
A FEATURE RANKING ALGORITHM IN PRAGMATIC QUALITY
FACTOR MODEL FOR SOFTWARE QUALITY ASSESSMENT

RUZITA AHMAD

MASTER OF SCIENCE (INFORMATION TECHNOLOGY)
UNIVERSITI UTARA MALAYSIA

2013

 i

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree

from Universiti Utara Malaysia, I agree that the Universiti Library may make it

freely available for inspection. I further agree that permission for the copying of this

thesis in any manner, in whole or in part, for scholarly purpose may be granted by

my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate

School of Arts and Sciences. It is understood that any copying or publication or use

of this thesis or parts thereof for financial gain shall not be allowed without my

written permission. It is also understood that due recognition shall be given to me

and to Universiti Utara Malaysia for any scholarly use which may be made of any

material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in

whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences

UUMCollege of Arts and Sciences

Universiti Utara Malaysia

06010 UUM Sintok

 ii

Abstrak

Kualiti perisian adalah satu bidang penyelidikan yang penting dan telah mendapat
perhatian dikalangan komuniti kejuruteraan perisian terutama dalam mengenal pasti
atribut penting dalam proses pembangunan perisian. Tesis ini menerangkan
penyelidikan asli dalam bidang model kualiti perisian dengan memperkenalkan
algoritma Feature Ranking Algorithm (FRA) untuk model Pragmatic Quality Factor
(PQF). Algoritma yang dicadangkan mampu memperbaiki kelemahan model sedia
ada dalam mengemaskini dan mempelajari kombinasi atribut untuk penaksiran
kualiti perisian. Teknik penaksiran sedia ada kurang keupayaan untuk
menyenaraikan atribut mengikut keutamaan dan keupayaan pembelajaran data yang
boleh meningkatkan proses penaksiran kualiti. Tujuan kajian ini adalah untuk
mengenal pasti dan mencadangkan penggunaan teknik dalam bidang Kepintaran
Buatan ke arah meningkatkan proses penaksiran kualiti dalam model PQF. Oleh itu,
algoritma FRA yang menggunakan Feature Ranking Technique (FRT) telah dibina
dan prestasi algoritma FRA telah dinilai. Metodologi yang digunakan terdiri
daripada kajian teori, reka bentuk rangka kerja formal untuk kualiti perisian pintar,
mengenal pasti kesesuaian ciri-ciri FRT untuk penyenaraian atribut, pembangunan
dan penilaian algoritma FRA. Penaksiran atribut telah bertambah baik dengan
menggunakan algoritma FRA yang mengandungi formula untuk mengira keutamaan
atribut dan diikuti oleh adaptasi pembelajaran melalui aplikasi Java Library for
Multi Label Learning (MULAN). Hasil kajian menunjukkan bahawa prestasi
algoritma FRA mempunyai kolerasi yang sangat kuat dengan model pakar iaitu
model PQF. Ujian statistik menunjukkan bahawa FRA telah menghasilkan keputusan
ketepatan yang lebih baik berbanding algoritma Kolmogorov-Smirnov Correlation
Based Filter (KSCBF) iaitu 98% berbanding 83% masing-masing. Ujian statistik
juga menghasilkan keputusan bagi algorithm FRA iaitu 0.052 adalah lebih baik
berbanding dengan algoritma KSCBF iaitu 0.048. Ini menunjukkan bahawa
keputusan FRA adalah lebih signifikan berbanding algoritma yang digunakan.
Sumbangan utama kajian ini adalah dalam pelaksanaan teknik FRT yang
memperkenalkan pengiraan Most Priority of Features (MPF) dalam algoritma FRA
untuk teknik penaksiran tersebut. Kesimpulannya, penemuan kajian ini menyumbang
kepada usaha penyelidikan baru dalam bidang pemilihan atribut dalam kualiti
perisian.

Kata Kunci: Perisian kualiti, Algoritma FRA, Teknik Kepintaran Buatan, dan
Mesin Pembelajaran

 iii

Abstract

Software quality is an important research area and has gain considerable attention
from software engineering community in identification of priority quality attributes
in software development process. This thesis describes original research in the field
of software quality model by presenting a Feature Ranking Algorithm (FRA) for
Pragmatic Quality Factor (PQF) model. The proposed algorithm is able to improve
the weaknesses in PQF model in updating and learning the important attributes for
software quality assessment. The existing assessment techniques lack of the
capability to rank the quality attributes and data learning which can enhance the
quality assessment process. The aim of the study is to identify and propose the
application of Artificial Intelligence (AI) technique for improving quality assessment
technique in PQF model. Therefore, FRA using FRT was constructed and the
performance of the FRA was evaluated. The methodology used consists of
theoretical study, design of formal framework on intelligent software quality,
identification of Feature Ranking Technique (FRT), construction and evaluation of
FRA algorithm. The assessment of quality attributes has been improved using FRA
algorithm enriched with a formula to calculate the priority of attributes and followed
by learning adaptation through Java Library for Multi Label Learning (MULAN)
application. The result shows that the performance of FRA correlates strongly to
PQF model with 98% correlation compared to the Kolmogorov-Smirnov Correlation
Based Filter (KSCBF) algorithm with 83% correlation. Statistical significance test
was also performed with score of 0.052 compared to the KSCBF algorithm with
score of 0.048. The result shows that the FRA was more significant than KSCBF
algorithm. The main contribution of this research is on the implementation of FRT
with proposed Most Priority of Features (MPF) calculation in FRA for attributes
assessment. Overall, the findings and contributions can be regarded as a novel effort
in software quality for attributes selection.

Keywords: Software Quality, FRA Algorithm, Artificial Intelligence (AI)
Technique, and Machine Learning

 iv

Acknowledgement

In the name of Allah, the Beneficent, the Merciful. Alhamdulillah, grateful to

Almighty Allah (SWT) for all the blessing He has bestowed upon me, lastly this

thesis is finally completed.

A lot of thanks to Universiti Utara Malaysia for the supports and the facilities

provided. My deepest gratitude and appreciation goes to my respected supervisors,

Associate Professor Dr. Jamaiah Hj Yahaya and Dr. Siti Sakira Kamaruddin for

never ending support, courage and helps along to complete this thesis.

Last but not least, I wish to express my deepest appreciation goes to my supportive

husband, my loving mother, and my dear children, for believing in me, their

continuous prayers and unconditional support. Lastly I would like to dedicate this

work to the memory of my father, Allahyarham Ahmad bin Sulaiman (1938-2010)

whom I unexpected lost during this study. Thank you all.

 v

Table of Contents

Permission to Use .. i

Abstrak ... ii

Abstract .. ii

Acknowledgement .. iv

Table of Contents ... v

List of Tables .. ix

List of Figures .. x

List of Appendices .. xi

List of Abbreviations ... xii

CHAPTER ONE INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Research Background .. 1

1.3 Research Problem Statement ... 3

1.4 Research Motivation .. 5

1.5 Research Objectives ... 5

1.6 Research Scope .. 6

1.6.1 Research Methodology .. 6

1.6.2 Theoretical Study ... 7

1.6.3 Design of formal framework on intelligent software quality 7

1.6.4 Identify and proposed the Feature Ranking Technique (FRT) for an

intelligence software quality model .. 7

1.6.5 Construction of an Feature Ranking Algorithm (FRA) algorithm 7

1.6.6 Evaluation of study .. 8

1.6.7 Research Contribution.. 8

1.7 Thesis Outline .. 8

CHAPTER TWO LITERATURE REVIEW .. 10

2.1 Introduction .. 10

2.2 Definition of Software Quality .. 10

2.3 Software Quality Model ... 12

 vi

2.3.1 Overview .. 12

2.3.2 Software Quality Model Characteristics .. 15

2.3.3 Summary of Software Quality Model .. 18

2.4 PQF Model ... 20

2.4.1 Component of PQF Model ... 20

2.4.2 Assessment Technique in PQF Model ... 24

2.4.3 Step of Assessment Technique .. 27

2.4.4 The Strength and Limitation of PQF Model .. 30

2.4.5 Discussion of PQF Model .. 31

2.4.6 Summary of PQF Model .. 32

2.5 Static Quality Model and Dynamic Quality Model ... 32

2.6 Artificial Intelligence (AI) Approaches in Software Quality 35

2.6.1 Feature Selection Technique .. 39

2.6.1.1 Method in Feature Selection .. 41

2.6.1.2 Filter Approach .. 43

2.6.1.3 Wrapper Approach .. 44

2.6.1.4 Embedded Approach ... 44

2.6.1.5 Discussion on FS Techniques and Approaches 45

2.6.2 Classification of Software Quality ... 46

2.6.3 Learning Tool and Classifier .. 47

2.6.4 Discussion on AI Approach in Software Quality Model 49

2.7 Feature Selection Algorithms ... 52

2.7.1 Overview of FS Algorithm .. 52

2.7.2 Component of KSCBF Algorithm ... 54

2.7.3 Assessment Technique in KSCBF algorithm... 56

2.7.4 The Strength and Limitation of KSCBF Algorithm 57

2.7.5 Discussion on the Compared Algorithm .. 58

2.8 Discussion .. 59

2.9 Summary .. 61

CHAPTER THREE RESEARCH METHODOLOGY .. 63

3.1 Research Methodology Phase .. 63

 vii

3.1.1 Theoretical Study ... 63

3.1.2 Design of theoretical framework on intelligent software quality 65

3.1.3 Identify and proposes the Feature Ranking Technique (FRT) for intelligent

software quality model ... 68

3.1.4 Construction of an Feature Ranking Algorithm (FRA) Algorithm 69

3.1.5 Evaluation of Study .. 73

3.2 Summary of Research Methodology .. 74

CHAPTER FOUR PROPOSED FEATURE RANKING ALGORITHM (FRA)

ALGORITHM .. 76

4.1 Introduction .. 76

4.2 Background Issues ... 76

4.3 Proposed FRA Algorithm .. 77

4.3.1 The Development of Most Priority of Features (MPF) Formula 81

4.3.2 The Example of MPF calculation .. 84

4.3.3 The Application of Classifiers ... 85

4.3.4 The Step of FRA Algorithm... 89

4.4 The Development of Kolmogorov-Smirnov Correlation Based Filter

(KSCBF) Algorithm ... 91

4.5 Summary of Chapter Four .. 94

CHAPTER FIVE DATA ANALYSIS AND RESULT ... 95

5.1 Introduction .. 95

5.2 Performance Results... 96

5.2.1 Result of Experiment: Feature Ranking Algorithm (FRA) Algorithm 96

5.2.2 Result of Experiment: Kolmogorov-Smirnov Correlation Based Filter

(KSCBF) Algorithm ... 100

5.3 Evaluation Measurement .. 102

5.3.1 Human Expert Evaluation .. 102

5.3.2 Normalization of Data Performance .. 103

5.3.3 Correlation Coefficient .. 107

5.3.4 Statistical Significance Test (t-test) ... 109

5.4 Summary .. 111

 viii

CHAPTER SIX DISCUSSION AND CONCLUSION 113

6.1 Overview .. 113

6.2 Research Summary .. 113

6.3 Research Contribution .. 114

6.4 Limitation of the Research ... 116

6.5 Future Work ... 117

6.6 Summary .. 118

REFERENCES ... 119

Appendix A .. 135

Appendix B .. 136

Appendix C .. 148

 ix

List of Tables

Table 2.1: Quality Characteristics in Previous Software Quality Models 6.1 18

Table 2.2: Classification of Attributes and Weight Factor .. 23

Table 2.3: Comparison of Quality Score Obtained by Case X, Y and Z 26

Table 2.4: Summary of Static Quality Model and Dynamic Quality Model 35

Table 2.5: KSCBF Algorithm .. 57

Table 2.6: The Selected Elements in FRA Algorithm ... 61

Table 4.1: Efficiency of Database .. 84

Table 4.2: Algorithm of FRA ... 90

Table 4.3: Kolmogorov-Smirnov Correlation Based Filter (KSCBF) 91

Table 5.1: Example of Software Quality Attributes with Assigned Weight 96

Table 5.2: Result in Averaged Score and Standard Deviation 97

Table 5.3: Result of FRA Algorithm ... 98

Table 5.4: Result of Classification Accuracy for Two Redundant Attributes 99

Table 5.5: Final Ranking of FRA Algorithm ... 100

Table 5.6: Result of Symmetrical Uncertainty (SU) Value 101

Table 5.7: Final Ranking Result of Attributes Scores in KSCBF Algorithm 101

Table 5.8: Final Result of PQF model, FRA and KSCBF Algorithm 103

Table 5.9: Normalization of Data... 104

Table 5.10: Analyzed Results of Correlation Coefficient of FRA to PQF model ... 108

Table 5.11: Analyzed Results of Correlation Coefficient of KSCBF to PQF model

 .. 108

Table 5.12: Analyzed Results of Statistical Significant Test of FRA and KSCBF

algorithm .. 111

Table 5.13: Final Results of Correlation Coefficient and Statistical Significant Test

for FRA and KSCBF to PQF Model .. 111

 x

List of Figures

Figure 2.1: Component of Pragmatic Quality Factor (PQF) Model 21

Figure 2.2: Decomposition of Functionality .. 28

Figure 3.1: Inputs, Activities and Deliverables of Theoretical Study 64

Figure 3.2: Inputs, Activities and Deliverables of Design Framework 66

Figure 3.3: Theoretical Framework of Feature Ranking Algorithm (FRA) 67

Figure 3.4: Inputs, Activities and Deliverables of Phase Three 69

Figure 3.5: Inputs, Activities and Deliverables of Construction of Feature Ranking

Algorithm (FRA) .. 71

Figure 3.6: Experimental Design ... 72

Figure 3.7: Inputs, Activities and Deliverables of Evaluation 74

Figure 4.1: Assessment Technique in FRA algorithm ... 80

Figure 4.2: Executing Process of Unit Tests for MLkNN Classifier 86

Figure 4.3: Executed of Unit Tests for MLkNN Classifier .. 87

Figure 5.1: The Quality Attributes Ranking of FRA, KSCBF and PQF Model 106

 xi

List of Appendices

Appendix A: Sample Data ... 135

Appendix B: Result of Experiment .. 136

Appendix C: List of Publication .. 148

 xii

List of Abbreviations

AHS Automatic Hybrid Search

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

ARFF Attribute Relation File Format

AUC Area Under the Curve

BNS Bi-Normal Separation

CBFS Correlation Based Feature Selection

CBFSS Consistency Based Feature Subset Selection

CBR Case-Based Reasoning

CS Chi-Square

DF Document Frequency

DFM Default F-Measure

DGM Default Geometric Mean

ESD Airforce Electronic System Division

FAS Filter Attribute Selection

FCBF Fast Correlation Based Filter

FRA Feature Ranking Algorithm

FRT Feature Ranking Technique

FS Feature Selection

FSST Feature Subset Selection Technique

GA Genetic Algorithm

GR Gain Ratio

GRNN Generalized Regression Neural Network

GUI Graphical User Interface

HFS Hybrid Feature Selection

IBL Instance Based Learning

IEEE International Symposium on Requirement Engineering

IG Information Gain

 xiii

ISO International Organization Standard

JRE Java Runtime Environment

KNN K-Nearest Neighbour

KS Kolmogorov Smirnov

KSCBF Kolmogorov-Smirnov Correlation Based Filter

K-S TEST Kolmogorov Smirnov Two Sample Test

LEET Large Experiment and Evaluation Tool

LOC Lines of Code

LR Logistic Regression

MATLAB Matrix Laboratory

MI Mutual Information

MLKNN Multi Label K-Nearest Neighbour

MLOSS Machine Learning Open Source Software

MLP Multi Layer Perceptron

MPF Most Priority of Attribute

MULAN Java Library for Multi Label Learning

NB Naïve Bayes

NN Neural Network

OA Overal Accuracy

PQF Pragmatic Quality Factor

PS Probabilistic Search

QFD Quality Function Deployment

RADC Rome Air Development Centre

RAKEL Random k-Labelstes

RS Rough Sets

SPSS Statistical Package for the Social Sciences

SQA Software Quality Assurance

SQuaRE Software Product Quality Requirement and Evaluation

STS Spring Source Tool Suite

SU Symmetrical Uncertainty

SVM Support Vector Machine

 xiv

WEKA Waikato Environment Knowledge Analysis

WLLR Weighted Log Likelihood Ratio

WWW World Wide Web

XML Extensible Markup Language

 1

CHAPTER ONE

INTRODUCTION

1.1 Overview

Chapter One presents the overall study and briefly explains the aims of the research.

Several sections have been defined to classify and identify the purpose of this study.

These include research background, problem statement of the research, research

motivation, research objectives, scope of study and methodology.

1.2 Research Background

Nowadays, rapid development and diffusion of software quality is related to

technologies in several industries. Statistics shows on insufficiently understood

requirements accounted to 50% of errors. This was followed by design incorrectly

understood from requirements, which accounted to 30% of errors. Hence,

programming errors of system design contributed to 20% of errors (Humphrey et al.,

1989). In fact, the organization has outlined the exactly errors in perfectly before

they starts to develop a software product. Thus, Software Quality Assurance (SQA)

is a very important domain in software development and its purpose is to find ways

to reduce the rate and associated cost of failure from poor product and services

(Humphrey et al., 1989).

In order to reduce errors in systems design and to fulfill user needs and requirements,

the quality of systems development should be highlighted as an important goal.

Normally, the standard level of quality is recommended by the International

Organization for Standardization (ISO) and IEEE as well. ISO defines quality as the

 2

total of features and characteristics of a product and services that bear on its ability

to satisfy stated or implied needs (ISO/IEC9126, 1991). IEEE defines software

quality as a software feature or characteristic used to assess the quality of a system or

component (IEEE, 1993). Furthermore, software quality is also defined as the fitness

for use of the software product and conformance to software requirements and to

provide useful services (Tervonen, 1996).

Later, software quality is defined as conformance to explicitly states that functional

and performance requirements, explicitly documented development standards, and

implicit characteristics that are expected for all professionally developed software

(Tervonen, 1996). In many organizations, software is considered as one of the main

assets with which the organization can enhance its competitive global positioning in

current economic era. In past literatures, software quality have been qualified and

assessed by the current quality models such as McCall (McCall et al., 1976), Boehm

(Boehm et al., 1978), FURPS (Grady & Caswell, 1987), ISO 9126 (ISO/IEC 9126,

1991), Software Product Quality Requirement and Evaluation (SQuaRE) (The next

generation of ISO/IEC 9126, 1999), Dromey Quality Model (Dromey, 1996),

Systemic Quality Model (Callaos & Callaos, 2003), and Pragmatic Quality Factor

(PQF) model (Yahaya et al., 2006).

All of these quality models are based on theoretical approaches and are known as

static model. Most of the assessment methods used in existing quality models are not

able to show how factors are evaluated. In fact, the current existing models have

limitations to fulfill the transformation in the environment. This scenario is discussed

in Chapter Two.

 3

In order to cater for future high software requirements, different assessment methods

should be used to cope with the problem that occurred in the software quality model

itself. This study presents an intelligent software quality model that was developed

based on an Artificial Intelligence (AI) approach. The model consists of an algorithm

and mechanism for assessing quality characteristics. Furthermore, the algorithm

incorporates a formula that acts as a medium to evaluate and assess the quality

characteristics according to the values given by users, developers and independent

assessors. The model is able to identify and recommend to the environment on the

priority of attributes in the software development process. Moreover, the proposed

new intelligent model is able to solve the weaknesses that exist in current models.

This is to ensure that the software quality meets the nation and organizations

requirements and meets current and future standards.

1.3 Research Problem Statement

The existing literatures on software quality models have consistently highlighted

those models as static models. A static model refers to the development of a software

product on time, within budget and efficient in performing all specified functions of

requirements (Boehm et al., 1978). Although, researchers on software quality have

been developed their own models to evaluate and measure a software product. Most

of them had developed based on their experiences and theoretical approaches that

include basic components of software quality (McCall et al., 1976; Boehm et al.,

1978; Grady & Caswell, 1987; and Dromey, 1996).

Nowadays, the software quality environment is fast changing in terms of user

requirements and needs to fulfill future requirements. Hence, the existing models in

 4

the literature have limitations to meet the future requirements due to the assessment

technique used. Since, the latest quality model, PQF has focused on user approach

and human aspects it is still considered as a static model. Hence, this model is also

has weaknesses in updating necessary information that is derived from possible new

combination of attributes during assessment. However, the evaluation and

measurement techniques provided by PQF model were not tailored by using an

advance tool that incorporates an intelligent mechanism such as learning capabilities.

This is one of the limitations of the model and in order to meet current requirements

in software quality model, an assessment technique using AI approach is needed.

In previous studies, AI approach has been widely used in software quality

assessment. Some classification techniques used for software quality estimation

include optimal set reduction (Briand et al., 2000), logistic regression (Khoshgoftaar

& Allen, 1999; Schneidewind, 2001), decision trees (Khoshgoftaar et al., 2000;

Suarez & Lutsko, 1999; Takahashi et al., 1997), neural networks (Khoshgoftaar et

al., 1997; Paul, 1992; Pizzi et al., 2002), and case-based reasoning (Ross et al.,

2002). Most of the studies were established to assist quality improvement efforts

during operations in the software quality testing and enhancing resources. The latest

studies by Gao et al. (2009) used four Feature Selection (FS) techniques such as

Automatic Hybrid Search (AHS), Rough Sets (RS), Kolmogorov-Smirnov (KS) and

Probabilistic Search (PS) and conducted experiments using the algorithms on a very

large telecommunications software system.

The FS technique was used to remove irrelevant and redundant features from the

original data set using filter approach. The FS technique used in this research

consists of both approaches in feature selection such as filter and wrapper

 5

approaches. The development of an algorithm is an assessment technique that can

improve software quality assessment in PQF model. The algorithm is known as

Feature Ranking Algorithm (FRA). This algorithm includes a measuring technique

in evaluating the priority of quality attributes using a formula known as Most

Priority of Features (MPF). The learning adaptation through Java Library for Multi

Label Learning (MULAN) application using classifiers like Random k-Labelsets

(RAkel) and Multi Label k-Nearest Neighbour (MLkNN) is highlighted in this

research. Furthermore, the developed algorithm provides an alternative in assessment

on the quality of software product among users, developers and independent

assessors.

1.4 Research Motivation

Firstly, the study presents an intelligent software quality model using Feature

Ranking Technique (FRT) which is a type of FS technique to select a subset of

relevant features for building learning models. The selected technique is widely used

in the classification model of software quality estimation to perform prediction.

Thus, the proposed technique can improve the assessment technique made by PQF

model by incorporating the learning concept to identifying the priority of attributes.

In fact, the new quality model provided an intelligent assessment technique to the

software quality industry in Malaysia.

1.5 Research Objectives

The objectives of the research are:

 6

I. to identify Feature Ranking Techique (FRT) as to improve Pragmatic

Quality Factor (PQF) model.

II. to develop and evaluate an assessment technique in PQF model with the

proposed Feature Ranking Technique (FRT).

1.6 Research Scope

The main scope of this research is to utilize the data adopted from PQF model

developed by Yahaya et al. (2007) which is captured since 2007 until 2011. The

description of the data is discussed in Chapter Two. The data was used as the input

and it is claimed as important because the data were gathered from the previous

study of software quality model in the literatures. The data were known as

Efficiency, Functionality, Maintainability, Portability, Reliability, Usability,

Integrity, and User Conformity. Another scope in this study is to apply Feature

Ranking Technique (FRT) for assessment method in PQF model. The technique is

used to develop an algorithm in providing an assessment method for attribute

selection and adaptation of learning concept is applied to train and learn the data.

1.6.1 Research Methodology

This section explains the methodology of the research with the aim to develop a new

intelligent software quality model as to achieve the objectives in this research. The

following sub sections discuss the steps involved in the development process.

 7

1.6.2 Theoretical Study

The sections reviews on existing studies related to software assessment. The studies

were taken from references from journals, books, proceedings and other academic

materials. The aim of this phase is to investigate the existing mechanisms and

problems related to software quality. Furthermore, the important features that are

expected to contribute in this research are identified.

1.6.3 Design of formal framework on intelligent software quality

The second phase of this research is designed the formal framework on intelligence

software quality model. It involved identifying the specific features of software

quality used FRT.

1.6.4 Identify and proposed the Feature Ranking Technique (FRT) for an

intelligence software quality model

The third phase of the research is to identify and propose FRT technique for software

quality model. Several techniques have been studied and the appropriate technique

has been selected in this model.

1.6.5 Construction of an Feature Ranking Algorithm (FRA) algorithm

The fourth phase of the research is to construct a Feature Ranking Algorithm (FRA)

algorithm with the proposed Feature Ranking Technique (FRT). The proposed

technique discovered in the previous phase was used and integrated to construct an

intelligent software quality model.

 8

1.6.6 Evaluation of study

The development of an algorithm used to test and valid the intelligence model. This

phase is very important to show that the intelligence model of software quality

achieved using AI technique. Furthermore, the proposed algorithm is compared to

PQF model and Kolmogorov-Smirnov Correlation-Based Filter (KSCBF) algorithm

in the literature.

1.6.7 Research Contribution

This research contributes an enhancement of assessment technique in PQF model

which is known as Feature Ranking Algorithm (FRA). The main contribution of this

research is on the embedding of AI approach in software quality model. The

application FRT with proposed Most Priority of Features (MPF) calculation in FRA

for attributes assessment technique is achieved. In addition, the implementation of

learning concept is reached through Java Library for Multi Label Learning

(MULAN) application using classifiers such as Random k-Labelsets (RAkel) and

Multi Label k-Nearest Neighbour (MLkNN). The detail of the proposed algorithm

discusses in Chapter Four. Thus, the ideas of the existing quality model i.e. PQF

model is used in terms of its components. It concludes behavioral characteristics,

impact characteristic, responsibility, and weight. The detail explanation of this

existing quality model is discussed in Chapter Two.

1.7 Thesis Outline

This thesis consists of six chapters and is structured as follows:

 9

Chapter One: Introduction – The chapter includes the preliminary study that has

been conducted, background of the study, problem statement, research motivation,

objectives, scope of the research and methodology.

Chapter Two: Literature Review – It gives an overview of the current quality

models in the literature including the strength and weaknesses for each approach.

Furthermore, this section was mentioned about the elements of AI pertaining to the

proposed technique and method, which relates and involves in developing an

algorithm.

Chapter Three: Research Methodology – This chapter presents the research

methodology that was used to achieve the research objectives. It gives an

explanation of five sequential phases in the model development process.

Chapter Four: Development of Feature Ranking Algorithm (FRA) Model - This

chapter discusses the algorithm in detail. It presents the concepts involved in the

selected technique and method to evaluate quality attributes. Furthermore, it gives

explanations on the formula used to solve data redundancy.

Chapter Five: Experimental Result – The FRA algorithm is evaluated based on

expert review and results obtained from using KSCBF algorithm.

Chapter Six: Discussion and Conclusion – The chapter concludes the research

findings and contribution. It also presents recommendations for future research.

Besides that, this chapter also highlights the problems encountered research values.

 10

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter reviews on previous works related to this study. The purpose of this

chapter is to discuss the preliminary study that has been carried out. Thus, it focuses

on identifying the limitations in current works and problems decribed in Chapter

One. Besides, it is also aimed at generating new ideas to enhance and support the

constraints in the existing works. The discussion covers the definition of software

quality and the significance of the issues. An overview of software quality models in

the existing works has been investigated and they are discussed with special focus on

the characteristic performance. Then, it is followed by the assessment techniques.

Next, a discussion of PQF model and the compared method are presented. This is

followed by a discussion on the elements of Artificial Intelligence (AI) approach and

related works in software quality model. In the end, the chapter continues with a

discussion on issues and problems faced in this study, followed by a summary of

limitations and recommendations for future enhancements.

2.2 Definition of Software Quality

This section discusses the definitions of software quality, in which the term is

understood in different ways by different individuals and organizations.

 11

The International Organization for Standardization (ISO) defines software quality as

a set of quality characteristics with different significance to fulfill the future

requirements of software development. It has fully clarified the definition of term

“software” and “quality” separately. Generally, ISO defines software as “all or part

of the program, procedures, rules and associated documentation of information

processing system”. Meanwhile, the term of quality is defined as “the totally of

features and characteristics of a product or services that bear on its ability to satisfy

stated or implied needs” (ISO/IEC 9126, 1996).

Thus, “software quality” is referred to as the application in developing a software

product. Universally, the software product is referred to as a set of computer

program, procedures, documentation rules, and the intended data to be used by user

(ISO/IEC 9126, 1996). Further, the software quality consists of various attributes to

behave in the software product with various functions provided by each

characteristic. Hence, each characteristic will perform with different capabilities in

fulfilling users’ requirements.

On the other hand, the International Symposium on Requirement Engineering

(IEEE) which is also known as the body of standard for software quality metrics and

methodologies that is responsible in providing rules in measuring the quality

attributes. They defined software quality as software features which consists of a set

of characteristics to act in software development (IEEE, 1993). In accordance, this

study understands that the software quality refers to the behavior of the

characteristics or known as attributes that influence the quality of systems. Thus, the

interactions between each attribute in fulfilling user requirements are quite important

in global competition.

 12

Nevertheless, Garvin (1984) defines software quality as a “complex concept” in

accomplishing user expectations. It conveys that the quality of software development

is quite hard to achieve and it can be viewed from different perspectives including

transcendental, user, manufacturing and value base view. The stated perspectives

indirectly affect on the software product in term of user interactions with the final

product.

This has been supported by Denning (1992), who argues that software quality is

important to be stressed in software development in supports of user satisfaction.

Denning (1992) believes that software quality should not be based only on technical

aspects but also on human, hence accomplishing user requirement is necessary.

2.3 Software Quality Model

This section discusses the chronological order of software quality models in the

literatures. It also describes the characteristics of software quality model.

2.3.1 Overview

The literatures reveal several software quality models that could be classified as

static quality model. The best known in chronological order of appearance are

McCall (McCall et al., 1976), Boehm (Boehm et al., 1978), FURPS (Grady &

Caswell, 1987), ISO 9126 (ISO/IEC 9126, 1991), Software Product Quality

Requirement and Evaluation (SQuaRE) (The next generation of ISO/IEC 9126,

1999), Dromey Quality Model (Dromey, 1996), Systemic Quality Model (Callaos &

Callaos, 2003), and Pragmatic Quality Factor (PQF) model (Yahaya et al., 2007).

 13

The earliest model in software quality is McCall model build in 1977 by the US

Airforce Electronic System Division (ESD), the Rome Air Development Centre

(RADC) and General Electric (GE) (Pfleeger et al., 2001). This model has grouped

the quality attributes into product operation, product revision, and product transition.

Product operation is based on the product ability that can affect on user friendliness.

Meanwhile, product revision is related to the capability in handling error correction

and system adaptation. In contrast, product transition is related to the distribution

process in the software development.

The Boehm model is similar to McCall model, in which it presents a hierarchy of

characteristics and it contributes to overall the quality (Yahaya et al., 2008). In

Pfleeger et al. (1997) and Khosravi et al. (2004), the Boehm model has been

addressed based on the collection of characteristics including the user needs and the

characteristics that are not encountered in the McCall model. In contrast, FURPS

model (developed by Hewlett Packard) combines the main characteristics into an

acronym that makes the model’s name. Each noun in this model name is referred to

one characteristic. It divides the main characteristics into five characteristics and

each consists of sub characteristics to be measured (Rawashdeh et al., 2006).

The next model is ISO/IEC 9126, developed in 1991. ISO/IEC 9126 is the

International standard which is known as information technology software product

evaluation quality characteristics and provides guidelines to develop and measure

product quality (Azuma et al., 2001). The model defines product quality as a set of

product characteristics. Additionally, the model is also recommended to the

environment the internal and external characteristics of software product.

 14

Later, Software Product Quality Requirement and Evaluation (SQuaRE) has been

introduced in 1999 and it was completely in Madrid in 2000 (Azuma, 2001). The

SQuaRE model is known as the next generation of the ISO/IEC 9126. The model is

focused on requirements of specification, measurement and evaluation (Suryn et al.,

2003). The strategy measurement in this model is adopted from ISO/IEC 9126

including the new general reference model, detailed guidelines, standard for

measurement primitives, quality requirement and so forth (Suryn et al., 2003). The

aim of this model is focused on the product side, which translates the required

quality into characteristics, sub characteristics, and defines the relationship for each

characteristic (Qutaish, 2009).

Next, Tomar (2011) describes that Dromey model values a product based on a

quality model that recognizes the quality evaluation for each product. It is a broad

quality model that works in different systems (Khosravi et al., 2004). In this model,

the software product is divided into four areas: Correctness, Internal, Contextual, and

Description. These four areas are internal properties which are related to the internal

quality and measured at the source code.

The model is followed by Systemic Quality Model, which is proposed by Calloas

and Calloas in 2003. It concerns on product efficiency and effectiveness. It identifies

the relationship between product-process, efficiency-effectiveness, and user-

customer to obtain global systemic quality (Ortega et al., 2003). The product-process

efficiency refers to the external attributes or known as product properties such as

requirement, design, and implementation properties (Ortega et al., 2003).

Meanwhile, product-process effectiveness is related to the user satisfaction and

 15

customer satisfaction which is focused on identification requirement and interfaces

design (Ortega et al., 2003).

The latest static quality model is Pragmatic Quality Factor (PQF), created by Yahaya

et al. (2007). It aims at making an assessment on software product for certification.

The model portrays good impacts to the software quality environment in terms of the

assessment techniques. This model describes the relationships between attributes and

clarifies them from un-measureable attributes to the measureable attributes using the

measurable metrics. The assessment technique consists of four components i.e.

behavioral characteristics, impact characteristics, responsibility, and weight.

Among all the models described in the previous paragraphs, the PQF has been used

as a benchmark in providing a guideline to measure the quality attributes in this

research. Consequently, the assessment of components included in this model is

applied in this research and indirectly enhances the quality assessment technique in

PQF model using the proposed AI approach. The details of PQF model is discussed

in the next section as an expert model in this research.

2.3.2 Software Quality Model Characteristics

Findings from the literatures show that consists of several attributes which are

inherited from the previous models and contributes the new attribute related to the

new requirement in respected era. In overall, the models contain various attributes

covering various dimensions. Thus, the identification of quality attributes that is

meets the user requirements and expectations extremely difficult. Most of software

quality models were developed based on experiences, theoretical, and practical

approach.

 16

In short, the main quality attributes found in most of the models are Efficiency,

Reliability, Usability, Portability, Functionality, and Maintainability. In fact, this is a

set of attributes provided by ISO/IEC 9126 as a standard model. Most of the quality

models in the literatures have used the standard quality attributes and also

recommend to the environment the new required attributes to be highlighted. As an

example it could be seen in SQuaRE model (Azuma, 1991) and Systemic model

(Ortega et al., 2003). Also, Dromey model has contributed eight quality attributes in

which six attributes are inherited from ISO/IEC 9126 and two additional attributes

are Reusability and Process Maturity (Khosravi et al., 2004). Nevertheless, the latest

model such as PQF model also includes the recommended attributes by the standard

model and the additional attribute such as Integrity and User Conformity attribute

(Yahaya et al., 2007).

In earlier development of McCall, it consisted of 55 attributes to be measured. Later,

it has been reduced to 11 for easier analysis. In this model the attribute is called

factor, which are Maintainability, Flexibility, Testability, Portability, Reusability,

Interoperability, Correctness, Reliability, Usability, Integrity and Efficiency.

According to the Pfleeger et al. (2001) and Khosravi et al. (2004), Boehm model also

includes user needs as available in McCall. It adds with other attributes i.e.

Understandability, Human engineering and Changeability. Also, Boehm model

includes general utility characteristics which are broken down into Portability,

Utility and Maintainability. Furthermore, Utility attribute is divided into Reliability,

Efficiency and Human Engineering (Rawashdeh et al., 2006). In fact, the model

classifies the characteristics from the views of end user in different locations and

time (Rawashdeh et al., 2006).

 17

Nevertheless, the FURPS model is quite different from the previous models in the

literatures in terms of the types of categories provided in the model. They are

functional requirements (F) and non-functional requirements (URPS). The

combination of words consists of five (5) quality attributes in system development.

In detail, the Functional requirements (F) are related to the input and expected

output, while Non-Functional requirements (URPS) refers to Usability, Reliability,

Performance and Supportability (Rawashdeh et al., 2006). The detail on the

characteristics and attributes of each model is summarized in Table 2.1 below

(Source: Yahaya & Deraman, 2008).

 18

Table 2.1: Quality Characteristics in Previous Software Quality Models (Source:

Yahaya & Deraman, 2008)

Quality

Characteristics/

Software Quality

Models

McCall

(1976)

Boehm

(1978)

FURPS

(1987)

ISO

9126

(1991)

Dromey

(1996)

SQuaRE

(1999)

Systemic

Quality

Model

(2003)

PQF

(2007)

Testability * *

Correctness *

Efficiency * * * * * * * *

Understandability * *

Reliability * * * * * * * *

Flexibility *

Functionality * * * * * *

Human

Engineering

 *

Integrity * * *

Interoperability *

Process Maturity *

Maintainability * * * * * * * *

Changeability *

Portability * * * * * * *

Reusability *

Usability * * * * *

Performance * *

User Conformity *

* is refer to the selected atrributes

2.3.3 Summary of Software Quality Model

Most of the software quality models in the literatures including McCall, Boehm,

FURPS, ISO 9126, SQuaRE, Dromey, Systemic Quality Model, and PQF model

have been developed by theoretical approach, developer’s view, and the experiences

with their own characteristics. The developer for each existing software quality

 19

model has contributed beneficial ideas in generating a software quality model. As an

example, McCall has divided quality characteristics into the product operation,

product revision and product transition. The main characteristics are Maintainability,

Flexibility, Testability, Portability, Reusability, Interoperability, Correctness,

Reliability, Usability, Integrity and Efficiency. Later, Boehm model improved the

McCall model by incorporating user needs and suggesting general utility

characteristics i.e. Portability, Utility and Maintainability.

FURPS model contributes five characteristics (Functionality, Usability, Reliability,

Performance and Supportability) which are divided into functional requirement (F)

and non-functional requirement (URPS). Also, ISO/IEC 9126 (standard model)

contributes standard characteristics i.e. Efficiency, Reliability, Usability, Portability,

Functionality, and Maintainability. On top of that, this standard model presents the

guidelines to the developers in generating a software quality model.

Consequently, the SQuaRE and Systemic models used the standard characteristics

similar to the standard model in measuring the quality attributes. Particularly,

SQuaRE model improves the new evaluation process. Meanwhile, the Systemic

model identifies the relationships between product-process, efficiency-effectiveness

and user-customer to obtain global systemic quality. However, it is a little bit

different in Dromey model that contributes eight characteristics inherited from the

standard model. It introduces Reusability and Process Maturity characteristics. In

addition, the PQF model presents the Integrity and User Conformity characteristics

as the new characteristics in the model. It aims at clarifying the un-measureable

attributes to the measureable attributes using the measureable metrics.

 20

2.4 PQF Model

This section discusses the PQF model in detail. The model is still known as a static

model due to the capabilities in fulfilling the requirements and expectations in the

future. As a result, this model has been established and recommended for a better

software quality standard and procedure to assess quality attributes. In fact, this

model has been accepted for practice in the industry and has been used in several

large organizations in Malaysia (Yahaya et al., 2010; 2008). Further, the following

sub sections discusses on the PQF model pertaining to the component, assessment

technique, strength, and the limitation.

2.4.1 Component of PQF Model

The model was created by Yahaya et al. (2007) with a specific goal that is to make

an assessment on software product for certification. As reviewed in the previous

section, it is an excellent quality model because it describes the relationships

between attributes. This model shows the assessment technique on un-measurable

attributes using the measurable metrics, which consists of four components

(behavioral characteristics, impact characteristics, responsibility, and weight). The

details of each component are presented in Figure 2.1.

 21

Figure 2.1: Component of Pragmatic Quality Factor (PQF) Model

Yahaya et al. (2007) describes the behavioral attribute as the internal quality

characteristic of software development. The statement shows that the behavioral the

attribute and human perspectives act as important elements to be stressed on the

quality environment. In this model, the behavioral attribute is inherited from

ISO/IEC9126 model including new additional attribute (Integrity and User

Conformity). In particular, the Integrity attribute is pertaining to the security aspect

and very critical to be pointed out as an important attribute in software development.

Meanwhile, the User Conformity is related to the impact attribute such as user

Component of PQF Model

Weight Responsibility Impact

Characteristic

Behavioral

Characteristic

Interviewee Specific

Scale
Inherited from Human Aspect

Value Metric ISO/IEC9126 User
Requirement

User
Perception

Characteristic Additional Character

- Integrity
- User Conformity

-Efficiency
-Functionality
-Maintainability
-Portability
-Reliability
-Usability

 22

perception and user requirement. Based on the discussions in the previous section,

this study believes that the attribute is extremely important to balance the quality

model between technical measurement of software and human factor (Yahaya et al.,

2008).

The second component refers to the impact characteristic, which is divided into two

categories: user perceptions and user requirements. In particular, user perception

measures the popularity, performance, trustworthiness, law and regulation,

recommendation, environment, and adaptability, while user requirement measures

the user acceptance and satisfaction. In this model, it decomposes all the attributes

into the metric that enables the assessment on each attribute.

Further, the third component in PQF model is responsibility. This component acts as

the main role that directly involves users who are the interviewees that are

responsible in assigning the weight values by judging the priority of each attribute.

The users consist of developers, managers, and assessors who are hired as experts for

several years to assign the weight values. In this case, five point Likert scale is used

which is based on collaborative perspective among assessment team members

(Yahaya et al., 2008).

In the assessment, the scale is stressed on the satisfaction of the stakeholders in

accepting the quality attributes in product. Subjects are expected to express their

agreement or disagreement in numerical values (one to five: 1 = unacceptable, 2 =

below average, 3= average, 4 = good and 5 = excellent). All the values are counted

using a specific metric performed in the fourth components of PQF model.

 The weight factor is the fourth component in PQF model. A specific metric has been

performed in a formula that counts the priority of quality attribute. The information

 23

of the PQF weight calculation is presented in general. Based on original data

collected from several large organizations in Kuala Lumpur, Malaysia, the following

findings were gathered (Yahaya et al., 2008). In the study, the stakeholders were

responsible in giving the weight value for each attribute depending on their

experiences in the organization. Further, each of the attribute is sorted into the three

classifications with respect to the calculated weight score as exhibited in Table 2.2.

Table 2.2: Classification of Attributes and Weight Factor (Source: Yahaya &

Deraman, 2010)

Table 2.2 divides the weight factors into three levels i.e. low, moderate, and high. It

is seen that, Flexibility, Intra-operability, Inter-operability, Portability and

Survivability attributes with scores of 1 to 4 are in the low level. This explains that

this quality attributes have less priority in software development. In contrast, Safety,

Sub Attributes Weight FactorLevels

1-4 Flexibility

Intra-operability

Inter-operability

Portability

Low

 5-7 Safety

Efficiency

Maintainability

Moderate

 8-10 Functionality

Reliability
High

 24

Efficiency, Maintainability, and Usability attributes with scores of 5 to 7 are

moderate, while Functionality, Reliability and Integrity with scores of 8 to 10 are

high.

2.4.2 Assessment Technique in PQF Model

The assessment technique in PQF consists of technical aspect that stresses on two

main components (the behavioral attributes and the impact attributes). The previous

section explains that, the behavioral attributes deal with assessing software product

to ensure the quality of the software and how it behaves in the environment (Yahaya

et al., 2010; 2008), while the impact attributes deal with the reaction of the software

product and its impact on the environment. These two components can generate

stability between the technical requirement and the human factor.

On the other hand, Bevan et al. (1999) explains that the software measurement can

be categorized into direct and indirect measurement. Particularly, direct

measurement includes Lines of Code (LOC) which consists of execution speed,

memory size, and faulty in period of time. Meanwhile, indirect measurement

includes Functionality, Complexity, Efficiency, and Reliability (Khoshgoftaar et al.,

2003). In this case, all attributes and sub attributes are known as un-measurable

attributes in PQF model.

Bevan et al. (1999) is also defined metric as a quantitative measurement for

attributes weight assigned by the assessors that can be used to estimate the quality

attributes. In PQF model, the technique used in measuring the un-measurable

attributes is the measurable metrics. According to the developer (Yahaya et al., 2010,

2008, 2007), the un-measurable attributes are decomposed into several sub attributes

 25

and metrics. The standard quality attributes are obtained from the ISO/IEC 9126,

which consists of six attributes and includes new attributes in PQF model (Integrity

and User Conformity attributes). Further, they are broken down into sub factors for

estimation. In conjunction, the decomposition of the un-measurable attributes is

shown in Table 2.3. It is adapted from Yahaya et al. (2008) on the comparison of

quality score obtained by Cases X, Y, and Z industries in Malaysia through PQF

model.

 26

Table 2.3: Comparison of Quality Score Obtained by Case X, Y and Z (Source:
Yahaya et al., 2008)

 Quality Attribute Case X Case Y Case Z

 Score/5.00 Score/5.00

Score/5.00

1 Efficiency 3.73 4.08 4.70
 (74.6%) (81.6%) (94.0%)

Time Behavior 3.56 4.33 4.50
Resource Utilization 4.00 3.70 5.00

2 Functionality 3.62 3.69 4.96
 (72.4%) (73.8%) (99.3%)

Suitability 3.83 3.65 4.88
Accuracy 3.33 3.20 5.00
Interoperability 3.63 4.50 5.00

3 Maintainability 3.34 2.66 3.58
 (67.8%) (53.2%) (71.6%)

Analysability 3.61 2.63 3.05
Changeability 3.13 2.20 3.25
Testability 2.83 3.06 2.00

4 Portability 3.20 3.55 3.50
 (64.0%) (71.0%) (70.0%)

Adaptability 3.56 5.00 4.75
Installability 2.77 1.80 2.60
Conformance 4.00 4.80 5.00
Replacebility 3.33 4.40 5.00

5 Reliability 3.30 3.36 4.50
 (66.0%) (67.2%) (90.0%)

Maturity 3.83 3.80 4.75
Fault Tolerance 3.00 3.20 4.38
Recoverability 3.00 3.00 4.33

6 Integrity 3.67 3.83 4.33
 (73.4%) (76.6%) (86.7%)

Security 4.00 3.87 4.33
Data Protection 3.33 3.06 3.00

7 Usability 3.20 2.95 3.41
 (64.0%) (59.0%) (68.2%)

Understandability 2.56 3.44 2.72
Learnability 2.76 2.93 3.40
Operability 3.70 3.01 4.61

8 User Conformity 3.53 3.67 4.73
 (70.6%) (73.4%) (94.7%)

User Perception 3.56 3.84 4.67
 User Requirement 3.50 3.40 4.83

 27

Table 2.3 exhibits that in Case Z, the score for Functionality is 99.3%. It is the

highest, followed with User Conformity and Efficiency (94.7% and 94.0%

respectively). Meanwhile, the score for Integrity attribute is 86.7%. Case X has

lower scores with Efficiency score the highest, followed by Integrity and User

Conformity at 74.6%, 73.4% and 70.6% respectively. This shows that Case X and Z

share a similarity, in which Usability attribute scores the least (64.0% and 68.2%

respectively).

In addition, score in Case Y shows that Efficiency attribute is the highest of (81.6%).

It is followed by Integrity and User Conformity (76.6% and 73.4% respectively).

Meanwhile, Maintainability attribute is the least (53.2%).

Based on these actual results, using the assessment technique in PQF model, it is

obvious that Integrity and User Conformity are recommended by the experts as very

beneficial to be stressed on software development with the user perception views.

2.4.3 Step of Assessment Technique

The first step in PQF assessment technique is to convert the un-measurable attributes

to the measurable attributes. The sub factors of the attributes are decomposed to the

third level metrics which are named as M1, M2, M3, M4, M5, M6, M7, M8, and M9,

in which ‘M’ represents the metric while the numbering order refers to the quality

attributes. This could be illustrated in a tree diagram as seen in Figure 2.2 shows the

decomposition of Functionality attribute which is sourced from Yahaya and

Deraman (2010).

 28

Figure 2.2: Decomposition of Functionality (Source: Yahaya & Deraman, 2010)

Referring to the diagram in Figure 2.2, the sub factors of Functionality are

decomposed into the third level according to the weight given by the stakeholders.

The metrics measurements are managed by the users or developers of the software

product. They assigned weight for each attribute according to the quality of software

product in timely basis. In this step, the assessment technique shows that the human

judgment aspect is used on the behavioral characteristics in the software product.

The next step involves the impact attributes. According to Yahaya and Deraman

(2010), the impact attributes illustrating the software impact to the users and the

conformity of software to the user requirement is also evaluated. In fact, the impact

attributes also decomposes to the sub attributes and metrics as to show the

measurement of the attributes. It is known as user perceptions and user requirements.

The user perception measures the elements such are popularity, performance, law

and regulation, recommendation, trustworthiness, requirement and expectation, and

environmental adaptability. In a complement, the user requirement measures the user

acceptance and satisfaction. Five-point Likert Scale was used in collecting data

based on perspective of assessment among team members. The management of the

 29

data and analysis was performed by Statistical Package for the Social Sciences

(SPSS) analysis tool and the weight of each attributes is calculated using the in

Equation 2.1.

 n
 TotalVH = Σ VHa
 (Eq. 2.1)
 a=1

Where n = number of attributes defined in the analysis and VH is the score for Very

High Consideration. Further, the weight of the attributes is calculated using the

following formula in Equation 2.2.

 Weighta = (VHa / TotalVH), (Eq. 2.2)

Where a represents the selected attribute. The weight of the selected attributes is

converted to the percentage value using the formula in Equation 2.3.

 % Weighta = (VHa / TotalVH) * 100 (Eq. 2.3)

Further, the next step is to use the function point approach to group and classify the

attributes into three distinct classifications namely low, moderate, and high as

discussed in section 2.4.1. The value of each attribute is sorted into these three

classifications according to the calculated weight score according to Equations 2.2

and 2.3. Eventually, the model reveals the results pertaining to the quality attributes

for the purpose of the assessment.

 30

2.4.4 The Strength and Limitation of PQF Model

Referring to the literatures, it is found that PQF model has been applied in software

certification model as the benchmark and standard model of the assessment. The new

arrangement of the model as a software quality measurement has been shown and

clearly defined including on the way to evaluate the quality attributes with human

perspective approach. The aspects of quality as discussed before such as the

behavioral and impact attributes are essential as to balance between the technical and

non-technical aspects. Hence, the model provides flexibility by giving priorities and

weight to the quality attributes. These two elements are necessary to reflect business

requirement in the real business environment. Therefore, it is more practical and easy

to be understood by the users, developers, and independent assessor pertaining to the

way of assessment. In fact, this model shows how the un-measurable attributes can

be measured indirectly by applying the measurement techniques and metrics

approach.

Even though the PQF model seems like an expert model in the software quality

community, it is also need to be improved in terms of its assessment technique by

attaching the elements of Artificial Intelligent approach. In fact, the attachment of

the dynamic elements can be more beneficial in the software quality environment

with a self-learning capability with capturing knowledge from certification processes

and experiences efficiently. Thus, the intelligent toolset should be capable of

adapting and noticing the changes in environment and information needs. This can

improve the limitation of PQF model in expanding its capability to fulfill the

changes in the environment according to the assessment technique. Thus, the

 31

proposed technique in this study can enhance and overcome the limitation of PQF

model.

2.4.5 Discussion of PQF Model

Recently, PQF model focuses on human aspect in order to give the priority value to

each attributes in the software development. This opportunity provides more impact

to the software product as to reflect the business requirement. While, the ISO/IEC

9126 as a standard quality model only addresses the external problem and excluded

the human aspects in evaluating the quality attribute (Yahaya & Deraman, 2010). As

mentioned in the previous section, the PQF model highlights the user requirements

and user expectations clearly and has defined the way to evaluate quality attributes.

It has been developed based on different perspectives, which highly focus on user’s

criterion perspective. Besides that, the quality of software product is claimed as good

software quality when it achieves the user needs and expectations. Hence, the model

also specifies the quality requirements in terms of high level quality attributes that

meets the changes in the environment and meets the needs of the manufacturing

view, which stipulates that quality as a conformance to a specification of

requirements.

The benefits provided by the PQF model as the latest static model in the literature

which presents the measurement metric to measure the un-measureable attributes is

encouraging to be enhanced with dynamic element as proposed in this study. The

PQF is also known as the excellent quality model and has been established and

applied in large organizations in Malaysia. The assessment technique in PQF model

is used as the benchmark and a baseline to be compared with the proposed

 32

assessment technique. Thus, the limitation faced in the PQF model can be solved by

the proposed algorithm.

2.4.6 Summary of PQF Model

Element Details
Component Behavioral
 Impact
 Responsibility
 Weight
Assesment
Technique Focus on technical aspect such as behavioral attributes and impact

attributes

Strength 1) The quality measurement is shown the way to evaluate the quality
 attributes with human perspective approach
 2) The model provides flexibility by giving priorities and weight
 to the quality attributes

3) The model shows how the un-measurable attributes can be
 measured indirectly by applying the measurement techniques and
 metrics approach.

Limitation Lack of capability in fullfilling the changes in the environment timely
 basis due to the assesmsent technique used is not tailored
 by element of intelligent in order to adapt and notice any other
 changes in the environment needs

2.5 Static Quality Model and Dynamic Quality Model

This section discusses on the dimension of software quality model, which is divided

into static and dynamic. The static means fixed or permanent. It is unable to learn the

changes occurred in in the context. In contrast, dynamic means it is capable and

changeable in timely basis. The discussion on static and dynamic quality model is

differentiated by the elements used to develop the model. It consists of assessment

technique, assessment concept, and scope of assessment.

 33

Most of the quality models in the literatures are static quality model. The latest

established quality models including PQF incorporate the aspect of behavioral and

human perspectives. They are still known as static model. The assessment technique

used in most of the existing quality models is in structural forms (Yahaya et al.,

2008). The structural forms are referred to the metrics in a form of checklist used to

grade attributes of software development. Also, it defines the quality attributes via

questionnaire. This technique defines the quality characteristics and clarifies the

attributes, sub attributes, and examines the relationship among them.

According to Yahaya et al. (2008), the behavioral attributes is quite important to be

stressed in the assessment. It will impact the users and conformity of software to

fulfill user requirements. Previously, Denning et al. (1992) claimed that a quality

model is not good quality if there is no user satisfaction aspect in software

development. In regards to this, previous section has mentioned that PQF

incorporates the aspect.

However, although this static quality model incorporates the user views in the

assessment technique, it still has limitations and its components needs improvement

to achieve the current and future requirements. The assessment concept used in the

static model is theoretical approach which includes user, developer, and manager

views. This refers to the theory, technical, and experiences as well. In fact, the views

of stakeholders will define the different views and perceptions on quality. On top of

that, Garvin et al. (1984) suggested that the quality of product during production is

quite important to be highlighted. It shows that the scope of assessment in static

quality model is focused on the quality of components and the functions in final

products. Also, it shows the necessity to fulfill the transformation in the environment

 34

due to high specification of the software product itself. In fact, the static model

supports building quality into products and processes.

The dynamic model is new advancement of software quality model which can be

achieved using AI approach in the assessment technique. The elements involved in

the dynamic model applied fully knowledge based approach with self-learning

capabilities. This element is a toolset for adapting and noticing the changes in the

future requirements and updated the changes respectively. The existing assessment

technique such as structural forms is also used in the dynamic model to define the

quality attributes through the user views. Then, to improve the assessment technique

in static model, the adaptation of learning concept is highlighted in handling the

classification of the data as to assess the priority of each attribute.

The concept used in the assessment technique in dynamic model is a practical

approach. In this concept, the user views are considered as the main awareness to be

highlighted in the software development. The dynamic model is also capable to

interact in the environment if there are any attributes selections and modification

occurs in future. Thus, the scope of assessment in dynamic model is highly focused

on the priority of quality attributes that can be trained in timely basis. This is an

additional purpose to improve the limitation in the existing quality model after the

product and process quality is achieved.

With reference to the discussions in the previous paragraphs, Table 2.4 summarizes

the element of static quality model and dynamic quality model in which the elements

includes component assessment technique, assessment concept, and scope of

assessment. In detail, the component assessment technique in static quality model is

structural forms, which is used to define the quality attributes and clarify the

 35

relationship among them. In contrast, in dynamic quality model it involves AI

approach to improve the component of assessment technique in the static quality

model. Meanwhile, the assessment concept used in static quality model is theoretical

approach which refers to theory, technical, and experiences of developer. Thus, in

dynamic quality model uses practical approach which employed the user views in

software development. On the other hand, the scope of assessment in static quality

model is stressed on product and process quality, which supports the inclusion of

quality into products and processes. On a contrary, the dynamic quality model highly

focuses on the priority of quality attributes after implementation of product and

process quality.

Table 2.4: Summary of Static Quality Model and Dynamic Quality Model

Element Static Quality Model Dynamic Quality Model
Component
assessment
technique

• Structural
forms • Structural forms

• Artificial Intelligence
(AI) approach

Assessment
concept

• Theoretical
Approach • Practical Approach

Scope of
assessment

• Product and

process quality

• Product and process

quality
• Priority of quality

attributes

2.6 Artificial Intelligence (AI) Approaches in Software Quality

Olivier (2001) defines AI as the application of computers, desiged to model the

behavioral aspects of human reasoning and learning of the data. Later, Wenger

 36

(2004) explains that AI involves an attempt to model the reasoning process in

solving a problem either in natural language processing, algorithm, the proof of a

theorem and so forth. Earlier, Pomerol (1997) argues that AI approach is able to

sense and understand the conversations, human reasoning, and make a decision as

would as human judgement.

Literatures show that there are several studies in software quality make use of AI

techniques for several purposes. This includes studies by Khoshgoftaar, Szabo, and

Guasti (1995), Lees, Hamza, and Irgens (1996), Khosgoftaar, Allen, Hudepohl, and

Aud (1997), Khoshgoftaar, Chien, and Allen (1998), Khoshgoftaar, Nguyen, Gao,

and Rajeevalochanam (2003), Khoshgoftaar, Gao, and Wang (2009) and

Khoshgoftaar, Gao, and Napolitano (2009).

Khoshgoftaar et al. (1995) explored of the behavioral of neural network in software

quality model. They compared two quality measures which are software complexity

metrics and software quality metrics. The data were gathered from the components

in software system and applied neural network as to train the data. The aim was to

investigate the relationship between the two quality measures.

Later, Kumar et al. (1998) describes that Artificial Neural Network (ANN) is based

on concepts of neuron or biological which consists of neuron connecting to the

processing elements. The ANN are composed of two main structures namely the

nodes and the links. The node is related to the neurons while the links related to the

links between neurons. Further, the layer of nodes is referred to the hidden layer.

Many ANNs contain multiple hidden layers and each feeds into the next layer.

Before that, Khoshgoftaar et al. (1997) has also studied the ANN in which it is

created from a network that the input data is already known. Meanwhile, the Multi

 37

Layer Perceptron (MLP) is used as a classifier to learn the input data for the training

data set.Additionally, in software quality model, data can be tested and trained using

different classification algorithms such as Naïve Bayes (NB), K-Nearest Neighbour

(KNN), Support Vector Machine (SVM) and Logistic Regression (LR)

(Khoshgoftaar et al., 1998). The measurement on software quality models using NN

involves a multiple regression quality model from the principal component of

software. Particularly, the principal component of software refers to the data

reduction technique that is used to reduce the dimensionality of multivariate data set.

In this case, the dependent variable is a quality measure (Khoshgoftaar et al., 2003).

On the other hand, the NN modeling identifies a list of dependent and independent

variables. This is known as model selection and the selected variable is trained using

the estimation technique in NN such as backward propagation algorithm, and

forward propagation algorithm. Finally, the regression model will process the results

to evaluate the quality models. However, the dimensionalities of the data are

required to apply NN technique in evaluating the software quality models.

According to Kolodner (1992), Case-Based Reasoning (CBR) is a technique in

adapting previous solutions stored in a library to solve new problems. In this

technique, the CBR adapts the earlier problem to create a new solution in generating

the new situation. The main purpose of CBR are to ensure the fitness for purpose of

a software module, to identify an appropriate set of features which may be used and

to describe the performance metrics and quality characteristics relating to each cases

(Khoshgoftaar et al., 2003). Pertaining to the CBR, the quality attributes are

measured by presenting a list of quality factors and determined the relationship

among the quality factor. The establishment of quality factor uses metric

 38

performance like Quality Function Deployment (QFD), which quantifies the quality

attributes and calculates the total quality measures for each attribute (Lees et al.,

1996). CBR system has been very important in numerous fields including software

cost estimation, software reuse and software quality estimation (Khoshgoftaar et al.,

2003). Among the famous methods used in CBR in estimating the quality includes

Kolmogorov-Smirnov (KS) method and the Kolmogorov-Smirnov Two Sample Test

(K-S Test) (Khoshgoftaar et al., 2003).

Khoshgoftaar et al. (2003) applied the attribute selection method in CBR for

software quality classification. The investigation on attribute selection was aimed to

reduce the number of software metrics through CBR component in developing a

software quality classification model. Particularly, the K-S Test was used in their

study as a metric in determining the software metrics as an indicators of software

quality. The research contributes that CBR technique was capable to develop

software quality classification models in reducing the number of metrics in software

quality for classification development.

Later, Khoshgoftaar et al. (2009) investigated for the same idea on software quality

classification using Filter Attribute Selection (FAS) technique to improve the

predictive accuracy of software quality models. The exploration on four different

attribute selection techniques i.e. Automatic Hybrid Search (AHS), Probabilistic

Search (PS), Kolmogorov-Smirnov (KS), and Rough set (RS) have been tested and

the result found that the KS method performed better than the others in building

classification models. Additionally, an extended research on exploration of software

quality classification using wrapper approach has been carried out. They investigated

 39

several different performance metrics to influence the classification performance in

software quality classification.

As a conclusion, the idea in this study is to enhance the static software quality model

into a dynamic software quality model to improve and support the limitations in the

static quality model. The incorporation of AI approach enables the process in

noticing and adapting any changes occurs in the environment of software

development. Therefore, the assessment technique used in dynamic quality model

should bear the limitation of the existing quality model in measuring the priority of

quality attributes. The related technique that highly focuses on attribute selection is

Feature Selection (FS) technique. This technique is quite important and is able to

process the selection quality attributes. The details of the FS technique are discussed

in the following sub section.

2.6.1 Feature Selection Technique

Gao et al. (2009) defines FS as a process of selecting an attribute from relevant

features in building a leraning model which is used to remove the less important

features from training data set. In relation Khoshgoftaar et al. (2010; 2009) found

that FS is an important activity in preprocessing data which is used in software

quality modeling and data mining problems. They also describes that FS is divided

into two categories namely Feature Ranking Technique (FRT) and Feature Subset

Selection Technique (FSST).

Further, Gao et al. (2010) explains that FRT assesses the attributes individually and

it will rank the attributes according to their individual predictive capability. The FRT

evaluates the features individually and also will sort the attributes in term of the

 40

scores of each feature accordingly. It is required in a small sample size with rapid

execution time to complete the function. Gao et al. (2010) applied the FRT technique

with an aim to investigate either FS should be applied before or after data sampling.

They found that the application of FS through FRT performed better and more stable

in evaluating and ranking the attributes with the quality features.

The procedure of FRT is to score each feature in the data set using a particular

method. The method counts the priority of features to be sorted and ranked in the list

of features. In accordance, the FRT will use one of the methods in FS for allowing

the selection of the best set of features. Several traditional methods which can be

used in the FRT include document frequency (DF), Chi-Square (ݔଶ Statistic),

Information Gain (IG), Gain Ratio (GR), and Symmetrical Uncertainty (SU).

Additionally, alternative methods have been developed in several years by the

researchers such as KS, AHS and Hybrid Feature Selection (HFS). All these methods

are discussed in the next subsection.

In Wang et al. (2010) described that FSST is selects a subset of attributes in their

predictive capability. Normally in FSST, the feature is evaluated using the classifiers

which are contained in the black box as including the induction algorithm. This

technique is suitable to be applied in the high dimensionality of data. In FSST, the

input features are filtered independently using some classifiers such as SVM, NB,

MLP, LR, Random k-LabelSets (RAkEL), and Multi-Label K-Nearest Neighbour

(ML-kNN). Then, the results are prioritized. All of these classifiers are further

discussed in the following section.

Referring back to FS technique, Tadeuchi et al. (2007) described that it contains two

different approaches to subset selections, which are filter and wrapper approach.

 41

The way of both approaches are applied is quite different to each other. The next

following section is discusses on that matter.

2.6.1.1 Method in Feature Selection

This section discusses the methods in FS which are divided into two categories.

There are traditional method and alternative method. The traditional method consists

of DF, IG, SU, ݔଶ Statistic, BNS, WLLR, and Mutual Information (MI) (Yang et al.,

1997). Meanwhile, the alternative method includes AHS, HFS and KS

(Khoshgoftaar et al., 2009). In fact, DF, IG, ݔଶ Statistic, BNS and WLLR are related

to the text categorization and they are not discussed in this thesis.

Literatures show that Friedman et al. (1997) has investigates that the MI using

Bayesian Teorem as the baseline. The Bayes Teorem is also frequently referred to as

Bayes’ rule which is related to the probabilities theory. As an example it shows how

a conditional probability B given by A can be inverted to yield the conditional

probability A given by B. The teorem provides a way for considering two hypotheses

and stresses on the probability of the data. It can be turned by a probability statement

for a given data. Later, Yang and Pederson (1997) used MI in assessing two random

variables by applying probability concept and the created formula was used to

evaluate the score according to the data given.

On the other hand, SU is a very popular method in FS. It is used in preprocessing the

irrelevant data and redundancy cases. It is stressed between features and the target

concept which can be used to evaluate the goodness of features. Recently the SU

method has been used for classifying data and it is relevant to be combined with

Genetic algorithm (GA) in inductive learning strategy (Jiang et al., 2008). The SU is

 42

suitable to measure the correlation between features and the target concept by using

the features corresponding weight. It is also used to guide the initialization of the

population. The group of the irrelevant and redundant features is needed and the

relationship between features is calculated using SU method.

According to the literature, many researchers are interested to apply the SU method

in their proposed algorithm because SU is very easy to use and the results performed

are unbiased as compared to other FS methods. In relation, Biesiada and Duch

(2007) mentioned that the SU method has been used in filtering and sorting the

irrelevant and redundancy of features in the Correlation-Based Feature Selection

Algorithm (CBFS) and Fast Correlation-Based Filter Algorithm (FCBF) proposed by

Yu and Liu (2003). Besides, a heuristic algorithm which is known as Relief

algorithm proposed by Kira and Rendell (1992) has used this method to address the

problem in averaging the relevance analysis of the candidate inputs in the class

population. On top of that, the Kolmogorov-Smirnov Correlation Based Filter

(KSCBF) algorithm also used the SU method as for averaging the weight of the

features to find out the relevant features in their research (Biesiada & Duch, 2007).

On a contrary, the AHS alternative method is a modern FS method proposed by

Wang et al. (2009). It processes the features with highest consistency rate and

followed by the lowest consistency rate of the features. The selected feature is used

to generate the superset. The process is repeated until the attribute subsets that have

similar consistency rate value with selected feature is met. The method will involve a

classifier such as C4.5 that appears in WEKA tool to learn the data. In regards to

this, Khoshgoftaar et al. (2009) has used this method in their proposed algorithm for

inducing the classification rules in the form of a decision tree.

 43

Another new method is HFS that combined Filter-based Feature Ranking Technique

(FRT) and AHS. It is also known as Consistency-Based Feature Subset Selection

(CBFSS) algorithm. The HFS applies the combination of approach in FS such as

filter and wrapper as discussed earlier. The proposed HFS method works in selecting

the full feature set using FRT. The finding from the literature states that only thirty

percent (30%) of the listing features are selected and the original data set is reduced

(Khoshgoftaat et al., 2007). Also, the study contributes to the KS method to measure

the maximum differences between the empirical distribution function of the

probabilities of instances in each class. They used the KS score statistic to evaluate

the attributes. Eventually, the attributes are ranked based on the KS scores obtained.

In fact, the KS method performs better in evaluating the priority of the features than

the other alternative methods proposed by the study.

2.6.1.2 Filter Approach

Filter approach selects the features independently without using any algorithm to

execute the function (Tadeuchi et al., 2007). This approach is suitable to be used in a

small sized data while the learning process is not presented in this approach. This

approach has an advantage in which, the scoring and ranking function are

immediately completed. However, it is unable to solve the redundancy of data

because no learning algorithm is involved in the implementation. In fact, the filter

approach is used in filtering and sorting quality attributes.

In a complement, Wang et al. (2009) investigated that three methods of Filter

Attributes Selection (FAS) using filter approach such as RS, PS, and KS. They found

that the FRT using KS method performs better than the others in filtering the

 44

features. On the other hand, Kohavi et al. (1996) found that some algorithms such as

FOCUS and RELIEF algorithms used filter approach. Both of the algorithms

examine all features in data set and filter the relevant features to the target concept.

Thus, both algorithms do not support in handling data redundancy.

2.6.1.3 Wrapper Approach

Langley at al. (1994) found that the wrapper approach is more valuable in removing

and solving irrelevant features in the data. It selects the features using an algorithm

to train and learn the data. It also involves learning adaptation in training and

learning the data. The concept of learning ranges in simplicity and complexity in

various areas and now the adaptation of learning concept in software quality model

becomes a novelty of research in the software quality community.

The wrapper approach has some limitations in the implementation such as long

processing time and slow data execution because it involves many algorithms to

perform. The wrapper involves a classifier to calculate the estimated accuracy of the

learning algorithm. This function is important to remove the unimportant features in

the data set. In regars to this, Wang et al. (2009) addressed that AHS uses the

wrapper approach in developing the algorithm. It applies C4.5 classifier as learning

algorithm in handling data redundancy.

2.6.1.4 Embedded Approach

Embedded approach is third class in FS technique. It combines filter and wrapper

approaches. The preprocessing of data is built into the classifier construction after

the filtering function in the search for an optimal subset of features (Saeys et al.,

 45

2007). Embedded approach is a specific approach, which uses wrapper approach

directly to prove the performance. This approach also includes the interaction with

the classification algorithm and the preprocessing of data is less computationally

complex than wrapper approach. It also builds the model feature dependencies, in

which the developer can choose the type of classifier in executing the classification

task. According to Wolf et al. (2003) discovered that embedded approach has a

drawback, in which the selection of classifier will affect the performance in the

classification task. Besides, Duda et al. (2001) have used the embedded approach in

their research pertaining to decision trees weighted using NB classifier. Later, Guyon

et al. (2003) and Weston et al. (2003) followed by applying the approach in their

study on feature selection using weight vector of SVM classifier.

2.6.1.5 Discussion on FS Techniques and Approaches

The FS technique can be combined with any other approaches in order to build the

learning process. As an example, Gao et al. (2010, 2009) combined the FRT with the

MLP using some of performance metrics to evaluate the classification of FS. Also,

the literatures show that FRT is suitable to be combined with filter approach in

ranking the attributes by evaluating the scores of the attributes using a method in FS.

Besides, some studies applied the filter approach in developing algorithms for

handling data redundancy. Both contexts could be observed in CBFS algorithm by

Liu et al., (2002), FCBF algorithm by Yu & Liu (2003) and KSCBF algorithm by

Biesiada and Duch (2007).

Literatures also reveal that only a few of studies have implemented the FSST using

wrapper approach rather than filter approach. This supports the statement by Langley

 46

et al. (1994) that the wrapper approach has scales for large data set and needs some

of classifiers to be performed.This takes a long time in completing the execution

task. As a result, some of the studies used FRT combined with filter and wrapper as

an embedded approach using a method in FS. As an example, Tadeuchi et al. (2007)

combined filter and wrapper approaches in developing a quick online application for

attribute selection method. They used the Generalized Regression Neural Network

(GRNN) as the classifier in adapting the learning process in removing the irrelevant

features in the data set. Similarly, Wang et al. (2009) applied both approaches in

proposing the HFS algorithm.

2.6.2 Classification of Software Quality

Classification task refers to the arrangement of data item into the different groups

according to their similarities and differences (Tsoumakas et al., 2010). The

arrangement of the data item can make counting the probabilities of each feature in

the data set easier. Thwin et al. (2005) mentioned that classification task assigns the

data item into a collection of categories or classes. The goal of classification task is

to predict the data item in the classes, which separates them into different categories.

Thus, the data item is classified using a method for training data in classification

(Tsoumakas et al., 2010 & 2011).

Tahir et al. (2010) illustrates that the classification task consists of two a step-

process or known as method namely model construction and model usage. They

further clarified that model construction is a processing of defining the class of data

item in the class label attribute. As an example, the data item is divided into High,

Moderate, and Low classes. All data items are defined according to their weight

 47

value of each attribute. Additionally, classification task can involve more than one

classifier to train the data. In the end, the classification process is moved to the

second process i.e. model usage. In model usage, the classifier will determine the

results for each data as for estimation on the priorities of each feature.

On top of that, the classification task is also important in handling data cleaning in

reduce the noise and handle the missing values. In addition, the classification task

can support in handling the relevance analysis as to remove irrelevant or

redundancies attributes. Besides, it is also used for data transformation to generalize

and normalize the data. In fact, the classification task is performed using classifier as

a method in training and learning the data set. In conjunction, the next sub section

discuses on appropriate tools and classifiers.

2.6.3 Learning Tool and Classifier

Learning adaptation is the central to intelligence and it requires knowledge as an

input for training process. The process of learning is supported by machine learning.

Machine learning is refers to a system that is able to acquire and integrate the

knowledge automatically (Tsoumakas et al., 2009). The system in machine learning

is capable to learn from the experiences, training, analytical observation, and

produces the results effectively. In conjuction, examples of machine learning tools

include Waikato Environment for Knowledge Analysis (WEKA), Java Library for

Multi Label Learning (MULAN) and Large Experiment and Evaluation Tool

(LEET).

WEKA is an established tool in machine learning and data mining which proposed in

year 1993. The software tool was programmed in Java and distributed under the

 48

GNU Public License (Robu et al., 2010). The aim of WEKA is to build the facility

for developing machine learning technique in solving the data mining problems. It

consists of several standard data mining techniques such as data preprocessing

classification, regression, clustering and association. In practice, it appears in four

applications i.e. Explorer, Experimenter, Knowledge Flow and Simple CLI. These

applications were performed in the interfaces as for user friendly used (Baumgartner

& Serpen, 2009).

Meanwhile, MULAN is a Java library for learning tasks developed by Tsoumakas et

al. (2010) with aim to provide a machine learning tool for classification tasks in open

source software. The development team group has decided to support the benefits

provided by Machine Learning Open Source Software (MLOSS) which is presented

by Sonnenburg et al. (2007) in encouraging people to work with multi label data. It

provides a multiple tasks such as classification, ranking, thresholding and

dimensionality reduction algorithms. Besides, it works with multi label data which

consists of training examples that are combined together with a subset of a finite set

of labels (Tsoumakas et al., 2011). In addition, Tsoumakas et al. (2011) has

described that multi label data is referred to a single set of data consisting of more

than one feature which is called as label in data mining for easier referencing.

Additionally, it is also a function to train and evaluate the data using more than one

classifier (Tsoumakas et al., 2010). It inherits the functions available in WEKA but it

does not have Graphical User Interface (GUI). All applications which covered in

MULAN are imported from WEKA tool through command lines. This is one of the

limitations in using MULAN that the command guideline is unavailable as for user

referencing.

 49

Baumgartner and Serpen (2009), has proposed the Large Experiment and Evaluation

Tool (LEET) as a software workbench for data mining. It aims at simplifying the

classification tasks provided by WEKA tool. It has been mentioned previously that

WEKA incorporates a variety of tasks which are difficult to apply and most of the

functions provided are not practical to be used. In contrast, LEET provides the

experiments and evaluations with many algorithms and dataset through easy and user

friendly to execute.

The features performed by LEET are classified into three tasks. There are executing

the classification experiments using WEKA’s built-in classifiers, evaluating the

executed experiments to obtain performance measures, and evaluating datasets to

calculate characteristics. User will choose the classifier which is provided by LEET

through the interfaces. The execution results are provided in a single file, in which

the results are stored and displayed in individual files for each simulation.

The learning algorithm is consists of some learner or well known as classifier. The

classifier is used to evaluate and validate the performance result from the learning

process. Khoshgoftaar et al. (2003) describes that the different classifier will impact

to the difference performance result. This means that, the performance results are

also depending on the capability of the classifier and the metric used in the classifier

itself. Ideally, a good classifier will produce results closed to one (1). The famous

classifiers include SVM, IBL, MLP, NB, RAkEL, and MLkNN.

2.6.4 Discussion on AI Approach in Software Quality Model

Literatures reveal that the FS technique is potential to be proposed in the

construction of an attribute assessment algorithm in Feature Ranking Algorithm

 50

(FRA). As discussed earlier, FS is divided into two categories namely FRT and

FSST. The FRT has been selected as a dynamic technique to be used in this

intelligent quality model. In conjunction, FRT is more relevant to be adapted into

this study than the FSST due to its high performance in ranking the score of each

attribute in a small sized sample. In fact, the FSST is relevant to work in high

dimensionality of data. Therefore, this study plans to involve a small sample size.

Besides, FRT is able to generate a function in the algorithm in term of ranking and

sorting the new features in the data. This technique is embedded in the first phase of

the algorithm which involves filter approach. As discussed earlier in the previous

section, the filter approach is suitable to be applied because it does not involve any

learning algorithm in the preprocessing data and the features are ranked and sorted

independently. The flow in FRT technique is used in developing a formula to count

the scores assigned by the assessors. In fact, the proposed formula acts as a new

method in FS.

Based on the description in earlier section ANN and CBR are not relevant to be used

in developing this proposed algorithm. This is partly because both of the techniques

focus on the high dimensionality of data. The study from literatures also describe

that ANN does not provide any function to calculate the weight of each attribute due

because it presents networks with application of input from many traces.

The same reason also goes to another proposed technique like CBR. CBR is adapting

the previous stored solutions in the CBR library to solve the new existing problems.

It only focuses on relationship among attributes using QFD as a metric. In short, the

functions provided by both techniques are unable to construct the assessment

technique in intelligent software quality model. The performance metric used in both

 51

techniques do not concern on measuring the priority of quality attributes according to

the weight given by the assessors. On top of that, both techniques are also lack of

capability to fulfill the needs and future requirement to develop the learning process

in the quality assessment technique.

In order to adapt the learning concept, the wrapper approach is also embedded in the

second phase of the algorithm. In fact, Goodnow and Austin (1967) describe that the

learning task is related to the human or machine learner in training and classifying

the objects as referred to the related objects in the class labels. The application of

wrapper approach is to build the learning algorithm that can support solving problem

related to irrelevant and redundant data. As mentioned by Langley et al. (1994) and

John et al. (1994), the wrapper approach will train all the features through the

learning algorithm and proof the result through the capability of the classifier.

In addition, to implement the classification task of software quality, the MULAN

tool is selected for executing the learning process. MULAN is the easier tool to use.

In contrast, WEKA is not practical to be used and involves various tasks which are

difficult to be understood by the user. Also, LEET is easy to be applied in presenting

the interfaces and user friendly to execute. Based on that, WEKA and LEET are

performed better in a large scale of data compared to MULAN (which is appropriate

to small-scaled data). Since the data involved in this study are collected from a small

sample size, then MULAN is appropriate to be selected in this study. Additionally,

the easy classifiers i.e. RAkEL and MLkNN provided by MULAN are beneficial for

handling data redundancy indirectly.

 52

2.7 Feature Selection Algorithms

This section explains the FS algorithms in the literatures. It includes RELIEF

algorithm, Correlation Based Feature Selection algorithm (CBFS), Fast Correlation

Based Filter (FCBF) and Kolmogorov-Smirnov Correlation Based Filter (KSCBF).

2.7.1 Overview of FS Algorithm

The type of algorithm in the literature which is based on FS technique in

preprocessing the data has been identified. They are RELIEF algorithm proposed by

Kira and Rendell (1992), CBFS by Liu et al. (2002), FCBF by Yu and Liu (2003),

and KSCBF algorithm by Biesiada and Duch (2007). All the algorithms are

developed with the main goal, which is for handling the redundant features in data

set using the techniques or methods recommended by FS approach.

Kira and Rendell (1992) proposed RELIEF algorithm using FS method i.e.

Information Gain (IG) in estimating the quality attributes. The RELEIF algorithm

measures the differences between the features with aim to differentiate the values

among features that are close to each other. The RELEIF algorithm uses different

probability via IG of FS method for filtering and ranking the quality of attributes. It

assigns relevant weight to each feature to indicate the relevant features to the target

concept. According to John et al. (1994), the RELEIF algorithm measures the

features using two nearest neighbours search strategies such are nearest hit from the

same class and nearest miss from different classes. The measurement in RELEIF

algorithm focuses on high correlations of features and shows the weak relevant of

features in the dataset. However, the RELEIF algorithm did not attend the

redundancy problem in the data set.

 53

Yu and Liu (2002) has proposed CBFS algorithm using Greedy hill climbing search

strategies such as forward selection and backward elimination (Kittler, 1978) for

training the samples of features. Then, the SU has been used for filtering and ranking

the features. The CBFS algorithm is used to show the correlation between the

features and the class of features. In regards to this, Hal et al. (1998) has mentioned

that CBFS algorithm uses three selectors which are IBL, NB and C4.5 as the

classifiers in the classification task. As the result, only C4.5 was found better than

the other classifiers in showing the correlation among all features in the data set.

However, the performance results are biased due to the failure of the algorithm to

provide the validity of result especially in handling the data redundancy.

Later, Yu and Liu (2003), claimed that the development of FCBF algorithm is to

enhance the capability and the performance of CBFS algorithm. The FCBF

algorithm is based on predominant correlation, in which the correlation between

features and classes is examined. It is used to solve the redundancy problem in high

dimensionality of data. The algorithm consists of two stages. In stage one the SU is

applied for filtering and ranking the features. It is important to show the relevancy of

the features compared to the class. At the same time, the threshold value is selected

to select the predominant features in the final ranking. Next, stage two is applied

once the redundancy of features occurred. FCBF is a very fast algorithm to solve the

redundancy of data. The algorithm compares the other features which are redundant

to the predominant features. Consequently, features that are redundant to the highly

relevant feature are automatically removed from the list without any measurement or

validation.

 54

Next, Biesiada and Duch (2007) proposed an algorithm to handle the redundancy of

data by the strength of measurement technique in solving the data redundancy. The

presented algorithm is named KSCBF is a successful algorithm in determining the

validity of result. Thus, the KCBF algorithm is developed as to enhance the

limitation of CBFS and FCBF algorithm. In relation, Blachnik et al. (2009) found

that KSCBF has performed better than RELIEF, CBFS and FCBF algorithm in

handling data redundancy. Thus, the advantages of KSCBF algorithm is encouraged

this study to adopt it as the compared algorithm. Therefore, the component of

KSCBF algorithm, strengths, and the limitation are further reviewed in the next

section.

2.7.2 Component of KSCBF Algorithm

The KSCBF algorithm consists of three (3) components. They are Symmetrical

Uncertainty (SU), Kolmogorov-Smirnov statistic (KS) and Kolmogorov-Smirnov

Two Sample Test (K-S Test). SU is known as a traditional method in feature

selection in preprocessing the list of attributes (discussed in section 2.6.1.1). In

addition, SU is capable in averaging the weight of the features to find the relevant

features in the ranking attributes (Biesiada & Duch, 2007). It has been widely used in

handling data redundancy in several studies in the literatures. It operates using the

formula below (Equation 2.4).

 SU (X, C) = 2 (MI (X,C / H(X) + H(C)) (Eq. 2.4)

Where, X is the selected features in the class attribute, C is class of the selected

attribute, MI is the Mutual Information which is the basic quantity used for filtering

 55

method, H is uncertainty probabilities, H(X) is uncertainty of X features and H(C) is

the uncertainty class of the selected attribute. The MI is basically contained in SU

method formula (Li et al., 2009).

The second component is Kolmogorov-Smirnov statistic (KS). The KS statistics is

used to compare two variables in the list of attributes. The formula of KS statistics is

outlined in Equation 2.5.

 KSc (g,h) = maxc (KS (g(c) , h (c))) (Eq. 2.5)

Where, c is the class label, g(c) are samples of random variables g that belong to the

class c, and h(c) are samples of random variables h that belong to the class c. The

result from the statistics is then used to compare with the threshold to determine the

existance of the data redundancy between the attributes. The threshold value is

obtained by referring to the alpha value (δ) in KS statistic such as 1%, 5%, 10% and

20% (Blachnik et al., 2009).

The third component in KSCBF algorithm is Kolmogorov-Smirnov Two Sample

Test (K-S Test). The K-S test is used to validate the priority of attributes in the final

ranking result. The following formula is used for validation are as follows:

 KS (g,h) = √(ng)(nh) / (ng + nh) supk | Gk – Hk | (Eq. 2.6)

Where, ng, nh is the number of the samples for each attribute, k is the number of bins

in discrete probability distribution, G and H are cumulative probability distributions

of random variables g and h respectively. The random variables are referred to the

 56

pair of attributes in the ranking. The sup is refers to the highest differences between

two random variables. All the components are associated in developing the

measurement technique in KSCBF algorithm for evaluating the priority of attributes.

2.7.3 Assessment Technique in KSCBF algorithm

The assessment technique in KSCBF algorithm consists of two steps. In the first

step, the algorithm trains the attributes in the data set using the SU method in feature

FS for filtering and ranking the value of the attributes. The results are arranged in

descending ordered. The second step is executed when there are data redundancies.

In this stage, the algorithm will use the KS Statistic formula to obtain the threshold

value by referring to the list of attribute’s score from KS Statistic calculation. As an

example, the last value of {33.4, 23.3, 18.3, 13.9, 12.2, 12.0, 9.3, 9.3} is 9.3, which

is redundant. Hence, the alpha value (close to 9.3) is 10%. Consequently, the

threshold value is equal to 10%, in which δ = 0.1.

Then, the KS statistic is used to measure the highest differences between two

variables attributes in the ranking through the K-S test formula. The K-S test will

solve and validate the redundant attributes. In the loop features, the algorithm will

initialize the first attribute in the ranking for comparison to the second attributes in

the ranking. This function is repeated to the next attributes in the ranking until they

find similar value of attributes from two variables. Eventually, the same value of two

attributes is claimed as redundant.

In the KSCBF algorithm, the redundant attributes is removed directly from the

ranking. As an example, if two attributes are redundant, then the algorithm will

remove all the redundant features. However, the algorithm still places the redundant

 57

attributes in the ranking with different values after K-S test calculation. Usually, the

KSCBF algorithm is used for analyzing data and will notice that only the most

significant features are defined in the feature set. In addition, the KSCBF algorithm

is also facing some strengths and limitationsas described in next sub section. In

short, Table 2.5 summarizes the KSCBF algorithm.

Table 2.5: KSCBF Algorithm (Source: Blachnik et al., 2009)

2.7.4 The Strength and Limitation of KSCBF Algorithm

Each proposed algorithm has strength and limitation in processing the data. The

researcher usually upgrades the proposed algorithm to enhance the performance

presented by the algorithm. The KSCBF algorithm has used SU as the FS method in

data preprocessing. The application of SU will equip the KSCBF algorithm with

strong ability to train and learn the data. This is because the characteristic of SU is

granted for stability in training and learning the data as well as filtering and ranking

the data. As discussed in previous sections, SU uses probability distributions in

Step Algorithm
 Relevance analysis

1 Calculate the SU(X,C) relevance indices and create an ordered list
S of features according to the decreasing value of their relevance.

 Redundancy analysis
2 Take as the feature X the first feature from the S list

3 Find and remove all features for which X is approximately

equivalent according to the K-S test

4 Set the next remaining feature in the list as X and repeat step 3 for
all features that follow it in the S list.

 58

estimationg the data. The ability of SU method can support the KSCBF algorithm in

completing their relevance analysis on the data.

Additionally, the KSCBF algorithm also has several limitations. One of the

limitations is that it only processes ordinal data which means the data can be counted

and ordered directly. This explains that KSCBF is not able to train or learn the data if

they merge between symbols and nominal features. Consequently, the determination

of threshold selection is quite difficult to decide in order to conclude the validity of

the hypothesis (Blachnik et al., 2009).

Also, the sensitivity of cumulative probability distribution to linear transformation is

another disadvantage. This limitation occurs in analyzing the relationship between

two attributes. In KSCBF algorithm, the application of K-S test is used to validate

the hypothesis. Then, if occurs the redundancies of more than two attributes in a

single execution, the KSCBF algorithm will reject all the redundant features in the

data set and finally the algorithm will also reject the hypothesis in the redundant

features. In fact, the KSCBF algorithm does not certify the full invariance to linear

transformations (Biesiada et al., 2007).

Finally, the KSCBF algorithm faces big risks in handling data redundancy as

mentioned in Chapter One. This affects the time required for handling the data

redundancy because the algorithm is visited every attribute which is stated from

initial until final attribute in the list.

2.7.5 Discussion on the Compared Algorithm

 The aim of the KSCBF algorithm and the other existing algorithm such as CBFS

and FCBF is to handle data redundancy effectively. The reviews on the literatures

 59

reveal that the KSCBF algorithm performs better than the other existing algorithms.

Particularly, the assessment technique in KSCBF (using the K-S test) makes the

algorithm strong in solving the redundant features.

Besides, KSCBF algorithm shows the way to evaluate the redundant features and the

validation of the results is also available in this algorithm. In fact, the KSCBF

algorithm highlights the FS method such as SU in attending the filtering and ranking

task. This function can be compared to the method in the proposed algorithm in this

study which is called Most Priority of Features (MPF), which handles the same cases

to the KSCBF algorithm with embedded of FS approach.

On the other hand, CBFS and FCBF are unable to evaluate and handle the

redundancy of features with a specific measurement technique. Finding from the

literatures shows that the CBFS and FCBF directly remove the redundancy of

features without any measurement and result validation. Also, the RELEIF algorithm

is unable to provide an assessment technique in filtering the features and most

significantly it is not attended in handling data redundant cases.

2.8 Discussion

The development of a Feature Ranking Algorithm (FRA) algorithm as a new

enhancement of Pragmatic Quality Factor (PQF) model based on their assessment

technique is necessary. As discussed in previous sections, the assessment technique

provided by PQF model in evaluating the quality attributes is based on components

such as behavioral characteristic, impact characteristic, responsibility, and weight.

The measurement in the PQF model is focused on the weight calculation using a

specific scale in classifying the quality attributes. The formula derived in this quality

 60

model is used to obtain the priority of quality attributes. In practice, the quality

model still acts as a static model due to their limitations in handling the redundancy

of data in prioritizing the quality of attributes. Thus, FRA algorithm is proposed for

supporting the limitations in PQF model using AI approach as for commercializing

the assessment technique embedded with an expert intelligence technique.

Literatures reveal that the FS technique has proposed a dynamic technique in the

algorithm construction. Besides, the selection of FRT in enhancing the assessment

technique in quality model act as the new improvement to upgrade the assessment

technique in measuring the quality attributes. The FRT is relevant to be used in small

sized data and performs better than other FS techniques. It has high capability to

generate a function in filtering and ranking the quality attributes using filter

approach. Based on that, this technique is used in in this study known as Most

Priority of Features (MPF) method.

The evaluation of quality attributes is attended by two main steps. In the first step it

is completed by MPF method for calculating the quality attributes. It is appropriate

for filtering and ranking the priority of quality attributes. In this step, the filter

approach in FS is presented. Then, in the second step the adaptation of learning

classification is performed using MULAN. MULAN acts as a tool for providing

multi label classifiers, including RAkEL and MLkNN for handling data redundancy.

It is selected as a classification tool due to its high capability in determining good

result of classifiers. Also, it is easy to apply in classifying the multi types of

attributes such as nominal or ordinal of data type. In this step the wrapper approach

is utilized to validate the performance result of data redundancy.

 61

The results performed by FRA algorithm are validated by comparing with the expert

model such as PQF and KSCBF. This could validate the proposed algorithm as a

good trial in enhancement of assessment technique in the static quality model to the

intelligent aspects. In accordance, Table 2.6 summarizes the selected elements in

development of FRA algorithm.

Table 2.6: The Selected Elements in FRA Algorithm

Item Selected element
Technique Feature Ranking Technique (FRT)
Tool Java Library for Multi Label Learning (MULAN)
Classifier Random- k LabelSet (RAkEL) and

MultiLabel – k Nearest Neighbour (MLkNN)
Expert Model Pragmatic Quality Factor (PQF) model

Compared Model
Kolmogorov-Smirnov Correlation Based Filter
algorithm (KSCBF)

2.9 Summary

This chapter revies related works in the literatures by emphasizing major

contributions by common models in software quality such as McCall (McCall et al.,

1976), Boehm (Boehm et al., 1978), FURPS (Grady & Caswell, 1987), ISO 9126

(ISO/IEC 9126, 1991), Software Product Quality Requirement and Evaluation

(SQuaRE) (The next generation of ISO/IEC 9126, 1999), Dromey Quality Model

(Dromey, 1996), Systemic Quality Model (Callaos & Callaos, 2003), and Pragmatic

Quality Factor (PQF) model (Yahaya et al., 2007). The overview of software quality

models covers the characteristic, assessment technique, strengths, and limitations of

the static quality models in the literatures. This chapter also discusses on the

components of PQF as the expert model and the compared algorithm in the

 62

literatures such as KSCBF for validating the proposed algorithm. Next, the reviews

are followed by the detailed discussion on static quality model and dynamic quality

model. The element of AI approach is also drawn in this chapter including the

dynamic technique, FS methods, approach and learning adaptation. Finally, this

chapter concludes the findings of reviews by discussing and summarizing the

models. The next chapter discusses the methodology of this research.

 63

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Research Methodology Phase

As stated earlier in the Chapter One, the research methodology has five phases with

aim to enhance the assessment technique in Pragmatic Quality Factor (PQF) model

developed by Yahaya et al. (2007) as an intelligent software quality model. Each of

the phases is discussed in detail in the subsequent sections.

3.1.1 Theoretical Study

The theoretical study acts as the first phase in this research by investigating the

literature review on the existing research related to the software quality assessment.

This stage aimed to study the way on existing models in measuring the priority of

software quality attributes in the software product. Furthermore, it is also focused on

the existing sources as the references such as from journals, books, proceedings and

other academic research in the current environment either by printed medium or

electronic medium.

Hence, this phase investigates the dynamic requirements for the quality and

assessment problem in the existing software product. The exploration is highlighted

to the behavioral of characteristics in the existing model including their strengths and

weaknesses in measures the attribute. The finding from the investigation can support

the researcher to generate new ideas to be adopted, noticed and learned the changes

in the environment and information needs. Furthermore, the characteristics from the

 64

software quality model is identified and analyzed in term of the significant of the

attributes to support the changes in timely basis. The Artificial Intelligence (AI)

approach is also reviewed as main element to be included in the assessment

technique such as Feature Selection (FS), Artificial Neural Network (ANN), and

Cased Based Reasoning (CBR). Thus, the proposed of Feature Selection (FS)

technique such as Feature Ranking Technique (FRT) is fully highlighted in this

research to enhance the assessment technique in PQF model. Figure 3.1 illustrates

inputs, activities and deliverables of theoretical study in the phase one of the

research.

Figure 3.1 Inputs, Activities and Deliverables of Theoretical Study

KEY INPUT AND

TOOLS

• Books, Periodical
Journals,
Proceeding,
Published and
Unpublished
Papers, Online
Documentations,
Online Journals,
Online
Proceedings and
others academic
research

ACTIVITIES

• Review the existing books,
journals and proceedings.

• Access online and review all
related issues regarding
software quality issues and AI
techniques

• Find out the existing model on
software quality and investigate
the quality assessment problem
in software product.

• Investigate the existing work on
AI techniques in quality
estimation.

• Find out and study the existing
tool for learning adaptation and
handling the redundancies of
the data.

DELIVERABLES

• Summarized
on literatures
and related
issues

• Studied
documents

• Summarized
the strengths
and
weaknesses of
PQF model
and the
components.

• Summarized
the elements
of AI
techniques.

• Reviewed
paper.

Theoretical
Study

Design
Framework

Identify &
Propose AI
Technique

Construction Evaluation

 65

3.1.2 Design of theoretical framework on intelligent software quality

The second phase of this research is designing the theoretical framework on

intelligent software quality model. The theoretical framework identifies the specific

features of Feature Ranking Algorithm (FRA) algorithm represented using AI

approach. Furthermore, this theoretical framework can help the researcher to

determine the problem areas and also consists of considerations, research questions

that need to be addressed via the methodology. Hence, the researcher can illustrate

the main focus of the research study and show the elements involved in the

enhancement of assessment technique in PQF model. Figure 3.2 illustrates the

Inputs, Activities and Deliverables of Phase two in the research and Figure 3.3

illustrates the Theoretical Framework of the research on intelligent software quality

model.

 66

Figure 3.2: Inputs, Activities and Deliverables of Design Framework

KEY INPUT AND

TOOLS

• Analyses the
environmental
changes in
software quality

• Identify the AI
approach such as
FS technique.

• Identify the
selected technique
such as FRT

• Draft framework
of Feature
Ranking
Algorithm (FRA)
for software
quality
assessment.

ACTIVITIES

• Review the
definition, concepts
and quality models in
previous software
quality model

• Defined the AI
approach based on
the selected
techniques used for
development of
Feature Ranking
Algorithm (FRA) for
software quality
assessment.

• Determine the
problem areas
containing the
considerations,
research questions
that need to be
addressed in the
research methodology

DELIVERABLES

• Theoretical
Framework

• Components of
dynamic quality
model

Theoretical
Study

Design
Framework

Identify &
Propose AI
Technique

Construction Evaluation

 67

Software Quality

Static Dynamic

Design and construct an algorithm enriched with a formula to count the priority of

attributes and followed by learning adaptation using two classifiers as to enhance the

assessment technique in PQF model

Feature Ranking Algorithm (FRA)

Figure 3.3: Theoretical Framework of Feature Ranking Algorithm (FRA)

 68

3.1.3 Identify and proposes the Feature Ranking Technique (FRT) for

intelligent software quality model

The third phase identifies and proposes the Feature Ranking Technique (FRT) for

intelligent software quality model. The new intelligent algorithm is known as Feature

Ranking Algorithm (FRA) model which is an enhancement of Pragmatic Quality

Factor (PQF) model. From the literature review, several AI techniques have been

found to enhance the assessment technique in software quality model such as Feature

Selection (FS), Artificial Neural Network (ANN) and Cased-Based Reasoning

(CBR). All of the techniques are investigated and discussed in Chapter Two.

In order to create an algorithm with the expert function as to measure and evaluate

the attributes in software quality, the FRT as a type of FS is selected in this study.

The proposed technique has been reviewed pertaining to the application in pre-

processing of the data in order to sort and list the quality attributes. Furthermore, the

designing of FRT involved both approaches in the feature ranking such as filter and

wrapper approach which discusses in Chapter Two. Thus, the adaptation of learning

concept is performed using the Java Library for Multi Label Learning (MULAN)

application using classifiers such as Random k-Labelsets (RAkel) and Multi Label k-

Nearest Neighbour (MLkNN). Figure 3.4 illustrates the Inputs, Activities and

Deliverables of Identify and proposes the FRT for intelligent software quality model.

 69

Figure 3.4: Inputs, Activities and Deliverables of Phase Three

3.1.4 Construction of an Feature Ranking Algorithm (FRA) Algorithm

The fourth phase of the research is construction of a Feature Ranking Algorithm

(FRA) algorithm using FRT. In this selected technique involved both approaches in

FS such as filter and wrapper approach. In construction phase, the algorithm

enclosed by the formula known as Most Priority of Features (MPF) to count the

scoring weight value given by the stakeholders for all attributes. The behavioural

attributes such as Efficiency, Maintainability, Functionality, Portability, Reliability,

Usability, User Conformity and Integrity were gathered from the research studies

captured from the previous project certification ended by Yahaya from year 2007

ACTIVITIES

• Review and
summarize the
available technique.

• Identified and
proposed the
technique

• Review and study
the available tools
for learning
adaptation

DELIVERABLES

• Feature Ranking
Technique (FRT)

• Java Library for
Multi Label
Learning
(MULAN)
application using
classifiers like
Random k-
Labelsets
(RAkel) and
Multi Label k-
Nearest
Neighbour
(MLkNN)

KEY INPUT AND

TOOLS

• Components of
dynamic quality
model

• Theoretical
Framework

• Technique of AI

Theoretical
Study

Design
Framework

Identify &
Propose AI
Technique

Construction Evaluation

 70

until 2011. The filter approach is used to create MPF formula as to rank and sort the

counted attributes accordingly and stored into PQF database respectively once the

results performed in different value for all attributes. The elements involved in the

formula are the standards deviation, weight assigned by the assessors and the

frequency of the maximum weight assigned for all attributes.

The next stage is the learning concept in the algorithm through the Java Library for

Multi Label Learning (MULAN) as a tool by importing two classifiers namely

Random k-Labelsets (RAkel) and Multi Label k-Nearest Neighbour (MLkNN).

According to Wang et al. (2011), the selection of classifier may affect the

classification accuracy. As stated earlier, this research has applied two classifiers in

handling the redundancy of the data to avoid biasness. The implementation of the

wrapper approach is capable to train and test the data for classification task using the

score counted by MPF formula. The performance metric such as the Area Under the

Curve (AUC) is used to calculate the classification accuracy. The detail of the

construction is entirely discussed in Chapter Four. Figure 3.5 illustrates the Inputs,

Activities and Deliverables of Construction of Feature Ranking Algorithm (FRA)

and Figure 3.6 illustrates the steps includes in the experimental design of this phase.

 71

Figure 3.5: Inputs, Activities and Deliverables of Construction of Feature Ranking
Algorithm (FRA)

ACTIVITIES

• Design the
experimental design as
shown in Figure 3.6

• Construction on FRA
algorithm by creating
the Most Priority of
Features (MPF) formula
using filter approach

• Construct the learning
adaptation through Java
Library for Multi Label
Learning (MULAN)
application using
classifiers namely
Random k-Labelsets
(RAkel) and Multi
Label k-Nearest
Neighbour (MLkNN)
touched by wrapper
approach

DELIVERABLES

• Feature
Ranking
Algorithm
(FRA)
algorithm

• The
Intelligent
Software
Quality Model
(FRA)

KEY INPUT AND

TOOLS

• Feature Ranking
Technique (FRT)

• An algorithm for
learning the data

• Data collected from
previous project
(Certification data
as input data
captured from year
2007 until 2011)

Theoretical
Study

Design
Framework

Identify &
Propose AI
Technique

Construction Evaluation

 72

The experimental design was conducted using a data set gathered from the

previous cases of certification in PQF model. It contains over 1000 cases of software

Figure 3.6: Experimental Design

The experimental design was conducted using a data set gathered from the previous

cases of certification in PQF model. It contains over 1000 cases of software quality

assessment data. The data is implemented by the algorithm which constructed using

FRT as pre-processing process. The data is weighted by the assessors in the specific

value were made on a five point Likert scale (1 = strongly disagree to 5 = strongly

agree). The assessors consisted of the user or individual, developer, and manager

who are concerned to apply this model for attributes assessment.

Figure 3.6 Experimental Design

Input Data

Pre- processing (FRT)

FRA (MPF)

KSCBF
Algorithm

FRA

Performance Result

PQF Model

Evaluation

KSCBF (SU)

 73

The data collection is processed using MPF method in FRA algorithm and the

comparison is also tested for the compared algorithm such as KSCBF algorithm with

using their own method in pre-processing such data as SU. Both of the methods are

executed in the same time in order to gain the accuracy of the methods. As for

comparison, the MPF method is performed better than SU in ranking the priority of

data.

As mentioned in the previous section, the proposed algorithm will generate the

results for each attribute and acts as an alternative solution to solve the redundancy

cases occurred in the databases. In fact, the final ranking result for each attribute is

performed as to show the priority of quality attributes.

Hence, the evaluation is verified the proposed algorithm by the human judgement

and statistical measurement on the final ranking result to the expert model and the

existing algorithm in the literature such as Kolmogorov-Smirnov Correlation Based

Filter (KSCBF) algorithm.

3.1.5 Evaluation of Study

The fifth phase of the research is the evaluation measurement of the proposed

algorithm using the human judgement and statistical measurement methods such as

correlation coefficient and statistical significant test. As stated earlier, the human

judgement method is the comparison on the final ranking result of proposed

algorithm to the expert model known as PQF model and the existing algorithm in the

literature such as KSCBF. The correlation coefficient is extremely important as to

show the relationship between the proposed algorithm to the PQF model and KSCBF

algorithm.

 74

Hence, the statistical significant test is used to test and evaluate the differences in

scores of the results obtained by matching pairs of the expert model and the

compared algorithm. Moreover, this phase is extremely important to prove that the

new assessment technique of intelligence software quality model is achieved by

using FRT. Figure 3.7 illustrates the fifth phases of the research.

Figure 3.7: Inputs, Activities and Deliverables of Evaluation

3.2 Summary of Research Methodology

Five phases applied in this research as the process flow in developing the intelligent

of software quality model which are: Theoretical Study, Design of Formal

Framework on intelligence software quality, Identify and proposed the Feature

Ranking Technique (FRT) for an intelligence software quality model, Construction

of a Feature Ranking Algorithm (FRA) and the Evaluation of study. Each phase has

ACTIVITIES

• Evaluates the model by
comparing the
performance result to the
expert model and
Kolmogorov_Smirnov
Correlation Based Filter
(KSCBF) algorithm

• Test and validates the
algorithm

• Verify the result with
statistical method

DELIVERABLES

• Analyzed the
experimental
results

KEY INPUT AND

TOOLS

• Intelligent Software
Quality Model (FRA)

• Additional input data
(Dummy Data)

Theoretical
Study

Design
Framework

Identify &
Propose AI
Technique

Construction Evaluation

 75

key inputs, activities and deliverables to achieve the research objectives and solve

the research problem in order to develop a new intelligent software quality model for

attributes assessment.

 76

CHAPTER FOUR

PROPOSED FEATURE RANKING ALGORITHM (FRA)

ALGORITHM

4.1 Introduction

This chapter describes the proposed Feature Ranking Algorithm (FRA) algorithm

using Feature Ranking Technique (FRT). Previous chapters addressed that the

development of FRA algorithm acts as a new assessment technique on quality

attributes to enhance the assessment technique in the existing model known as PQF

model. The enhancement of PQF model in software quality assessment indirectly

appears as a dynamic model in software quality community. The major components

in FRA algorithm include generation of MPF formula and implementation of

learning application. Both components appear as additional features of assessment

technique in PQF model.

Further, following sections elaborate about the background issues of this study, the

proposed algorithm itself and the way it is implemented.

4.2 Background Issues

Quality can mean different things to different people and situations (ISO/IEC9126,

1991). The development of PQF model incorporates behavioral and human aspects

making it a bit different from other models. Even though, the criteria of assessment

in PQF model can fulfill user requirement and expectation in future, it still has a

limitation in adapting and noticing changes in attribute selection that might occur in

future. As discussed in Chapter Two, the assessment technique used in tailoring the

 77

engine of PQF model is the elements of software engineering development and it is

not capable to train and learn the knowledge in data. Thus, the proposed FRA

algorithm in the assessment technique of attribute selection can enhance the

limitation of PQF model in noticing and adapting the knowledge of data in future. In

accordance, the list below contains issues solved by FRA algorithm;

1) The assessment technique is supported using AI approach such as FRT.

2) Data redundancy is solved using the classification task through MULAN.

4.3 Proposed FRA Algorithm

The development of FRA algorithm is based on the component of PQF model

including behavioral characteristic, impact characteristics, responsibility, and weight

value. These components are discussed details in Chapter Two. Also, AI approach is

used as an additional element to generate a dynamic quality model in software

quality. The main features of FRA algorithm are summarized as follows:

1) MPF formula as to count the scores of the priority attributes from the

software quality data. This helps in ranking the software quality attributes

according to the most prominent attribute.

2) Adaptation of learning concept through MULAN as to train the knowledge of

data and handling data redundancy. These features can support the limitations

of PQF model which are discussed in Chapter Two.

The FRA algorithm facilitates the interaction between user and the system by

enabling the user to select attributes based on the collection of results in software

 78

quality attributes. The user can be a group of assessment team to ensure unbiased

assessment and have capability to give weight value for each attribute in the

assessment. The PQF database contains all possible software quality factors or

attributes collected from the previous quality model in literatures including

Functionality, Maintainability, Efficiency, Portability, Reliability, Usability, User

Conformity, and Integrity. The PQF database is known as knowledge based, in

which the collection of the attributes are trained and learned from the literature.

Furthermore, the PQF model contains the selection of the attributes collected through

research documents and experiences from developer. Eventually, the attributes in

PQF model are trained and learned by FRA algorithm with the proposed methods

involved.

In detail, the proposed method consists of two phases. Phase one calculates the MPF

scores for all attributes from the database. The results of attributes are ranked and

sorted according to the scores obtained. In this exercise, the highest score value of

attributes is selected as the important attribute and directly selected as high priority

of attributes and updated to the database. Consequently, Phase two remove

redundant data that contains more than one highest value of the scores. This means

that Phase two is executed if there are two or more redundant attributes that produce

similar MPF scores.

In addition, the data from PQF database corresponding to the attributes which are

redundant are obtained to be used for training the classifiers. The results are

performed by classifiers as discussed in previous chapter is averaged to avoid

biasness. Then, the attributes that produces the highest classification accuracy is then

 79

selected as the most priority of features and ranked first in the list. Consequently, the

final ranking of the quality attributes are stored in the PQF database for future

software quality assessment. In conjuction, a diagram showing assessment technique

in FRA algorithm is shown in Figure 4.1. It is followed by the steps FRA algorithm

in the next sub section.

 80

Figure 4.1: Assessment Technique in FRA Algorithm

Phase 2

Phase 1

Selected
attributes ranking

for quality

More than one
highest MPF

Using classifiers to
obtain the

classification
accuracy of the

redundant attribute

Select attributes
with the highest

accuracy rate

Calculate MPF
scores for all

attributes

Find the highest
MPF scores and rank

attributes

Pragmatic Quality

Factor (PQF)

 81

4.3.1 The Development of Most Priority of Features (MPF) Formula

The main element involved in generating the MPF formula consisted in FRA

algorithm is FRT by using filter approach. As discussed in Chapter Two, FRT is a

part of feature selection which is the pre-processing data in reducing the high

dimensionality of data (Khoshgoftaar et al., 2009). The FS is an important technique

to speed up the learning process and is capable to improve the assessment technique

in the software quality model. In the literatures, FS is widely used in assessing the

performance of the classification models by using performance metrics such as

Overall Accuracy (OA), Default F-Measure (DFM), and Default Geometric Mean

(DGM) (Khoshgoftaar et al., 2009). On top of that, detailed descriptions about the

FS in classification model are outlined in Chapter Two.

Meanwhile, the filter approach selects data as a pre-processing independently

without involving any learning application (Guyon et al., 2003). It provides a task to

rank and sort the selected attributes based on the MPF scores. Besides, other

elements involved in the MPF formula include probability concept, standard

deviation, mod frequency, and arithmetic mean. In detail, the probability concept is

the likelihood of something happening in future which is expressed as a number

between zero (0) and one (1). Further, the expressed number refers to something that

can never happen and something that will always happen (Durret, 2010). This

concept is used to make expectations on the priority of each attribute selected by the

users. On a contrary, standard deviation is a formula for the average distances from

the average, which refers to the dispersion of a set of data from its mean. It is

computed by the mean for the data set and the deviation by subtracting the mean

 82

from each value. It also known as square root of the varians for their mean arithmetic

in the data set. The generation of the formula is discussed further in the next sub-

section.

The formula in FRA algorithm is capable to train the value of attributes and compare

the result for each attribute as to find the MPF scores of the attributes. In accordance,

the formula is exhibited in Equation 4.1.

 (Eq. 4.1)

As noted earlier, the formula created in FRA algorithm is a solution to remove

irrelevant features in a list of data. Therefore, the formula has to train the data for

each attribute in knowledge based. In regards to this, there are steps in generating the

MPF formula as to count the priority of attributes, which is selected by the software

quality assessors.Particularly, there are four steps involved and are explained in the

following paragraph.

Step 1: The arithmetic mean of variables is calculated using the formula in Equation

4.2, which is adopted from book Introductory Statistics (2008).

 Mean of variable: ߤ ൌ ∑௫௜
ே

 (Eq.4.2)

Where, ߤ is the population mean, is the total of data collection in the database ݅ݔ∑

and N is the population size in the database. The mean of variable is obtained by

calculating the mean value of each attribute and ranks the mean values subjected to

the priority of the attributes.

Most Priority of Feature (MPF) = δyj ∑ (maxxi ● ƒmaxxi)

 83

Step 2: The next step is calculated the standard deviation of the attributes in the

database. It is accomplished using the formula in Equation 4.3, which is adopted

from book Introductory Statistics (2008).

 δyj =ට ଵ
ே
∑ ሺ݅ݔ െ ሻேߤ
௜ୀଵ 2 (Eq.4.3)

Where, δyj is the standard deviation for the selected quality attributes, N is the

population size in the attribute’s database, i is the value of vector in standard

deviation value (standard value) and ሺ݅ݔ െ is the attribute’s value in the 2(ߤ

database and deficiency to the mean value of the data collection in the attribute’s

database.

The correspondences of two random attributes are evaluated using the formula in

Equation 4.3 to measure the scattered values in the collection value of attributes. In

this case, the maximum value of the selected attributes in the database (max݅ݔ) is

used to be multiplied by the mod frequency of maximum value of the selected

attribute in the same database (ƒmaxxi).

Step 3: The value of the previous application is used to find the MPF by multiplying

with the value of standard deviation of attribute’s database.

Thus, step 2 is repeated to the other values of mean population of each attribute.

Then, the MPF value is compared to the value of each attribute as to select the high

priority of selected attributes.

 84

Step 4: Finally, the formula in Equation 4.4 is created to sort and rank the features in

the attribute listing.

 ∑ (maxxi ● ƒmaxxi) (Eq. 4.4)

Where, maxxi is referred to the maximum of value in the database and ƒmaxxi is

referred to the mod of frequency for maximum value in the database. Having

outlined the steps involved, the following section demonstrates an example of MPF

calculation.

4.3.2 The Example of MPF calculation

The Efficiency attribute is selected for demonstrating the calculation. It involves data

collected from assessors as shown in Table 4.1.

Step 1: The assumption values contain four cases, which are {4,5,3,5}. This makes

the mean quality score is 4.25 and standard deviation is 0.96. The maximum value

(maxxi) is 5 and the frequency of the maximum value in the efficiency database is 2.

Therefore, the MPF score using the formula in Equation 4.1 is 0.96 (5*2) = 9.6.

Then, the step of calculation is repeated to the other attributes in the database.

User Value (xi)
User 1 4
User 2 5
User 3 3
User 4 5

Table 4.1: Efficiency of Database

 85

Step 2: The MPF scores of the data are checked and sorted according to scores

obtained from the calculation. Then, in the sequential order, the small values are

treated weak and ready to be sorted lowest in the database as irrelevant features.

As been discussed earlier, it has been noted that if the results contain redundancy,

then the classifier is used as the solution to solve the redundancy problem using the

proposed learning tool. In accordance, it is discussed in the next section.

4.3.3 The Application of Classifiers

Chapter Two notes that the application of classifier can be found in the learning tools

such as WEKA, MULAN, and LEET. In this study, the learning adaptation is

performed using MULAN which is known as a Java library for learning from multi

label data. It offers a variety of classification, ranking, thresholding and

dimensionality reduction algorithm for learning from hierarchically structured labels

(Tsoumakas et al., 2011) (as discussed in Chapter Two). However, it only offers the

Application Programming Interface (API) to the library users without GUI.

The MULAN application can be started by downloading WEKA version 3.7.6, Java

Runtime Environment (JRE) version 30 from Oracle1 website. The next step is to

execute the unit tests to import the classifiers that can exist in MULAN application.

Referring to the literatures, only several classifiers can be adapted in MULAN and it

depends on the capability of the classifiers to act in the MULAN environment as

elaboratively described in Chapter Two.

1 http://www.oracle.com/technetwork/java/javase/downloads/jre-6u30-download-1377142.html.

I

t

c

R

F

f

F

In order to

tests is app

classifiers a

RAkel and

Figure 4.2

followed by

Figure 4.2: E

select the c

plied and is

and perform

MLkNN sh

shows the

the executio

Execution P

lassifiers to

s extremely

med in the M

hould be acc

execution p

on of unit tes

Process of Un

86

be allocate

important

MULAN. Th

cepted in ex

process of u

sts for MLkN

nit Tests for

d in MULA

to examine

hus, the sel

xecution pro

unit tests in

NN classifie

MLkNN Cla

AN, the exec

e the availa

lected classi

ocess. In reg

n Eclipse p

er in Figure 4

assifier

cution of un

ability of th

ifiers such a

gards to thi

latform. It

4.3.

nit

he

as

is,

is

 87

Figure 4.3: Executed of Unit Tests for MLkNN Classifier

In this test, the classifiers (MLkNN and RAkEL) are certified by executing the unit

test and ready to be used in MULAN. Both of the classifiers are accepted in all tests.

As an example, Figure 4.3 shows the executed of unit test for MLkNN classifier. In

this unit testing, the classifiers are tested according to the JUnit testing in meeting

the required formats such as testing for default parameter, technical information,

making copy test, building null dataset, and missing values. All the tests are

available in WEKA and adaptation into MULAN is great as WEKA and it is

beneficial to the users as they can choose several classifiers as needed.

 88

Chapter Two elaborates that MULAN is only suitable for small data. Thus, the

MULAN is unable to execute on typical programming language platform in the

environment with large data. Hence, in this study, the Spring Source Tool Suite

(STS) is used. It is a development tool available in Wide World Web (WWW), the

most advanced tool for all the latest enterprise Java based technologies. It is

available in Unix version and windows version. In this study, the window version is

used which is downloaded from STS2.

In MULAN, the set of data are kept in the required two files which are Attribute

Relation File Format (ARFF) and Extensible Markup Language (XML) formats.

Then, the data are loaded up using the function below:

MultiLabelInstances dataset = new MultiLabelInstances (arffIPQF, xmlIPQF);

These format also required by WEKA as to train and learn the data in the required

format. Hence, the creation of an instance from each classifier is very important to

evaluate the learning result. In regards to this, the following codes are utilized:

RAkEL learner1 = new RAkEL (new LabelPowerset (new J48()));

MLkNN learner2 = new MlKNN();

Next, these two imported classifiers by MULAN are trained and learned on the

redundancies of data to evaluate their predictive capability in determining the final

2 http://download.springsource.com/release/STS/2.8.1/dist/e3.7/springsource-tool-suite-
2.8.1.RELEASE-e3.7.1-win32-installer.exe

 89

result. Eventually, the final results are ranked and sorted subjected to the highest

value among the redundancies of data.

Nevertheless, the wrapper approach is attached indirectly in this task for handling the

redundancies cases among the data. As discussed in Chapter Two, the wrapper

approach selects relevant attributes based on the performances of the selected

classifiers (Tadeuchi et al., 2007). In conjunction, the assessment methods involved

are elaborated in the next sub sections.

4.3.4 The Step of FRA Algorithm

The FRA algorithm acts as an intelligent assessment technique in software quality

model. Besides, the proposed technique creates a dynamic software quality model in

attributes assessment as well. The steps involved in FRA algorithm are outlined in

Table 4.2.

 90

Table 4.2: Algorithm of FRA

The FRA algorithm consists of two steps. In the first step, the quality attributes

achieved from PQF database is calculated using MPF formula. The MPF functions

as a method to sort and rank the quality attributes according to the counted scores in

descending order using the outlined in Section 4.3.1. Then, the highest score value is

selected as the prominent attribute and is directly updated in the database. In case, if

there are more than one highest MPF scores (redundant) the algorithm proceeds to

use classifier in classification task. Then, the second step commences.

Step Algorithm

1 Get the software quality attributes and weights from the PQF

database

2 Use weight value to calculate the MPF scores for all attributes

3 Sort and rank the attributes according to the highest MPF scores

4 If there are more than one highest MPF score

For each of the attribute with same MPF score

Begin

a. Get the corresponding data and weights from the PQF
database

b. Input the data into two classifiers
c. Calculate the average classification accuracy of the two

classifiers
d. Output the average classification accuracy

End

5 Select the attribute with the highest classification accuracy

6

Output the ranked software quality attributes

 91

The performance of classifiers in handling the redundancy of data is established and

the output is averaged in order to avoid biasness. Consequently, the results are tested

for accuracy and validated. Then, the algorithm selects the attribute with the highest

classification accuracy. Eventually, the final ranking result is updated in the

database.

4.4 The Development of Kolmogorov-Smirnov Correlation Based Filter

(KSCBF) Algorithm

Having reviewed the existing algorithms in the literatures, the Kolmogorov-Smirnov

Correlation Based Filter (KSCBF) algorithm has been decided to be used for

comparison (discussed in Chapter Two). The KSCBF algorithm has been

implemented on Java following the steps provided in the algorithm as outlined in

Table 4.3. The following section discusses the development process.

Step Algorithm

 Relevance analysis

1 Calculate the SU(X,C) relevance indices and create an ordered list
S of features according to the decreasing value of their relevance.

 Redundancy analysis

2 Take as the feature X the first feature from the S list

3 Find and remove all features for which X is approximately
equivalent according to the K-S test

4 Set the next remaining feature in the list as X and repeat step 3 for
all features that follow it in the S list.

Table 4.3: Kolmogorov-Smirnov Correlation Based Filter (KSCBF)

 92

KSCBF algorithm consists of two stages. In the first stage, the relevance analysis, in

which the algorithm is ranked all attributes uses a traditional method in FS such as

SU for the ranking coefficients. The first step is ranked the attributes in descending

order. In regards to this, the algorithm is discussed elaboratively in Chapter Two, in

which SU is computed using formula in Equaltion 4.5.

Where, X is the selected features in the class attribute, C is class of the selected

attribute, MI is the Mutual Information which is the basic quantity used for filtering

method, H is uncertainty probabilities, H(X) is uncertainty of X features and H(C) is

the uncertainty class of the selected attribute.

In short, the presented formula is used to count the quality attributes to be sorted and

ranked according to the quality score value. Further, the second stage is to remove

the redundancies of data in the list using K-S test. This is accomplished using

formula in Equation 4.6.

 (Eq. 4.6)

Where, ng and nh are the number of samples for each random variables, k is the

number of bins in discrete probability distribution, G and H are cumulative

probability distribution of random variables g and h respectively.

SU (X,C) = 2 MI (X,C)

H (X) + H (C)

KS (g; h) = ngnh

 ng + nh
√ sup |Gk − Hk|

k

 (Eq. 4.5)

 93

According to the algorithm, the random variables are counted in pair. Two of

features are counted and the highest differences between the cumulative distributions

from the features are selected. The second phase is repeated for the others attributes

ranking in the list. Every feature in the list is counted using K-S test to remove the

redundancy. Then, the values of the features are sorted and ranked in the new list

after K-S test calculation. Eventually, the algorithm will remove all redundant

features in the new attributes ranking.

However, for the purpose of showing the priority of quality attributes in this study,

the redundant features are remained in the list for easier comparison.

 94

4.5 Summary

This chapter describes the development of FRA algorithm in detail. The main issues

to be solved by the proposed model are clearly defined followed by a discussion on

the elements involved with the main features of the proposed algorithm as to attend

the claimed issues. This includes an explanation on the elements used in generating

the FRA algorithm and MPF formula as to count the score of attributes and followed

by sorting and ranking the results. Besides, this chapter also describes the learning

adaptation in handling the redundancies through MULAN using two classifiers

(RAkel and MLkNN). In this regards, the capability of the classifiers has been

determined by their predictive competency in the final result. On top of that, this

chapter also discusses on the method of FRA algorithm and the steps involved.

Particularly, the development process involved for the proposed algorithm is

outlined. Also, the development of KSCBF algorithm as comparison method is

addressed. Eventually, this chapter exhibits and discusses the results obtained from

both models detail. As a consequent, the explanations on the analysis of the

performance are discussed in detail in the next chapter.

 95

CHAPTER FIVE

DATA ANALYSIS AND RESULT

5.1 Introduction

This chapter elaborates the data analysis and results of FRA for a dynamic software

quality model. The assessment technique has been developed using FRT to enhance

the assessment technique in static quality model namely PQF model. All the data

were organized, analyzed, and interpreted systematically in an attempt to answer the

question of how the FRT can be used to develop an intelligent assessment technique

which is known as a dynamic model in software quality. Various statistical

techniques were used for the analysis including correlation coefficient statistic and

the statistical significance test.

Section 5.2 presents the result of quality attributes, which is described according to

the score obtained from FRA and KSCBF algorithms. Furthermore, the results

obtained from both methods are compared with expert judgment. Next, Section 5.3

analyzes the performance evaluation for this study. Finally, a summary of the

findings is outlined in Section 5.4 at the end of the chapter.

 96

5.2 Performance Results

The performance results obtained from FRA algorithm are compared to the existing

algorithm in the literature (KSCBF algorithm) and the expert judgment i.e. PQF

model. The results are analyzed respectively in subsequent sections.

5.2.1 Result of Experiment: Feature Ranking Algorithm (FRA) Algorithm

The experiment results of FRA algorithm gives a list of attributes according to the

ranking scores obtained from MPF calculation (as discussed in Chapter Four). Data

were gathered from one thousand quality assessment data collected from the PQF

model. In conjunction, Table 5.1 shows an example of the software quality attributes

and the weights assigned by the assessors adapted from the PQF’s database. As

noticed earlier in Chapter Two, the weight assessment were made on a five point

Likert scale (1= strongly disagree to 5 = strongly agree).

Table 5.1: Example of Software Quality Attributes with Assigned Weight

According to the weight assigned by the assessors, the proposed algorithm counts the

weight value using the MPF formula in phase one. The averaged score for each

Attribute Weight
1 Efficiency 4.08
2 Functionality 3.69
3 Maintainability 2.66
4 Portability 3.55
5 Reliability 3.36
6 Integrity 3.83
7 Usability 2.95
8 User Factor 3.67

 97

attribute is required to get the value of standard deviation in the data collection in

order to attain the MPF score for each attribute. Normally, the standard deviation for

one thousand data is dissimilar in term of the scores given by the assessors and the

probability of similarity rarely occurs in the analysis.

As referred to the results in Table 5.2, the averaged score for attributes portability

and User Conformity is 3.9, with standard deviations 1.58 and 1.38 respectively.

This does not agree with the principle of redundancy, that standard deviations should

also be similar. As been referred to the Table 5.2, it is seen that the averaged score

for Maintainability and Usability is 3.4 with standard deviations is 1.8. In this case,

they are meets the principle of redundancy. Hence, the MPF formula is used to count

the priority of attributes. As referred to the full results of FRA algorithm in Table

5.3, the MPF score value for Maintainability and Usability is 45.0. Hence, they are

proven redundant.

Table 5.2: Result in Averaged Score and Standard Deviation

Attribute Id Attribute Name Averaged Score Std.Deviation
P006 Reliability 4.1 1.04
P005 Portability 3.9 1.38
P008 User Conformity 3.9 1.58
P001 Efficiency 3.7 1.19
P002 Functionality 3.6 1.63
P004 Maintainability 3.4 1.80
P007 Usability 3.4 1.80
P003 Integrity 3.1 1.51

 98

Table 5.3: Result of FRA Algorithm

Attribute Id Attribute Name MPF Score
P008 User Conformity 47.34
P004 Maintainability 45.00
P007 Usability 45.00
P002 Functionality 40.63
P005 Portability 34.38
P006 Reliability 26.10
P003 Integrity 22.70
P001 Efficiency 17.81

As a consequent, to resolve this issue, the classification task with the weight as the

main target is applied. The previous chapter explains that the classification task

operates in phase two of FRA algorithm. This means that, the wrapper approach is

conducted where the data related to this attributes are trained and tested for

classification task. In this study, RAkel and MLkNN are employed in this task

(explained in previous chapter). In the conjuction, The Area Under the Curve (AUC)

performance metric is used to count classification accuracy. In relation, Table 5.4

lists the results of classification accuracy for handling the redundancy of data

between the Maintainability and Usability.

 99

Table 5.4: Result of Classification Accuracy for Two Redundant Attributes

As can be seen in Table 5.4, the classification accuracy of RAkel is almost identical

for both Maintainability and Usability attributes. However, the MLkNN classifies the

Maintainability attribute with 92% accuracy compared to Usability (79%). This

finding supports the statement posted by Wang et al. (2011), that the accuracy of the

classification result performed is influenced by the selected classifier. Hence, the

result of classification accuracy is averaged in order to avoid biasness towards a

single classifier. In this case, based on the detail in the table, the classification

accuracy of the Maintainability attribute is higher than the Usability attribute (with a

difference of 8%). Therefore, the Maintainability attribute is selected to be ranked

higher than Usability. Consequently, the redundancy of attributes is ranked

accordingly between the redundant data in the final ranking result. Also, the result of

the others quality attributes are ready to be ranked respectively with the MPF scores

of each attribute in final ranking result. Eventually, the final ranking result of the

software quality attributes are displayed in tabular form and shown in Table 5.5.

Attribute Id Attribute Name
RAkel

Classifier
MLkNN
Classifier Averaged

P004 Maintainability 0.8121 0.9171 0.8646
P007 Usability 0.8131 0.7616 0.7874

 100

Table 5.5: Final Ranking of FRA Algorithm

Based on the details in Table 5.5, the User Conformity is ranked as the highest

priority among the attributes in the software development. In contrast, the Efficiency

attribute is found as the least priority attribute. Additionally, in order to access the

effectiveness of FRA algorithm, the comparison between the final results with the

ranking result produced by the KSCBF algorithm is carried out. For the purpose of

making a baseline for the comparison, the result performed by expert judgement

such as PQF model has been used, as explains in detail in the following subsection.

5.2.2 Result of Experiment: Kolmogorov-Smirnov Correlation Based Filter

(KSCBF) Algorithm

To further evaluate the proposed algorithm, the result of FRA algorithm is compared

to the KSCBF algorithm pertaining to the final scores obtained. Table 5.6 presents

the score for attributes obtained from SU for filtering in KSCBF algorithm. It is

followed by Table 5.7 that lists the final ranking result of scores for attributes in

KSCBF algorithm.

Attribute Id Attribute Name
P008 User Conformity
P004 Maintainability
P007 Usability
P002 Functionality
P005 Portability
P006 Reliability
P003 Integrity
P001 Efficiency

 101

Table 5.6: Result of Symmetrical Uncertainty (SU) Value

Table 5.7: Final Ranking Result of Attributes Scores in KSCBF Algorithm

In KSCBF algorithm, the attributes are filtered and ranked according to the score

obtained from the SU calculation. As be seen in the Table 5.6, the Maintainability is

ranked the highest score (33.44). While, the Functionality and Integrity attributes are

ranked the least (9.33). Further, the results of SU calculation are used in the KS-Test

calculation to solve the redundancy.

In this experiment, the final scores obtained from the KSCBF that Maintainability is

a very important feature to be highlighted and ranked highest with score 1. Grunwald

et al. (2008), states that the better quality measures is closer to 1 as the higher

degree. As can be seen from the Table 5.7, Integrity is ranked lowest (0.48). It means

Attribute ID Attribute Name SU Value
P004 Maintainability 33.44
P007 Usability 23.33
P008 User Conformity 18.34
P001 Efficiency 13.92
P005 Portability 12.12
P006 Reliability 12.03
P002 Functionality 9.33
P003 Integrity 9.33

Attribute ID Attribute Name
KS- Test

Score
P004 Maintainability 1.00
P007 Usability 0.83
P008 User Conformity 0.72
P001 Efficiency 0.63
P005 Portability 0.57
P006 Reliability 0.55
P002 Functionality 0.51
P003 Integrity 0.48

 102

that the attribute is less priority than the other attributes. In this algorithm, the step is

completed once the K-S test is performed and the data are claimed as valid.

Eventually, the final ranking results are outlined in the same ranking attributes

although there are still redundancies. This is one of the limitations faced in KSCBF

algorithm in handling the redundancies cases as mentioned earlier in Chapter Two.

This is supported the statement reported by Grunwald et al. (2004), who argues that

this method will not be able to change the position of each attribute in the ranking

list and the final results are outlined as the same ranking attributes with different

values after K-S test calculation. In conjunction, the comparison on the results is

elaborated in the following section.

5.3 Evaluation Measurement

The performance evaluation is very important in this study to validate the proposed

algorithm. The purpose of this experimental evaluation is to present the accuracy of

the proposed FRA algorithm. This section shows the evaluation measurement

techniques that were used in the evaluation process. Particularly, the measurements

used in this evaluation process are correlation coefficients and statistical significance

test (t-test). Furthermore, the experimental evaluation results of FRA algorithm are

compared to the KSCBF algorithm and PQF model. In detail, all testing procedures

and results are described in the following section.

5.3.1 Human Expert Evaluation

In order to evaluate the performance of the proposed model, the result produced by

the expert were used for the comparison and act as the benchmark of the assessment

 103

in this research. The ranking list by expert analysis quality by individual attribute

based on previous and current assessment (adapted from Yahaya et al., 2011) is

outlined in Appendix B. The results are averaged and used as the baseline to

compare the performance of the proposed algorithm and KSCBF algorithm. In

conjunction, a comparative graph is plotted in the next section to show the results.

5.3.2 Normalization of Data Performance

In order to compare the results, human expert ranking result and FRA is normalized

to the standard scale between 1 and 0 for analysis. Thus, the result of KSCBF

algorithm is determined between 0 and 1. Therefore, the result does not require any

normalization process. Accordingly, Table 5.8 shows the final results performed by

PQF model, FRA and KSCBF algorithm before normalization. In addition, Table 5.9

shows the normalization of the data and is used as data comparison between PQF

model, FRA and KSCBF algorithm.

Table 5.8: Final Result of PQF model, FRA and KSCBF Algorithm

Attribute Name
Model / Algorithm

PQF FRA KSCBF
User Conformity 4.56 47.34 0.72
Maintainability 4.46 45.00 1.00
Usability 4.31 45.00 0.83
Functionality 4.30 40.63 0.51
Portability 4.12 34.38 0.57
Reliability 3.52 26.10 0.55
Efficiency 3.33 17.81 0.63
Integrity 3.25 22.70 0.48

 104

According to the final result in Table 5.8, the data is transformed using the concept

of normalization of data. The process of transformation is involved the formula in

Equation 5.1 below:

 (Eq. 5.1)

Where, a is the smallest scale of data in the ranking, b is the biggest scale of the data

in the ranking. In this study, the scale used was between 0 and 1. A is the smallest

data in the ranking, B is the biggest data in the rankimg, and x is the final ranking

result. After calculation for the normalization process, the result obtained is shown in

Table 5.9 below.

Table 5.9: Normalization of Data

Attribute Name
Model / Algorithm

PQF FRA KSCBF
User Conformity 1.00 1.00 0.72
Maintainability 0.92 0.92 1.00

Usability 0.81 0.92 0.83
Functionality 0.80 0.77 0.51

Portability 0.66 0.56 0.57
Reliability 0.21 0.28 0.55
Efficiency 0.06 0.00 0.63
Integrity 0.00 0.17 0.48

Percentage of Similarity to PQF
Model (%)

Score = 6/8 * 100 Score = 3/8 * 100
75% 37.5%

Table 5.9 reveals that User Conformity scores the highest in FRA (score = 1), similar

to PQF model. In contrast, the KSCBF algorithm shows that Maintainability scores

the highest (score = 1). On the other hand, FRA records that Efficiency attribute is

the least important attributes to be highlighted in software development. This

a + (x – A) X (b-a)

(B-A)

 105

contrast the PQF model and KSCBF algorithm, in which Integrity attributes is the

lowest priority.

The findings explain that, the scores produced by FRA associates better with the

expert model compared to KSCBF algorithm. Overall, the quality attributes

performed by the proposed algorithm are strongly similar to the ranking by the

expert model (with 75% of scores). In contrast, the quality attributes ranked by

KSCBF algorithm shows that the model correlates inferior with the expert model

(with 37.5% of scores). The percentage of the similarity is obtained by comparing

the equality of attributes in final ranking to the expert model’s attribute ranking.

Otherwise, the dissimilarity judgement is referred to the comparison on inequality of

attribute ranking compared to the expert model’s attribute ranking.

In calculating the equality, the similarity of attributes to PQF model is divided by the

total quality of quality attributes. The result is multiplied by 100% (Similarity of

Attributes to PQF model / Total of Quality attributes * 100%). Hence, with reference

to Table 5.9, the attributes are User Conformity, Maintainability, Usability,

Functionality, Portability and Reliability (six attributes). This makes up 6/8 * 100%,

which equal to 75%.

Meanwhile, in calculating the dissimilarity of attributes to PQF model is also divided

by the total quality of quality attributes. The result is also multiplied by 100%

(Dissimilarity of Attributes to PQF model / Total of Quality attribute * 100%). With

reference to the Table 5.9, the attributes are Efficiency and Integrity (two attributes).

This makes up 2/8 * 100%, which equal to 25%. The dissimilarity of results is

compared to KSCBF algorithm, which counted to 62.5%. As a consequent, the line

g

a

F

A

m

i

M

c

T

p

a

graph in Fig

algorithm, an

Figure 5.1:

As can be s

model ranki

in FRA as

Maintainabi

comparison

There are Po

performed b

attributes pro

0

0

0

0

1
N

or
m

al
iz

ed
 R

an
ki

ng
 S

co
re

s

gure 5.1 are

nd PQF mod

The Quality

seen in Figu

ng as oppos

remained

lity, Usabil

to KSCBF

ortability, Re

better than K

oblems.

0

0.2

0.4

0.6

0.8

1

1.2

e plotted as

del.

Attributes R

ure 5.1, the

ed to line gr

the same t

lity, Functi

algorithm o

eliability an

KSCBF algo

106

to show the

Ranking of F

line graph

raph of KSC

to the PQF

ionality, Po

only three a

d Integrity.

orithm and i

e ranking att

FRA, KSCBF

of FRA line

CBF algorith

F model suc

ortability a

attributes are

This is proo

ndirectly so

tributes of F

F and PQF M

e is similar

hm. The attri

ch as User

and Reliabil

e similar to

of that the FR

olving the fe

i‐PQ

PQF

KSC

FRA

FRA, KSCB

Model

to the expe

ibutes rankin

Conformity

lity. As fo

 PQF mode

RA ranking

eature rankin

QF Algorithm

F Model

CBF Algorithm

A Algorithm

BF

ert

ng

y,

or

el.

is

ng

 107

 In addition, the statistical measurement is also calculated using the correlation

coefficient and statistical significant test of FRA and KSCBF algorithm, compared to

the expert’s ranking. The next sub sections discusses on this.

5.3.3 Correlation Coefficient

The performance of the proposed algorithm is analyzed by calculating the correlation

coefficient to show the relationship between FRA and KSCBF algorithm with PQF

model. The formula of correlation coefficient is exhibited in Equation 5.2.

 (Eq. 5.2)

Where, N = Number of values or elements, X = First Scores, Y = Second Scores,

ΣXY = Sum of the product of first and Second Scores, ΣX = Sum of First Scores, ΣY

= Sum of Second Scores, ΣX2 = Sum of square First Scores and ΣY2 = Sum of

square Second Scores.

Furthermore, this analysis can be measured the strength of FRA and KSCBF

algorithm related to the PQF model. Table 5.10 shows the analyzed result of

correlation coefficient of FRA to the PQF model and followed by Table 5.11 shows

tha analyzed result of correlation coefficient of KSCBF algorithm to the PQF model.

Correlation (r) = ୒ஊଡ଼ଢ଼ ି ሺஊଡ଼ሻሺஊଢ଼ሻ
√ሺሾ୒ஊଡ଼ మି ሺஊଡ଼ሻమሿሾ୒ஊଢ଼మ ି ሺஊଢ଼ሻమሿሻ

 108

Table 5.10: Analyzed Results of Correlation Coefficient of FRA to PQF

Iteration

 (10 folds Cross

validation)

 Correlation

Coefficient

1 0.96

2 0.97

3 0.98

4 0.97

5 0.97

6 0.98

7 0.98

8 0.99

9 0.98

10 0.99

Average of the result 0.977

Table 5.11: Analyzed Results of Correlation Coefficient of KSCBF to PQF

Iteration

 (10 folds Cross

validation)

 Correlation

Coefficient

1 0.82

2 0.83

3 0.82

4 0.83

5 0.81

6 0.82

7 0.83

8 0.83

9 0.83

10 0.83

Average of the result 0.825

 109

As can be seen in the Table 5.10 and Table 5.11, the results performed by iteration of

10 fold cross validation in order to gain the accuracy of the results by averaged them

to avoid biasness. The correlation coefficient in Table 5.10 shows that FRA is

strongly correlates to the expert judgement with scores of 0.98 or 98%. On a

contrary, in the Table 5.11 shows the KSCBF algorithm correlates 83% with scores

of 0.83 to expert judgement. The result shows that the compared method has a

limitation in solving the data redundancy case and the reason for this difference is

because the KSCBF does not use the learning concept in the presented algorithm.

5.3.4 Statistical Significance Test (t-test)

Finally, the statistical significant test is used to test and validate the differences in

scores of the results obtained by matching pairs of FRA or KSCBF to the expert

model. The statistical significance test aims to measure the probability and determine

whether there is significant differences between the two models by chance of errors

if the compared results remaine the same. Hence, the statistical technique measures

the confidence level of the results obtained from the compared methods to determine

either it is significantly different or not in each other.

The testing process is accomplished by using a statistical significance test formula

which correlates the samples t-test to consider the correlation exists among two

compared models or methods. For each dissimilarity score produced by method A,

Ai, (I =1,2,…….d) it test for correlated samples, t to a compared method Bj, (j=1, 2,

…..d) is given in Equation 5.3.

 110

 t = ஽

√ೄ೏೙
మ (Eq. 5.3)

Where, D = (Ai – Bj), is the difference between compared method A to an expert

dissimilarity score, D = is the mean of the difference, ܵଶ݀ = ∑ ሺ஽௜ି஽ሻ
௡ିଵ

 , is the

standard error of difference, and n is number of pairs.

Table 5.12 below shows the results of statistical significance test of FRA and

KSCBF to the expert model by iteration of 10 folds cross validation as to proof the

correctness. The specified alpha value used in this research is 0.05. The final result

shows that the similarity of FRA algorithm to the expert model is 0.052, occurred by

chance of errors as compared to the KSCBF algorithm (alpha is 0.048, which is

lesser than the specified alpha value). This explains that on t-value proofs that FRA

algorithm is validated and more significant than KSCBF algorithm related to the

expert model. Consequently, Table 5.13 shows the final result of measurement

methods for FRA and KSCBF algorithm related to PQF model.

 111

Table 5.12: Analyzed Results of Statistical Significance Test of FRA and KSCBF

Iteration

 (10 folds Cross

validation)

 FRA KSCBF

1 0.0052 0.0047

2 0.0053 0.0047

3 0.0053 0.0048

4 0.0053 0.0047

5 0.0052 0.0048

6 0.0052 0.0048

7 0.0053 0.0048

8 0.0052 0.0047

9 0.0052 0.0047

10 0.0052 0.0048

Average of the result 0.0524 0.0475

Table 5.13: Final Results of Correlation Coefficient and Statistical Significance Test
for FRA and KSCBF to PQF Model

Item
Correlation

Coefficient
 t-test

FRA 0.98 0.052

KSCBF 0.82 0.048

5.4 Summary

This chapter reveals the results of both methods of evaluation involving human

judgement and statistical measurement. It describes the results from the expert

judgement compared to the proposed algorithm and KSCBF algorithm in the

 112

literature. Based on the performance of the results, this study concludes that the

performance of FRA is better than the KSCBF algorithm. Meanwhile, the result of

the measurements performance shows that FRA is correlates strongly to the expert

model rather than KSCBF algorithm. Additionally, the results have also been

validated by the statistical significant test (t-test), which performs excellent related to

the expert model rather than KSCBF algorithm. In fact, the proposed algorithm can

also support the limitation of the current model in software quality in terms of the

assessment technique provided in this study. Nevertheless, the adaptation of

intelligence tool set used in this study makes the model as good as human approach,

which is capable to learn and notice the future requirements and expectations.

 113

CHAPTER SIX

DISCUSSION AND CONCLUSION

6.1 Overview

This chapter concludes the research of study by emphasizing major research

contributions, the value of the research to the software quality community, the

problem faced in this research and the suggestions and recommendations for future

work.

6.2 Research Summary

This study focused on the construction Feature Ranking Algorithm (FRA) using

Feature Ranking Technique (FRT) for quality attributes assessment in software

quality model. It consists of an algorithm for assessment technique including a set of

formula for attribute selection that is the most priority of features in the quality

attributes. The application of the classifiers i.e. RAkel and MLkNN has contributed

in handling the redundancy of data and the result of the quality attributes ranking

was validated.

The experiments were conducted to illustrate the capability of the proposed

algorithm to achieve the goal and objectives of this research. The proposed technique

produces in this research development performed better than the compared method

in terms of solving the data redundancies in the process of ranking software quality

attributes. Experimental results also show that the proposed algorithm produced

ranking results which are comparable with the experts ranking. Furthermore, the

statistical measurements such as correlation coefficient and statistical significant

 114

testing have proved that the proposed algorithm highly correlates to the expert’s

judgements and validated as statistically significant.

6.3 Research Contribution

In this thesis a new software quality model has been developed by enhancing of the

PQF‘s assessment technique and this new model is called an Feature Ranking

Algorithm (FRA). This section summarizes the main contributions of the thesis by

referring to the research objectives as stated in Chapter One:

a. To identify Feature Ranking Technique (FRT) as to improve Pragmatic

Quality Factor (PQF) model

This objective has been achieved with the FRT proposed in this thesis. This is a type

of FS Technique that can enhance the assessment technique in the PQF model and

induce dynamic element in the existing software quality model. The implementation

of learning concept as mentioned earlier, provides more impact to the achievement

of this objective. The proposed technique solves the problem faced in the static

quality model in the literature by introducing dynamic elements.

b. To develop and evaluate an assessment technique in PQF model with the

proposed Feature Ranking Technique (FRT)

The second objective is achieved through the development of a Feature Ranking

Algorithm (FRA) using Feature Ranking Technique (FRT). The technique proposed

in this research has accomplished this objective with the following contributions:

 115

i. Provides an algorithm which contains a formula to measure and

evaluate the quality attributes

Generation of an algorithm which incorporates a new assessment formula is

capable to take into consideration the future requirements and expectations. The

proposed assessment technique has performed well in the software quality

attributes by contributing to the selection of attributes according to the most

priority of features score value.

ii. Implementation of learning concept using classifiers such as Random

k-Labelsets (RAkel) and Multi Label k-Nearest Neighbour (MLkNN)

The implementation of classifiers in the proposed assessment technique is

another contribution in this research. The learning concept in the proposed FRA

algorithm enables handling the redundancy of data. This application involved the

classifiers such as RAkel and MLkNN as discussed earlier. Each of the classifier

was implemented with improved method to ensure the accuracy of the ranking

attributes in solving the redundancies of data.

iii. Human Expert Evaluation proof the performance of FRA algorithm

The ranking results produced by the expert model such as PQF model is used as

a baseline for the comparison. The ranking attributes by expert model is also

used as a benchmark to compare the performance of FRA algorithm and the

KSCBF algorithm presented in the literature. This evaluation technique confirms

that the developed intelligent algorithm performed better than the compared

method. In fact, the result produced by the proposed algorithm strongly

 116

correlates to the expert judgment in term of accuracy of quality attributes

ranking. Furthermore, the FRA ranking result is better compared to the KSCBF

algorithm. The comparison results act as the contribution in this research in terms

of the performance of the proposed algorithm.

iv. Statistical Measurement

Another contribution is achieved in this research by performing correlation

coefficient calculation and statistical significant testing to validate and prove the

results. This statistical evaluation method has confirmed that the performance

provided by FRA model is reliable. The FRA algorithm has achieved the

objective in this research by producing the better results compared to the KSCBF

algorithm.

Overall, this study has achieved its intended objectives outlined in Chapter One. The

proposed algorithm presented in this study is considered extremely suitable for

dynamic software quality model in evaluating the quality attributes.

6.4 Limitation of the Research

Every research study will face difficulties in the research process due to various

constraints. As discussed earlier, the approaches used in FS technique in this

research are filter and wrapper approaches. The limitation faced in this research is on

the application of the approaches where both of this approaches were used separately

in the proposed algorithm. The filter approach is enclosed in the MPF formula for

ranking of the quality attributes. This function was implemented in the first phase of

the proposed algorithm. While, the wrapper approach was used in the second phase

 117

for handling the redundancies of attribute ranking. The quality attributes is ranked

accordingly and stored in knowledge base respectively if the redundancies of

attributes do not exist in the first phase. Besides that, the second phase will not be

implemented if the data redundancies do not occur. Consequently, the machine

learning adaptation is unaccomplished if the second phase does not executed.

However, this limitation is rarely possible to happen due to the data applied in this

research is large enough and the chances of data repetition are high.

The next section discusses the future work to expand the contribution and to support

the limitation of this research.

6.5 Future Work

For future development and expansion of this research, the following are suggested:

1. Improved FRA algorithm as hybrid algorithm consisting a combination of

approaches in FS i.e. filter and wrapper used inclusively. In this research,

major part of the algorithm focused on filter approach and wrapper has used

exclusively for solving the redundancy of data. The wrapper approach is

more suited for high dimensional data especially to evaluate the usefulness of

features.

2. Enhance the proposed algorithm using more than two classifiers such as

SVM, NB, LR, C4.5, and MLP. In this research, the classifiers provided by

MULAN application are used to learn the knowledge from the software

quality data. Although, the function in the MULAN Java library has limited

functionality and capability to import classifiers indirectly from WEKA. The

 118

application of WEKA as a learning tool can provide more classifiers to be

used in solving the data redundancy in high dimensionality of data.

3. Finally, the development of FRA algorithm was based on FS technique as

the main technique in the software quality assessment engine. Besides that,

other techniques in AI approach can be explored such as NN and GA.

6.6 Summary

As a conclusion for this research, this chapter has discussed and concluded the

overall research, the contribution of the research and followed by the limitation of

the research. The discussion and recommendations for further development and

extension were outlined. The embedding of AI approach contributes to the

assessment technique as good as human approach and reduced uncertainty of quality

attributes. Hence, the developed model can be a good alternative model to support

the software quality model community in evaluating the quality attributes with

intelligence technique. Hopefully, the findings of this study are able to provide

positive inputs to the future researches and the evaluation efforts can encourage

individuals and organizations in software quality community to utilize the proposed

dynamic model as well as using an intelligent approach in the assessment engine.

 119

REFERENCES

Aamodt, A. (1994). Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches, 7, 39–59.

Abran, A., Khelifi, A. & Suryn, W. (2003). Usability meanings and interpretations in

ISO standards. Software Quality Journal, 11, 323-336.

Aguero, M., Madou, F., Esperon, G. & Lopez, D. L. (2010). Artificial intelligence

for software quality improvement. World Academy of Science and Technology,

63.

Anna, S. C., Garcia, A. P., Chavez, C. V. & Lucena, C. J. (2003). On the reuse and

maintenance of aspect-oriented software: An assessment framework. Computer

Science Department, Retrieved September 27, 2010 from IEEE Computer

Society.

Allen, E. B. (2001). Controlling Overfitting in Classification Tree Models of

Software Quality. 2001 International Symposium on Empirical Software

Engineering, 2001., 59–79.

Ashrafi, N. (2003). The impact of software process improvement on quality in theory

and practice. Information & Management, 40(7), 677–690.

Azuma, M. (1991). SQuaRE the next generation of the ISO/IEC 9126 and 14598

international standards series on software product quality. Technical Report,

ISO/IEC JTC1/SC7/WG6.

Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-oriented design

quality assessment. IEEE Transactions on Software Engineering, 28(1), 4–17.

Baumgartner, D., & Serpen, G. (2009). Large Experiment and Evaluation Tool for

WEKA Classifiers. 5th International Conference on Data Mining, 340–346.

 120

Bevan, N. (1984). Quality in use: Incorporating Human Factors into the Software

Engineering Lifecycle. Software Engineering Standards Symposium and

Forum, 1997.’Emerging International Standards'. ISESS 97., Third IEEE

International, 169–179.

Bevan, N. (1997). Quality and usability: A new framework. National Physical

Laboratory, United Kingdom.

Bevan, N. (1999). Quality in use: Meeting user needs for quality. The Journal of

Systems and Software, 49, March 19. 89-96.

Bevan, N. (1999). Quality in use: Incorporating human factors into the software

engineering lifecycle. National Physical Laboratory, Retrieved September 27,

2010 from IEEE Computer Society.

Bhatti, S. N. (2005). Why Quality? ISO 9126 Software Quality Metrics

(Functionality) Support by UML Suite. Advances in Engineering Software,

30(2), 1–5.

Biesiada, J., & Duch, W. (2005). Feature Selection for High-Dimensional Data: A

Kolmogorov-Smirnov Correlation-Based Filter. Advances in Soft Computing,

30, 95–103.

Biesiada, J., & Duch, W. (2007). Feature Selection for High-Dimensional Data: A

Pearson Redundancy Based Filter. Advances in Soft Computing, 45, 242–249.

Blachnik, M., Duch, W., Kachel, A., & Biesiada, J. (2009). Feature Selection for

Supervised Classification: A Kolmogorov-Smirnov Class Correlation-Based

Filter. In AIMeth, Symposium On Methods Of Artificial Intelligence. Gliwice,

Poland (10-19 November 2009).

Blum, A. L., & Langley, P. (1997). Artificial Intelligence Selection of relevant

features and examples in machine. Artificial Intelligence, 97, 245–271.

 121

Briand, L. et al., (2000). Exploring the relationships between design measures and

software quality in object-oriented systems. Journal of Systems and Software

51, 245–273.

Buglione, L. & Abran, A. (1999). A quality factor for software. Proceedings from:

QUALITA99, 3rd International Conference on Quality and Reliability, 335-344.

Burgess, C. J. (2000). Using Artificial Intelligence to solve problems in software

quality management. Proceedings from: The 8th International Conference on

Software Quality Management (SQM2000), Software Quality Management VIII.

ISBN 1-902505-25-5, 77–89.

Cheikhi, L., Abran, A. & Suryn, W. (2006). Harmonization of usability

measurements in ISO9126 software engineering standards. Proceedings from:

IEEE International Conference on Software Engineering, July 9-12, 2006,

Montreal Quebec, Canada, ISBN: 1-4244-0497-5, 3246-3251.

Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data

Analysis, 1(1-4), 131–156.

Dash, M., & Liu, H. (2003). Consistency-based search in feature selection. Artificial

Intelligence, 151(1-2), 155–176.

Denning, P. J. (1992). What is Software Quality? A Commentary from

Communications of ACM (January).

Deraman, A. & Yahaya, J. H. (2010). Measuring the unmeasurable characteristics of

software quality using pragmatic quality factor. Proceedings from: 2010 3rd

IEEE International Conference on Computer Science and Information

Technology, July 7-10, 2010, Chengdu, China, ISBN:978-1-4244-5539-3, 197-

202.

Dromey, R. G., & Popper, K. (1994). A model for software product quality. Software

Quality Institute, (October), 1–35.

 122

Dromey, G. R. (1995). A model for software product quality. IEEE Transaction on

Software Engineeering, February, 21(2), 146-162.

Dromey, G. R. (1998). Software product quality: Theory, model and practice.

Software Quality Institute. Griffith University, Brisbane, Technical Report.

Retrieved 23 August, 2010, from http://www.sqi.gu.edu.au.

Dromey, G. R. (1999). Cornering the chimera, IEEE Software, January, 33-43.

Duch, W., Winiarski, T., Biesiada, J., & Kachel, A. (2003, June). Feature selection

and ranking filters. International Conference on Artificial Neural Networks

(ICANN) and International Conference on Neural Information Processing

(ICONIP). 251-254.

Durrett, R. (2010). Probability: theory and examples. Cambridge University Press.

Engineers, E. (1993). IEEE Standard for a Software Quality Metrics Methodology

(pp. 1–73).

Forman, G. (2003). An extensive empirical study of feature selection metrics for text

classification. Journal of Machine Learning Research, 3,1289–1305.

Fitzpatrick, R. (1996). Software quality: Definitions and strategies issues. Retrieved

Sept 13, 2010, from http://ieeexplore.ieee.org/xpl/standards.jsp.

Fitzpatrick, R. & Higgins, C. (1998). Usable software and its attributes synthesis of

software quality: European community law and human-computer. Retrieved

Sept 13, 2010, from http://ieeexplore.ieee.org/xpl/standards.jsp.

Forman, G. (2003). An Extensive Empirical Study of Feature Selection Metrics for

Text Classification. Machine Learning Research, 3, 1289–1305.

Frank, E., Hall, M., Trigg, L., Holmes, G., & Witten, I. H. (2004). Data mining in

bioinformatics using Weka. Bioinformatics (Oxford, England), 20(15), 2479–

81.

 123

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers.

Machine learning, 29(2), 131-163.

Gao, K., Khoshgoftaar, T. M., & Napolitano, A. (2009). Exploring Software Quality

Classification with a Wrapper-Based Feature Ranking Technique. 2009 21st

IEEE International Conference on Tools with Artificial Intelligence, 67–74.

Gao, K., Raton, B., & Wang, H. (2009). An Empirical Investigation of Filter

Attribute Selection Techniques for Software Quality Classification. Information

Reuse & Integration, 2009. IRI’09. IEEE International Conference, 272–277.

Gao, K. (2010). An Evaluation of Sampling on Filter-Based Feature Selection

Methods. Proceedings of the Twenty-Third International Florida Artificial

Intelligence Research Society Conference (FLAIRS 2010), 416–421.

Garcia, A. F. (2003). On the Reuse and Maintenance of Aspect-Oriented Software:

An Assessment Framework. Proceedings of Brazilian Symposium on Software

Engineering, 19-34.

Goulao, M. & Abreu, F. B. (2007). Towards a components quality model.

Information Systems Group (INESC), Retrieved Oct 26, 2010, from

http://www.msc.com.my/xtras/fact_figures/msc.asp.

Grunwald, P., & Vitanyi, P. (2008). Shannon Information and Kolmogorov

Complexity, 1–54. Retrieved Nov 29, 2012, from

http://arxiv.org/abs/cs/0410002

Guyon, I. (2003). An Introduction to Variable and Feature Selection 1 Introduction.

Journal of Machine Learning Research, 3, 1157–1182.

Hall, M. A., & Smith, L. A. (1997). Feature Subset Selection: A Correlation Based

Filter Approach. Retrieved Aug 8, 2011, from

http://scholar.google.com.my/scholar?q=feature+subset+selection%3A+A+corr

elation+based+filter+approach&hl=en&as_sdt=0%2C5

 124

Hall, M. A., & Smith, L. A. (1998). Practical Feature Subset Selection for Machine

Learning. Retrieved Aug 8, 2011, from

http://researchcommons.waikato.ac.nz/bitstream/handle/10289/1512/Practical%

20feature%20subset?sequence=1

Hamann, D., Jarvinen, J., & Birk, A. (1998). A Product-Process Dependency

Definition Method. IEEE Transactions on Software Engineering,

15504(23239), 898–904.

Hall, M. (1999). Correlation-based feature selection for machine learning. Retrieved

Aug 8, 2011, from http://www.lri.fr/~pierres/donn%E9es/save/these/articles/lpr-

queue/hall99correlationbased.pdf

Hall, M. A. (2000). Benchmarking Attribute Selection Techniques for Data Mining.

Retrieved Aug 8, 2011, from

http://researchcommons.waikato.ac.nz/bitstream/handle/10289/1026/uow-cs-

wp-2000-10.pdf?sequence=1

Hall, M. A., & Holmes, G. (2003). Benchmarking attribute selection techniques for

discrete class data mining. IEEE Transactions on Knowledge and Data

Engineering, 15(6), 1437–1447.

Hall, M., National, H., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., &

Witten, I. H. (2009). The WEKA Data Mining Software: An Update. ACM

SIGKDD Explorations Newsletter, 11(1), 10-18.

Hall, M. A., & Witten, I. H. (2010). WEKA Experiences with a Java Open-Source

Project. Journal of Machine Learning Research, 11, 2533–2541.

Humphrey, W. S., Kitson, D., Olson, T. G., Humphrey, W. S., & Kitson, D. (1989).

Conducting SEI-Assisted Software Process Assessments Conducting SEI-

Assisted. Software Engineering Institute.

 125

Ioannou, M., Sakkas, G., Tsoumakas, G., & Vlahavas, I. (2010). Obtaining

Bipartitions from Score Vectors for Multi-Label Classification. 2010 22nd

IEEE International Conference on Tools with Artificial Intelligence, 409-416.

IEEE. (1993). IEEE standard for a software quality metrics methodology. Retrieved

August 20, 2010, from http://ieeexplore.ieee.org/xpl/standards.jsp.

ISO/IEC 9126. (1996). Software quality characteristics and metrics-Part2: External

metrics. Technical Report, ISO/IEC JTC1/SC7/WG6.

Jain, A., & Zongker, D. (1997). Feature Selection: Evaluation, Application, and

Small Sample Performance. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 19(2), 153-158.

Jenner, M. G. (1995). Software Quality Management and ISO 9001. New York: A

Wiley/QED publication.

Jiang, B., Ma, L., & Xie, W. (2008). A Hybrid Feature Selection Algorithm:

Combination of Symmetrical Uncertainty and Genetic Algorithms. The Second

Internatiional Symposium on Optimization and System Biology (OSB’08), 152–

157.

John, G. H., Kohavi, R., & Karl, P. (1994). Irrelevant Features and the Subset

Selection Problem. Proceedings of the Eleventh International Conference (pp.

121–129).

Jorgensen, M. (1999). Software quality measurement. Advances in Engineering

Software, 30(12), 907–912.

Jung, H., & Kim, S. (2004). Product Quality: A Survey. IEEE Computer Society, 88–

92.

 126

Khoshgoftaar, T. M., Munson, J. C., Bhattacharya, B. B., & Richardson, G. D.

(1995). Predictive modeling techniques of software quality from software

measures. IEEE Transactions on Software Engineering, 18(11), 979-987.

Khoshgoftaar, T. M., Allen, E. B., Hudepohl, J. P., & Aud, S. J. (1997). Application

of neural networks to software quality modeling of a very large

telecommunications system. IEEE transactions on neural networks / a

publication of the IEEE Neural Networks Council, 8(4), 902–9.

Khoshgoftar, T., Chien, P. D., & Allen, E. (1998). GP-based software quality

prediction. Proceedings of the Third Annual Conference Genetic Programming,

volume (pp. 60-65).

Khoshgoftaar, T. M., Allen, E. B., Halstead, R., Trio, G. P., & Flass, R. M. (1999).

Using process history to predict software quality. Computer (Vol. 31, pp. 66-

72).

Khoshgoftaar, T. M., & Allen, E. B. (2000). A practical classification rule for

software quality models. Reliability, IEEE Transactions on, 49(2), 209-216.

Khoshgoftaar, T. M., Yuan, X., & Allen, E. B. (2000). Balancing misclassification

rates in classification tree models of software quality. Empirical Software

Engineering, 5(4), 313-330.

Khoshgoftaar, T. M., Nguyen, L., Gao, K., & Rajeevalochanam, J. (2003).

Application of an attribute selection method to CBR-based software quality

classification. Proceedings of 15th IEEE International Conference on Tools

with Artificial Intelligence, 47–52.

Khoshgoftaar, T. M., & Su, X. (2009). A survey of collaborative filtering techniques.

Advances in Artificial Intelligence, 2009, Retrieved Aug 8, 2011, from

http://dl.acm.org/citation.cfm?id=1722966

 127

Khoshgoftaar, T. M., Wang, H., & Van Hulse, J. (2010). A comparative study of

threshold-based feature selection techniques. In Granular Computing (GrC),

2010 IEEE International Conference. 499-504.

Khosravi, K. (2004). A Quality Model for Design Patterns. Retrieved Aug 8, 2011,

from http://www-etud.iro.umontreal.ca/~ptidej/yann-

gael/Work/Publications/Documents/041021+Kashayar+Khosravi+Technical+R

eport.doc.pdf

Kilidar, H., Cox, K., & Kitchenham, B. (2005). The use and usefulness of the

ISO/IEC 9126 quality standard. 2005 International Symposium on Empirical

Software Engineering, 2005., 122–128.

Kitchenham, B., & Pfleeger, S. L. (1996). Introduction Software quality: The Elusive

Target. IEEE Software, 13(1), 12–21.

Kira, K., & Rendell, L. A. (1992). The feature selection problem: Traditional

methods and a new algorithm. In Proceedings of the National Conference on

Artificial Intelligence. 129-129.

Kohavi, R., & John, G. H. (1996). Wrappers for Feature Subset Selection. Artificial

Intelligence, 97(1), 273–324.

Kolodner, J. L. (1992). An Introduction to Case-Based Reasoning. Artificial

Intelligence Review, 6(1), 3–34.

Kolodner, J. (1993). Case-Based Reasoning, Morgan Kaufmann.

Kolodner, J. L., Simpson, R. L, & Cyrans, K. S. (1993). A process model of cased-

based reasoning in problem solving. Georgia Institute of Technology, Atlanta,

Technical Report. Retrieved 27 August 2010, from http://www.sqi.gu.edu.au.

Kononenko, I. (1994). Estimating Attributes: Analysis and Extensions of RELIEF.

Machine Learning: ECML-94, 171–182.

 128

Kumar, R., Rai, S. & Trahen, J. L. (1998). Neural network techniques for software

quality evaluation. Proceedings of the Annual Reliability and Maintainability

Symposium, 155-161.

Laboratorio, M. O. (2002). A Systemic Quality Model for Evaluating Software

Products. Retrieved Sept10, 2011, from http://www.lisi.usb.ve/publicaciones/02

calidad sistemica/calidad_24.pdf

Langley, P., & Flamingo, L. (1994). Selection of Relevant Features in Machine

Learning. AAAI Technical Report FS-94-02, 127–131.

Langley, P., & Blum, A. L. (1997). Selection of Relevant Features and Examples in

Machine Learning. Artificial Intelligence, 97, 245–271.

Lee, Y. W., Strong, D. M., Kahn, B. K., & Wang, R. Y. (2002). AIMQ: A

Methodology for Information Quality Assessment. Information & Management,

40(2), 133–146.

Lees, B., Hamza, M., & Irgens, C. (1996). Applying Case-Based Reasoning to

Software Quality Management. Burkhard & Lenz (1996), 162-169.

Li, S., Xia, R., Zong, C., & Huang, C. R. (2009). A Framework of Feature Selection

Methods for Text Categorization. Proceedings of the Joint Conference of the

47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP, 2(August), 692–700.

Liu, H., Li, J., & Wong, L. (2002). A comparative study on feature selection and

classification methods using gene expression profiles and proteomic patterns.

Genome informatics. International Conference on Genome Informatics, 13, 51–

60.

Moreira, A., Araújo, J., & Brito, I. (2002). Crosscutting quality attributes for

requirements engineering. Proceedings of the 14th international conference on

Software engineering and knowledge engineering - SEKE ’02, 167-174.

 129

Norman, F. (2002). Body of Knowledge for Software Quality. IEEE Computer

Society, (February), 77-82.

Olivier, P. (2001). Diagrammatic reasoning: An artificial intelligence perspective.

Artificial Intelligence Review, 15(1), 63-78.

Ortega, M., Pérez, M., & Rojas, T. (2000). A model for software Product Quality

with a Systemic Focus. 4th World Multiconference on Systemics, Cybernetics

and Informatics SCI 2000 and The 6th International Conference on Information

Systems, Analysis and Synthesis ISAS 2000 (pp. 395-401).

Ortega, M., & Rojas, T. (2003). Construction of a systemic quality model for

evaluating a software product. Software Quality Jurnal, 11(July), 219–242.

Ortega, M., Perez, M. & Rojas, T. (2003). A model for software product quality with

a systemic focus. Retrieved October 28, 2010 from IEEE Computer Society.

Pfleeger, S. L. (2001). Software Engineering: Theory and Practice”, 2nd ed. Upper

Saddle River, N.J: Prentice Hall.

Pomerol, J. C. (1997). Artificial intelligence and human decision making. European

Journal of Operational Research, 99(1), 3-25.

Punch, W. F., Goodman, E. D., Pei, M., Chia-shun, L., Hovland, P., & Enbody, R.

(1993). Further Research on Feature Selection and Classification Using Genetic

Algorithms. Proceedings of the 5th International Conference on Genetic

Algorithms, (Jun), 557–564.

Qutaish, R. E. (2009). Measuring the software product quality during the software

development life-cycle: An international organization for standardization

standard perspective. Journal of Computer Science, 5 (5), 392-397.

 130

Raton, B. (2003). Fault Prediction Modeling for Software Quality Estimation:

Comparing Commonly Used Techniques. Empirical Software Engineering, 8,

255–283.

Rawashdeh, A., & Matalkah, B. (2006). A new software quality model for evaluating

COTS components. The Journal of Computer Science 2 (4). 373-381.

Reformat, M., Pedrycz, W., & Pizzi, N. J. (2003). Software Quality Analysis with

the Use of Computational Intelligence. Information and Software Technology,

45(7), 405–417.

Rieser, V., & Lemon, O. (2006). Using Machine Learning to Explore Human

Multimodal Clarification Strategies. Proceedings of the COLING/ACL 2006

Main Conference Poster Sessions, (July), 659–666.

Robu, R., Stoicu., & Tivadar, V. (2010). Arff Convertor Tool for WEKA Data

Mining Software. 2010 International Joint Conference on Computational

Cybernetics and Technical Informatics, 247–251.

Ross, S., Fang, L., & Hipel, K. W. (2002). A case-based reasoning system for

conflict resolution: design and implementation. Engineering Applications of

Artificial Intelligence, 15(3), 369-383.

Saeys, Y., Inza, I., & Larrañaga, P. (2007). A Review of Feature Selection

Techniques in Bioinformatics. Bioinformatics (Oxford, England), 23(19), 2507-

2517.

Sajnani, H., Javanmardi, S., Mcdonald, D. W., & Lopes, C. V. (2010). Multi-Label

Classification of Short Text: A Study on Wikipedia Barnstars. The AAAI-11

Workshop on Analyzing Microtext. Retrieved Nov 23, 2011, from

http://pensivepuffin.com/dwmcphd/papers/Sajani.et.al-MultiLabelBarnstars-

AAAIShortTextWorkshop.pdf

 131

Science, F., & Box, P. O. (2006). A New Software Quality Model for Evaluating

COTS Components Adnan Rawashdeh and Bassem Matalkah. Journal of

Computer Science, 2(4), 373–381.

Software, E., & Raton, B. (2004). Comparative Assessment of Software Quality

Classification Techniques: An Empirical Case Study. Empirical Software

Engineering, 9, 229–257.

Sonnenburg, S., Braun, M. L., Ong, C. S., Bengio, S., Bottou, L., Holmes, G., &

Williamson, R. C. (2007). The need for open source software in machine

learning. Retrieved Nov 26, 2012, from

http://researchcommons.waikato.ac.nz/handle/10289/3928

Stefani, A., & Xenos, M. (2008). E-Commerce System Quality Assessment using a

Model based on ISO 9126 and Belief Networks. Software Quality Journal,

16(March), 107–129.

Suryn, W., Abran, A. & April, A. (2003). ISO/IEC SQuaRE: The second generation

of standards for software product quality. Retrieved December 20, 2010, from

http://www.lrgl.uqam.ca/publications/pdf/799.pdf.

Swiniarski, R. W., & Skowron, A. (2003). Rough Set Methods in Feature Selection

and Recognition. Pattern Recognition Letters, 24, 833–849.

Szabo, R. M., & Guasti, P. J. (1995). Exploring the Behaviour of Neural Network

Sofware Quality Models. Software Engineering Journal, (May), 89–96.

Tadeuchi, Y., Oshima, R., Nishida, K., Yamauchi, K., & Omori, T. (2007). Quick

Online Feature Selection Method for Regression-A Feature Selection Method

Inspired by Human Behavior. Systems, Man and Cybernetics, 2007. ISIC. IEEE

International Conference. pp. 1895-1900.

 132

Tadeuchi, Y., Oshima, R., Nishida, K. & Yamauchi, K. (2007). A feature selection

method inspired by human behavior. University Research Institute, Tamagawa.

1895-1900.

Tahir, M. A., Kittler, J., Mikolajczyk, K., & Yan, F. (2010). Improving Multilabel

Classification Performance by Using Ensemble of Multi-label Classifiers.

Multiple Classifier Systems, 11–21.

Tervonen, I. (1996). Support for quality-based design and inspection. IEEE Software

(January), 44-54.

Thwin, M. M. T., & Quah, T. S. (2005). Application of Neural Networks for

Software Quality Prediction using Object-Oriented Metrics. Journal of Systems

and Software, 76(2), 147–156.

Tomar, A. B. (2011). A Systematic Study of Software. International Journal of
Software Engineering & Application (IJSEA), 2(4), 61–70.

Trohidis, K., & Kalliris, G. (2008). Multi Label Classification of Music into

Emotion. ISMIR 2008: Proceedings of the 9th International Conference of

Music Information Retrieval, 325–330.

Tsoumakas, G., & Vlahavas, I. (2010). Random k-labelsets: An ensemble method for

multilabel classification. Machine Learning: ECML 2007, 406-417.

Tsoumakas, G., & Vilcek, J. (2011). MULAN: A Java Library for Multi-Label

Learning. Journal of Machine Learning Research, 12, 2411–2414.

Vivanco, R. (2007). Improving Predictive Models of Software Quality Using an

Evolutionary Computational Approach. 2007 IEEE International Conference on

Software Maintenance, 503–504.

Wang, Q. (2009). Feature Selection and Clustering in Software Quality Prediction.

Evaluation and Assessment in Software Engineering 2007, 1–12.

 133

Wang, H., Khoshgoftaar, T. M., Gao, K., & Seliya, N. (2009). High-Dimensional

Software Engineering Data and Feature Selection. 2009 21st IEEE International

Conference on Tools with Artificial Intelligence, 83–90.

Wang, H., Khoshgoftaar, T. M., & Seliya, N. (2011). How many software metrics

should be selected for defect prediction? In Proceedings of the Twenty-Fourth

International Florida Artificial Intelligence Research Society Conference (pp.

69-74).

Weiss, N.A. (2008). Introductory Statistics. Pearson International Edition.

Wenger, E. (2004). Artificial intelligence and tutoring systems. International

Journal of Artificial Intelligence in Education, 14, 39-65.

Whittaker, J. A., & Voas, J. M. (2002). 50 years of software: key principles for

quality. IT professional, 4(6), 28-35.

Witten, I. H., Frank, E., Trigg, L., Hall, M., Holmes, G., & Cunningham, S. J.

(1999). Weka: Practical Machine Learning Tools and Techniques with Java

Implementations. Retrieved January 10, 2012, from

http://scholar.google.com.my/scholar?q=Weka+%3A+Practical+Machine+Lear

ning+Tools+and+Techniques+with+Java+Implementations&hl=en&as_sdt=0%

2C5

Wolf, L., & Shashua, A. (2003). Feature selection for unsupervised and supervised

inference: the emergence of sparsity in a weighted-based approach. In

Computer Vision, 2003. Proceedings. Ninth IEEE International Conference,

378-384.

Xenos, M., & Christodoulakis, D. (1997). Measuring perceived software quality.

Information and Software Technology, 39(6), 417–424.

Yahaya, J. H., Deraman, A. & Hamdan, A. R. (2007). A case study in applying

software certification model by product quality approach. The International

 134

Conference on electrical Engineering and Informatics, June 17-19, Bandung,

Indonesia, 706-709.

Yahaya, J. H, Deraman, A. & Hamdan, A. R. (2008). Software quality from

behavioural and human perspectives. IJCSNS International Journal of

Computer Science and Network Security, 8(8), August 30, 53-63.

Yahaya, J. H, Deraman, A. & Hamdan, A. R. (2008). Software certification

implementation: Case study analysis and findings. The 3rd International

Symposium on Information Technology 2008 (ITSIM 2008), August 26-29,

Kuala Lumpur, 1541-1548.

Yahaya, J. H., Deraman, A., Hamdan, A. R. & Baharom, F. (2008). Software product

certification: A collaborative perspective approach. The 9th Asia Pacific

Industrial Engineering & Management Systems Conference, December 3-5,

Bali, Indonesia, 760-768.

Yahaya, J. H., Deraman, A. & Hamdan, A. R. (2010). Continuously ensuring quality

through software certification: A case study. The International Conference on

Information Society (i-Society 2010), June 28-30, London, UK.

Yang, J., & Honavar, V. (1997). Feature Subset Selection Using A Genetic

Algorithm Feature Subset Selection Using 1 Introduction. Intelligent Systems

and Their Applications, 13(2), 44–49.

Yu, L., & Liu, H. (2003). Feature Selection for High-Dimensional Data: A Fast

Correlation-Based Filter Solution. Proceedings of the Twentieth International

Conference on Machine Learning (ICML-2003), 2(2), 856–864.

Yu, L., & Liu, H. (2004). Efficient Feature Selection via Analysis of Relevance and

Redundancy. Journal of Machine Learning Research, 5, 1205–1224.

 135

Appendix A

Sample Data

Attributes Score Assigned by the Assessors adapted from Yahaya et al. (2011).

Efficiency Functionality Maintainability Portability Reliability Integrity Usability UserComfomity
3 2 1 3 1 2 2 2
5 3 4 2 3 3 5 5
3 4 2 4 1 4 3 2
4 1 4 1 2 1 4 3
5 3 4 1 3 3 5 5
2 4 5 5 1 4 3 2
4 2 1 3 2 2 2 3
3 3 4 4 3 3 5 4
5 1 2 1 3 1 3 2
2 4 4 3 2 4 4 5
4 3 1 1 4 3 4 3
3 2 1 3 1 2 3 4
1 3 5 3 3 3 2 2
4 4 4 1 2 4 5 3
2 1 5 4 1 1 4 5
1 3 1 3 3 3 4 4
3 2 5 1 2 2 3 3
4 1 4 1 3 1 4 2
2 3 1 2 2 3 2 4
4 5 5 3 2 5 5 5
1 2 5 3 3 2 4 3
4 3 4 5 1 3 3 2
2 1 1 1 3 1 5 4
3 5 5 4 3 5 4 4
4 3 4 3 4 3 5 4
1 2 1 3 2 2 3 5
5 3 5 5 3 3 5 3
5 1 4 1 1 1 2 4
4 4 4 1 2 4 5 3
2 1 5 4 1 1 4 5
1 3 1 3 3 3 4 4
3 2 5 1 2 2 3 3

 136

Appendix B

Result of Experiment

P001: Efficiency Attribute

RaKEL-------------------------------

Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.2179±0.0267
Subset Accuracy: 0.2488±0.0386
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6173±0.0501
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5098±0.0501
Micro-averaged Precision: 0.6592±0.0617
Micro-averaged Recall: 0.6260±0.0549
Micro-averaged F-Measure: 0.6407±0.0401
Macro-averaged Precision: 0.6509±0.0600
Macro-averaged Recall: 0.6144±0.0556
Macro-averaged F-Measure: 0.6230±0.0575
Average Precision: 0.7762±0.0405
Coverage: 1.9414±0.1693
OneError: 0.3120±0.0722
IsError: 0.5297±0.0689
ErrorSetSize: 1.3575±0.2418
Ranking Loss: 0.1891±0.0359
Mean Average Precision: 0.6919±0.0506
Micro-averaged AUC: 0.8269±0.0261
Macro-averaged AUC: 0.8104±0.0272

---------MLkNN---
Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10

 137

Fold 9/10
Fold 10/10
Hamming Loss: 0.1991±0.0293
Subset Accuracy: 0.2831±0.0532
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6050±0.0568
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5346±0.0615
Micro-averaged Precision: 0.7241±0.0571
Micro-averaged Recall: 0.6087±0.0506
Micro-averaged F-Measure: 0.6598±0.0723
Macro-averaged Precision: 0.7230±0.0692
Macro-averaged Recall: 0.5922±0.0425
Macro-averaged F-Measure: 0.6243±0.0413
Average Precision: 0.7965±0.0406
Coverage: 1.7884±0.1634
OneError: 0.2835±0.0740
IsError: 0.5028±0.0815
ErrorSetSize: 1.1443±0.2128
Ranking Loss: 0.1633±0.0320
Mean Average Precision: 0.7271±0.0426
Micro-averaged AUC: 0.8500±0.0235
Macro-averaged AUC: 0.8346±0.0501

P002: Functionality Attribute

RaKEL-------------------------------

Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.2178±0.0255
Subset Accuracy: 0.2478±0.0486
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6273±0.0601
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5088±0.0581
Micro-averaged Precision: 0.6572±0.0557
Micro-averaged Recall: 0.6260±0.0588
Micro-averaged F-Measure: 0.6417±0.0601

 138

Macro-averaged Precision: 0.5509±0.0500
Macro-averaged Recall: 0.6144±0.0539
Macro-averaged F-Measure: 0.6230±0.0465
Average Precision: 0.7762±0.0405
Coverage: 1.9414±0.1698
OneError: 0.3120±0.0724
IsError: 0.5297±0.0689
ErrorSetSize: 1.3575±0.2418
Ranking Loss: 0.1891±0.0359
Mean Average Precision: 0.6918±0.0505
Micro-averaged AUC: 0.8272±0.0261
Macro-averaged AUC: 0.8104±0.0272

---------MLkNN---
Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.1951±0.0243
Subset Accuracy: 0.2831±0.0538
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6050±0.0578
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5326±0.0515
Micro-averaged Precision: 0.7242±0.0571
Micro-averaged Recall: 0.6087±0.0505
Micro-averaged F-Measure: 0.6598±0.0423
Macro-averaged Precision: 0.7330±0.0692
Macro-averaged Recall: 0.5922±0.0425
Macro-averaged F-Measure: 0.6243±0.0413
Average Precision: 0.7965±0.0406
Coverage: 1.7884±0.1634
OneError: 0.2835±0.0740
IsError: 0.5028±0.0815
ErrorSetSize: 1.1443±0.2128
Ranking Loss: 0.1633±0.0320
Mean Average Precision: 0.7271±0.0426
Micro-averaged AUC: 0.8590±0.0235
Macro-averaged AUC: 0.8766±0.0311

 139

P003: Integrity Attributes

RaKEL-------------------------------

Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.2100±0.0455
Subset Accuracy: 0.2498±0.0496
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6263±0.0401
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5198±0.0531
Micro-averaged Precision: 0.6572±0.0527
Micro-averaged Recall: 0.6260±0.0548
Micro-averaged F-Measure: 0.6407±0.0501
Macro-averaged Precision: 0.6509±0.0600
Macro-averaged Recall: 0.6144±0.0538
Macro-averaged F-Measure: 0.6230±0.0565
Average Precision: 0.7762±0.0405
Coverage: 1.9414±0.1698
OneError: 0.3120±0.0722
IsError: 0.5297±0.0654
ErrorSetSize: 1.3575±0.2418
Ranking Loss: 0.1891±0.0375
Mean Average Precision: 0.6928±0.0515
Micro-averaged AUC: 0.8269±0.0233
Macro-averaged AUC: 0.8264±0.0265

---------MLkNN---
Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10

 140

Fold 10/10
Hamming Loss: 0.1951±0.0243
Subset Accuracy: 0.2831±0.0538
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6050±0.0578
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5326±0.0515
Micro-averaged Precision: 0.7242±0.0571
Micro-averaged Recall: 0.6087±0.0505
Micro-averaged F-Measure: 0.6598±0.0423
Macro-averaged Precision: 0.7330±0.0692
Macro-averaged Recall: 0.5922±0.0425
Macro-averaged F-Measure: 0.6243±0.0413
Average Precision: 0.7965±0.0406
Coverage: 1.7884±0.1634
OneError: 0.2835±0.0740
IsError: 0.5028±0.0815
ErrorSetSize: 1.1443±0.2128
Ranking Loss: 0.1633±0.0320
Mean Average Precision: 0.7271±0.0426
Micro-averaged AUC: 0.8590±0.0235
Macro-averaged AUC: 0.7568±0.0301

P004: Maintainability Atrribute

RaKEL-------------------------------

Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.2178±0.0255
Subset Accuracy: 0.2478±0.0486
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6273±0.0601
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5098±0.0501
Micro-averaged Precision: 0.6572±0.0517
Micro-averaged Recall: 0.6260±0.0548
Micro-averaged F-Measure: 0.6407±0.0501
Macro-averaged Precision: 0.6509±0.0600

 141

Macro-averaged Recall: 0.6144±0.0538
Macro-averaged F-Measure: 0.6230±0.0565
Average Precision: 0.7762±0.0406
Coverage: 1.9414±0.1698
OneError: 0.3120±0.0724
IsError: 0.5297±0.0689
ErrorSetSize: 1.3575±0.2418
Ranking Loss: 0.1891±0.0359
Mean Average Precision: 0.6918±0.0505
Micro-averaged AUC: 0.8269±0.0261
Macro-averaged AUC: 0.8121±0.0272

---------MLkNN---
Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.1951±0.0243
Subset Accuracy: 0.2831±0.0538
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6050±0.0578
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5326±0.0515
Micro-averaged Precision: 0.7242±0.0571
Micro-averaged Recall: 0.6087±0.0505
Micro-averaged F-Measure: 0.6598±0.0423
Macro-averaged Precision: 0.7330±0.0692
Macro-averaged Recall: 0.5922±0.0425
Macro-averaged F-Measure: 0.6243±0.0413
Average Precision: 0.7965±0.0406
Coverage: 1.7884±0.1634
OneError: 0.2835±0.0740
IsError: 0.5028±0.0815
ErrorSetSize: 1.1443±0.2128
Ranking Loss: 0.1633±0.0320
Mean Average Precision: 0.7271±0.0426
Micro-averaged AUC: 0.8590±0.0235
Macro-averaged AUC: 0.9171±0.0301

 142

P005: Portability Attributes

RaKEL-------------------------------

Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.2197±0.0235
Subset Accuracy: 0.2455±0.0476
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6243±0.0401
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5086±0.0451
Micro-averaged Precision: 0.6545±0.0563
Micro-averaged Recall: 0.6261±0.0538
Micro-averaged F-Measure: 0.5407±0.0341
Macro-averaged Precision: 0.6519±0.0610
Macro-averaged Recall: 0.6144±0.0554
Macro-averaged F-Measure: 0.6221±0.0515
Average Precision: 0.7762±0.0477
Coverage: 1.9414±0.1698
OneError: 0.3120±0.0724
IsError: 0.5297±0.0689
ErrorSetSize: 1.3575±0.2418
Ranking Loss: 0.1891±0.0359
Mean Average Precision: 0.6918±0.0505
Micro-averaged AUC: 0.8451±0.0361
Macro-averaged AUC: 0.8564±0.0372

---------MLkNN---
Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.1851±0.0245

 143

Subset Accuracy: 0.2731±0.0638
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6151±0.0599
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5336±0.0532
Micro-averaged Precision: 0.7244±0.0522
Micro-averaged Recall: 0.6057±0.0515
Micro-averaged F-Measure: 0.6598±0.0423
Macro-averaged Precision: 0.7330±0.0692
Macro-averaged Recall: 0.5922±0.0425
Macro-averaged F-Measure: 0.6243±0.0413
Average Precision: 0.7965±0.0416
Coverage: 1.7984±0.1694
OneError: 0.2830±0.0700
IsError: 0.5028±0.0805
ErrorSetSize: 1.1403±0.2108
Ranking Loss: 0.1600±0.0300
Mean Average Precision: 0.7271±0.0426
Micro-averaged AUC: 0.8675±0.0325
Macro-averaged AUC: 0.8453±0.0321

P006: Reliability Attribute

RaKEL-------------------------------

Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.2238±0.0267
Subset Accuracy: 0.2408±0.0496
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6263±0.0541
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5098±0.0501
Micro-averaged Precision: 0.6562±0.0547
Micro-averaged Recall: 0.6250±0.0558
Micro-averaged F-Measure: 0.6427±0.0201
Macro-averaged Precision: 0.6535±0.0530
Macro-averaged Recall: 0.6874±0.0638
Macro-averaged F-Measure: 0.6440±0.0545

 144

Average Precision: 0.7766±0.0516
Coverage: 1.9417±0.1568
OneError: 0.3121±0.0721
IsError: 0.5292±0.0611
ErrorSetSize: 1.3565±0.2428
Ranking Loss: 0.1791±0.0349
Mean Average Precision: 0.6928±0.0615
Micro-averaged AUC: 0.8266±0.0263
Macro-averaged AUC: 0.8365±0.0232

---------MLkNN---
Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.1751±0.0253
Subset Accuracy: 0.2837±0.0598
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6150±0.0478
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5356±0.0415
Micro-averaged Precision: 0.7246±0.0578
Micro-averaged Recall: 0.6187±0.0532
Micro-averaged F-Measure: 0.6548±0.0453
Macro-averaged Precision: 0.7430±0.0672
Macro-averaged Recall: 0.5322±0.0415
Macro-averaged F-Measure: 0.6253±0.0414
Average Precision: 0.7985±0.0436
Coverage: 1.7884±0.1624
OneError: 0.2935±0.0760
IsError: 0.5028±0.0825
ErrorSetSize: 1.1463±0.2328
Ranking Loss: 0.1663±0.0330
Mean Average Precision: 0.7671±0.0486
Micro-averaged AUC: 0.8270±0.0243
Macro-averaged AUC: 0.7646±0.0501

 145

P007: Usability Attribute

RaKEL-------------------------------

Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.2178±0.0255
Subset Accuracy: 0.2478±0.0486
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6273±0.0601
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5098±0.0501
Micro-averaged Precision: 0.6572±0.0517
Micro-averaged Recall: 0.6260±0.0548
Micro-averaged F-Measure: 0.6407±0.0501
Macro-averaged Precision: 0.6509±0.0600
Macro-averaged Recall: 0.6144±0.0538
Macro-averaged F-Measure: 0.6230±0.0565
Average Precision: 0.7762±0.0406
Coverage: 1.9414±0.1698
OneError: 0.3120±0.0724
IsError: 0.5297±0.0689
ErrorSetSize: 1.3575±0.2418
Ranking Loss: 0.1871±0.0356
Mean Average Precision: 0.6918±0.0505
Micro-averaged AUC: 0.8267±0.0262
Macro-averaged AUC: 0.8131±0.0272

---------MLkNN---
Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.1951±0.0243

 146

Subset Accuracy: 0.2831±0.0538
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6050±0.0578
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5326±0.0515
Micro-averaged Precision: 0.7242±0.0571
Micro-averaged Recall: 0.6087±0.0505
Micro-averaged F-Measure: 0.6598±0.0423
Macro-averaged Precision: 0.7330±0.0692
Macro-averaged Recall: 0.5922±0.0425
Macro-averaged F-Measure: 0.6243±0.0413
Average Precision: 0.7965±0.0406
Coverage: 1.7884±0.1634
OneError: 0.2835±0.0740
IsError: 0.5028±0.0815
ErrorSetSize: 1.1444±0.2127
Ranking Loss: 0.1633±0.0320
Mean Average Precision: 0.7271±0.0426
Micro-averaged AUC: 0.8580±0.0225
Macro-averaged AUC: 0.7616±0.0301

P008: User Conformity Attribute

RaKEL-------------------------------

Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.2188±0.0265
Subset Accuracy: 0.2448±0.0436
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6263±0.0631
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5168±0.0401
Micro-averaged Precision: 0.6772±0.0417
Micro-averaged Recall: 0.6261±0.0538
Micro-averaged F-Measure: 0.6407±0.0521
Macro-averaged Precision: 0.6589±0.0601
Macro-averaged Recall: 0.6165±0.0543
Macro-averaged F-Measure: 0.62120±0.0515

 147

Average Precision: 0.7762±0.0406
Coverage: 1.9414±0.1698
OneError: 0.3120±0.0724
IsError: 0.5297±0.0689
ErrorSetSize: 1.3655±0.2318
Ranking Loss: 0.1891±0.0359
Mean Average Precision: 0.6918±0.0505
Micro-averaged AUC: 0.8619±0.0271
Macro-averaged AUC: 0.8174±0.0292

---------MLkNN---
Fold 1/10
Fold 2/10
Fold 3/10
Fold 4/10
Fold 5/10
Fold 6/10
Fold 7/10
Fold 8/10
Fold 9/10
Fold 10/10
Hamming Loss: 0.1551±0.0273
Subset Accuracy: 0.2821±0.0528
Example-Based Precision: NaN±NaN
Example-Based Recall: 0.6150±0.0518
Example-Based F Measure: NaN±NaN
Example-Based Accuracy: 0.5336±0.0535
Micro-averaged Precision: 0.7342±0.0561
Micro-averaged Recall: 0.6037±0.0525
Micro-averaged F-Measure: 0.6698±0.0413
Macro-averaged Precision: 0.7230±0.0592
Macro-averaged Recall: 0.5912±0.0415
Macro-averaged F-Measure: 0.6143±0.0411
Average Precision: 0.7925±0.0401
Coverage: 1.7784±0.1644
OneError: 0.2825±0.0710
IsError: 0.5026±0.0812
ErrorSetSize: 1.1353±0.2426
Ranking Loss: 0.1723±0.0540
Mean Average Precision: 0.6371±0.0486
Micro-averaged AUC: 0.8270±0.0335
Macro-averaged AUC: 0.8259±0.0221

 148

Appendix C

List of Publication

1. Jamaiah Yahaya, Siti Sakira Kamaruddin, Ruzita Ahmad, Aziz Deraman.
2010. Artificial Intelligence Tecniques in Software Quality: A Review.
Proceedings of Social Economic and Information Technology 2010 (SeiT
2010), Hatyai, Thailand, 23-25 Nov 2010, pp.379-387.

2. Jamaiah Haji Yahaya, Aziz Deraman, Siti Sakira Kamaruddin, Ruzita

Ahmad. 2010. Development of an Intelligent Software Quality Model
based on Software Behavioural and Human Factor Approach. The
Proceedings of the UK-Malaysian-Ireland Engineering Science
Conference 2010 (UMIES 2010), Queen’s University, Belfast, June 23-
25, 2010.

3. Jamaiah Haji Yahaya, Aziz Deraman, Siti Sakira Kamaruddin, Ruzita
Ahmad. 2010. Intelligent Software Quality Model by Product Quality
Approach: A Review. The Social Economic & Information Technology
Seminar (SEiT 2010), Universiti Utara Malaysia, Sintok, November 23-
25, 2010.

4. Ruzita Ahmad, Jamaiah Yahaya, Aziz Deraman, Siti Sakira Kamaruddin.
2011.Intelligent Software Quality Model: The Theoretical Framework.
The Proceedings of the 3rd International Conference on Computing and
Informatics, ICOCI 2011, 8-9 June 2011, Bandung Indonesia, pp. 160-
166.

5. Jamaiah Yahaya, Aziz Deraman, Siti Sakira Kamaruddin, Ruzita Ahmad.
2011. Development of a Dynamic and Intelligent Software Quality
Model. The International Conference on Digital Information and
Communication Technology, ICIEIS2011, 21-23 June 2011, Berlin
Heidelberg, pp. 537-550.

6. Jamaiah Yahaya, Aziz Deraman, Siti Sakira Kamaruddin, Ruzita Ahmad.
2011. Feature Subset Selection Method For Dynamic Software Quality
Assessment. The5th Malaysian Conference in Software Engineering,
MYSEC2011, 13-14 Dec 2011, Johor Malaysia, pp. 304-306.

7. Jamaiah Yahaya, Aziz Deraman, Siti Sakira Kamaruddin, Ruzita Ahmad.
2012. Filter-Wrapper based Feature Ranking Technique for Dynamic
Software Quality Attributes. TheKnowledge Management International
Conference, KMICE2012, 4-6 July 2012, Johor Malaysia, pp. 604-608.

