures. The data were known as 

Efficiency, Functionality, Maintainability, Portability, Reliability, Usability, 

Integrity, and User Conformity. Another scope in this study is to apply Feature 

Ranking Technique (FRT) for assessment method in PQF model. The technique is 

used to develop an algorithm in providing an assessment method for attribute 

selection and adaptation of learning concept is applied to train and learn the data.       

1.6.1 Research Methodology 

This section explains the methodology of the research with the aim to develop a new 

intelligent software quality model as to achieve the objectives in this research. The 

following sub sections discuss the steps involved in the development process. 
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1.6.2 Theoretical Study 

The sections reviews on existing studies related to software assessment. The studies 

were taken from references from journals, books, proceedings and other academic 

materials. The aim of this phase is to investigate the existing mechanisms and 

problems related to software quality. Furthermore, the important features that are 

expected to contribute in this research are identified.  

1.6.3 Design of formal framework on intelligent software quality 

The second phase of this research is designed the formal framework on intelligence 

software quality model. It involved identifying the specific features of software 

quality used FRT. 

1.6.4 Identify and proposed the Feature Ranking Technique (FRT) for an 

intelligence software quality model 

The third phase of the research is to identify and propose FRT technique for software 

quality model. Several techniques have been studied and the appropriate technique 

has been selected in this model. 

1.6.5 Construction of an Feature Ranking Algorithm (FRA) algorithm 

The fourth phase of the research is to construct a Feature Ranking Algorithm (FRA) 

algorithm with the proposed Feature Ranking Technique (FRT). The proposed 

technique discovered in the previous phase was used and integrated to construct an 

intelligent software quality model. 
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1.6.6 Evaluation of study 

The development of an algorithm used to test and valid the intelligence model. This 

phase is very important to show that the intelligence model of software quality 

achieved using AI technique. Furthermore, the proposed algorithm is compared to 

PQF model and Kolmogorov-Smirnov Correlation-Based Filter (KSCBF) algorithm 

in the literature.   

1.6.7 Research Contribution 

This research contributes an enhancement of assessment technique in PQF model 

which is known as Feature Ranking Algorithm (FRA). The main contribution of this 

research is on the embedding of AI approach in software quality model. The 

application FRT with proposed Most Priority of Features (MPF) calculation in FRA 

for attributes assessment technique is achieved. In addition, the implementation of 

learning concept is reached through Java Library for Multi Label Learning 

(MULAN) application using classifiers such as Random k-Labelsets (RAkel) and 

Multi Label k-Nearest Neighbour (MLkNN).  The detail of the proposed algorithm 

discusses in Chapter Four. Thus, the ideas of the existing quality model i.e. PQF 

model is used in terms of its components. It concludes behavioral characteristics, 

impact characteristic, responsibility, and weight. The detail explanation of this 

existing quality model is discussed in Chapter Two.   

1.7 Thesis Outline 

This thesis consists of six chapters and is structured as follows: 
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Chapter One: Introduction – The chapter includes the preliminary study that has 

been conducted, background of the study, problem statement, research motivation, 

objectives, scope of the research and methodology.  

Chapter Two: Literature Review – It gives an overview of the current quality 

models in the literature including the strength and weaknesses for each approach. 

Furthermore, this section was mentioned about the elements of AI pertaining to the 

proposed technique and method, which relates and involves in developing an 

algorithm.   

Chapter Three: Research Methodology – This chapter presents the research 

methodology that was used to achieve the research objectives. It gives an 

explanation of five sequential phases in the model development process. 

Chapter Four: Development of Feature Ranking Algorithm (FRA) Model - This 

chapter discusses the algorithm in detail. It presents the concepts involved in the 

selected technique and method to evaluate quality attributes. Furthermore, it gives 

explanations on the formula used to solve data redundancy. 

Chapter Five: Experimental Result – The FRA algorithm is evaluated based on 

expert review and results obtained from using KSCBF algorithm.  

Chapter Six: Discussion and Conclusion – The chapter concludes the research 

findings and contribution. It also presents recommendations for future research. 

Besides that, this chapter also highlights the problems encountered research values.  

 

 



 

   10 

CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter reviews on previous works related to this study. The purpose of this 

chapter is to discuss the preliminary study that has been carried out. Thus, it focuses 

on identifying the limitations in current works and problems decribed in Chapter 

One. Besides, it is also aimed at generating new ideas to enhance and support the 

constraints in the existing works. The discussion covers the definition of software 

quality and the significance of the issues. An overview of software quality models in 

the existing works has been investigated and they are discussed with special focus on 

the characteristic performance. Then, it is followed by the assessment techniques. 

Next, a discussion of PQF model and the compared method are presented. This is 

followed by a discussion on the elements of Artificial Intelligence (AI) approach and 

related works in software quality model. In the end, the chapter continues with a 

discussion on issues and problems faced in this study, followed by a summary of 

limitations and recommendations for future enhancements. 

2.2 Definition of Software Quality 

This section discusses the definitions of software quality, in which the term is 

understood in different ways by different individuals and organizations.  
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The International Organization for Standardization (ISO) defines software quality as 

a set of quality characteristics with different significance to fulfill the future 

requirements of software development. It has fully clarified the definition of term 

“software” and “quality” separately. Generally, ISO defines software as “all or part 

of the program, procedures, rules and associated documentation of information 

processing system”. Meanwhile, the term of quality is defined as “the totally of 

features and characteristics of a product or services that bear on its ability to satisfy 

stated or implied needs” (ISO/IEC 9126, 1996).  

Thus, “software quality” is referred to as the application in developing a software 

product. Universally, the software product is referred to as a set of computer 

program, procedures, documentation rules, and the intended data to be used by user 

(ISO/IEC 9126, 1996). Further, the software quality consists of various attributes to 

behave in the software product with various functions provided by each 

characteristic. Hence, each characteristic will perform with different capabilities in 

fulfilling users’ requirements.    

On the other hand, the International Symposium on Requirement Engineering 

(IEEE) which is also known as the body of standard for software quality metrics and 

methodologies that is responsible in providing rules in measuring the quality 

attributes. They defined software quality as software features which consists of a set 

of characteristics to act in software development (IEEE, 1993). In accordance, this 

study understands that the software quality refers to the behavior of the 

characteristics or known as attributes that influence the quality of systems. Thus, the 

interactions between each attribute in fulfilling user requirements are quite important 

in global competition.   
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Nevertheless, Garvin (1984) defines software quality as a “complex concept” in 

accomplishing user expectations. It conveys that the quality of software development 

is quite hard to achieve and it can be viewed from different perspectives including 

transcendental, user, manufacturing and value base view. The stated perspectives 

indirectly affect on the software product in term of user interactions with the final 

product.  

This has been supported by Denning (1992), who argues that software quality is 

important to be stressed in software development in supports of user satisfaction. 

Denning (1992) believes that software quality should not be based only on technical 

aspects but also on human, hence accomplishing user requirement is necessary.    

2.3 Software Quality Model 

This section discusses the chronological order of software quality models in the 

literatures. It also describes the characteristics of software quality model. 

2.3.1 Overview 

The literatures reveal several software quality models that could be classified as 

static quality model. The best known in chronological order of appearance are 

McCall (McCall et al., 1976), Boehm (Boehm et al., 1978), FURPS (Grady & 

Caswell, 1987), ISO 9126 (ISO/IEC 9126, 1991), Software Product Quality 

Requirement and Evaluation (SQuaRE) (The next generation of ISO/IEC 9126, 

1999), Dromey Quality Model (Dromey, 1996), Systemic Quality Model (Callaos & 

Callaos, 2003), and Pragmatic Quality Factor (PQF) model (Yahaya et al., 2007). 
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The earliest model in software quality is McCall model build in 1977 by the US 

Airforce Electronic System Division (ESD), the Rome Air Development Centre 

(RADC) and General Electric (GE) (Pfleeger et al., 2001). This model has grouped 

the quality attributes into product operation, product revision, and product transition. 

Product operation is based on the product ability that can affect on user friendliness. 

Meanwhile, product revision is related to the capability in handling error correction 

and system adaptation. In contrast, product transition is related to the distribution 

process in the software development.  

The Boehm model is similar to McCall model, in which it presents a hierarchy of 

characteristics and it contributes to overall the quality (Yahaya et al., 2008). In 

Pfleeger et al. (1997) and Khosravi et al. (2004), the Boehm model has been 

addressed based on the collection of characteristics including the user needs and the 

characteristics that are not encountered in the McCall model. In contrast, FURPS 

model (developed by Hewlett Packard) combines the main characteristics into an 

acronym that makes the model’s name. Each noun in this model name is referred to 

one characteristic. It divides the main characteristics into five characteristics and 

each consists of sub characteristics to be measured (Rawashdeh et al., 2006).  

The next model is ISO/IEC 9126, developed in 1991. ISO/IEC 9126 is the 

International standard which is known as information technology software product 

evaluation quality characteristics and provides guidelines to develop and measure 

product quality (Azuma et al., 2001). The model defines product quality as a set of 

product characteristics. Additionally, the model is also recommended to the 

environment the internal and external characteristics of software product.  
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Later, Software Product Quality Requirement and Evaluation (SQuaRE) has been 

introduced in 1999 and it was completely in Madrid in 2000 (Azuma, 2001). The 

SQuaRE model is known as the next generation of the ISO/IEC 9126. The model is 

focused on requirements of specification, measurement and evaluation (Suryn et al., 

2003). The strategy measurement in this model is adopted from ISO/IEC 9126 

including the new general reference model, detailed guidelines, standard for 

measurement primitives, quality requirement and so forth (Suryn et al., 2003). The 

aim of this model is focused on the product side, which translates the required 

quality into characteristics, sub characteristics, and defines the relationship for each 

characteristic (Qutaish, 2009).  

Next, Tomar (2011) describes that Dromey model values a product based on a 

quality model that recognizes the quality evaluation for each product. It is a broad 

quality model that works in different systems (Khosravi et al., 2004). In this model, 

the software product is divided into four areas: Correctness, Internal, Contextual, and 

Description. These four areas are internal properties which are related to the internal 

quality and measured at the source code. 

The model is followed by Systemic Quality Model, which is proposed by Calloas 

and Calloas in 2003. It concerns on product efficiency and effectiveness. It identifies 

the relationship between product-process, efficiency-effectiveness, and user-

customer to obtain global systemic quality (Ortega et al., 2003). The product-process 

efficiency refers to the external attributes or known as product properties such as 

requirement, design, and implementation properties (Ortega et al., 2003). 

Meanwhile, product-process effectiveness is related to the user satisfaction and 
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customer satisfaction which is focused on identification requirement and interfaces 

design (Ortega et al., 2003).   

The latest static quality model is Pragmatic Quality Factor (PQF), created by Yahaya 

et al. (2007). It aims at making an assessment on software product for certification. 

The model portrays good impacts to the software quality environment in terms of the 

assessment techniques. This model describes the relationships between attributes and 

clarifies them from un-measureable attributes to the measureable attributes using the 

measurable metrics. The assessment technique consists of four components i.e. 

behavioral characteristics, impact characteristics, responsibility, and weight.  

Among all the models described in the previous paragraphs, the PQF has been used 

as a benchmark in providing a guideline to measure the quality attributes in this 

research. Consequently, the assessment of components included in this model is 

applied in this research and indirectly enhances the quality assessment technique in 

PQF model using the proposed AI approach. The details of PQF model is discussed 

in the next section as an expert model in this research.   

2.3.2 Software Quality Model Characteristics 

Findings from the literatures show that consists of several attributes which are 

inherited from the previous models and contributes the new attribute related to the 

new requirement in respected era. In overall, the models contain various attributes 

covering various dimensions. Thus, the identification of quality attributes that is 

meets the user requirements and expectations extremely difficult. Most of software 

quality models were developed based on experiences, theoretical, and practical 

approach. 
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In short, the main quality attributes found in most of the models are Efficiency, 

Reliability, Usability, Portability, Functionality, and Maintainability. In fact, this is a 

set of attributes provided by ISO/IEC 9126 as a standard model. Most of the quality 

models in the literatures have used the standard quality attributes and also 

recommend to the environment the new required attributes to be highlighted. As an 

example it could be seen in SQuaRE model (Azuma, 1991) and Systemic model 

(Ortega et al., 2003). Also, Dromey model has contributed eight quality attributes in 

which six attributes are inherited from ISO/IEC 9126 and two additional attributes 

are Reusability and Process Maturity (Khosravi et al., 2004). Nevertheless, the latest 

model such as PQF model also includes the recommended attributes by the standard 

model and the additional attribute such as Integrity and User Conformity attribute 

(Yahaya et al., 2007).  

In earlier development of McCall, it consisted of 55 attributes to be measured. Later, 

it has been reduced to 11 for easier analysis. In this model the attribute is called 

factor, which are Maintainability, Flexibility, Testability, Portability, Reusability, 

Interoperability, Correctness, Reliability, Usability, Integrity and Efficiency. 

According to the Pfleeger et al. (2001) and Khosravi et al. (2004), Boehm model also 

includes user needs as available in McCall. It adds with other attributes i.e. 

Understandability, Human engineering and Changeability. Also, Boehm model 

includes general utility characteristics which are broken down into Portability, 

Utility and Maintainability. Furthermore, Utility attribute is divided into Reliability, 

Efficiency and Human Engineering (Rawashdeh et al., 2006). In fact, the model 

classifies the characteristics from the views of end user in different locations and 

time (Rawashdeh et al., 2006).  
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Nevertheless, the FURPS model is quite different from the previous models in the 

literatures in terms of the types of categories provided in the model. They are 

functional requirements (F) and non-functional requirements (URPS). The 

combination of words consists of five (5) quality attributes in system development. 

In detail, the Functional requirements (F) are related to the input and expected 

output, while Non-Functional requirements (URPS) refers to Usability, Reliability, 

Performance and Supportability (Rawashdeh et al., 2006). The detail on the 

characteristics and attributes of each model is summarized in Table 2.1 below 

(Source: Yahaya & Deraman, 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

   18 

Table 2.1: Quality Characteristics in Previous Software Quality Models (Source: 

Yahaya & Deraman, 2008) 

                                                                                            
Quality 

Characteristics/ 

Software Quality 

Models 

McCall 

(1976) 

Boehm 

(1978) 

FURPS 

(1987) 

ISO 

9126 

(1991) 

Dromey 

(1996) 

SQuaRE 

(1999) 

Systemic 

Quality 

Model 

(2003) 

PQF 

(2007) 

Testability * *       

Correctness *        

Efficiency * * * * * * * * 

Understandability  *   *    

Reliability * * * * * * * * 

Flexibility *        

Functionality   * * * * * * 

Human 

Engineering 

 *       

Integrity *      * * 

Interoperability *        

Process Maturity     *    

Maintainability * * * * * * * * 

Changeability  *       

Portability * *  * * * * * 

Reusability *        

Usability   * *  * * * 

Performance *  *      

User Conformity        * 

*  is refer to the selected atrributes 

 

2.3.3 Summary of Software Quality Model 

Most of the software quality models in the literatures including McCall, Boehm, 

FURPS, ISO 9126, SQuaRE, Dromey, Systemic Quality Model, and PQF model 

have been developed by theoretical approach, developer’s view, and the experiences 

with their own characteristics. The developer for each existing software quality 
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model has contributed beneficial ideas in generating a software quality model. As an 

example, McCall has divided quality characteristics into the product operation, 

product revision and product transition. The main characteristics are Maintainability, 

Flexibility, Testability, Portability, Reusability, Interoperability, Correctness, 

Reliability, Usability, Integrity and Efficiency. Later, Boehm model improved the 

McCall model by incorporating user needs and suggesting general utility 

characteristics i.e. Portability, Utility and Maintainability.  

FURPS model contributes five characteristics (Functionality, Usability, Reliability, 

Performance and Supportability) which are divided into functional requirement (F) 

and non-functional requirement (URPS). Also, ISO/IEC 9126 (standard model) 

contributes standard characteristics i.e. Efficiency, Reliability, Usability, Portability, 

Functionality, and Maintainability. On top of that, this standard model presents the 

guidelines to the developers in generating a software quality model.  

Consequently, the SQuaRE and Systemic models used the standard characteristics 

similar to the standard model in measuring the quality attributes. Particularly, 

SQuaRE model improves the new evaluation process. Meanwhile, the Systemic 

model identifies the relationships between product-process, efficiency-effectiveness 

and user-customer to obtain global systemic quality. However, it is a little bit 

different in Dromey model that contributes eight characteristics inherited from the 

standard model. It introduces Reusability and Process Maturity characteristics. In 

addition, the PQF model presents the Integrity and User Conformity characteristics 

as the new characteristics in the model. It aims at clarifying the un-measureable 

attributes to the measureable attributes using the measureable metrics.   
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2.4 PQF Model   

This section discusses the PQF model in detail. The model is still known as a static 

model due to the capabilities in fulfilling the requirements and expectations in the 

future. As a result, this model has been established and recommended for a better 

software quality standard and procedure to assess quality attributes. In fact, this 

model has been accepted for practice in the industry and has been used in several 

large organizations in Malaysia (Yahaya et al., 2010; 2008). Further, the following 

sub sections discusses on the PQF model pertaining to the component, assessment 

technique, strength, and the limitation.  

 
2.4.1   Component of PQF Model 

The model was created by Yahaya et al. (2007) with a specific goal that is to make 

an assessment on software product for certification. As reviewed in the previous 

section, it is an excellent quality model because it describes the relationships 

between attributes. This model shows the assessment technique on un-measurable 

attributes using the measurable metrics, which consists of four components 

(behavioral characteristics, impact characteristics, responsibility, and weight). The 

details of each component are presented in Figure 2.1. 

 

 

 

 



 

   21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Component of Pragmatic Quality Factor (PQF) Model 

  

Yahaya et al. (2007) describes the behavioral attribute as the internal quality 

characteristic of software development. The statement shows that the behavioral the 

attribute and human perspectives act as important elements to be stressed on the 

quality environment. In this model, the behavioral attribute is inherited from 

ISO/IEC9126 model including new additional attribute (Integrity and User 

Conformity). In particular, the Integrity attribute is pertaining to the security aspect 

and very critical to be pointed out as an important attribute in software development. 

Meanwhile, the User Conformity is related to the impact attribute such as user 

 

Component of PQF Model 

Weight Responsibility Impact 
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Behavioral 
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Interviewee Specific 

Scale 
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Requirement 

User 
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perception and user requirement. Based on the discussions in the previous section, 

this study believes that the attribute is extremely important to balance the quality 

model between technical measurement of software and human factor (Yahaya et al., 

2008). 

The second component refers to the impact characteristic, which is divided into two 

categories: user perceptions and user requirements. In particular, user perception 

measures the popularity, performance, trustworthiness, law and regulation, 

recommendation, environment, and adaptability, while user requirement measures 

the user acceptance and satisfaction. In this model, it decomposes all the attributes 

into the metric that enables the assessment on each attribute. 

Further, the third component in PQF model is responsibility. This component acts as 

the main role that directly involves users who are the interviewees that are 

responsible in assigning the weight values by judging the priority of each attribute. 

The users consist of developers, managers, and assessors who are hired as experts for 

several years to assign the weight values. In this case, five point Likert scale is used 

which is based on collaborative perspective among assessment team members 

(Yahaya et al., 2008).  

In the assessment, the scale is stressed on the satisfaction of the stakeholders in 

accepting the quality attributes in product. Subjects are expected to express their 

agreement or disagreement in numerical values (one to five: 1 = unacceptable, 2 = 

below average, 3= average, 4 = good and 5 = excellent). All the values are counted 

using a specific metric performed in the fourth components of PQF model. 

 The weight factor is the fourth component in PQF model. A specific metric has been 

performed in a formula that counts the priority of quality attribute. The information 
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of the PQF weight calculation is presented in general. Based on original data 

collected from several large organizations in Kuala Lumpur, Malaysia, the following 

findings were gathered (Yahaya et al., 2008). In the study, the stakeholders were 

responsible in giving the weight value for each attribute depending on their 

experiences in the organization.  Further, each of the attribute is sorted into the three 

classifications with respect to the calculated weight score as exhibited in Table 2.2.   

 

Table 2.2: Classification of Attributes and Weight Factor (Source: Yahaya & 

Deraman, 2010) 

 

 

 

 

 

 

 

 

 

 

  

Table 2.2 divides the weight factors into three levels i.e. low, moderate, and high. It 

is seen that, Flexibility, Intra-operability, Inter-operability, Portability and 

Survivability attributes with scores of 1 to 4 are in the low level. This explains that 

this quality attributes have less priority in software development. In contrast, Safety, 

Sub Attributes Weight FactorLevels 

1-4 Flexibility 

Intra-operability 

Inter-operability 

Portability

Low 

       5-7 Safety 

Efficiency 

Maintainability 

Moderate 

     8-10 Functionality 

Reliability 
High 
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Efficiency, Maintainability, and Usability attributes with scores of 5 to 7 are 

moderate, while Functionality, Reliability and Integrity with scores of 8 to 10 are 

high.  

2.4.2   Assessment Technique in PQF Model 

The assessment technique in PQF consists of technical aspect that stresses on two 

main components (the behavioral attributes and the impact attributes). The previous 

section explains that, the behavioral attributes deal with assessing software product 

to ensure the quality of the software and how it behaves in the environment (Yahaya 

et al., 2010; 2008), while the impact attributes deal with the reaction of the software 

product and its impact on the environment. These two components can generate 

stability between the technical requirement and the human factor.  

On the other hand, Bevan et al. (1999) explains that the software measurement can 

be categorized into direct and indirect measurement. Particularly, direct 

measurement includes Lines of Code (LOC) which consists of execution speed, 

memory size, and faulty in period of time. Meanwhile, indirect measurement 

includes Functionality, Complexity, Efficiency, and Reliability (Khoshgoftaar et al., 

2003). In this case, all attributes and sub attributes are known as un-measurable 

attributes in PQF model. 

Bevan et al. (1999) is also defined metric as a quantitative measurement for 

attributes weight assigned by the assessors that can be used to estimate the quality 

attributes. In PQF model, the technique used in measuring the un-measurable 

attributes is the measurable metrics. According to the developer (Yahaya et al., 2010, 

2008, 2007), the un-measurable attributes are decomposed into several sub attributes 
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and metrics. The standard quality attributes are obtained from the ISO/IEC 9126, 

which consists of six attributes and includes new attributes in PQF model (Integrity 

and User Conformity attributes). Further, they are broken down into sub factors for 

estimation. In conjunction, the decomposition of the un-measurable attributes is 

shown in Table 2.3. It is adapted from Yahaya et al. (2008) on the comparison of 

quality score obtained by Cases X, Y, and Z industries in Malaysia through PQF 

model.  
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Table 2.3: Comparison of Quality Score Obtained by Case X, Y and Z (Source: 
Yahaya et al., 2008) 

  Quality Attribute Case X Case Y       Case Z 

    Score/5.00 Score/5.00 
       

Score/5.00 

1 Efficiency 3.73 4.08 4.70 
    (74.6%) (81.6%) (94.0%) 

Time Behavior 3.56 4.33 4.50 
Resource Utilization 4.00 3.70 5.00 

2 Functionality 3.62 3.69 4.96 
    (72.4%) (73.8%) (99.3%) 

Suitability 3.83 3.65 4.88 
Accuracy 3.33 3.20 5.00 
Interoperability 3.63 4.50 5.00 

3 Maintainability 3.34 2.66 3.58 
    (67.8%) (53.2%) (71.6%) 

Analysability 3.61 2.63 3.05 
Changeability 3.13 2.20 3.25 
Testability 2.83 3.06 2.00 

4 Portability 3.20 3.55 3.50 
    (64.0%) (71.0%) (70.0%) 

Adaptability 3.56 5.00 4.75 
Installability 2.77 1.80 2.60 
Conformance 4.00 4.80 5.00 
Replacebility 3.33 4.40 5.00 

5 Reliability 3.30 3.36 4.50 
    (66.0%) (67.2%) (90.0%) 

Maturity 3.83 3.80 4.75 
Fault Tolerance 3.00 3.20 4.38 
Recoverability 3.00 3.00 4.33 

6 Integrity 3.67 3.83 4.33 
    (73.4%) (76.6%) (86.7%) 

Security 4.00 3.87 4.33 
Data Protection 3.33 3.06 3.00 

7 Usability 3.20 2.95 3.41 
    (64.0%) (59.0%) (68.2%) 

Understandability 2.56 3.44 2.72 
Learnability 2.76 2.93 3.40 
Operability 3.70 3.01 4.61 

8 User Conformity 3.53 3.67 4.73 
    (70.6%) (73.4%) (94.7%) 

User Perception 3.56 3.84 4.67 
  User Requirement 3.50 3.40 4.83 
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Table 2.3 exhibits that in Case Z, the score for Functionality is 99.3%. It is the 

highest, followed with User Conformity and Efficiency (94.7% and 94.0% 

respectively). Meanwhile, the score for Integrity attribute is 86.7%. Case X has 

lower scores with Efficiency score the highest, followed by Integrity and User 

Conformity at 74.6%, 73.4% and 70.6% respectively. This shows that Case X and Z 

share a similarity, in which Usability attribute scores the least (64.0% and 68.2% 

respectively).  

In addition, score in Case Y shows that Efficiency attribute is the highest of (81.6%). 

It is followed by Integrity and User Conformity (76.6% and 73.4% respectively). 

Meanwhile, Maintainability attribute is the least (53.2%).  

Based on these actual results, using the assessment technique in PQF model, it is 

obvious that Integrity and User Conformity are recommended by the experts as very 

beneficial to be stressed on software development with the user perception views.  

2.4.3   Step of Assessment Technique 

The first step in PQF assessment technique is to convert the un-measurable attributes 

to the measurable attributes. The sub factors of the attributes are decomposed to the 

third level metrics which are named as M1, M2, M3, M4, M5, M6, M7, M8, and M9, 

in which ‘M’ represents the metric while the numbering order refers to the quality 

attributes. This could be illustrated in a tree diagram as seen in Figure 2.2 shows the 

decomposition of Functionality attribute which is sourced from Yahaya and 

Deraman (2010).  
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Figure 2.2: Decomposition of Functionality (Source: Yahaya & Deraman, 2010) 

 

Referring to the diagram in Figure 2.2, the sub factors of Functionality are 

decomposed into the third level according to the weight given by the stakeholders. 

The metrics measurements are managed by the users or developers of the software 

product. They assigned weight for each attribute according to the quality of software 

product in timely basis. In this step, the assessment technique shows that the human 

judgment aspect is used on the behavioral characteristics in the software product. 

The next step involves the impact attributes. According to Yahaya and Deraman 

(2010), the impact attributes illustrating the software impact to the users and the 

conformity of software to the user requirement is also evaluated. In fact, the impact 

attributes also decomposes to the sub attributes and metrics as to show the 

measurement of the attributes. It is known as user perceptions and user requirements. 

The user perception measures the elements such are popularity, performance, law 

and regulation, recommendation, trustworthiness, requirement and expectation, and 

environmental adaptability. In a complement, the user requirement measures the user 

acceptance and satisfaction. Five-point Likert Scale was used in collecting data 

based on perspective of assessment among team members. The management of the 
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data and analysis was performed by Statistical Package for the Social Sciences 

(SPSS) analysis tool and the weight of each attributes is calculated using the in 

Equation 2.1.  

                                                                         n 
                                                 TotalVH =  Σ VHa                                                                       
                                                                                                                          (Eq. 2.1) 
                                                                    a=1 
 

Where n = number of attributes defined in the analysis and VH is the score for Very 

High Consideration. Further, the weight of the attributes is calculated using the 

following formula in Equation 2.2.  

                                              
                                          Weighta = (VHa / TotalVH),                                   (Eq. 2.2)                     
                                                                                                                      
 
 
Where a represents the selected attribute.  The weight of the selected attributes is 

converted to the percentage value using the formula in Equation 2.3. 

  

                                     % Weighta = (VHa / TotalVH) * 100                           (Eq. 2.3)                         
 

 

Further, the next step is to use the function point approach to group and classify the 

attributes into three distinct classifications namely low, moderate, and high as 

discussed in section 2.4.1. The value of each attribute is sorted into these three 

classifications according to the calculated weight score according to Equations 2.2 

and 2.3. Eventually, the model reveals the results pertaining to the quality attributes 

for the purpose of the assessment.   
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2.4.4   The Strength and Limitation of PQF Model 

 
Referring to the literatures, it is found that PQF model has been applied in software 

certification model as the benchmark and standard model of the assessment. The new 

arrangement of the model as a software quality measurement has been shown and 

clearly defined including on the way to evaluate the quality attributes with human 

perspective approach.  The aspects of quality as discussed before such as the 

behavioral and impact attributes are essential as to balance between the technical and 

non-technical aspects. Hence, the model provides flexibility by giving priorities and 

weight to the quality attributes. These two elements are necessary to reflect business 

requirement in the real business environment. Therefore, it is more practical and easy 

to be understood by the users, developers, and independent assessor pertaining to the 

way of assessment. In fact, this model shows how the un-measurable attributes can 

be measured indirectly by applying the measurement techniques and metrics 

approach.  

Even though the PQF model seems like an expert model in the software quality 

community, it is also need to be improved in terms of its assessment technique by 

attaching the elements of Artificial Intelligent approach. In fact, the attachment of 

the dynamic elements can be more beneficial in the software quality environment 

with a self-learning capability with capturing knowledge from certification processes 

and experiences efficiently. Thus, the intelligent toolset should be capable of 

adapting and noticing the changes in environment and information needs. This can 

improve the limitation of PQF model in expanding its capability to fulfill the 

changes in the environment according to the assessment technique. Thus, the 
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proposed technique in this study can enhance and overcome the limitation of PQF 

model.     

2.4.5   Discussion of PQF Model 

Recently, PQF model focuses on human aspect in order to give the priority value to 

each attributes in the software development. This opportunity provides more impact 

to the software product as to reflect the business requirement. While, the ISO/IEC 

9126 as a standard quality model only addresses the external problem and excluded 

the human aspects in evaluating the quality attribute (Yahaya & Deraman, 2010). As 

mentioned in the previous section, the PQF model highlights the user requirements 

and user expectations clearly and has defined the way to evaluate quality attributes. 

It has been developed based on different perspectives, which highly focus on user’s 

criterion perspective. Besides that, the quality of software product is claimed as good 

software quality when it achieves the user needs and expectations. Hence, the model 

also specifies the quality requirements in terms of high level quality attributes that 

meets the changes in the environment and meets the needs of the manufacturing 

view, which stipulates that quality as a conformance to a specification of 

requirements.   

The benefits provided by the PQF model as the latest static model in the literature 

which presents the measurement metric to measure the un-measureable attributes is 

encouraging to be enhanced with dynamic element as proposed in this study. The 

PQF is also known as the excellent quality model and has been established and 

applied in large organizations in Malaysia. The assessment technique in PQF model 

is used as the benchmark and a baseline to be compared with the proposed 
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assessment technique. Thus, the limitation faced in the PQF model can be solved by 

the proposed algorithm.      

2.4.6 Summary of PQF Model  

Element Details 
Component Behavioral 
  Impact 
  Responsibility 
  Weight 
Assesment 
Technique Focus on technical aspect such as behavioral attributes and impact 

attributes 
  
Strength  1) The quality measurement is shown the way to evaluate the quality  
      attributes with human perspective approach  
  2) The model provides flexibility by giving priorities and weight  
       to the quality attributes 

  

3) The model shows how the un-measurable attributes can be     
 measured indirectly by applying the measurement techniques and    
 metrics approach.  

Limitation Lack of capability in fullfilling the changes in the environment timely  
  basis due to the assesmsent technique used is not tailored 
   by element of intelligent in order to adapt and notice any other  
   changes in the environment needs 

 

2.5 Static Quality Model and Dynamic Quality Model  

This section discusses on the dimension of software quality model, which is divided 

into static and dynamic. The static means fixed or permanent. It is unable to learn the 

changes occurred in in the context. In contrast, dynamic means it is capable and 

changeable in timely basis. The discussion on static and dynamic quality model is 

differentiated by the elements used to develop the model. It consists of assessment 

technique, assessment concept, and scope of assessment.  



 

   33 

Most of the quality models in the literatures are static quality model. The latest 

established quality models including PQF incorporate the aspect of behavioral and 

human perspectives. They are still known as static model. The assessment technique 

used in most of the existing quality models is in structural forms (Yahaya et al., 

2008). The structural forms are referred to the metrics in a form of checklist used to 

grade attributes of software development. Also, it defines the quality attributes via 

questionnaire. This technique defines the quality characteristics and clarifies the 

attributes, sub attributes, and examines the relationship among them.  

According to Yahaya et al. (2008), the behavioral attributes is quite important to be 

stressed in the assessment. It will impact the users and conformity of software to 

fulfill user requirements. Previously, Denning et al. (1992) claimed that a quality 

model is not good quality if there is no user satisfaction aspect in software 

development. In regards to this, previous section has mentioned that PQF 

incorporates the aspect.  

However, although this static quality model incorporates the user views in the 

assessment technique, it still has limitations and its components needs improvement 

to achieve the current and future requirements. The assessment concept used in the 

static model is theoretical approach which includes user, developer, and manager 

views. This refers to the theory, technical, and experiences as well. In fact, the views 

of stakeholders will define the different views and perceptions on quality. On top of 

that, Garvin et al. (1984) suggested that the quality of product during production is 

quite important to be highlighted. It shows that the scope of assessment in static 

quality model is focused on the quality of components and the functions in final 

products. Also, it shows the necessity to fulfill the transformation in the environment 
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due to high specification of the software product itself. In fact, the static model 

supports building quality into products and processes.  

The dynamic model is new advancement of software quality model which can be 

achieved using AI approach in the assessment technique. The elements involved in 

the dynamic model applied fully knowledge based approach with self-learning 

capabilities. This element is a toolset for adapting and noticing the changes in the 

future requirements and updated the changes respectively. The existing assessment 

technique such as structural forms is also used in the dynamic model to define the 

quality attributes through the user views. Then, to improve the assessment technique 

in static model, the adaptation of learning concept is highlighted in handling the 

classification of the data as to assess the priority of each attribute.  

The concept used in the assessment technique in dynamic model is a practical 

approach. In this concept, the user views are considered as the main awareness to be 

highlighted in the software development. The dynamic model is also capable to 

interact in the environment if there are any attributes selections and modification 

occurs in future. Thus, the scope of assessment in dynamic model is highly focused 

on the priority of quality attributes that can be trained in timely basis. This is an 

additional purpose to improve the limitation in the existing quality model after the 

product and process quality is achieved.   

With reference to the discussions in the previous paragraphs, Table 2.4 summarizes 

the element of static quality model and dynamic quality model in which the elements 

includes component assessment technique, assessment concept, and scope of 

assessment. In detail, the component assessment technique in static quality model is 

structural forms, which is used to define the quality attributes and clarify the 
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relationship among them. In contrast, in dynamic quality model it involves AI 

approach to improve the component of assessment technique in the static quality 

model. Meanwhile, the assessment concept used in static quality model is theoretical 

approach which refers to theory, technical, and experiences of developer. Thus, in 

dynamic quality model uses practical approach which employed the user views in 

software development. On the other hand, the scope of assessment in static quality 

model is stressed on product and process quality, which supports the inclusion of 

quality into products and processes. On a contrary, the dynamic quality model highly 

focuses on the priority of quality attributes after implementation of product and 

process quality.  

 

Table 2.4: Summary of Static Quality Model and Dynamic Quality Model 

 

Element Static Quality Model Dynamic Quality Model 
Component 
assessment 
technique 

• Structural 
forms • Structural forms 

• Artificial Intelligence 
(AI) approach 

 
Assessment 
concept 

• Theoretical 
Approach • Practical Approach 

Scope of 
assessment 

 
• Product and 

process quality

 
• Product and process 

quality 
• Priority of quality 

attributes 

2.6 Artificial Intelligence (AI) Approaches in Software Quality 

Olivier (2001) defines AI as the application of computers, desiged to model the 

behavioral aspects of human reasoning and learning of the data. Later, Wenger 
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(2004) explains that AI involves an attempt to model the reasoning process in 

solving a problem either in natural language processing, algorithm, the proof of a 

theorem and so forth. Earlier, Pomerol (1997) argues that AI approach is able to 

sense and understand the conversations, human reasoning, and make a decision as 

would as human judgement.  

Literatures show that there are several studies in software quality make use of AI 

techniques for several purposes. This includes studies by Khoshgoftaar, Szabo, and 

Guasti (1995), Lees, Hamza, and Irgens (1996), Khosgoftaar, Allen, Hudepohl, and 

Aud (1997), Khoshgoftaar, Chien, and Allen (1998), Khoshgoftaar, Nguyen, Gao, 

and Rajeevalochanam (2003), Khoshgoftaar, Gao, and Wang (2009) and 

Khoshgoftaar, Gao, and Napolitano (2009). 

Khoshgoftaar et al. (1995) explored of the behavioral of neural network in software 

quality model. They compared two quality measures which are software complexity 

metrics and software quality metrics. The data were gathered from the components 

in software system and applied neural network as to train the data. The aim was to 

investigate the relationship between the two quality measures.  

Later, Kumar et al. (1998) describes that Artificial Neural Network (ANN) is based 

on concepts of neuron or biological which consists of neuron connecting to the 

processing elements. The ANN are composed of two main structures namely the 

nodes and the links. The node is related to the neurons while the links related to the 

links between neurons. Further, the layer of nodes is referred to the hidden layer. 

Many ANNs contain multiple hidden layers and each feeds into the next layer. 

Before that, Khoshgoftaar et al. (1997) has also studied the ANN in which it is 

created from a network that the input data is already known. Meanwhile, the Multi 
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Layer Perceptron (MLP) is used as a classifier to learn the input data for the training 

data set.Additionally, in software quality model, data can be tested and trained using 

different classification algorithms such as Naïve Bayes (NB), K-Nearest Neighbour 

(KNN), Support Vector Machine (SVM) and Logistic Regression (LR) 

(Khoshgoftaar et al., 1998). The measurement on software quality models using NN 

involves a multiple regression quality model from the principal component of 

software. Particularly, the principal component of software refers to the data 

reduction technique that is used to reduce the dimensionality of multivariate data set. 

In this case, the dependent variable is a quality measure (Khoshgoftaar et al., 2003).  

On the other hand, the NN modeling identifies a list of dependent and independent 

variables. This is known as model selection and the selected variable is trained using 

the estimation technique in NN such as backward propagation algorithm, and 

forward propagation algorithm. Finally, the regression model will process the results 

to evaluate the quality models. However, the dimensionalities of the data are 

required to apply NN technique in evaluating the software quality models.        

According to Kolodner (1992), Case-Based Reasoning (CBR) is a technique in 

adapting previous solutions stored in a library to solve new problems. In this 

technique, the CBR adapts the earlier problem to create a new solution in generating 

the new situation. The main purpose of CBR are to ensure the fitness for purpose of 

a software module, to identify an appropriate set of features which may be used and 

to describe the performance metrics and quality characteristics relating to each cases 

(Khoshgoftaar et al., 2003). Pertaining to the CBR, the quality attributes are 

measured by presenting a list of quality factors and determined the relationship 

among the quality factor. The establishment of quality factor uses metric 
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performance like Quality Function Deployment (QFD), which quantifies the quality 

attributes and calculates the total quality measures for each attribute (Lees et al., 

1996). CBR system has been very important in numerous fields including software 

cost estimation, software reuse and software quality estimation (Khoshgoftaar et al., 

2003). Among the famous methods used in CBR in estimating the quality includes 

Kolmogorov-Smirnov (KS) method and the Kolmogorov-Smirnov Two Sample Test 

(K-S Test) (Khoshgoftaar et al., 2003).  

Khoshgoftaar et al. (2003) applied the attribute selection method in CBR for 

software quality classification. The investigation on attribute selection was aimed to 

reduce the number of software metrics through CBR component in developing a 

software quality classification model. Particularly, the K-S Test was used in their 

study as a metric in determining the software metrics as an indicators of software 

quality. The research contributes that CBR technique was capable to develop 

software quality classification models in reducing the number of metrics in software 

quality for classification development. 

Later, Khoshgoftaar et al. (2009) investigated for the same idea on software quality 

classification using Filter Attribute Selection (FAS) technique to improve the 

predictive accuracy of software quality models. The exploration on four different 

attribute selection techniques i.e. Automatic Hybrid Search (AHS), Probabilistic 

Search (PS), Kolmogorov-Smirnov (KS), and Rough set (RS) have been tested and 

the result found that the KS method performed better than the others in building 

classification models. Additionally, an extended research on exploration of software 

quality classification using wrapper approach has been carried out. They investigated 
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several different performance metrics to influence the classification performance in 

software quality classification.  

As a conclusion, the idea in this study is to enhance the static software quality model 

into a dynamic software quality model to improve and support the limitations in the 

static quality model. The incorporation of AI approach enables the process in 

noticing and adapting any changes occurs in the environment of software 

development. Therefore, the assessment technique used in dynamic quality model 

should bear the limitation of the existing quality model in measuring the priority of 

quality attributes. The related technique that highly focuses on attribute selection is 

Feature Selection (FS) technique. This technique is quite important and is able to 

process the selection quality attributes. The details of the FS technique are discussed 

in the following sub section.   

2.6.1 Feature Selection Technique 

Gao et al. (2009) defines FS as a process of selecting an attribute from relevant 

features in building a leraning model which is used to remove the less important 

features from training data set. In relation Khoshgoftaar et al. (2010; 2009) found 

that FS is an important activity in preprocessing data which is used in software 

quality modeling and data mining problems. They also describes that FS is divided 

into two categories namely Feature Ranking Technique (FRT) and Feature Subset 

Selection Technique (FSST).  

Further, Gao et al. (2010) explains that FRT assesses the attributes individually and 

it will rank the attributes according to their individual predictive capability. The FRT 

evaluates the features individually and also will sort the attributes in term of the 
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scores of each feature accordingly. It is required in a small sample size with rapid 

execution time to complete the function. Gao et al. (2010) applied the FRT technique 

with an aim to investigate either FS should be applied before or after data sampling. 

They found that the application of FS through FRT performed better and more stable 

in evaluating and ranking the attributes with the quality features.  

The procedure of FRT is to score each feature in the data set using a particular 

method. The method counts the priority of features to be sorted and ranked in the list 

of features. In accordance, the FRT will use one of the methods in FS for allowing 

the selection of the best set of features. Several traditional methods which can be 

used in the FRT include document frequency (DF), Chi-Square (ݔଶ Statistic), 

Information Gain (IG), Gain Ratio (GR), and Symmetrical Uncertainty (SU). 

Additionally, alternative methods have been developed in several years by the 

researchers such as KS, AHS and Hybrid Feature Selection (HFS). All these methods 

are discussed in the next subsection. 

In Wang et al. (2010) described that FSST is selects a subset of attributes in their 

predictive capability. Normally in FSST, the feature is evaluated using the classifiers 

which are contained in the black box as including the induction algorithm. This 

technique is suitable to be applied in the high dimensionality of data. In FSST, the 

input features are filtered independently using some classifiers such as SVM, NB, 

MLP, LR, Random k-LabelSets (RAkEL), and Multi-Label K-Nearest Neighbour 

(ML-kNN). Then, the results are prioritized. All of these classifiers are further 

discussed in the following section.   

Referring back to FS technique, Tadeuchi et al. (2007) described that it contains two 

different approaches to subset selections, which are filter and wrapper approach.  
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The way of both approaches are applied is quite different to each other. The next 

following section is discusses on that matter.  

2.6.1.1 Method in Feature Selection 

This section discusses the methods in FS which are divided into two categories. 

There are traditional method and alternative method. The traditional method consists 

of DF, IG, SU, ݔଶ Statistic, BNS, WLLR, and Mutual Information (MI) (Yang et al., 

1997). Meanwhile, the alternative method includes AHS, HFS and KS 

(Khoshgoftaar et al., 2009). In fact, DF, IG, ݔଶ Statistic, BNS and WLLR are related 

to the text categorization and they are not discussed in this thesis.    

Literatures show that Friedman et al. (1997) has investigates that the MI using 

Bayesian Teorem as the baseline. The Bayes Teorem is also frequently referred to as 

Bayes’ rule which is related to the probabilities theory. As an example it shows how 

a conditional probability B given by A can be inverted to yield the conditional 

probability A given by B. The teorem provides a way for considering two hypotheses 

and stresses on the probability of the data. It can be turned by a probability statement 

for a given data. Later, Yang and Pederson (1997) used MI in assessing two random 

variables by applying probability concept and the created formula was used to 

evaluate the score according to the data given.  

On the other hand, SU is a very popular method in FS. It is used in preprocessing the 

irrelevant data and redundancy cases. It is stressed between features and the target 

concept which can be used to evaluate the goodness of features. Recently the SU 

method has been used for classifying data and it is relevant to be combined with 

Genetic algorithm (GA) in inductive learning strategy (Jiang et al., 2008). The SU is 
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suitable to measure the correlation between features and the target concept by using 

the features corresponding weight. It is also used to guide the initialization of the 

population. The group of the irrelevant and redundant features is needed and the 

relationship between features is calculated using SU method.  

According to the literature, many researchers are interested to apply the SU method 

in their proposed algorithm because SU is very easy to use and the results performed 

are unbiased as compared to other FS methods. In relation, Biesiada and Duch 

(2007) mentioned that the SU method has been used in filtering and sorting the 

irrelevant and redundancy of features in the Correlation-Based Feature Selection 

Algorithm (CBFS) and Fast Correlation-Based Filter Algorithm (FCBF) proposed by 

Yu and Liu (2003). Besides, a heuristic algorithm which is known as Relief 

algorithm proposed by Kira and Rendell (1992) has used this method to address the 

problem in averaging the relevance analysis of the candidate inputs in the class 

population. On top of that, the Kolmogorov-Smirnov Correlation Based Filter 

(KSCBF) algorithm also used the SU method as for averaging the weight of the 

features to find out the relevant features in their research (Biesiada & Duch, 2007).     

On a contrary, the AHS alternative method is a modern FS method proposed by 

Wang et al. (2009).  It processes the features with highest consistency rate and 

followed by the lowest consistency rate of the features. The selected feature is used 

to generate the superset. The process is repeated until the attribute subsets that have 

similar consistency rate value with selected feature is met. The method will involve a 

classifier such as C4.5 that appears in WEKA tool to learn the data. In regards to 

this, Khoshgoftaar et al. (2009) has used this method in their proposed algorithm for 

inducing the classification rules in the form of a decision tree.   
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Another new method is HFS that combined Filter-based Feature Ranking Technique 

(FRT) and AHS. It is also known as Consistency-Based Feature Subset Selection 

(CBFSS) algorithm. The HFS applies the combination of approach in FS such as 

filter and wrapper as discussed earlier. The proposed HFS method works in selecting 

the full feature set using FRT. The finding from the literature states that only thirty 

percent (30%) of the listing features are selected and the original data set is reduced 

(Khoshgoftaat et al., 2007). Also, the study contributes to the KS method to measure 

the maximum differences between the empirical distribution function of the 

probabilities of instances in each class. They used the KS score statistic to evaluate 

the attributes. Eventually, the attributes are ranked based on the KS scores obtained. 

In fact, the KS method performs better in evaluating the priority of the features than 

the other alternative methods proposed by the study.   

2.6.1.2 Filter Approach 

Filter approach selects the features independently without using any algorithm to 

execute the function (Tadeuchi et al., 2007). This approach is suitable to be used in a 

small sized data while the learning process is not presented in this approach. This 

approach has an advantage in which, the scoring and ranking function are 

immediately completed. However, it is unable to solve the redundancy of data 

because no learning algorithm is involved in the implementation. In fact, the filter 

approach is used in filtering and sorting quality attributes.  

In a complement, Wang et al. (2009) investigated that three methods of Filter 

Attributes Selection (FAS) using filter approach such as RS, PS, and KS. They found 

that the FRT using KS method performs better than the others in filtering the 
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features. On the other hand, Kohavi et al. (1996) found that some algorithms such as 

FOCUS and RELIEF algorithms used filter approach. Both of the algorithms 

examine all features in data set and filter the relevant features to the target concept. 

Thus, both algorithms do not support in handling data redundancy.  

2.6.1.3 Wrapper Approach 

Langley at al. (1994) found that the wrapper approach is more valuable in removing 

and solving irrelevant features in the data. It selects the features using an algorithm 

to train and learn the data. It also involves learning adaptation in training and 

learning the data. The concept of learning ranges in simplicity and complexity in 

various areas and now the adaptation of learning concept in software quality model 

becomes a novelty of research in the software quality community.  

The wrapper approach has some limitations in the implementation such as long 

processing time and slow data execution because it involves many algorithms to 

perform. The wrapper involves a classifier to calculate the estimated accuracy of the 

learning algorithm. This function is important to remove the unimportant features in 

the data set. In regars to this, Wang et al. (2009) addressed that AHS uses the 

wrapper approach in developing the algorithm. It applies C4.5 classifier as learning 

algorithm in handling data redundancy.  

2.6.1.4 Embedded Approach 

Embedded approach is third class in FS technique. It combines filter and wrapper 

approaches. The preprocessing of data is built into the classifier construction after 

the filtering function in the search for an optimal subset of features (Saeys et al., 
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2007). Embedded approach is a specific approach, which uses wrapper approach 

directly to prove the performance. This approach also includes the interaction with 

the classification algorithm and the preprocessing of data is less computationally 

complex than wrapper approach. It also builds the model feature dependencies, in 

which the developer can choose the type of classifier in executing the classification 

task. According to Wolf et al. (2003) discovered that embedded approach has a 

drawback, in which the selection of classifier will affect the performance in the 

classification task. Besides, Duda et al. (2001) have used the embedded approach in 

their research pertaining to decision trees weighted using NB classifier. Later, Guyon 

et al. (2003) and Weston et al. (2003) followed by applying the approach in their 

study on feature selection using weight vector of SVM classifier.  

2.6.1.5 Discussion on FS Techniques and Approaches     

The FS technique can be combined with any other approaches in order to build the 

learning process. As an example, Gao et al. (2010, 2009) combined the FRT with the 

MLP using some of performance metrics to evaluate the classification of FS. Also, 

the literatures show that FRT is suitable to be combined with filter approach in 

ranking the attributes by evaluating the scores of the attributes using a method in FS. 

Besides, some studies applied the filter approach in developing algorithms for 

handling data redundancy. Both contexts could be observed in CBFS algorithm by 

Liu et al., (2002), FCBF algorithm by Yu & Liu (2003) and KSCBF algorithm by 

Biesiada and Duch (2007).  

Literatures also reveal that only a few of studies have implemented the FSST using 

wrapper approach rather than filter approach. This supports the statement by Langley 
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et al. (1994) that the wrapper approach has scales for large data set and needs some 

of classifiers to be performed.This takes a long time in completing the execution 

task. As a result, some of the studies used FRT combined with filter and wrapper as 

an embedded approach using a method in FS. As an example, Tadeuchi et al. (2007) 

combined filter and wrapper approaches in developing a quick online application for 

attribute selection method. They used the Generalized Regression Neural Network 

(GRNN) as the classifier in adapting the learning process in removing the irrelevant 

features in the data set. Similarly, Wang et al. (2009) applied both approaches in 

proposing the HFS algorithm.  

2.6.2 Classification of Software Quality 

Classification task refers to the arrangement of data item into the different groups 

according to their similarities and differences (Tsoumakas et al., 2010). The 

arrangement of the data item can make counting the probabilities of each feature in 

the data set easier. Thwin et al. (2005) mentioned that classification task assigns the 

data item into a collection of categories or classes. The goal of classification task is 

to predict the data item in the classes, which separates them into different categories. 

Thus, the data item is classified using a method for training data in classification 

(Tsoumakas et al., 2010 & 2011).  

Tahir et al. (2010) illustrates that the classification task consists of two a step- 

process or known as method namely model construction and model usage. They 

further clarified that model construction is a processing of defining the class of data 

item in the class label attribute. As an example, the data item is divided into High, 

Moderate, and Low classes. All data items are defined according to their weight 
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value of each attribute. Additionally, classification task can involve more than one 

classifier to train the data. In the end, the classification process is moved to the 

second process i.e. model usage. In model usage, the classifier will determine the 

results for each data as for estimation on the priorities of each feature.  

On top of that, the classification task is also important in handling data cleaning in 

reduce the noise and handle the missing values. In addition, the classification task 

can support in handling the relevance analysis as to remove irrelevant or 

redundancies attributes. Besides, it is also used for data transformation to generalize 

and normalize the data. In fact, the classification task is performed using classifier as 

a method in training and learning the data set. In conjunction, the next sub section 

discuses on appropriate tools and classifiers.  

2.6.3 Learning Tool and Classifier 

Learning adaptation is the central to intelligence and it requires knowledge as an 

input for training process. The process of learning is supported by machine learning. 

Machine learning is refers to a system that is able to acquire and integrate the 

knowledge automatically (Tsoumakas et al., 2009). The system in machine learning 

is capable to learn from the experiences, training, analytical observation, and 

produces the results effectively. In conjuction, examples of machine learning tools 

include Waikato Environment for Knowledge Analysis (WEKA), Java Library for 

Multi Label Learning (MULAN) and Large Experiment and Evaluation Tool 

(LEET).  

WEKA is an established tool in machine learning and data mining which proposed in 

year 1993. The software tool was programmed in Java and distributed under the 
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GNU Public License (Robu et al., 2010). The aim of WEKA is to build the facility 

for developing machine learning technique in solving the data mining problems. It 

consists of several standard data mining techniques such as data preprocessing 

classification, regression, clustering and association. In practice, it appears in four 

applications i.e. Explorer, Experimenter, Knowledge Flow and Simple CLI. These 

applications were performed in the interfaces as for user friendly used (Baumgartner 

& Serpen, 2009).  

Meanwhile, MULAN is a Java library for learning tasks developed by Tsoumakas et 

al. (2010) with aim to provide a machine learning tool for classification tasks in open 

source software. The development team group has decided to support the benefits 

provided by Machine Learning Open Source Software (MLOSS) which is presented 

by Sonnenburg et al. (2007) in encouraging people to work with multi label data. It 

provides a multiple tasks such as classification, ranking, thresholding and 

dimensionality reduction algorithms. Besides, it works with multi label data which 

consists of training examples that are combined together with a subset of a finite set 

of labels (Tsoumakas et al., 2011). In addition, Tsoumakas et al. (2011) has 

described that multi label data is referred to a single set of data consisting of more 

than one feature which is called as label in data mining for easier referencing. 

Additionally, it is also a function to train and evaluate the data using more than one 

classifier (Tsoumakas et al., 2010). It inherits the functions available in WEKA but it 

does not have Graphical User Interface (GUI). All applications which covered in 

MULAN are imported from WEKA tool through command lines. This is one of the 

limitations in using MULAN that the command guideline is unavailable as for user 

referencing.  
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Baumgartner and Serpen (2009), has proposed the Large Experiment and Evaluation 

Tool (LEET) as a software workbench for data mining. It aims at simplifying the 

classification tasks provided by WEKA tool. It has been mentioned previously that 

WEKA incorporates a variety of tasks which are difficult to apply and most of the 

functions provided are not practical to be used. In contrast, LEET provides the 

experiments and evaluations with many algorithms and dataset through easy and user 

friendly to execute.  

The features performed by LEET are classified into three tasks. There are executing 

the classification experiments using WEKA’s built-in classifiers, evaluating the 

executed experiments to obtain performance measures, and evaluating datasets to 

calculate characteristics. User will choose the classifier which is provided by LEET 

through the interfaces. The execution results are provided in a single file, in which 

the results are stored and displayed in individual files for each simulation.  

The learning algorithm is consists of some learner or well known as classifier. The 

classifier is used to evaluate and validate the performance result from the learning 

process. Khoshgoftaar et al. (2003) describes that the different classifier will impact 

to the difference performance result. This means that, the performance results are 

also depending on the capability of the classifier and the metric used in the classifier 

itself. Ideally, a good classifier will produce results closed to one (1). The famous 

classifiers include SVM, IBL, MLP, NB, RAkEL, and MLkNN.  

2.6.4 Discussion on AI Approach in Software Quality Model 

Literatures reveal that the FS technique is potential to be proposed in the 

construction of an attribute assessment algorithm in Feature Ranking Algorithm 
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(FRA). As discussed earlier, FS is divided into two categories namely FRT and 

FSST. The FRT has been selected as a dynamic technique to be used in this 

intelligent quality model. In conjunction, FRT is more relevant to be adapted into 

this study than the FSST due to its high performance in ranking the score of each 

attribute in a small sized sample. In fact, the FSST is relevant to work in high 

dimensionality of data. Therefore, this study plans to involve a small sample size. 

Besides, FRT is able to generate a function in the algorithm in term of ranking and 

sorting the new features in the data. This technique is embedded in the first phase of 

the algorithm which involves filter approach. As discussed earlier in the previous 

section, the filter approach is suitable to be applied because it does not involve any 

learning algorithm in the preprocessing data and the features are ranked and sorted 

independently. The flow in FRT technique is used in developing a formula to count 

the scores assigned by the assessors. In fact, the proposed formula acts as a new 

method in FS.  

Based on the description in earlier section ANN and CBR are not relevant to be used 

in developing this proposed algorithm. This is partly because both of the techniques 

focus on the high dimensionality of data. The study from literatures also describe 

that ANN does not provide any function to calculate the weight of each attribute due 

because it presents networks with application of input from many traces. 

The same reason also goes to another proposed technique like CBR. CBR is adapting 

the previous stored solutions in the CBR library to solve the new existing problems. 

It only focuses on relationship among attributes using QFD as a metric. In short, the 

functions provided by both techniques are unable to construct the assessment 

technique in intelligent software quality model. The performance metric used in both 
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techniques do not concern on measuring the priority of quality attributes according to 

the weight given by the assessors. On top of that, both techniques are also lack of 

capability to fulfill the needs and future requirement to develop the learning process 

in the quality assessment technique.  

In order to adapt the learning concept, the wrapper approach is also embedded in the 

second phase of the algorithm. In fact, Goodnow and Austin (1967) describe that the 

learning task is related to the human or machine learner in training and classifying 

the objects as referred to the related objects in the class labels. The application of 

wrapper approach is to build the learning algorithm that can support solving problem 

related to irrelevant and redundant data. As mentioned by Langley et al. (1994) and 

John et al. (1994), the wrapper approach will train all the features through the 

learning algorithm and proof the result through the capability of the classifier. 

In addition, to implement the classification task of software quality, the MULAN 

tool is selected for executing the learning process. MULAN is the easier tool to use. 

In contrast, WEKA is not practical to be used and involves various tasks which are 

difficult to be understood by the user. Also, LEET is easy to be applied in presenting 

the interfaces and user friendly to execute. Based on that, WEKA and LEET are 

performed better in a large scale of data compared to MULAN (which is appropriate 

to small-scaled data). Since the data involved in this study are collected from a small 

sample size, then MULAN is appropriate to be selected in this study. Additionally, 

the easy classifiers i.e. RAkEL and MLkNN provided by MULAN are beneficial for 

handling data redundancy indirectly.  
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2.7 Feature Selection Algorithms 

This section explains the FS algorithms in the literatures. It includes RELIEF 

algorithm, Correlation Based Feature Selection algorithm (CBFS), Fast Correlation 

Based Filter (FCBF) and Kolmogorov-Smirnov Correlation Based Filter (KSCBF).  

2.7.1 Overview of FS Algorithm 

The type of algorithm in the literature which is based on FS technique in 

preprocessing the data has been identified. They are RELIEF algorithm proposed by 

Kira and Rendell (1992), CBFS by Liu et al. (2002), FCBF by Yu and Liu (2003), 

and KSCBF algorithm by Biesiada and Duch (2007). All the algorithms are 

developed with the main goal, which is for handling the redundant features in data 

set using the techniques or methods recommended by FS approach.  

Kira and Rendell (1992) proposed RELIEF algorithm using FS method i.e. 

Information Gain (IG) in estimating the quality attributes. The RELEIF algorithm 

measures the differences between the features with aim to differentiate the values 

among features that are close to each other. The RELEIF algorithm uses different 

probability via IG of FS method for filtering and ranking the quality of attributes. It 

assigns relevant weight to each feature to indicate the relevant features to the target 

concept. According to John et al. (1994), the RELEIF algorithm measures the 

features using two nearest neighbours search strategies such are nearest hit from the 

same class and nearest miss from different classes. The measurement in RELEIF 

algorithm focuses on high correlations of features and shows the weak relevant of 

features in the dataset. However, the RELEIF algorithm did not attend the 

redundancy problem in the data set.        
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Yu and Liu (2002) has proposed CBFS algorithm using Greedy hill climbing search 

strategies such as forward selection and backward elimination (Kittler, 1978) for 

training the samples of features. Then, the SU has been used for filtering and ranking 

the features. The CBFS algorithm is used to show the correlation between the 

features and the class of features. In regards to this, Hal et al. (1998) has mentioned 

that CBFS algorithm uses three selectors which are IBL, NB and C4.5 as the 

classifiers in the classification task. As the result, only C4.5 was found better than 

the other classifiers in showing the correlation among all features in the data set. 

However, the performance results are biased due to the failure of the algorithm to 

provide the validity of result especially in handling the data redundancy.  

Later, Yu and Liu (2003), claimed that the development of FCBF algorithm is to 

enhance the capability and the performance of CBFS algorithm. The FCBF 

algorithm is based on predominant correlation, in which the correlation between 

features and classes is examined. It is used to solve the redundancy problem in high 

dimensionality of data. The algorithm consists of two stages. In stage one the SU is 

applied for filtering and ranking the features. It is important to show the relevancy of 

the features compared to the class. At the same time, the threshold value is selected 

to select the predominant features in the final ranking. Next, stage two is applied 

once the redundancy of features occurred. FCBF is a very fast algorithm to solve the 

redundancy of data. The algorithm compares the other features which are redundant 

to the predominant features. Consequently, features that are redundant to the highly 

relevant feature are automatically removed from the list without any measurement or 

validation.  
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Next, Biesiada and Duch (2007) proposed an algorithm to handle the redundancy of 

data by the strength of measurement technique in solving the data redundancy. The 

presented algorithm is named KSCBF is a successful algorithm in determining the 

validity of result. Thus, the KCBF algorithm is developed as to enhance the 

limitation of CBFS and FCBF algorithm. In relation, Blachnik et al. (2009) found 

that KSCBF has performed better than RELIEF, CBFS and FCBF algorithm in 

handling data redundancy. Thus, the advantages of KSCBF algorithm is encouraged 

this study to adopt it as the compared algorithm. Therefore, the component of 

KSCBF algorithm, strengths, and the limitation are further reviewed in the next 

section.    

2.7.2 Component of KSCBF Algorithm 

The KSCBF algorithm consists of three (3) components. They are Symmetrical 

Uncertainty (SU), Kolmogorov-Smirnov statistic (KS) and Kolmogorov-Smirnov 

Two Sample Test (K-S Test). SU is known as a traditional method in feature 

selection in preprocessing the list of attributes (discussed in section 2.6.1.1). In 

addition, SU is capable in averaging the weight of the features to find the relevant 

features in the ranking attributes (Biesiada & Duch, 2007). It has been widely used in 

handling data redundancy in several studies in the literatures. It operates using the 

formula below (Equation 2.4). 

                                   SU (X, C) = 2 (MI (X,C / H(X) + H(C))                       (Eq. 2.4) 

Where, X is the selected features in the class attribute, C is class of the selected 

attribute, MI is the Mutual Information which is the basic quantity used for filtering 
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method, H is uncertainty probabilities, H(X) is uncertainty of X features and H(C) is 

the uncertainty class of the selected attribute. The MI is basically contained in SU 

method formula (Li et al., 2009).   

The second component is Kolmogorov-Smirnov statistic (KS). The KS statistics is 

used to compare two variables in the list of attributes. The formula of KS statistics is 

outlined in Equation 2.5. 

                                  KSc (g,h) = maxc (KS (g(c) , h (c) ))                              (Eq. 2.5) 

Where, c is the class label, g(c) are samples of random variables g that belong to the 

class c, and h(c) are samples of random variables h that belong to the class c. The 

result from the statistics is then used to compare with the threshold to determine the 

existance of the data redundancy between the attributes. The threshold value is 

obtained by referring to the alpha value (δ) in KS statistic such as 1%, 5%, 10% and 

20% (Blachnik et al., 2009).  

The third component in KSCBF algorithm is Kolmogorov-Smirnov Two Sample 

Test (K-S Test). The K-S test is used to validate the priority of attributes in the final 

ranking result. The following formula is used for validation are as follows: 

                         KS (g,h) = √(ng)(nh) / (ng + nh) supk | Gk – Hk |                     (Eq. 2.6) 

 

Where, ng, nh is the number of the samples for each attribute, k is the number of bins 

in discrete probability distribution, G and H are cumulative probability distributions 

of random variables g and h respectively. The random variables are referred to the 
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pair of attributes in the ranking. The sup is refers to the highest differences between 

two random variables. All the components are associated in developing the 

measurement technique in KSCBF algorithm for evaluating the priority of attributes.  

2.7.3 Assessment Technique in KSCBF algorithm 

The assessment technique in KSCBF algorithm consists of two steps. In the first 

step, the algorithm trains the attributes in the data set using the SU method in feature 

FS for filtering and ranking the value of the attributes. The results are arranged in 

descending ordered. The second step is executed when there are data redundancies. 

In this stage, the algorithm will use the KS Statistic formula to obtain the threshold 

value by referring to the list of attribute’s score from KS Statistic calculation. As an 

example, the last value of {33.4, 23.3, 18.3, 13.9, 12.2, 12.0, 9.3, 9.3} is 9.3, which 

is redundant. Hence, the alpha value (close to 9.3) is 10%. Consequently, the 

threshold value is equal to 10%, in which δ = 0.1.   

Then, the KS statistic is used to measure the highest differences between two 

variables attributes in the ranking through the K-S test formula. The K-S test will 

solve and validate the redundant attributes. In the loop features, the algorithm will 

initialize the first attribute in the ranking for comparison to the second attributes in 

the ranking. This function is repeated to the next attributes in the ranking until they 

find similar value of attributes from two variables. Eventually, the same value of two 

attributes is claimed as redundant. 

In the KSCBF algorithm, the redundant attributes is removed directly from the 

ranking. As an example, if two attributes are redundant, then the algorithm will 

remove all the redundant features. However, the algorithm still places the redundant 
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attributes in the ranking with different values after K-S test calculation. Usually, the 

KSCBF algorithm is used for analyzing data and will notice that only the most 

significant features are defined in the feature set. In addition, the KSCBF algorithm 

is also facing some strengths and limitationsas described in next sub section. In 

short, Table 2.5 summarizes the KSCBF algorithm.  

 

Table 2.5: KSCBF Algorithm (Source: Blachnik et al., 2009) 
 

2.7.4 The Strength and Limitation of KSCBF Algorithm 

Each proposed algorithm has strength and limitation in processing the data. The 

researcher usually upgrades the proposed algorithm to enhance the performance 

presented by the algorithm. The KSCBF algorithm has used SU as the FS method in 

data preprocessing. The application of SU will equip the KSCBF algorithm with 

strong ability to train and learn the data. This is because the characteristic of SU is 

granted for stability in training and learning the data as well as filtering and ranking 

the data. As discussed in previous sections, SU uses probability distributions in 

Step Algorithm 
 Relevance analysis 

1 Calculate the SU(X,C) relevance indices and create an ordered list 
S of features according to the decreasing value of their relevance. 
 

 Redundancy analysis 
2 Take as the feature X the first feature from the S list 

 
3 Find and remove all features for which X is approximately 

equivalent according to the K-S test 
 

4 Set the next remaining feature in the list as X and repeat step 3 for 
all features that follow it in the S list. 
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estimationg the data. The ability of SU method can support the KSCBF algorithm in 

completing their relevance analysis on the data.  

Additionally, the KSCBF algorithm also has several limitations. One of the 

limitations is that it only processes ordinal data which means the data can be counted 

and ordered directly. This explains that KSCBF is not able to train or learn the data if 

they merge between symbols and nominal features. Consequently, the determination 

of threshold selection is quite difficult to decide in order to conclude the validity of 

the hypothesis (Blachnik et al., 2009).  

Also, the sensitivity of cumulative probability distribution to linear transformation is 

another disadvantage. This limitation occurs in analyzing the relationship between 

two attributes. In KSCBF algorithm, the application of K-S test is used to validate 

the hypothesis. Then, if occurs the redundancies of more than two attributes in a 

single execution, the KSCBF algorithm will reject all the redundant features in the 

data set and finally the algorithm will also reject the hypothesis in the redundant 

features. In fact, the KSCBF algorithm does not certify the full invariance to linear 

transformations (Biesiada et al., 2007).  

Finally, the KSCBF algorithm faces big risks in handling data redundancy as 

mentioned in Chapter One. This affects the time required for handling the data 

redundancy because the algorithm is visited every attribute which is stated from 

initial until final attribute in the list.  

2.7.5 Discussion on the Compared Algorithm 

 The aim of the KSCBF algorithm and the other existing algorithm such as CBFS 

and FCBF is to handle data redundancy effectively. The reviews on the literatures 
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reveal that the KSCBF algorithm performs better than the other existing algorithms. 

Particularly, the assessment technique in KSCBF (using the K-S test) makes the 

algorithm strong in solving the redundant features. 

Besides, KSCBF algorithm shows the way to evaluate the redundant features and the 

validation of the results is also available in this algorithm. In fact, the KSCBF 

algorithm highlights the FS method such as SU in attending the filtering and ranking 

task. This function can be compared to the method in the proposed algorithm in this 

study which is called Most Priority of Features (MPF), which handles the same cases 

to the KSCBF algorithm with embedded of FS approach.  

On the other hand, CBFS and FCBF are unable to evaluate and handle the 

redundancy of features with a specific measurement technique. Finding from the 

literatures shows that the CBFS and FCBF directly remove the redundancy of 

features without any measurement and result validation. Also, the RELEIF algorithm 

is unable to provide an assessment technique in filtering the features and most 

significantly it is not attended in handling data redundant cases.  

2.8 Discussion 

The development of a Feature Ranking Algorithm (FRA) algorithm as a new 

enhancement of Pragmatic Quality Factor (PQF) model based on their assessment 

technique is necessary. As discussed in previous sections, the assessment technique 

provided by PQF model in evaluating the quality attributes is based on components 

such as behavioral characteristic, impact characteristic, responsibility, and weight. 

The measurement in the PQF model is focused on the weight calculation using a 

specific scale in classifying the quality attributes. The formula derived in this quality 
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model is used to obtain the priority of quality attributes. In practice, the quality 

model still acts as a static model due to their limitations in handling the redundancy 

of data in prioritizing the quality of attributes. Thus, FRA algorithm is proposed for 

supporting the limitations in PQF model using AI approach as for commercializing 

the assessment technique embedded with an expert intelligence technique.  

Literatures reveal that the FS technique has proposed a dynamic technique in the 

algorithm construction. Besides, the selection of FRT in enhancing the assessment 

technique in quality model act as the new improvement to upgrade the assessment 

technique in measuring the quality attributes. The FRT is relevant to be used in small 

sized data and performs better than other FS techniques. It has high capability to 

generate a function in filtering and ranking the quality attributes using filter 

approach. Based on that, this technique is used in in this study known as Most 

Priority of Features (MPF) method. 

The evaluation of quality attributes is attended by two main steps. In the first step it 

is completed by MPF method for calculating the quality attributes. It is appropriate 

for filtering and ranking the priority of quality attributes. In this step, the filter 

approach in FS is presented. Then, in the second step the adaptation of learning 

classification is performed using MULAN. MULAN acts as a tool for providing 

multi label classifiers, including RAkEL and MLkNN for handling data redundancy. 

It is selected as a classification tool due to its high capability in determining good 

result of classifiers. Also, it is easy to apply in classifying the multi types of 

attributes such as nominal or ordinal of data type. In this step the wrapper approach 

is utilized to validate the performance result of data redundancy. 
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The results performed by FRA algorithm are validated by comparing with the expert 

model such as PQF and KSCBF. This could validate the proposed algorithm as a 

good trial in enhancement of assessment technique in the static quality model to the 

intelligent aspects. In accordance, Table 2.6 summarizes the selected elements in 

development of FRA algorithm. 

 

Table 2.6: The Selected Elements in FRA Algorithm 

Item Selected element 
Technique Feature Ranking Technique (FRT) 
Tool Java Library for Multi Label Learning (MULAN) 
Classifier Random- k LabelSet (RAkEL) and  

MultiLabel – k Nearest Neighbour (MLkNN)  
Expert Model Pragmatic Quality Factor (PQF) model 

Compared Model 
Kolmogorov-Smirnov Correlation Based Filter 
algorithm (KSCBF) 

2.9 Summary  

This chapter revies related works in the literatures by emphasizing major 

contributions by common models in software quality such as McCall (McCall et al., 

1976), Boehm (Boehm et al., 1978), FURPS (Grady & Caswell, 1987), ISO 9126 

(ISO/IEC 9126, 1991), Software Product Quality Requirement and Evaluation 

(SQuaRE) (The next generation of ISO/IEC 9126, 1999), Dromey Quality Model 

(Dromey, 1996), Systemic Quality Model (Callaos & Callaos, 2003), and Pragmatic 

Quality Factor (PQF) model (Yahaya et al., 2007). The overview of software quality 

models covers the characteristic, assessment technique, strengths, and limitations of 

the static quality models in the literatures. This chapter also discusses on the 

components of PQF as the expert model and the compared algorithm in the 
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literatures such as KSCBF for validating the proposed algorithm. Next, the reviews 

are followed by the detailed discussion on static quality model and dynamic quality 

model.  The element of AI approach is also drawn in this chapter including the 

dynamic technique, FS methods, approach and learning adaptation. Finally, this 

chapter concludes the findings of reviews by discussing and summarizing the 

models. The next chapter discusses the methodology of this research.  
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CHAPTER THREE 

RESEARCH METHODOLOGY 

 

3.1 Research Methodology Phase 

As stated earlier in the Chapter One, the research methodology has five phases with 

aim to enhance the assessment technique in Pragmatic Quality Factor (PQF) model 

developed by Yahaya et al. (2007) as an intelligent software quality model. Each of 

the phases is discussed in detail in the subsequent sections. 

3.1.1 Theoretical Study 

The theoretical study acts as the first phase in this research by investigating the 

literature review on the existing research related to the software quality assessment. 

This stage aimed to study the way on existing models in measuring the priority of 

software quality attributes in the software product. Furthermore, it is also focused on 

the existing sources as the references such as from journals, books, proceedings and 

other academic research in the current environment either by printed medium or 

electronic medium.     

Hence, this phase investigates the dynamic requirements for the quality and 

assessment problem in the existing software product. The exploration is highlighted 

to the behavioral of characteristics in the existing model including their strengths and 

weaknesses in measures the attribute. The finding from the investigation can support 

the researcher to generate new ideas to be adopted, noticed and learned the changes 

in the environment and information needs. Furthermore, the characteristics from the 
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software quality model is identified and analyzed in term of the significant of the 

attributes to support the changes in timely basis. The Artificial Intelligence (AI) 

approach is also reviewed as main element to be included in the assessment 

technique such as Feature Selection (FS), Artificial Neural Network (ANN), and 

Cased Based Reasoning (CBR). Thus, the proposed of Feature Selection (FS) 

technique such as Feature Ranking Technique (FRT) is fully highlighted in this 

research to enhance the assessment technique in PQF model. Figure 3.1 illustrates 

inputs, activities and deliverables of theoretical study in the phase one of the 

research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Inputs, Activities and Deliverables of Theoretical Study 
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• Investigate the existing work on 
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3.1.2 Design of theoretical framework on intelligent software quality 

The second phase of this research is designing the theoretical framework on 

intelligent software quality model. The theoretical framework identifies the specific 

features of Feature Ranking Algorithm (FRA) algorithm represented using AI 

approach. Furthermore, this theoretical framework can help the researcher to 

determine the problem areas and also consists of considerations, research questions 

that need to be addressed via the methodology. Hence, the researcher can illustrate 

the main focus of the research study and show the elements involved in the 

enhancement of assessment technique in PQF model. Figure 3.2 illustrates the 

Inputs, Activities and Deliverables of Phase two in the research and Figure 3.3 

illustrates the Theoretical Framework of the research on intelligent software quality 

model.  
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Figure 3.2: Inputs, Activities and Deliverables of Design Framework 
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Software Quality 

Static Dynamic 

Design and construct an algorithm enriched with a formula to count the priority of 

attributes and followed by learning adaptation using two classifiers as to enhance the 

assessment technique in PQF model

Feature Ranking Algorithm (FRA) 

Figure 3.3: Theoretical Framework of Feature Ranking Algorithm (FRA) 
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3.1.3 Identify and proposes the Feature Ranking Technique (FRT) for 

intelligent software quality model 

The third phase identifies and proposes the Feature Ranking Technique (FRT) for 

intelligent software quality model. The new intelligent algorithm is known as Feature 

Ranking Algorithm (FRA) model which is an enhancement of Pragmatic Quality 

Factor (PQF) model. From the literature review, several AI techniques have been 

found to enhance the assessment technique in software quality model such as Feature 

Selection (FS), Artificial Neural Network (ANN) and Cased-Based Reasoning 

(CBR). All of the techniques are investigated and discussed in Chapter Two.  

In order to create an algorithm with the expert function as to measure and evaluate 

the attributes in software quality, the FRT as a type of FS is selected in this study. 

The proposed technique has been reviewed pertaining to the application in pre- 

processing of the data in order to sort and list the quality attributes. Furthermore, the 

designing of FRT involved both approaches in the feature ranking such as filter and 

wrapper approach which discusses in Chapter Two. Thus, the adaptation of learning 

concept is performed using the Java Library for Multi Label Learning (MULAN) 

application using classifiers such as Random k-Labelsets (RAkel) and Multi Label k-

Nearest Neighbour (MLkNN). Figure 3.4 illustrates the Inputs, Activities and 

Deliverables of Identify and proposes the FRT for intelligent software quality model. 
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Figure 3.4: Inputs, Activities and Deliverables of Phase Three  

3.1.4 Construction of an Feature Ranking Algorithm (FRA) Algorithm  

The fourth phase of the research is construction of a Feature Ranking Algorithm 

(FRA) algorithm using FRT. In this selected technique involved both approaches in 

FS such as filter and wrapper approach. In construction phase, the algorithm 

enclosed by the formula known as Most Priority of Features (MPF) to count the 

scoring weight value given by the stakeholders for all attributes. The behavioural 

attributes such as Efficiency, Maintainability, Functionality, Portability, Reliability, 

Usability, User Conformity and Integrity were gathered from the research studies 

captured from the previous project certification ended by Yahaya from year 2007 
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until 2011. The filter approach is used to create MPF formula as to rank and sort the 

counted attributes accordingly and stored into PQF database respectively once the 

results performed in different value for all attributes. The elements involved in the 

formula are the standards deviation, weight assigned by the assessors and the 

frequency of the maximum weight assigned for all attributes.  

The next stage is the learning concept in the algorithm through the Java Library for 

Multi Label Learning (MULAN) as a tool by importing two classifiers namely 

Random k-Labelsets (RAkel) and Multi Label k-Nearest Neighbour (MLkNN). 

According to Wang et al. (2011), the selection of classifier may affect the 

classification accuracy. As stated earlier, this research has applied two classifiers in 

handling the redundancy of the data to avoid biasness. The implementation of the 

wrapper approach is capable to train and test the data for classification task using the 

score counted by MPF formula. The performance metric such as the Area Under the 

Curve (AUC) is used to calculate the classification accuracy. The detail of the 

construction is entirely discussed in Chapter Four.  Figure 3.5 illustrates the Inputs, 

Activities and Deliverables of Construction of Feature Ranking Algorithm (FRA) 

and Figure 3.6 illustrates the steps includes in the experimental design of this phase.  
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Figure 3.5: Inputs, Activities and Deliverables of Construction of Feature Ranking 
Algorithm (FRA)  
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The experimental design was conducted using a data set gathered from the 

previous cases of certification in PQF model. It contains over 1000 cases of software  

 

Figure 3.6: Experimental Design 

 

The experimental design was conducted using a data set gathered from the previous 

cases of certification in PQF model. It contains over 1000 cases of software quality 

assessment data. The data is implemented by the algorithm which constructed using 

FRT as pre-processing process. The data is weighted by the assessors in the specific 

value were made on a five point Likert scale (1 = strongly disagree to 5 = strongly 

agree). The assessors consisted of the user or individual, developer, and manager 

who are concerned to apply this model for attributes assessment.  
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The data collection is processed using MPF method in FRA algorithm and the 

comparison is also tested for the compared algorithm such as KSCBF algorithm with 

using their own method in pre-processing such data as SU. Both of the methods are 

executed in the same time in order to gain the accuracy of the methods. As for 

comparison, the MPF method is performed better than SU in ranking the priority of 

data.   

As mentioned in the previous section, the proposed algorithm will generate the 

results for each attribute and acts as an alternative solution to solve the redundancy 

cases occurred in the databases. In fact, the final ranking result for each attribute is 

performed as to show the priority of quality attributes. 

Hence, the evaluation is verified the proposed algorithm by the human judgement 

and statistical measurement on the final ranking result to the expert model and the 

existing algorithm in the literature such as Kolmogorov-Smirnov Correlation Based 

Filter (KSCBF) algorithm.  

3.1.5 Evaluation of Study 

The fifth phase of the research is the evaluation measurement of the proposed 

algorithm using the human judgement and statistical measurement methods such as 

correlation coefficient and statistical significant test. As stated earlier, the human 

judgement method is the comparison on the final ranking result of proposed 

algorithm to the expert model known as PQF model and the existing algorithm in the 

literature such as KSCBF. The correlation coefficient is extremely important as to 

show the relationship between the proposed algorithm to the PQF model and KSCBF 

algorithm.  
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Hence, the statistical significant test is used to test and evaluate the differences in 

scores of the results obtained by matching pairs of the expert model and the 

compared algorithm. Moreover, this phase is extremely important to prove that the 

new assessment technique of intelligence software quality model is achieved by 

using FRT. Figure 3.7 illustrates the fifth phases of the research.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Inputs, Activities and Deliverables of Evaluation 

3.2 Summary of Research Methodology 

Five phases applied in this research as the process flow in developing the intelligent 

of software quality model which are: Theoretical Study, Design of Formal 

Framework on intelligence software quality, Identify and proposed the Feature 

Ranking Technique (FRT) for an intelligence software quality model, Construction 

of a Feature Ranking Algorithm (FRA) and the Evaluation of study. Each phase has 

ACTIVITIES 

• Evaluates the model  by 
comparing the 
performance result to the 
expert model  and 
Kolmogorov_Smirnov 
Correlation Based Filter 
(KSCBF) algorithm 

• Test and validates the  
algorithm 

• Verify the result with 
statistical method 
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• Analyzed the 
experimental 
results  
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Design 
Framework

Identify & 
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Construction Evaluation
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key inputs, activities and deliverables to achieve the research objectives and solve 

the research problem in order to develop a new intelligent software quality model for 

attributes assessment.  
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CHAPTER FOUR 

PROPOSED FEATURE RANKING ALGORITHM (FRA) 

ALGORITHM 

4.1 Introduction 

This chapter describes the proposed Feature Ranking Algorithm (FRA) algorithm 

using Feature Ranking Technique (FRT). Previous chapters addressed that the 

development of FRA algorithm acts as a new assessment technique on quality 

attributes to enhance the assessment technique in the existing model known as PQF 

model. The enhancement of PQF model in software quality assessment indirectly 

appears as a dynamic model in software quality community. The major components 

in FRA algorithm include generation of MPF formula and implementation of 

learning application. Both components appear as additional features of assessment 

technique in PQF model.  

Further, following sections elaborate about the background issues of this study, the 

proposed algorithm itself and the way it is implemented.  

4.2 Background Issues 

Quality can mean different things to different people and situations (ISO/IEC9126, 

1991). The development of PQF model incorporates behavioral and human aspects 

making it a bit different from other models. Even though, the criteria of assessment 

in PQF model can fulfill user requirement and expectation in future, it still has a 

limitation in adapting and noticing changes in attribute selection that might occur in 

future. As discussed in Chapter Two, the assessment technique used in tailoring the 
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engine of PQF model is the elements of software engineering development and it is 

not capable to train and learn the knowledge in data. Thus, the proposed FRA 

algorithm in the assessment technique of attribute selection can enhance the 

limitation of PQF model in noticing and adapting the knowledge of data in future. In 

accordance, the list below contains issues solved by FRA algorithm; 

1) The assessment technique is supported using AI approach such as FRT. 

2) Data redundancy is solved using the classification task through MULAN. 

4.3 Proposed FRA Algorithm 

The development of FRA algorithm is based on the component of PQF model 

including behavioral characteristic, impact characteristics, responsibility, and weight 

value. These components are discussed details in Chapter Two. Also, AI approach is 

used as an additional element to generate a dynamic quality model in software 

quality. The main features of FRA algorithm are summarized as follows: 

1) MPF formula as to count the scores of the priority attributes from the 

software quality data. This helps in ranking the software quality attributes 

according to the most prominent attribute.  

2) Adaptation of learning concept through MULAN as to train the knowledge of 

data and handling data redundancy. These features can support the limitations 

of PQF model which are discussed in Chapter Two.  

The FRA algorithm facilitates the interaction between user and the system by 

enabling the user to select attributes based on the collection of results in software 
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quality attributes. The user can be a group of assessment team to ensure unbiased 

assessment and have capability to give weight value for each attribute in the 

assessment. The PQF database contains all possible software quality factors or 

attributes collected from the previous quality model in literatures including 

Functionality, Maintainability, Efficiency, Portability, Reliability, Usability, User 

Conformity, and Integrity. The PQF database is known as knowledge based, in 

which the collection of the attributes are trained and learned from the literature. 

Furthermore, the PQF model contains the selection of the attributes collected through 

research documents and experiences from developer. Eventually, the attributes in 

PQF model are trained and learned by FRA algorithm with the proposed methods 

involved.  

In detail, the proposed method consists of two phases. Phase one calculates the MPF 

scores for all attributes from the database. The results of attributes are ranked and 

sorted according to the scores obtained. In this exercise, the highest score value of 

attributes is selected as the important attribute and directly selected as high priority 

of attributes and updated to the database. Consequently, Phase two remove 

redundant data that contains more than one highest value of the scores. This means 

that Phase two is executed if there are two or more redundant attributes that produce 

similar MPF scores. 

In addition, the data from PQF database corresponding to the attributes which are 

redundant are obtained to be used for training the classifiers. The results are 

performed by classifiers as discussed in previous chapter is averaged to avoid 

biasness. Then, the attributes that produces the highest classification accuracy is then 
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selected as the most priority of features and ranked first in the list. Consequently, the 

final ranking of the quality attributes are stored in the PQF database for future 

software quality assessment. In conjuction, a diagram showing assessment technique 

in FRA algorithm is shown in Figure 4.1. It is followed by the steps FRA algorithm 

in the next sub section.  
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Figure 4.1: Assessment Technique in FRA Algorithm 
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4.3.1 The Development of Most Priority of Features (MPF) Formula  

The main element involved in generating the MPF formula consisted in FRA 

algorithm is FRT by using filter approach. As discussed in Chapter Two, FRT is a 

part of feature selection which is the pre-processing data in reducing the high 

dimensionality of data (Khoshgoftaar et al., 2009). The FS is an important technique 

to speed up the learning process and is capable to improve the assessment technique 

in the software quality model. In the literatures, FS is widely used in assessing the 

performance of the classification models by using performance metrics such as 

Overall Accuracy (OA), Default F-Measure (DFM), and Default Geometric Mean 

(DGM) (Khoshgoftaar et al., 2009). On top of that, detailed descriptions about the 

FS in classification model are outlined in Chapter Two.  

Meanwhile, the filter approach selects data as a pre-processing independently 

without involving any learning application (Guyon et al., 2003). It provides a task to 

rank and sort the selected attributes based on the MPF scores. Besides, other 

elements involved in the MPF formula include probability concept, standard 

deviation, mod frequency, and arithmetic mean. In detail, the probability concept is 

the likelihood of something happening in future which is expressed as a number 

between zero (0) and one (1). Further, the expressed number refers to something that 

can never happen and something that will always happen (Durret, 2010). This 

concept is used to make expectations on the priority of each attribute selected by the 

users. On a contrary, standard deviation is a formula for the average distances from 

the average, which refers to the dispersion of a set of data from its mean. It is 

computed by the mean for the data set and the deviation by subtracting the mean 
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from each value. It also known as square root of the varians for their mean arithmetic 

in the data set. The generation of the formula is discussed further in the next sub-

section.  

The formula in FRA algorithm is capable to train the value of attributes and compare 

the result for each attribute as to find the MPF scores of the attributes. In accordance, 

the formula is exhibited in Equation 4.1.  

                                                                                                                          (Eq. 4.1) 

As noted earlier, the formula created in FRA algorithm is a solution to remove 

irrelevant features in a list of data. Therefore, the formula has to train the data for 

each attribute in knowledge based. In regards to this, there are steps in generating the 

MPF formula as to count the priority of attributes, which is selected by the software 

quality assessors.Particularly, there are four steps involved and are explained in the 

following paragraph.  

Step 1: The arithmetic mean of variables is calculated using the formula in Equation 

4.2, which is adopted from book Introductory Statistics (2008). 

                                       Mean of variable:  ߤ  ൌ   ∑௫௜
ே

                                        (Eq.4.2) 

Where, ߤ is the population mean,  is the total of data collection in the database ݅ݔ∑

and N is the population size in the database. The mean of variable is obtained by 

calculating the mean value of each attribute and ranks the mean values subjected to 

the priority of the attributes.  

Most Priority of Feature (MPF) = δyj ∑ (maxxi ● ƒmaxxi)      
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Step 2: The next step is calculated the standard deviation of the attributes in the 

database. It is accomplished using the formula in Equation 4.3, which is adopted 

from book Introductory Statistics (2008). 

                     δyj =ට ଵ
ே
∑ ሺ݅ݔ െ ሻேߤ 
௜ୀଵ 2                                       (Eq.4.3) 

Where, δyj is the standard deviation for the selected quality attributes, N is the 

population size in the attribute’s database, i is the value of vector in standard 

deviation value (standard value) and ሺ݅ݔ െ  is the attribute’s value in the 2(ߤ 

database and deficiency to the mean value of the data collection in the attribute’s 

database.  

The correspondences of two random attributes are evaluated using the formula in 

Equation 4.3 to measure the scattered values in the collection value of attributes. In 

this case, the maximum value of the selected attributes in the database (max݅ݔ) is 

used to be multiplied by the mod frequency of maximum value of the selected 

attribute in the same database (ƒmaxxi).  

Step 3: The value of the previous application is used to find the MPF by multiplying 

with the value of standard deviation of attribute’s database.  

Thus, step 2 is repeated to the other values of mean population of each attribute. 

Then, the MPF value is compared to the value of each attribute as to select the high 

priority of selected attributes.  
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Step 4: Finally, the formula in Equation 4.4 is created to sort and rank the features in 

the attribute listing.  

                                                ∑ (maxxi ● ƒmaxxi)                                         (Eq. 4.4) 

 

Where, maxxi is referred to the maximum of value in the database and ƒmaxxi is 

referred to the mod of frequency for maximum value in the database. Having 

outlined the steps involved, the following section demonstrates an example of MPF 

calculation. 

4.3.2 The Example of MPF calculation 

The Efficiency attribute is selected for demonstrating the calculation. It involves data 

collected from assessors as shown in Table 4.1. 

 

 

 

Step 1: The assumption values contain four cases, which are {4,5,3,5}. This makes 

the mean quality score is 4.25 and standard deviation is 0.96. The maximum value 

(maxxi) is 5 and the frequency of the maximum value in the efficiency database is 2. 

Therefore, the MPF score using the formula in Equation 4.1 is 0.96 (5*2) = 9.6. 

Then, the step of calculation is repeated to the other attributes in the database.  

User Value (xi) 
User 1 4
User 2 5 
User 3 3 
User 4 5

Table 4.1: Efficiency of Database
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Step 2: The MPF scores of the data are checked and sorted according to scores 

obtained from the calculation. Then, in the sequential order, the small values are 

treated weak and ready to be sorted lowest in the database as irrelevant features.  

As been discussed earlier, it has been noted that if the results contain redundancy, 

then the classifier is used as the solution to solve the redundancy problem using the 

proposed learning tool. In accordance, it is discussed in the next section.   

4.3.3 The Application of Classifiers  

Chapter Two notes that the application of classifier can be found in the learning tools 

such as WEKA, MULAN, and LEET. In this study, the learning adaptation is 

performed using MULAN which is known as a Java library for learning from multi 

label data. It offers a variety of classification, ranking, thresholding and 

dimensionality reduction algorithm for learning from hierarchically structured labels 

(Tsoumakas et al., 2011) (as discussed in Chapter Two). However, it only offers the 

Application Programming Interface (API) to the library users without GUI.  

The MULAN application can be started by downloading WEKA version 3.7.6, Java 

Runtime Environment (JRE) version 30 from Oracle1 website. The next step is to 

execute the unit tests to import the classifiers that can exist in MULAN application. 

Referring to the literatures, only several classifiers can be adapted in MULAN and it 

depends on the capability of the classifiers to act in the MULAN environment as 

elaboratively described in Chapter Two.   

                                                 
1 http://www.oracle.com/technetwork/java/javase/downloads/jre-6u30-download-1377142.html. 
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Figure 4.3: Executed of Unit Tests for MLkNN Classifier 

 

In this test, the classifiers (MLkNN and RAkEL) are certified by executing the unit 

test and ready to be used in MULAN. Both of the classifiers are accepted in all tests. 

As an example, Figure 4.3 shows the executed of unit test for MLkNN classifier. In 

this unit testing, the classifiers are tested according to the JUnit testing in meeting 

the required formats such as testing for default parameter, technical information, 

making copy test, building null dataset, and missing values. All the tests are 

available in WEKA and adaptation into MULAN is great as WEKA and it is 

beneficial to the users as they can choose several classifiers as needed.  
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Chapter Two elaborates that MULAN is only suitable for small data. Thus, the 

MULAN is unable to execute on typical programming language platform in the 

environment with large data. Hence, in this study, the Spring Source Tool Suite 

(STS) is used. It is a development tool available in Wide World Web (WWW), the 

most advanced tool for all the latest enterprise Java based technologies. It is 

available in Unix version and windows version. In this study, the window version is 

used which is downloaded from STS2.  

In MULAN, the set of data are kept in the required two files which are Attribute 

Relation File Format (ARFF) and Extensible Markup Language (XML) formats. 

Then, the data are loaded up using the function below:  

MultiLabelInstances dataset = new MultiLabelInstances (arffIPQF, xmlIPQF); 

These format also required by WEKA as to train and learn the data in the required 

format. Hence, the creation of an instance from each classifier is very important to 

evaluate the learning result. In regards to this, the following codes are utilized: 

RAkEL learner1 = new RAkEL (new LabelPowerset (new J48())); 

MLkNN learner2 = new MlKNN(); 

Next, these two imported classifiers by MULAN are trained and learned on the 

redundancies of data to evaluate their predictive capability in determining the final 

                                                 
2 http://download.springsource.com/release/STS/2.8.1/dist/e3.7/springsource-tool-suite-
2.8.1.RELEASE-e3.7.1-win32-installer.exe 
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result. Eventually, the final results are ranked and sorted subjected to the highest 

value among the redundancies of data.  

Nevertheless, the wrapper approach is attached indirectly in this task for handling the 

redundancies cases among the data. As discussed in Chapter Two, the wrapper 

approach selects relevant attributes based on the performances of the selected 

classifiers (Tadeuchi et al., 2007). In conjunction, the assessment methods involved 

are elaborated in the next sub sections. 

4.3.4 The Step of FRA Algorithm 

The FRA algorithm acts as an intelligent assessment technique in software quality 

model. Besides, the proposed technique creates a dynamic software quality model in 

attributes assessment as well. The steps involved in FRA algorithm are outlined in 

Table 4.2. 
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Table 4.2: Algorithm of FRA 

 

The FRA algorithm consists of two steps. In the first step, the quality attributes 

achieved from PQF database is calculated using MPF formula. The MPF functions 

as a method to sort and rank the quality attributes according to the counted scores in 

descending order using the outlined in Section 4.3.1. Then, the highest score value is 

selected as the prominent attribute and is directly updated in the database. In case, if 

there are more than one highest MPF scores (redundant) the algorithm proceeds to 

use classifier in classification task. Then, the second step commences.   

Step Algorithm 

1 Get the software quality attributes and weights from the PQF 

database 

2 Use weight value to calculate the MPF scores for all attributes 

 

3 Sort and rank the attributes according to the highest MPF scores 

 

4 If there are more than one highest MPF score 

For each of the attribute with same MPF score 

Begin 

a. Get the corresponding data and weights from the PQF 
database 

b. Input the data into two classifiers 
c. Calculate the average classification accuracy of the two 

classifiers 
d. Output the average classification accuracy  

End 

5 Select the attribute with the highest classification accuracy 

 

 

6 

 

Output the ranked software quality attributes 

 



 

   91 

The performance of classifiers in handling the redundancy of data is established and 

the output is averaged in order to avoid biasness. Consequently, the results are tested 

for accuracy and validated. Then, the algorithm selects the attribute with the highest 

classification accuracy. Eventually, the final ranking result is updated in the 

database.         

4.4 The Development of Kolmogorov-Smirnov Correlation Based Filter         

(KSCBF) Algorithm 

Having reviewed the existing algorithms in the literatures, the Kolmogorov-Smirnov 

Correlation Based Filter (KSCBF) algorithm has been decided to be used for 

comparison (discussed in Chapter Two). The KSCBF algorithm has been 

implemented on Java following the steps provided in the algorithm as outlined in 

Table 4.3. The following section discusses the development process.  

 

 

Step Algorithm 

 Relevance analysis 

1 Calculate the SU(X,C) relevance indices and create an ordered list 
S of features according to the decreasing value of their relevance. 
 

 Redundancy analysis 

2 Take as the feature X the first feature from the S list 
 

3 Find and remove all features for which X is approximately 
equivalent according to the K-S test 
 

4 Set the next remaining feature in the list as X and repeat step 3 for 
all features that follow it in the S list. 

Table 4.3: Kolmogorov-Smirnov Correlation Based Filter (KSCBF) 
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KSCBF algorithm consists of two stages. In the first stage, the relevance analysis, in 

which the algorithm is ranked all attributes uses a traditional method in FS such as 

SU for the ranking coefficients. The first step is ranked the attributes in descending 

order. In regards to this, the algorithm is discussed elaboratively in Chapter Two, in 

which SU is computed using formula in Equaltion 4.5.  

    

 

Where, X is the selected features in the class attribute, C is class of the selected 

attribute, MI is the Mutual Information which is the basic quantity used for filtering 

method, H is uncertainty probabilities, H(X) is uncertainty of X features and H(C) is 

the uncertainty class of the selected attribute.  

In short, the presented formula is used to count the quality attributes to be sorted and 

ranked according to the quality score value. Further, the second stage is to remove 

the redundancies of data in the list using K-S test. This is accomplished using 

formula in Equation 4.6.  

 
                                                                                                                          (Eq. 4.6)                         

 

Where, ng and nh are the number of samples for each random variables, k is the 

number of bins in discrete probability distribution, G and H are cumulative 

probability distribution of random variables g and h respectively.  

SU (X,C) =   2 MI (X,C) 

H (X) + H (C)               
 

 

KS (g; h) =           ngnh  

                           ng + nh 
√ sup |Gk − Hk|  

 

k

 (Eq. 4.5) 
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According to the algorithm, the random variables are counted in pair. Two of 

features are counted and the highest differences between the cumulative distributions 

from the features are selected. The second phase is repeated for the others attributes 

ranking in the list. Every feature in the list is counted using K-S test to remove the 

redundancy. Then, the values of the features are sorted and ranked in the new list 

after K-S test calculation. Eventually, the algorithm will remove all redundant 

features in the new attributes ranking.  

However, for the purpose of showing the priority of quality attributes in this study, 

the redundant features are remained in the list for easier comparison.  
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4.5 Summary  

This chapter describes the development of FRA algorithm in detail. The main issues 

to be solved by the proposed model are clearly defined followed by a discussion on 

the elements involved with the main features of the proposed algorithm as to attend 

the claimed issues. This includes an explanation on the elements used in generating 

the FRA algorithm and MPF formula as to count the score of attributes and followed 

by sorting and ranking the results. Besides, this chapter also describes the learning 

adaptation in handling the redundancies through MULAN using two classifiers 

(RAkel and MLkNN). In this regards, the capability of the classifiers has been 

determined by their predictive competency in the final result. On top of that, this 

chapter also discusses on the method of FRA algorithm and the steps involved. 

Particularly, the development process involved for the proposed algorithm is 

outlined. Also, the development of KSCBF algorithm as comparison method is 

addressed. Eventually, this chapter exhibits and discusses the results obtained from 

both models detail. As a consequent, the explanations on the analysis of the 

performance are discussed in detail in the next chapter.   
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CHAPTER FIVE 

DATA ANALYSIS AND RESULT 

5.1 Introduction 

This chapter elaborates the data analysis and results of FRA for a dynamic software 

quality model. The assessment technique has been developed using FRT to enhance 

the assessment technique in static quality model namely PQF model. All the data 

were organized, analyzed, and interpreted systematically in an attempt to answer the 

question of how the FRT can be used to develop an intelligent assessment technique 

which is known as a dynamic model in software quality. Various statistical 

techniques were used for the analysis including correlation coefficient statistic and 

the statistical significance test.  

Section 5.2 presents the result of quality attributes, which is described according to 

the score obtained from FRA and KSCBF algorithms. Furthermore, the results 

obtained from both methods are compared with expert judgment. Next, Section 5.3 

analyzes the performance evaluation for this study. Finally, a summary of the 

findings is outlined in Section 5.4 at the end of the chapter.  
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5.2 Performance Results  

The performance results obtained from FRA algorithm are compared to the existing 

algorithm in the literature (KSCBF algorithm) and the expert judgment i.e. PQF 

model. The results are analyzed respectively in subsequent sections.   

5.2.1 Result of Experiment: Feature Ranking Algorithm (FRA) Algorithm 

The experiment results of FRA algorithm gives a list of attributes according to the 

ranking scores obtained from MPF calculation (as discussed in Chapter Four). Data 

were gathered from one thousand quality assessment data collected from the PQF 

model. In conjunction, Table 5.1 shows an example of the software quality attributes 

and the weights assigned by the assessors adapted from the PQF’s database. As 

noticed earlier in Chapter Two, the weight assessment were made on a five point 

Likert scale (1= strongly disagree to 5 = strongly agree).  

Table 5.1: Example of Software Quality Attributes with Assigned Weight 

 

 

 

 

 

  

 

According to the weight assigned by the assessors, the proposed algorithm counts the 

weight value using the MPF formula in phase one. The averaged score for each 

Attribute Weight 
1 Efficiency 4.08 
2 Functionality 3.69 
3 Maintainability 2.66 
4 Portability 3.55 
5 Reliability 3.36 
6 Integrity 3.83 
7 Usability 2.95 
8 User Factor 3.67 
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attribute is required to get the value of standard deviation in the data collection in 

order to attain the MPF score for each attribute. Normally, the standard deviation for 

one thousand data is dissimilar in term of the scores given by the assessors and the 

probability of similarity rarely occurs in the analysis.  

As referred to the results in Table 5.2, the averaged score for attributes portability 

and User Conformity is 3.9, with standard deviations 1.58 and 1.38 respectively. 

This does not agree with the principle of redundancy, that standard deviations should 

also be similar. As been referred to the Table 5.2, it is seen that the averaged score 

for Maintainability and Usability is 3.4 with standard deviations is 1.8. In this case, 

they are meets the principle of redundancy. Hence, the MPF formula is used to count 

the priority of attributes. As referred to the full results of FRA algorithm in Table 

5.3, the MPF score value for Maintainability and Usability is 45.0. Hence, they are 

proven redundant.  

 

Table 5.2: Result in Averaged Score and Standard Deviation 

 

Attribute Id Attribute Name Averaged Score Std.Deviation 
P006 Reliability 4.1 1.04 
P005 Portability 3.9 1.38 
P008 User Conformity 3.9 1.58 
P001 Efficiency 3.7 1.19 
P002 Functionality 3.6 1.63 
P004 Maintainability 3.4 1.80 
P007 Usability 3.4 1.80 
P003 Integrity 3.1 1.51 
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Table 5.3: Result of FRA Algorithm 

 

Attribute Id Attribute Name MPF Score  
P008 User Conformity 47.34 
P004 Maintainability 45.00 
P007 Usability 45.00 
P002 Functionality 40.63 
P005 Portability 34.38 
P006 Reliability 26.10 
P003 Integrity 22.70 
P001 Efficiency 17.81 

  

As a consequent, to resolve this issue, the classification task with the weight as the 

main target is applied. The previous chapter explains that the classification task 

operates in phase two of FRA algorithm. This means that, the wrapper approach is 

conducted where the data related to this attributes are trained and tested for 

classification task. In this study, RAkel and MLkNN are employed in this task 

(explained in previous chapter). In the conjuction, The Area Under the Curve (AUC) 

performance metric is used to count classification accuracy. In relation, Table 5.4 

lists the results of classification accuracy for handling the redundancy of data 

between the Maintainability and Usability.  
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Table 5.4: Result of Classification Accuracy for Two Redundant Attributes 

 

As can be seen in Table 5.4, the classification accuracy of RAkel is almost identical 

for both Maintainability and Usability attributes. However, the MLkNN classifies the 

Maintainability attribute with 92% accuracy compared to Usability (79%). This 

finding supports the statement posted by Wang et al. (2011), that the accuracy of the 

classification result performed is influenced by the selected classifier. Hence, the 

result of classification accuracy is averaged in order to avoid biasness towards a 

single classifier. In this case, based on the detail in the table, the classification 

accuracy of the Maintainability attribute is higher than the Usability attribute (with a 

difference of 8%). Therefore, the Maintainability attribute is selected to be ranked 

higher than Usability. Consequently, the redundancy of attributes is ranked 

accordingly between the redundant data in the final ranking result. Also, the result of 

the others quality attributes are ready to be ranked respectively with the MPF scores 

of each attribute in final ranking result. Eventually, the final ranking result of the 

software quality attributes are displayed in tabular form and shown in Table 5.5. 

 

 

 

 

 

Attribute Id Attribute Name
RAkel 

Classifier 
MLkNN 
Classifier Averaged

P004 Maintainability 0.8121 0.9171 0.8646 
P007 Usability 0.8131 0.7616 0.7874 
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Table 5.5: Final Ranking of FRA Algorithm 

 

 

 

 

 

 

Based on the details in Table 5.5, the User Conformity is ranked as the highest 

priority among the attributes in the software development. In contrast, the Efficiency 

attribute is found as the least priority attribute. Additionally, in order to access the 

effectiveness of FRA algorithm, the comparison between the final results with the 

ranking result produced by the KSCBF algorithm is carried out. For the purpose of 

making a baseline for the comparison, the result performed by expert judgement 

such as PQF model has been used, as explains in detail in the following subsection.  

5.2.2 Result of Experiment: Kolmogorov-Smirnov Correlation Based Filter 

(KSCBF) Algorithm 

To further evaluate the proposed algorithm, the result of FRA algorithm is compared 

to the KSCBF algorithm pertaining to the final scores obtained. Table 5.6 presents 

the score for attributes obtained from SU for filtering in KSCBF algorithm. It is 

followed by Table 5.7 that lists the final ranking result of scores for attributes in 

KSCBF algorithm. 

 

 

Attribute Id Attribute Name 
P008 User Conformity 
P004 Maintainability 
P007 Usability 
P002 Functionality 
P005 Portability 
P006 Reliability 
P003 Integrity 
P001 Efficiency 
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Table 5.6: Result of Symmetrical Uncertainty (SU) Value 

 

 

 

  

 

 

 
 
 

Table 5.7: Final Ranking Result of Attributes Scores in KSCBF Algorithm 
 

 

 

 

 

 

 

In KSCBF algorithm, the attributes are filtered and ranked according to the score 

obtained from the SU calculation. As be seen in the Table 5.6, the Maintainability is 

ranked the highest score (33.44). While, the Functionality and Integrity attributes are 

ranked the least (9.33). Further, the results of SU calculation are used in the KS-Test 

calculation to solve the redundancy.  

In this experiment, the final scores obtained from the KSCBF that Maintainability is 

a very important feature to be highlighted and ranked highest with score 1. Grunwald 

et al. (2008), states that the better quality measures is closer to 1 as the higher 

degree. As can be seen from the Table 5.7, Integrity is ranked lowest (0.48). It means 

Attribute ID Attribute Name SU Value 
P004 Maintainability 33.44 
P007 Usability 23.33 
P008 User Conformity 18.34 
P001 Efficiency 13.92 
P005 Portability 12.12 
P006 Reliability 12.03 
P002 Functionality 9.33 
P003 Integrity 9.33 

Attribute ID Attribute Name 
KS- Test 

Score  
P004 Maintainability 1.00 
P007 Usability 0.83 
P008 User Conformity 0.72 
P001 Efficiency 0.63 
P005 Portability 0.57 
P006 Reliability 0.55 
P002 Functionality 0.51 
P003 Integrity 0.48 
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that the attribute is less priority than the other attributes. In this algorithm, the step is 

completed once the K-S test is performed and the data are claimed as valid. 

Eventually, the final ranking results are outlined in the same ranking attributes 

although there are still redundancies. This is one of the limitations faced in KSCBF 

algorithm in handling the redundancies cases as mentioned earlier in Chapter Two.  

This is supported the statement reported by Grunwald et al. (2004), who argues that 

this method will not be able to change the position of each attribute in the ranking 

list and the final results are outlined as the same ranking attributes with different 

values after K-S test calculation. In conjunction, the comparison on the results is 

elaborated in the following section. 

5.3 Evaluation Measurement 

The performance evaluation is very important in this study to validate the proposed 

algorithm. The purpose of this experimental evaluation is to present the accuracy of 

the proposed FRA algorithm. This section shows the evaluation measurement 

techniques that were used in the evaluation process. Particularly, the measurements 

used in this evaluation process are correlation coefficients and statistical significance 

test (t-test). Furthermore, the experimental evaluation results of FRA algorithm are 

compared to the KSCBF algorithm and PQF model. In detail, all testing procedures 

and results are described in the following section. 

5.3.1 Human Expert Evaluation 

In order to evaluate the performance of the proposed model, the result produced by 

the expert were used for the comparison and act as the benchmark of the assessment 
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in this research. The ranking list by expert analysis quality by individual attribute 

based on previous and current assessment (adapted from Yahaya et al., 2011) is 

outlined in Appendix B. The results are averaged and used as the baseline to 

compare the performance of the proposed algorithm and KSCBF algorithm. In 

conjunction, a comparative graph is plotted in the next section to show the results.  

5.3.2 Normalization of Data Performance 

In order to compare the results, human expert ranking result and FRA is normalized 

to the standard scale between 1 and 0 for analysis. Thus, the result of KSCBF 

algorithm is determined between 0 and 1. Therefore, the result does not require any 

normalization process. Accordingly, Table 5.8 shows the final results performed by 

PQF model, FRA and KSCBF algorithm before normalization. In addition, Table 5.9 

shows the normalization of the data and is used as data comparison between PQF 

model, FRA and KSCBF algorithm.  

 

Table 5.8: Final Result of PQF model, FRA and KSCBF Algorithm 

Attribute Name 
Model / Algorithm 

PQF FRA KSCBF 
User Conformity 4.56 47.34 0.72 
Maintainability 4.46 45.00 1.00 
Usability 4.31 45.00 0.83 
Functionality 4.30 40.63 0.51 
Portability 4.12 34.38 0.57 
Reliability 3.52 26.10 0.55 
Efficiency 3.33 17.81 0.63 
Integrity 3.25 22.70 0.48 
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According to the final result in Table 5.8, the data is transformed using the concept 

of normalization of data. The process of transformation is involved the formula in 

Equation 5.1 below: 

                                                                                                                          (Eq. 5.1) 

   

Where, a is the smallest scale of data in the ranking, b is the biggest scale of the data 

in the ranking. In this study, the scale used was between 0 and 1.  A is the smallest 

data in the ranking, B is the biggest data in the rankimg, and x is the final ranking 

result. After calculation for the normalization process, the result obtained is shown in 

Table 5.9 below.                                                                                                          

 

Table 5.9: Normalization of Data 

Attribute Name 
Model / Algorithm 

PQF FRA KSCBF 
User Conformity 1.00 1.00 0.72 
Maintainability 0.92 0.92 1.00 

Usability 0.81 0.92 0.83 
Functionality 0.80 0.77 0.51 

Portability 0.66 0.56 0.57 
Reliability 0.21 0.28 0.55 
Efficiency 0.06 0.00 0.63 
Integrity 0.00 0.17 0.48 

Percentage of Similarity to PQF 
Model (%) 

Score = 6/8 * 100 Score = 3/8 * 100 
75% 37.5% 

 

Table 5.9 reveals that User Conformity scores the highest in FRA (score = 1), similar 

to PQF model. In contrast, the KSCBF algorithm shows that Maintainability scores 

the highest (score = 1). On the other hand, FRA records that Efficiency attribute is 

the least important attributes to be highlighted in software development. This 

a + (x – A) X (b-a) 

(B-A)
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contrast the PQF model and KSCBF algorithm, in which Integrity attributes is the 

lowest priority.  

The findings explain that, the scores produced by FRA associates better with the 

expert model compared to KSCBF algorithm. Overall, the quality attributes 

performed by the proposed algorithm are strongly similar to the ranking by the 

expert model (with 75% of scores). In contrast, the quality attributes ranked by 

KSCBF algorithm shows that the model correlates inferior with the expert model 

(with 37.5% of scores). The percentage of the similarity is obtained by comparing 

the equality of attributes in final ranking to the expert model’s attribute ranking. 

Otherwise, the dissimilarity judgement is referred to the comparison on inequality of 

attribute ranking compared to the expert model’s attribute ranking.  

In calculating the equality, the similarity of attributes to PQF model is divided by the 

total quality of quality attributes. The result is multiplied by 100% (Similarity of 

Attributes to PQF model / Total of Quality attributes * 100%). Hence, with reference 

to Table 5.9, the attributes are User Conformity, Maintainability, Usability, 

Functionality, Portability and Reliability (six attributes). This makes up 6/8 * 100%, 

which equal to 75%.  

Meanwhile, in calculating the dissimilarity of attributes to PQF model is also divided 

by the total quality of quality attributes. The result is also multiplied by 100% 

(Dissimilarity of Attributes to PQF model / Total of Quality attribute * 100%). With 

reference to the Table 5.9, the attributes are Efficiency and Integrity (two attributes). 

This makes up 2/8 * 100%, which equal to 25%. The dissimilarity of results is 

compared to KSCBF algorithm, which counted to 62.5%. As a consequent, the line 
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 In addition, the statistical measurement is also calculated using the correlation 

coefficient and statistical significant test of FRA and KSCBF algorithm, compared to 

the expert’s ranking. The next sub sections discusses on this. 

5.3.3 Correlation Coefficient  

The performance of the proposed algorithm is analyzed by calculating the correlation 

coefficient to show the relationship between FRA and KSCBF algorithm with PQF 

model. The formula of correlation coefficient is exhibited in Equation 5.2.  

                                                                                                                          

                                                                                                                          (Eq. 5.2)   

 

Where, N = Number of values or elements, X = First Scores, Y = Second Scores, 

ΣXY = Sum of the product of first and Second Scores, ΣX = Sum of First Scores, ΣY 

= Sum of Second Scores, ΣX2 = Sum of square First Scores and ΣY2 = Sum of 

square Second Scores.  

Furthermore, this analysis can be measured the strength of FRA and KSCBF 

algorithm related to the PQF model. Table 5.10 shows the analyzed result of 

correlation coefficient of FRA to the PQF model and followed by Table 5.11 shows 

tha analyzed result of correlation coefficient of KSCBF algorithm to the PQF model.   

 

 

 

 

 

Correlation (r) =    ୒ஊଡ଼ଢ଼ ି ሺஊଡ଼ሻሺஊଢ଼ሻ
√ሺሾ୒ஊଡ଼ మି ሺஊଡ଼ሻమሿሾ୒ஊଢ଼మ ି ሺஊଢ଼ሻమሿሻ
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Table 5.10: Analyzed Results of Correlation Coefficient of FRA to PQF 

Iteration 

 (10 folds Cross 

validation) 

  
 Correlation 

Coefficient 
 

1   0.96  

2   0.97  

3   0.98  

4   0.97  

5   0.97  

6   0.98  

7   0.98  

8   0.99  

9   0.98  

10   0.99  

Average of the result     0.977  

                       

Table 5.11: Analyzed Results of Correlation Coefficient of KSCBF to PQF 

Iteration 

 (10 folds Cross 

validation) 

  
 Correlation 

Coefficient 
 

1   0.82  

2   0.83  

3   0.82  

4   0.83  

5   0.81  

6   0.82  

7   0.83  

8   0.83  

9   0.83  

10   0.83  

Average of the result     0.825  
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As can be seen in the Table 5.10 and Table 5.11, the results performed by iteration of 

10 fold cross validation in order to gain the accuracy of the results by averaged them 

to avoid biasness. The correlation coefficient in Table 5.10 shows that FRA is 

strongly correlates to the expert judgement with scores of 0.98 or 98%. On a 

contrary, in the Table 5.11 shows the KSCBF algorithm correlates 83% with scores 

of 0.83 to expert judgement. The result shows that the compared method has a 

limitation in solving the data redundancy case and the reason for this difference is 

because the KSCBF does not use the learning concept in the presented algorithm.    

5.3.4 Statistical Significance Test (t-test) 

Finally, the statistical significant test is used to test and validate the differences in 

scores of the results obtained by matching pairs of FRA or KSCBF to the expert 

model. The statistical significance test aims to measure the probability and determine 

whether there is significant differences between the two models by chance of errors 

if the compared results remaine the same. Hence, the statistical technique measures 

the confidence level of the results obtained from the compared methods to determine 

either it is significantly different or not in each other.    

The testing process is accomplished by using a statistical significance test formula 

which correlates the samples t-test to consider the correlation exists among two 

compared models or methods. For each dissimilarity score produced by method A, 

Ai, (I =1,2,…….d) it test for correlated samples, t to a compared method Bj, (j=1, 2, 

…..d) is given in Equation 5.3.  
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                                  t =  ஽

√ೄ೏೙
మ                                 (Eq. 5.3) 

 

Where, D = (Ai – Bj), is the difference between compared method A to an expert 

dissimilarity score, D = is the mean of the difference,  ܵଶ݀ = ∑ ሺ஽௜ି஽ሻ
௡ିଵ

 , is the 

standard error of difference, and  n  is number of pairs.  

Table 5.12 below shows the results of statistical significance test of FRA and 

KSCBF to the expert model by iteration of 10 folds cross validation as to proof the 

correctness. The specified alpha value used in this research is 0.05. The final result 

shows that the similarity of FRA algorithm to the expert model is 0.052, occurred by 

chance of errors as compared to the KSCBF algorithm (alpha is 0.048, which is 

lesser than the specified alpha value). This explains that on t-value proofs that FRA 

algorithm is validated and more significant than KSCBF algorithm related to the 

expert model. Consequently, Table 5.13 shows the final result of measurement 

methods for FRA and KSCBF algorithm related to PQF model.  
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Table 5.12: Analyzed Results of Statistical Significance Test of FRA and KSCBF 

Iteration 

 (10 folds Cross 

validation) 

   FRA KSCBF 

1   0.0052 0.0047 

2   0.0053 0.0047 

3   0.0053 0.0048 

4   0.0053 0.0047 

5   0.0052 0.0048 

6   0.0052 0.0048 

7   0.0053 0.0048 

8   0.0052 0.0047 

9   0.0052 0.0047 

10   0.0052 0.0048 

Average of the result     0.0524 0.0475 

 

Table 5.13: Final Results of Correlation Coefficient and Statistical Significance Test 
for FRA and KSCBF to PQF Model 

Item 
Correlation 

Coefficient 
                  t-test  

FRA  0.98                   0.052  

KSCBF  0.82                   0.048  

    

 

5.4 Summary  

This chapter reveals the results of both methods of evaluation involving human 

judgement and statistical measurement. It describes the results from the expert 

judgement compared to the proposed algorithm and KSCBF algorithm in the 
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literature. Based on the performance of the results, this study concludes that the 

performance of FRA is better than the KSCBF algorithm. Meanwhile, the result of 

the measurements performance shows that FRA is correlates strongly to the expert 

model rather than KSCBF algorithm. Additionally, the results have also been 

validated by the statistical significant test (t-test), which performs excellent related to 

the expert model rather than KSCBF algorithm. In fact, the proposed algorithm can 

also support the limitation of the current model in software quality in terms of the 

assessment technique provided in this study. Nevertheless, the adaptation of 

intelligence tool set used in this study makes the model as good as human approach, 

which is capable to learn and notice the future requirements and expectations.  
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CHAPTER SIX 

DISCUSSION AND CONCLUSION 

6.1 Overview 

This chapter concludes the research of study by emphasizing major research 

contributions, the value of the research to the software quality community, the 

problem faced in this research and the suggestions and recommendations for future 

work.  

6.2 Research Summary 

This study focused on the construction Feature Ranking Algorithm (FRA) using 

Feature Ranking Technique (FRT) for quality attributes assessment in software 

quality model. It consists of an algorithm for assessment technique including a set of 

formula for attribute selection that is the most priority of features in the quality 

attributes. The application of the classifiers i.e. RAkel and MLkNN has contributed 

in handling the redundancy of data and the result of the quality attributes ranking 

was validated.  

The experiments were conducted to illustrate the capability of the proposed 

algorithm to achieve the goal and objectives of this research. The proposed technique 

produces in this research development performed better than the compared method 

in terms of solving the data redundancies in the process of ranking software quality 

attributes. Experimental results also show that the proposed algorithm produced 

ranking results which are comparable with the experts ranking. Furthermore, the 

statistical measurements such as correlation coefficient and statistical significant 
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testing have proved that the proposed algorithm highly correlates to the expert’s 

judgements and validated as statistically significant.  

6.3 Research Contribution   

In this thesis a new software quality model has been developed by enhancing of the 

PQF‘s assessment technique and this new model is called an Feature Ranking 

Algorithm (FRA). This section summarizes the main contributions of the thesis by 

referring to the research objectives as stated in Chapter One: 

a. To identify Feature Ranking Technique (FRT) as to improve Pragmatic 

Quality Factor (PQF) model 

This objective has been achieved with the FRT proposed in this thesis. This is a type 

of FS Technique that can enhance the assessment technique in the PQF model and 

induce dynamic element in the existing software quality model. The implementation 

of learning concept as mentioned earlier, provides more impact to the achievement 

of this objective. The proposed technique solves the problem faced in the static 

quality model in the literature by introducing dynamic elements. 

b. To develop and evaluate an assessment technique in PQF model with the 

proposed Feature Ranking Technique (FRT) 

The second objective is achieved through the development of a Feature Ranking 

Algorithm (FRA) using Feature Ranking Technique (FRT). The technique proposed 

in this research has accomplished this objective with the following contributions:  
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i. Provides an algorithm which contains a formula to measure and 

evaluate the quality attributes 

Generation of an algorithm which incorporates a new assessment formula is 

capable to take into consideration the future requirements and expectations. The 

proposed assessment technique has performed well in the software quality 

attributes by contributing to the selection of attributes according to the most 

priority of features score value.    

ii. Implementation of learning concept using classifiers such as Random 

k-Labelsets (RAkel) and Multi Label k-Nearest Neighbour (MLkNN) 

The implementation of classifiers in the proposed assessment technique is 

another contribution in this research. The learning concept in the proposed FRA 

algorithm enables handling the redundancy of data. This application involved the 

classifiers such as RAkel and MLkNN as discussed earlier. Each of the classifier 

was implemented with improved method to ensure the accuracy of the ranking 

attributes in solving the redundancies of data.  

iii. Human Expert Evaluation proof the performance of FRA algorithm 

The ranking results produced by the expert model such as PQF model is used as 

a baseline for the comparison. The ranking attributes by expert model is also 

used as a benchmark to compare the performance of FRA algorithm and the 

KSCBF algorithm presented in the literature. This evaluation technique confirms 

that the developed intelligent algorithm performed better than the compared 

method. In fact, the result produced by the proposed algorithm strongly 
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correlates to the expert judgment in term of accuracy of quality attributes 

ranking. Furthermore, the FRA ranking result is better compared to the KSCBF 

algorithm. The comparison results act as the contribution in this research in terms 

of the performance of the proposed algorithm. 

iv. Statistical Measurement 

Another contribution is achieved in this research by performing correlation 

coefficient calculation and statistical significant testing to validate and prove the 

results. This statistical evaluation method has confirmed that the performance 

provided by FRA model is reliable. The FRA algorithm has achieved the 

objective in this research by producing the better results compared to the KSCBF 

algorithm.  

Overall, this study has achieved its intended objectives outlined in Chapter One. The 

proposed algorithm presented in this study is considered extremely suitable for 

dynamic software quality model in evaluating the quality attributes. 

6.4 Limitation of the Research 

Every research study will face difficulties in the research process due to various 

constraints. As discussed earlier, the approaches used in FS technique in this 

research are filter and wrapper approaches. The limitation faced in this research is on 

the application of the approaches where both of this approaches were used separately 

in the proposed algorithm. The filter approach is enclosed in the MPF formula for 

ranking of the quality attributes. This function was implemented in the first phase of 

the proposed algorithm. While, the wrapper approach was used in the second phase 
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for handling the redundancies of attribute ranking. The quality attributes is ranked 

accordingly and stored in knowledge base respectively if the redundancies of 

attributes do not exist in the first phase. Besides that, the second phase will not be 

implemented if the data redundancies do not occur. Consequently, the machine 

learning adaptation is unaccomplished if the second phase does not executed. 

However, this limitation is rarely possible to happen due to the data applied in this 

research is large enough and the chances of data repetition are high.  

The next section discusses the future work to expand the contribution and to support 

the limitation of this research.    

6.5 Future Work 

For future development and expansion of this research, the following are suggested: 

1. Improved FRA algorithm as hybrid algorithm consisting a combination of 

approaches in FS i.e. filter and wrapper used inclusively. In this research, 

major part of the algorithm focused on filter approach and wrapper has used 

exclusively for solving the redundancy of data. The wrapper approach is 

more suited for high dimensional data especially to evaluate the usefulness of 

features. 

2. Enhance the proposed algorithm using more than two classifiers such as 

SVM, NB, LR, C4.5, and MLP. In this research, the classifiers provided by 

MULAN application are used to learn the knowledge from the software 

quality data. Although, the function in the MULAN Java library has limited 

functionality and capability to import classifiers indirectly from WEKA. The 
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application of WEKA as a learning tool can provide more classifiers to be 

used in solving the data redundancy in high dimensionality of data.  

3.  Finally, the development of FRA algorithm was based on FS technique as 

the main technique in the software quality assessment engine. Besides that, 

other techniques in AI approach can be explored such as NN and GA. 

6.6 Summary  

As a conclusion for this research, this chapter has discussed and concluded the 

overall research, the contribution of the research and followed by the limitation of 

the research. The discussion and recommendations for further development and 

extension were outlined. The embedding of AI approach contributes to the 

assessment technique as good as human approach and reduced uncertainty of quality 

attributes. Hence, the developed model can be a good alternative model to support 

the software quality model community in evaluating the quality attributes with 

intelligence technique. Hopefully, the findings of this study are able to provide 

positive inputs to the future researches and the evaluation efforts can encourage 

individuals and organizations in software quality community to utilize the proposed 

dynamic model as well as using an intelligent approach in the assessment engine.   
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Appendix A  

Sample Data 

 

Attributes Score Assigned by the Assessors adapted from Yahaya et al. (2011). 

Efficiency Functionality Maintainability Portability Reliability Integrity Usability UserComfomity 
3 2 1 3 1 2 2 2 
5 3 4 2 3 3 5 5 
3 4 2 4 1 4 3 2 
4 1 4 1 2 1 4 3 
5 3 4 1 3 3 5 5 
2 4 5 5 1 4 3 2 
4 2 1 3 2 2 2 3 
3 3 4 4 3 3 5 4 
5 1 2 1 3 1 3 2 
2 4 4 3 2 4 4 5 
4 3 1 1 4 3 4 3 
3 2 1 3 1 2 3 4 
1 3 5 3 3 3 2 2 
4 4 4 1 2 4 5 3 
2 1 5 4 1 1 4 5
1 3 1 3 3 3 4 4 
3 2 5 1 2 2 3 3 
4 1 4 1 3 1 4 2
2 3 1 2 2 3 2 4 
4 5 5 3 2 5 5 5 
1 2 5 3 3 2 4 3 
4 3 4 5 1 3 3 2 
2 1 1 1 3 1 5 4 
3 5 5 4 3 5 4 4 
4 3 4 3 4 3 5 4 
1 2 1 3 2 2 3 5 
5 3 5 5 3 3 5 3 
5 1 4 1 1 1 2 4 
4 4 4 1 2 4 5 3 
2 1 5 4 1 1 4 5 
1 3 1 3 3 3 4 4 
3 2 5 1 2 2 3 3 
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Appendix B 

Result of Experiment 

P001: Efficiency Attribute 

RaKEL------------------------------- 
 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.2179±0.0267 
Subset Accuracy: 0.2488±0.0386 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6173±0.0501 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5098±0.0501 
Micro-averaged Precision: 0.6592±0.0617 
Micro-averaged Recall: 0.6260±0.0549 
Micro-averaged F-Measure: 0.6407±0.0401 
Macro-averaged Precision: 0.6509±0.0600 
Macro-averaged Recall: 0.6144±0.0556 
Macro-averaged F-Measure: 0.6230±0.0575 
Average Precision: 0.7762±0.0405 
Coverage: 1.9414±0.1693 
OneError: 0.3120±0.0722 
IsError: 0.5297±0.0689 
ErrorSetSize: 1.3575±0.2418 
Ranking Loss: 0.1891±0.0359 
Mean Average Precision: 0.6919±0.0506 
Micro-averaged AUC: 0.8269±0.0261 
Macro-averaged AUC: 0.8104±0.0272 
 
---------MLkNN--------------------------------------------------- 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
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Fold 9/10 
Fold 10/10 
Hamming Loss: 0.1991±0.0293 
Subset Accuracy: 0.2831±0.0532 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6050±0.0568 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5346±0.0615 
Micro-averaged Precision: 0.7241±0.0571 
Micro-averaged Recall: 0.6087±0.0506 
Micro-averaged F-Measure: 0.6598±0.0723 
Macro-averaged Precision: 0.7230±0.0692 
Macro-averaged Recall: 0.5922±0.0425 
Macro-averaged F-Measure: 0.6243±0.0413 
Average Precision: 0.7965±0.0406 
Coverage: 1.7884±0.1634 
OneError: 0.2835±0.0740 
IsError: 0.5028±0.0815 
ErrorSetSize: 1.1443±0.2128 
Ranking Loss: 0.1633±0.0320 
Mean Average Precision: 0.7271±0.0426 
Micro-averaged AUC: 0.8500±0.0235 
Macro-averaged AUC: 0.8346±0.0501 
 

P002: Functionality Attribute 

RaKEL------------------------------- 
 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.2178±0.0255 
Subset Accuracy: 0.2478±0.0486 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6273±0.0601 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5088±0.0581 
Micro-averaged Precision: 0.6572±0.0557 
Micro-averaged Recall: 0.6260±0.0588 
Micro-averaged F-Measure: 0.6417±0.0601 
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Macro-averaged Precision: 0.5509±0.0500 
Macro-averaged Recall: 0.6144±0.0539 
Macro-averaged F-Measure: 0.6230±0.0465 
Average Precision: 0.7762±0.0405 
Coverage: 1.9414±0.1698 
OneError: 0.3120±0.0724 
IsError: 0.5297±0.0689 
ErrorSetSize: 1.3575±0.2418 
Ranking Loss: 0.1891±0.0359 
Mean Average Precision: 0.6918±0.0505 
Micro-averaged AUC: 0.8272±0.0261 
Macro-averaged AUC: 0.8104±0.0272 
 
---------MLkNN--------------------------------------------------- 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.1951±0.0243 
Subset Accuracy: 0.2831±0.0538 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6050±0.0578 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5326±0.0515 
Micro-averaged Precision: 0.7242±0.0571 
Micro-averaged Recall: 0.6087±0.0505 
Micro-averaged F-Measure: 0.6598±0.0423 
Macro-averaged Precision: 0.7330±0.0692 
Macro-averaged Recall: 0.5922±0.0425 
Macro-averaged F-Measure: 0.6243±0.0413 
Average Precision: 0.7965±0.0406 
Coverage: 1.7884±0.1634 
OneError: 0.2835±0.0740 
IsError: 0.5028±0.0815 
ErrorSetSize: 1.1443±0.2128 
Ranking Loss: 0.1633±0.0320 
Mean Average Precision: 0.7271±0.0426 
Micro-averaged AUC: 0.8590±0.0235 
Macro-averaged AUC: 0.8766±0.0311 
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P003: Integrity Attributes 

RaKEL------------------------------- 
 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.2100±0.0455 
Subset Accuracy: 0.2498±0.0496 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6263±0.0401 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5198±0.0531 
Micro-averaged Precision: 0.6572±0.0527 
Micro-averaged Recall: 0.6260±0.0548 
Micro-averaged F-Measure: 0.6407±0.0501 
Macro-averaged Precision: 0.6509±0.0600 
Macro-averaged Recall: 0.6144±0.0538 
Macro-averaged F-Measure: 0.6230±0.0565 
Average Precision: 0.7762±0.0405 
Coverage: 1.9414±0.1698 
OneError: 0.3120±0.0722 
IsError: 0.5297±0.0654 
ErrorSetSize: 1.3575±0.2418 
Ranking Loss: 0.1891±0.0375 
Mean Average Precision: 0.6928±0.0515 
Micro-averaged AUC: 0.8269±0.0233 
Macro-averaged AUC: 0.8264±0.0265 
 
---------MLkNN--------------------------------------------------- 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
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Fold 10/10 
Hamming Loss: 0.1951±0.0243 
Subset Accuracy: 0.2831±0.0538 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6050±0.0578 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5326±0.0515 
Micro-averaged Precision: 0.7242±0.0571 
Micro-averaged Recall: 0.6087±0.0505 
Micro-averaged F-Measure: 0.6598±0.0423 
Macro-averaged Precision: 0.7330±0.0692 
Macro-averaged Recall: 0.5922±0.0425 
Macro-averaged F-Measure: 0.6243±0.0413 
Average Precision: 0.7965±0.0406 
Coverage: 1.7884±0.1634 
OneError: 0.2835±0.0740 
IsError: 0.5028±0.0815 
ErrorSetSize: 1.1443±0.2128 
Ranking Loss: 0.1633±0.0320 
Mean Average Precision: 0.7271±0.0426 
Micro-averaged AUC: 0.8590±0.0235 
Macro-averaged AUC: 0.7568±0.0301 
 

P004: Maintainability Atrribute 

RaKEL------------------------------- 
 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.2178±0.0255 
Subset Accuracy: 0.2478±0.0486 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6273±0.0601 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5098±0.0501 
Micro-averaged Precision: 0.6572±0.0517 
Micro-averaged Recall: 0.6260±0.0548 
Micro-averaged F-Measure: 0.6407±0.0501 
Macro-averaged Precision: 0.6509±0.0600 
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Macro-averaged Recall: 0.6144±0.0538 
Macro-averaged F-Measure: 0.6230±0.0565 
Average Precision: 0.7762±0.0406 
Coverage: 1.9414±0.1698 
OneError: 0.3120±0.0724 
IsError: 0.5297±0.0689 
ErrorSetSize: 1.3575±0.2418 
Ranking Loss: 0.1891±0.0359 
Mean Average Precision: 0.6918±0.0505 
Micro-averaged AUC: 0.8269±0.0261 
Macro-averaged AUC: 0.8121±0.0272 
 
---------MLkNN--------------------------------------------------- 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.1951±0.0243 
Subset Accuracy: 0.2831±0.0538 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6050±0.0578 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5326±0.0515 
Micro-averaged Precision: 0.7242±0.0571 
Micro-averaged Recall: 0.6087±0.0505 
Micro-averaged F-Measure: 0.6598±0.0423 
Macro-averaged Precision: 0.7330±0.0692 
Macro-averaged Recall: 0.5922±0.0425 
Macro-averaged F-Measure: 0.6243±0.0413 
Average Precision: 0.7965±0.0406 
Coverage: 1.7884±0.1634 
OneError: 0.2835±0.0740 
IsError: 0.5028±0.0815 
ErrorSetSize: 1.1443±0.2128 
Ranking Loss: 0.1633±0.0320 
Mean Average Precision: 0.7271±0.0426 
Micro-averaged AUC: 0.8590±0.0235 
Macro-averaged AUC: 0.9171±0.0301 
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P005: Portability Attributes 

RaKEL------------------------------- 
 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.2197±0.0235 
Subset Accuracy: 0.2455±0.0476 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6243±0.0401 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5086±0.0451 
Micro-averaged Precision: 0.6545±0.0563 
Micro-averaged Recall: 0.6261±0.0538 
Micro-averaged F-Measure: 0.5407±0.0341 
Macro-averaged Precision: 0.6519±0.0610 
Macro-averaged Recall: 0.6144±0.0554 
Macro-averaged F-Measure: 0.6221±0.0515 
Average Precision: 0.7762±0.0477 
Coverage: 1.9414±0.1698 
OneError: 0.3120±0.0724 
IsError: 0.5297±0.0689 
ErrorSetSize: 1.3575±0.2418 
Ranking Loss: 0.1891±0.0359 
Mean Average Precision: 0.6918±0.0505 
Micro-averaged AUC: 0.8451±0.0361 
Macro-averaged AUC: 0.8564±0.0372 
 
---------MLkNN--------------------------------------------------- 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.1851±0.0245 
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Subset Accuracy: 0.2731±0.0638 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6151±0.0599 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5336±0.0532 
Micro-averaged Precision: 0.7244±0.0522 
Micro-averaged Recall: 0.6057±0.0515 
Micro-averaged F-Measure: 0.6598±0.0423 
Macro-averaged Precision: 0.7330±0.0692 
Macro-averaged Recall: 0.5922±0.0425 
Macro-averaged F-Measure: 0.6243±0.0413 
Average Precision: 0.7965±0.0416 
Coverage: 1.7984±0.1694 
OneError: 0.2830±0.0700 
IsError: 0.5028±0.0805 
ErrorSetSize: 1.1403±0.2108 
Ranking Loss: 0.1600±0.0300 
Mean Average Precision: 0.7271±0.0426 
Micro-averaged AUC: 0.8675±0.0325 
Macro-averaged AUC: 0.8453±0.0321 
 

P006: Reliability Attribute 

RaKEL------------------------------- 
 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.2238±0.0267 
Subset Accuracy: 0.2408±0.0496 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6263±0.0541 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5098±0.0501 
Micro-averaged Precision: 0.6562±0.0547 
Micro-averaged Recall: 0.6250±0.0558 
Micro-averaged F-Measure: 0.6427±0.0201 
Macro-averaged Precision: 0.6535±0.0530 
Macro-averaged Recall: 0.6874±0.0638 
Macro-averaged F-Measure: 0.6440±0.0545 
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Average Precision: 0.7766±0.0516 
Coverage: 1.9417±0.1568 
OneError: 0.3121±0.0721 
IsError: 0.5292±0.0611 
ErrorSetSize: 1.3565±0.2428 
Ranking Loss: 0.1791±0.0349 
Mean Average Precision: 0.6928±0.0615 
Micro-averaged AUC: 0.8266±0.0263 
Macro-averaged AUC: 0.8365±0.0232 
 
---------MLkNN--------------------------------------------------- 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.1751±0.0253 
Subset Accuracy: 0.2837±0.0598 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6150±0.0478 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5356±0.0415 
Micro-averaged Precision: 0.7246±0.0578 
Micro-averaged Recall: 0.6187±0.0532 
Micro-averaged F-Measure: 0.6548±0.0453 
Macro-averaged Precision: 0.7430±0.0672 
Macro-averaged Recall: 0.5322±0.0415 
Macro-averaged F-Measure: 0.6253±0.0414 
Average Precision: 0.7985±0.0436 
Coverage: 1.7884±0.1624 
OneError: 0.2935±0.0760 
IsError: 0.5028±0.0825 
ErrorSetSize: 1.1463±0.2328 
Ranking Loss: 0.1663±0.0330 
Mean Average Precision: 0.7671±0.0486 
Micro-averaged AUC: 0.8270±0.0243 
Macro-averaged AUC: 0.7646±0.0501 
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P007: Usability Attribute 

RaKEL------------------------------- 
 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.2178±0.0255 
Subset Accuracy: 0.2478±0.0486 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6273±0.0601 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5098±0.0501 
Micro-averaged Precision: 0.6572±0.0517 
Micro-averaged Recall: 0.6260±0.0548 
Micro-averaged F-Measure: 0.6407±0.0501 
Macro-averaged Precision: 0.6509±0.0600 
Macro-averaged Recall: 0.6144±0.0538 
Macro-averaged F-Measure: 0.6230±0.0565 
Average Precision: 0.7762±0.0406 
Coverage: 1.9414±0.1698 
OneError: 0.3120±0.0724 
IsError: 0.5297±0.0689 
ErrorSetSize: 1.3575±0.2418 
Ranking Loss: 0.1871±0.0356 
Mean Average Precision: 0.6918±0.0505 
Micro-averaged AUC: 0.8267±0.0262 
Macro-averaged AUC: 0.8131±0.0272 
 
---------MLkNN--------------------------------------------------- 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.1951±0.0243 
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Subset Accuracy: 0.2831±0.0538 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6050±0.0578 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5326±0.0515 
Micro-averaged Precision: 0.7242±0.0571 
Micro-averaged Recall: 0.6087±0.0505 
Micro-averaged F-Measure: 0.6598±0.0423 
Macro-averaged Precision: 0.7330±0.0692 
Macro-averaged Recall: 0.5922±0.0425 
Macro-averaged F-Measure: 0.6243±0.0413 
Average Precision: 0.7965±0.0406 
Coverage: 1.7884±0.1634 
OneError: 0.2835±0.0740 
IsError: 0.5028±0.0815 
ErrorSetSize: 1.1444±0.2127 
Ranking Loss: 0.1633±0.0320 
Mean Average Precision: 0.7271±0.0426 
Micro-averaged AUC: 0.8580±0.0225 
Macro-averaged AUC: 0.7616±0.0301 
 

P008: User Conformity Attribute 

RaKEL------------------------------- 
 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.2188±0.0265 
Subset Accuracy: 0.2448±0.0436 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6263±0.0631 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5168±0.0401 
Micro-averaged Precision: 0.6772±0.0417 
Micro-averaged Recall: 0.6261±0.0538 
Micro-averaged F-Measure: 0.6407±0.0521 
Macro-averaged Precision: 0.6589±0.0601 
Macro-averaged Recall: 0.6165±0.0543 
Macro-averaged F-Measure: 0.62120±0.0515 
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Average Precision: 0.7762±0.0406 
Coverage: 1.9414±0.1698 
OneError: 0.3120±0.0724 
IsError: 0.5297±0.0689 
ErrorSetSize: 1.3655±0.2318 
Ranking Loss: 0.1891±0.0359 
Mean Average Precision: 0.6918±0.0505 
Micro-averaged AUC: 0.8619±0.0271 
Macro-averaged AUC: 0.8174±0.0292 
 
---------MLkNN--------------------------------------------------- 
Fold 1/10 
Fold 2/10 
Fold 3/10 
Fold 4/10 
Fold 5/10 
Fold 6/10 
Fold 7/10 
Fold 8/10 
Fold 9/10 
Fold 10/10 
Hamming Loss: 0.1551±0.0273 
Subset Accuracy: 0.2821±0.0528 
Example-Based Precision: NaN±NaN 
Example-Based Recall: 0.6150±0.0518 
Example-Based F Measure: NaN±NaN 
Example-Based Accuracy: 0.5336±0.0535 
Micro-averaged Precision: 0.7342±0.0561 
Micro-averaged Recall: 0.6037±0.0525 
Micro-averaged F-Measure: 0.6698±0.0413 
Macro-averaged Precision: 0.7230±0.0592 
Macro-averaged Recall: 0.5912±0.0415 
Macro-averaged F-Measure: 0.6143±0.0411 
Average Precision: 0.7925±0.0401 
Coverage: 1.7784±0.1644 
OneError: 0.2825±0.0710 
IsError: 0.5026±0.0812 
ErrorSetSize: 1.1353±0.2426 
Ranking Loss: 0.1723±0.0540 
Mean Average Precision: 0.6371±0.0486 
Micro-averaged AUC: 0.8270±0.0335 
Macro-averaged AUC: 0.8259±0.0221 
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